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Abstract

Applying reinforcement learning (RL) to real-world problems is often made chal-1

lenging by the inability to interact with the environment and the difficulty of de-2

signing reward functions. Offline RL addresses the first challenge by consider-3

ing access to an offline dataset of environment interactions labeled by the reward4

function. In contrast, Preference-based RL does not assume access to the reward5

function and learns it from preferences, but typically requires an online interaction6

with the environment. We bridge the gap between these frameworks by explor-7

ing efficient methods for acquiring preference feedback in a fully offline setup.8

We propose Sim-OPRL, an offline preference-based reinforcement learning al-9

gorithm, which leverages a learned environment model to elicit preference feed-10

back on simulated rollouts. Drawing on insights from both the offline RL and11

the preference-based RL literature, our algorithm employs a pessimistic approach12

for out-of-distribution data, and an optimistic approach for acquiring informative13

preferences about the optimal policy. We provide theoretical guarantees regarding14

the sample complexity of our approach, dependent on how well the offline data15

covers the optimal policy. Finally, we demonstrate the empirical performance of16

Sim-OPRL in different environments.17

1 Introduction18

While reinforcement learning (RL) [Sutton and Barto, 2018] achieves excellent performance in var-19

ious decision-making tasks [Mirhoseini et al., 2020, Degrave et al., 2022], its practical deployment20

remains limited by the requirement of direct interaction with the environment. This can be imprac-21

tical or unsafe in real-world scenarios. For example, patient management and treatment in intensive22

care units involve complex decision-making that has often been framed as a reinforcement learning23

problem [Raghu et al., 2017]. However, the timing, dosage, and combination of treatments required24

are critical to patient safety, and incorrect decisions can lead to severe complications or death, mak-25

ing the use of traditional RL algorithms unfeasible [Tang and Wiens, 2021]. Offline RL emerges as26

a promising solution, allowing policy learning from entirely observational data [Levine et al., 2020].27

Still, a challenge with Offline RL is its requirement for an explicit reward function. Quantifying28

the numerical value of taking a certain action in a given environment state is often challenging [Yu29

et al., 2021]. Preference-based RL offers a compelling alternative, relying on comparisons between30

different trajectories, and being often easier for humans to provide [Wirth et al., 2017]. In medical31

settings, for instance, clinicians may be queried for feedback on which trajectories lead to favorable32

outcomes. Unfortunately, most algorithms for preference acquisition require environment interac-33

tion [Saha et al., 2023, Chen et al., 2022] and are therefore not applicable to the offline setting.34

Lack of environment interaction and reward learning are thus two critical challenges for real-world35

RL deployment that are rarely tackled jointly. In this work, we address the problem of prefer-36

ence elicitation for offline reinforcement learning by asking: What trajectories should we sample37

Submitted to the ICML 2024 Workshop on Foundations of Reinforcement Learning and Control. Do not
distribute.



to minimize the number of human queries required to learn the best offline policy? This presents a38

challenging problem as it combines learning from offline data and active feedback acquisition, two39

frameworks that require opposing inductive biases for conservatism and exploration, respectively.40

To the best of our knowledge, the only strategy proposed in prior work is to acquire feedback directly41

over samples within an offline dataset of trajectories [Shin et al., 2022, Offline Preference-based Re-42

ward Learning (OPRL)]. We propose an alternative solution that queries feedback on simulated43

rollouts by leveraging a learned environment model. Our offline preference-based reinforcement44

learning algorithm, Sim-OPRL, strikes a balance between conservatism and exploration by combin-45

ing pessimism when handling states out-of-distribution from the observational data [Jin et al., 2021,46

Zhan et al., 2023a], and optimism in acquiring informative preferences about the optimal policy47

[Saha et al., 2023, Chen et al., 2022]. We validate our approach through both theoretical and empir-48

ical analysis, demonstrating the superior performance of Sim-OPRL across various environments.49

Our contributions are the following: (1) In Section 3, we first formalize the new problem setting of50

preference elicitation for offline reinforcement learning, which allows for complementing offline51

data with preference feedback. This framework is crucial for real-world applications where direct52

environment interaction is infeasible and reward functions are challenging to design manually, yet53

experts can be queried for their knowledge. (2) In Section 4, we propose a novel offline preference-54

based RL algorithm that is independent of the specific preference elicitation strategy and recovers55

a robust policy from an offline dataset and preference feedback. (3) Next, in Section 5, we provide56

theoretical guarantees on eliciting preferences over samples from the offline dataset, complementing57

work from Shin et al. [2022]. (4) Then, in Section 6 we propose our own efficient preference58

elicitation algorithm based on simulated rollouts in a learned environment model. (5) Finally, we59

establish the theoretical guarantees of our algorithm and demonstrate its empirical efficiency and60

scalability in different decision-making environments.61

2 Related Work62

Our problem setting shares similarities with Offline RL and Preference-based RL, which we sum-63

marize below. We position ourselves relative to our closest related works in Table 1.64

Offline RL. Offline Reinforcement Learning has gained significant traction in recent years, as the65

practicality of training RL agents without environment interaction makes it relevant to real-world66

applications [Levine et al., 2020]. However, learning from observational data only is a source of67

bias in the model, as the data may not cover the entire state-action space. Offline RL algorithms68

therefore output pessimistic policies, which has been shown to minimize suboptimality Jin et al.69

[2021]. Model-based approaches show particular promise for their sample efficiency [Yu et al.,70

2020, Kidambi et al., 2020, Uehara and Sun, 2021]. In this work, we study the setting where reward71

signals are unavailable and must be estimated by actively querying preference feedback.72

Preference-based RL. Rather than accessing numerical reward values for each state-action pair as73

in traditional online RL, preference-based RL learns the reward model through collecting pairwise74

preferences over trajectories [Wirth et al., 2017]. Different preference elicitation strategies have75

been proposed for this framework, generally based on knowing the transition model exactly or on76

having access to the environment for rollouts [Christiano et al., 2017, Saha et al., 2023, Chen et al.,77

2022, Lindner et al., 2021, Zhan et al., 2023b, Sadigh et al., 2018, Brown et al., 2020].78

Offline Preference-based RL. The development of preference-based RL algorithms based on of-79

fline data only is critical to settings where environment interaction is not feasible for safety and80

efficiency reasons. Still, this framework remains largely unexplored in the literature. While Zhu81

et al. [2023], Zhan et al. [2023a] demonstrate the value of pessimism in offline preference-based re-82

inforcement learning, they do not consider how to query feedback actively. On the other hand, Shin83

Table 1: Comparison of related work on preference elicitation.
Framework Offline Efficient Sampling Robustness Guarantees Practical Implementation

PbOP [Chen et al., 2022] ✗ ✓ ✓ ✗
REGIME [Zhan et al., 2023b] ✗ ✓ ✓ ✗
FREEHAND [Zhan et al., 2023a] ✓ ✗ ✓ ✗
OPRL [Shin et al., 2022] ✓ ✓1 ✗ ✓

Sim-OPRL (Ours) ✓ ✓ ✓ ✓

1We demonstrate this in the present work.
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et al. [2022] propose an empirical comparison of different preference sampling trajectories from an84

offline trajectories buffer. In Section 5, we provide a theoretical analysis of their approach, then85

propose an alternative sampling strategy based on simulated trajectory rollouts in Section 6, which86

enjoys both theoretical and empirical motivation.87

3 Problem formulation88

3.1 Preliminaries89

Markov Decision Process. We consider the episodic Markov Decision Process (MDP), defined by90

the tupleM = (S,A, H, T,R), where S is the state space, A is the action space, H is the episode91

length, T : S × A → ∆S is the transition function, R : S × A → R is the reward function.92

We assume an initial state s0, but our analysis could be easily generalized to a fixed initial state93

distribution. At time t, the environment is at state st ∈ S and an agent selects an action at ∈ A. The94

agent then receives a reward R(st, at) and the environment transitions to state st+1 ∼ T ( · |st, at).95

We describe an agent’s behavior through a policy function π : S → ∆A, such that π(a|s) is the96

probability of taking action a in state s. Let τ = (s0, a0, . . . sH , aH) denote the trajectory of state-97

action pairs of an interaction episode with the environment. With an abuse of notation, we also write98

R(τ) =
∑

t R(st, at). Let dπT denote the distribution of trajectories induced by rolling out policy99

π in transition model T . We denote the expected return of policy π as V π
T,R = Eτ∼dπ

T
[R(τ)], and100

π∗ = argmaxπV
π
T,R denotes the optimal policy inM.101

Preference-based Reinforcement Learning. Rather than observing numerical rewards at each state102

and action, we receive preference feedback over trajectories. For a pair of trajectories (τ1, τ2), we103

obtain binary feedback o ∈ {0, 1} about whether τ1 is preferred to τ2. We assume that preference104

labels follow the Bradley-Terry model [Bradley and Terry, 1952]:105

PR(τ1 ≻ τ2) := P (o = 1|τ1, τ2) =
exp(R(τ1))

exp(R(τ1)) + exp(R(τ2))
= σ(R(τ1)−R(τ2)), (1)

where ≻ denotes a preference relationship and σ is the sigmoid function. Within this framework,106

preference elicitation refers to the process of sampling preferences to obtain information about both107

the preference function and the system dynamics [Wirth et al., 2017].108

3.2 Offline Preference Elicitation109

We assume access to an observational dataset of trajectories Doffline = {τ : τ ∼ d
πβ

T }, where πβ110

is an unknown behavioural policy inM. As in Offline RL, we do not have access to the decision-111

making environment to observe transition dynamics or rewards under alternative action choices. We112

assume not to have access to the reward function, but we can query preference feedback from a113

human to generate a dataset of preferences Dpref = {(τ1, τ2, o)}.114

Optimality Criterion. Based only on our offline dataset Doffline, our goal is to recover a policy115

π̂∗ that minimizes suboptimality in the true environment with as few human preference queries116

as possible. Let π∗
offline denote the optimal offline policy estimated based on the offline data, with117

access to the true reward function R, and let ϵT denote its suboptimality. Since preference elicitation118

only allows us to estimate the reward function, we do not aim to achieve a suboptimality less than119

ϵT .2 Our objective is then formalized as follows.120

Definition 3.1 (Optimality Criterion of Offline Preference Elicitation). Let π∗ be the optimal policy121

in M and π̂∗ be the estimated optimal policy based on an offline dataset Doffline and Np > 0122

preference queries. Let ϵT be the inherent suboptimality assuming access to the true reward function.123

We say that a sampling strategy is (ϵ, δ,Np)-correct if for every ϵ ≥ ϵT , with probability at least124

(1− δ), it holds that V π∗

T,R − V π̂∗

T,R ≤ ϵ.125

Our work is the first to formalize this important problem, which faces the challenge of balancing126

exploration when actively acquiring feedback and bias mitigation in learning from offline data.127

Function classes. We estimate the reward function and transition kernel with general function ap-128

proximation; letFR andFT denote the classes of functions considered respectively. We also assume129

a policy class Π. Our theoretical analysis also requires the following assumptions and definitions,130

which are standard in preference-based RL [Chen et al., 2022, Zhan et al., 2023a].131

2However, ϵT is not formally a lower bound for our problem, as shown in Appendix A.3.
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Algorithm 1 Offline Preference-based Reinforcement Learning with Preference Elicitation

Input: Observational trajectories dataset Doffline. Significance δ ∈ (0, 1), preference budget Np.
Output: π̂∗

1: Estimate T̂ and uT via maximum likelihood over the observational data Doffline.
2: Dpref ← ∅.
3: for k = 1, ...Np do
4: Generate trajectory pairs (τ1, τ2). ▷ Preference Elicitation: Sections 5 and 6
5: Collect preference label o for (τ1, τ2).
6: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
7: Estimate R̂ and uR via maximum likelihood over the preference data Dpref .
8: end for
9: π̂∗ ← argmaxπ∈ΠEτ∼dπ

T̂
[R̂(τ)− uR(τ)− uT (τ)]

Assumption 3.1 (Realizability). The true reward function belongs to the reward class: R ∈ FR.132

The true transition function belongs to the transition class: T ∈ FT . The optimal policy belongs to133

the policy class: π∗ ∈ Π.134

Assumption 3.2 (Boundedness). The reward function is bounded: 0 ≤ R̃(τ) ≤ Rmax for all135

R̃ ∈ FR and all trajectories τ .136

Definition 3.2 (ϵ-bracketing number). Let F be a class of real functions f : X → R. We say (l, u)137

is an ϵ-bracket if l(x) ≤ u(x) and ∥u(x) − l(x)∥1 ≤ ϵ for all x ∈ X . The ϵ-bracketing number of138

F , denoted NF (ϵ), is the minimal number of ϵ-brackets (ln, un)Nn=1 needed so that for any f ∈ F ,139

there is a bracket i ∈ [N ] containing it, meaning li(x) ≤ f(x) ≤ ui(x) for all x ∈ X .140

LetNFR
(ϵ) andNFT

(ϵ) denote the ϵ-bracketing numbers ofFR andFT respectively. This measures141

the complexity of the function classes [Geer, 2000].142

Definition 3.3 (Transition concentrability coefficient, Zhan et al. [2023a]). The concentrability co-143

efficient w.r.t. transition classes FT and the optimal policy π∗ is defined as:144

CT (FT , π
∗) = sup

T̃∈FT

 E(s,a)∼dπ∗
T
[|T (·|s, a)− T̃ (·|s, a)|]√

E(s,a)∼Doffline
[|T (·|s, a)− T̃ (·|s, a)|2]


145

The concentrability coefficient measures the coverage of the optimal policy in the offline146

dataset. Note that CT is upper-bounded by the density-ratio coefficient: CT (FT , π
∗) ≤147

sup(s,a)∈S×A dπ
∗

T (s, a)/d
πβ

T (s, a), where πβ is the behavioural policy underlying Doffline.148

4 Offline Preference-based RL with Preference Elicitation149

In this section, we propose a general framework for offline preference-based reinforcement learning.150

The next two sections propose two different preference elicitation strategies. As learning must be151

carried out in two stages, with environment dynamics based on Doffline and reward learning on152

Dpref , we adopt a model-based approach which we summarize in Algorithm 1.153

Model Learning. We first leverage the offline data to learn a model of the environment dynamics,154

fitting a transition model T̂ and an uncertainty function uT through maximum likelihood:155

T̂ = argmaxT̃∈FT
E(s,a,s′)∼Doffline

[
log T̃ (s′|s, a)

]
,

uT (s, a) = max
T̃1,T̃2∈T

|T̃1(·|s, a)− T̃2(·|s, a)| ·Rmax,

where T = {T̃ ∈ FT | E(s,a,s′)∼Doffline

[
log T̂ (s′|s, a)/T̃ (s′|s, a)

]
≤ βT }, defining a confidence156

set over the MLE estimate, and βT is a hyperparameter. In a practical implementation, this can be157

achieved by training an ensemble of models on different data bootstraps [Lakshminarayanan et al.,158

2017].159

Iterative Preference Elicitation and Reward Learning. As with the transition model, our algo-160

rithm estimates the reward function R̂ and its uncertainty function through maximum likelihood161
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over iteratively collected preference data Dpref :162

R̂ = argmaxR̃∈FR
E(τ1,τ2,o)∼Dpref

[o logPR̃(τ1 ≻ τ2) + (1− o) logPR̃(τ2 ≻ τ1)] ,

uR(τ) = max
R̃1,R̃2∈R

|R̃1(τ)− R̃2(τ)|,

where R = {R̃ ∈ FR | E(τ1,τ2,o)∼Dpref

[
logPR̂(τ1 ≻ τ2)/PR̃(τ1 ≻ τ2)

]
≤ βR} defines the confi-163

dence set and βR is a hyperparameter. We also define preference uncertainty between two trajecto-164

ries τ1, τ2 as uPR
(τ1, τ2) = maxR̃1,R̃2∈R |PR̃1

(τ1 ≻ τ2)− PR̃2
(τ1 ≻ τ2)|.165

The choice of trajectory sampling strategy for preference elicitation in line 4 is critical to efficiently166

obtaining an ϵ-optimal policy. We present two possible strategies in Sections 5 and 6. Note that by167

focusing on sample efficiency as in prior work on preference elicitation [Chen et al., 2022], we do not168

necessarily optimize for computational efficiency; this could be improved by collecting preferences169

in batches to reduce the number of reward training loops.170

Pessimistic Policy Optimization. Finally, our algorithm outputs a policy π̂∗ that is optimal while171

ensuring robustness to modeling error. This means optimizing for the worst-case value function over172

the remaining transition and reward uncertainties [Levine et al., 2020]:173

π̂∗ = argmaxπ∈Π min
T̃∈T ,R̃∈R

V π
T̃ ,R̃

.

This analysis provides a worst-case robustness guarantee when considering well-calibrated confi-174

dence intervals, as detailed in Sections 5.1 and 6.1. For a practical implementation of our algorithm,175

we penalize the reward function by the uncertainty as in model-based offline RL methods [Yu et al.,176

2020, Chang et al., 2021]. Our optimal robust policy therefore maximizes the following objective:177

π̂∗ = argmaxπ∈ΠEτ∼dπ
T̂
[R̂(τ)− uR(τ)− uT (τ)]. (2)

We show in Appendix A.2 that this is indeed a lower bound of the true value function. This objective178

allows for controlling the degree of conservatism in practice through the width of the confidence179

intervals used to determine uR and uT .180

5 Preference Elicitation from Offline Trajectories181

A first strategy for preference elicitation without environment interaction is to sample trajectories182

directly from the offline dataset. Shin et al. [2022] propose this approach as Offline Preference-based183

Reward Learning (OPRL), and design a uniform and uncertainty-sampling variant:184

OPRL Uniform Sampling: τ1, τ2 ∼ Doffline

OPRL Uncertainty Sampling: τ1, τ2 = argmaxτ1,τ2∈Doffline
uPR

(τ1, τ2)

185 5.1 Theoretical Guarantees.186

We obtain the following result, demonstrated in Appendix A.4. The suboptimality of the estimated187

policy π̂∗ is bounded by the policy evaluation error for the optimal policy π∗. This error decomposes188

into a term depending on transition model estimation, and one on reward model estimation.189

Theorem 5.1. For any δ ∈ (0, 1], let βT = c′T log(HNFT
(1/No)/δ)/No and βR =190

c′R log(NFR
(1/Np)/δ)/Np, where No = H|Doffline| is the number of observed transitions in the191

observational dataset and c′T , c
′
R are universal constants. The policy π̂∗ estimated by Algorithm 1,192

with preference elicitation based on offline trajectories, achieves the following suboptimality with193

probability 1− δ:194

V π∗ − V π̂∗ ≤ HRmaxCT (FT , π
∗)

√
cT log(HNFT

)(1/No)/δ)

No︸ ︷︷ ︸
transition term ϵT

+2ακCR(FR, π
∗)

√
cR log(NFR

(1/Np)/δ)

Np︸ ︷︷ ︸
reward term

,

where α = 1 for uniform sampling or α ≤ 1 for uncertainty sampling, CR is a concentrability195

measure for the reward function, κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity196

of the sigmoid function, and cT , cR are universal constants.197

In the special case where both the transition and reward functions are learned on a fixed initial198

preference dataset (no preference elicitation), we recover Theorem 1 from Zhan et al. [2023a]. Im-199

portantly, parameter α allows us to motivate the superior efficiency of uncertainty sampling over200

uniform sampling, observed empirically in Shin et al. [2022] and in Section 7.201
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6 Preference Elicitation from Simulated Trajectories202

We now propose our alternative strategy for generating trajectories for offline preference elicitation:203

Simulated Offline Preference-based Reward Learning (Sim-OPRL). This method simulates tra-204

jectories (τ1, τ2) by leveraging the learned environment model. This overcomes a limitation of205

OPRL, which is only designed to reduce uncertainty about the reward functions in R, by instead206

reducing uncertainty about which policies are plausibly optimal. Our approach is inspired by effi-207

cient online preference elicitation algorithms [Saha et al., 2023, Chen et al., 2022], which we modify208

for practical implementation. We account for the offline nature of our problem by avoiding regions209

out of the distribution of the data: the sampling strategy is optimistic with respect to uncertainty in210

rewards, but pessimistic with respect to uncertainty in transitions.211

We summarize our approach to generating simulated trajectories for preference elicitation in Al-212

gorithm 2 and refer the reader to Appendix B for practical implementation details. First, we con-213

struct a set of candidate optimal policies Πoffline, containing policy π∗
offline (optimal under the214

pessimistic model and the true reward function) with high probability – as demonstrated in Ap-215

pendix A.5.2. Next, within this set of candidate policies, we identify the two most exploratory216

policies π1, π2, chosen to maximize preference uncertainty uPR
. Finally, we roll out these policies217

within our learned transition model to generate a trajectory pair (τ1, τ2) for preference feedback.218

Algorithm 2 Preference Elicitation through Simulated Trajectory Sampling.

Input: Pessimistic transition model T̂inf . Reward confidence setR and preference uncertainty function uPR .
Output: (τ1, τ2)

1: Estimate optimal offline policy set: Πoffline = {π | π = argmaxπ∈ΠEτ∼dπ
T̂inf

[
R̃(τ)

]
∀R̃ ∈ R}.

2: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂inf

,τ2∼d
π2
T̂inf

[uPR(τ1, τ2)]

3: Rollouts in model: τ1 ∼ dπ1

T̂inf
, τ2 ∼ dπ2

T̂inf
.

6.1 Theoretical Guarantees219

We decompose suboptimality in a similar way to Section 5.1, but obtain a reward suboptimality term220

that depends on the learned dynamics model instead of the true one, and on π∗
offline instead of π∗:221

V π∗
− V π̂∗

≤ (V π∗

T,R − V π∗

T̂inf ,R
)︸ ︷︷ ︸

transition term ϵT

+(V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)︸ ︷︷ ︸

reward term

. (3)

Analysis of the suboptimality due to transition error is identical to above, but the reward term is222

thus significantly different. By design, our sampling strategy ensures good coverage of preferences223

over π∗
offline within the learned environment model, which eliminates the concentrability term224

for the reward CR. We refer the reader to Appendix A.5 for the proof of Theorem 6.1.225

Theorem 6.1. For any δ ∈ (0, 1], let βT = c′T log(HNFT
(1/No)/δ)/No and βR =226

c′R log(NFR
(1/Np)/δ)/Np, where No = H|Doffline| is the number of observed transitions in the227

observational dataset and c′T , c
′
R are universal constants. The policy π̂∗ estimated by Algorithm 1,228

with a preference sampling strategy based on rollouts in the learned transition model, achieves the229

following suboptimality with probability 1− δ:230

V π∗
− V π̂∗

≤ HRmaxCT (FT , π
∗)

√
cT log(HNFT

)(1/No)/δ)

No
+ 2κ

√
cR log(NFR

(1/Np)/δ)

Np
.

6.2 Discussion231

Our theoretical results demonstrate that the learned policy can achieve performance comparable to232

the optimal policy, and thus satisfy our optimality criterion in Definition 3.1, provided it is covered233

by the offline data (CT (FT , π
∗), CR(FR, π

∗) < ∞). Empirical results in Section 7 confirm that234

performance is poor when the behavioral policy is suboptimal, inducing a large CT or CR.235

Offline Trajectories vs. Simulated Rollouts. While both OPRL and Sim-OPRL depend on the236

offline dataset for estimating environment dynamics, they induce different suboptimality in model-237

ing preference feedback. Simulated rollouts are designed to achieve good coverage of the optimal238
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offline policy π∗
offline, which avoids wasting preference budget on trajectories with low rewards or239

high transition uncertainty. In contrast, as shown in Zhan et al. [2023a], due to the dependence of240

preferences on full trajectories, the reward concentrability term CR in Theorem 5.1 can be large.241

Transition vs. Preference Model Quality. Our theoretical analysis also suggests an interesting242

trade-off in the sample efficiency of our approach, depending on the accuracy of the transition model.243

The width of the confidence interval reduces as significance parameter δ or dataset size increase,244

or as function class complexity NFT
decreases. For a target suboptimality gap ϵ, provided the245

optimal offline policy π∗
offline has a gap ϵT < ϵ, then the number of preferences required is of the246

order of O(log(1/δ)/(ϵ− ϵT )
2). A more accurate transition model should therefore require fewer247

preference samples to achieve a given suboptimality, which we again confirm empirically.248

7 Experimental results249

We demonstrate the effectiveness of preference elicitation for offline reinforcement learning in prac-250

tice and compare the different sampling strategies introduced in Sections 5 and 6: OPRL with uni-251

form and uncertainty-sampling, and Sim-OPRL.252

Baselines. For comparison, we also propose a practical implementation of Preference-based Opti-253

mistic Planning (PbOP), an uncertainty-based preference elicitation approach over trajectory rollouts254

in the true environment [Chen et al., 2022]. Finally, we report the performance of π∗
offline and π∗255

as upper bounds for the performance of our algorithm: the former is trained in the learned transition256

model with access to the true reward, and the latter has full knowledge of both transition and reward257

function. We refer the reader to Appendix B for implementation details.258

Star MDP. First, consider the tabular MDP in Figure 1a (we defer transition and reward details to259

Appendix C). Preferences collected over offline trajectories learn slowly about the negative reward in260

the bottom state, as it is always included in the comparison. Instead, simulated rollouts can directly261

query the optimal path. We thus find in Figure 1 that our preference elicitation strategy based on262

simulated rollouts achieves better returns than OPRL approaches, with fewer preference queries.263

This example also illustrates the importance of pessimism with respect to the transition model. Even264

with access to true rewards, π∗
offline avoids the out-of-distribution state, as it is unclear how to reach265

it. Thus, in Figure 1c, performance drops if pessimism is not applied to the output policy (purple266

lines). This confirms theoretical insights from Zhu et al. [2023], who demonstrate the importance267

of pessimism in offline preference-based RL. Pessimism is also crucial in simulated rollouts, to268

avoid wasting preference budget on regions of low confidence – as value estimates are in any case269

inaccurate. This is reflected in the lower efficiency of rollouts without pessimism over T̂ in Figure 1c270

(brown line). We also note the importance of optimism against reward uncertainty, both in OPRL in271

Figure 1b and in our model-based rollouts in Figure 1c.272

Finally, as an upper bound for the performance of our algorithm, we include baselines that have273

access to the environment in Figure 1b: the optimal policy π∗, as well as an algorithm querying274

feedback over real environment rollouts [Chen et al., 2022, PbOP]. Final environment returns are275

higher than with Sim-OPRL, as they do not suffer from the limited coverage of the transition model.276

As supported by our theoretical analysis, this result stresses the importance of having a high-quality277

transition model to make our method effective. We explore this in more detail in the following.278
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(b) Comparison against baselines.
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Figure 1: Empirical results on the Star MDP. Mean and 95% confidence interval over 20 experiments. En-
vironment returns are normalized between 0 and 100. Only OPRL and Sim-OPRL are fully offline, all other
methods have access to either environment interaction and/or to the true reward function.
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Table 2: Comparison of preference sample complexity Np with different sampling methods, to reach a
suboptimality gap of ϵ = 20 over normalized returns. Mean and 95% confidence interval over 20 experiments.
The best-performing offline method is highlighted in bold.

Environment OPRL Uniform OPRL Uncertainty Sim-OPRL (Ours) PbOP (Online)

Star MDP (Figure 1a) 32 ± 4 30 ± 4 4 ± 2 4 ± 2
Gridworld 105 ± 11 66 ± 7 49 ± 7 32 ± 4
Sepsis Simulation 18,856 ± 427 2,246 ± 143 830 ± 88 261 ± 59
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(a) Offline dataset size.
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(b) Optimal policy coverage.

Figure 2: Preference sample complexity Np as function of the
properties of the observational data, to reach a suboptimality
gap of ϵ = 20 over normalized environment returns (Star MDP).
Mean and 95% confidence intervals over 20 experiments. ×marks
when the target suboptimality could not be achieved.

Transition vs. Preference Model279

Quality. Next, we study the trade-280

off between transition and preference281

model performance in our problem282

setting. In the low-data regime, eval-283

uation error due to the misspecifica-284

tion of the transition model is large.285

As dictated by our theoretical analy-286

sis and as visualized in Figure 2a, this287

increases the number of preferences288

Np required to achieve good final per-289

formance. Inversely, fewer prefer-290

ences are needed if the offline dataset291

is large and the transition model is ac-292

curate. We observe a similar trend for293

both Sim-OPRL and OPRL.294

We also measure how coverage of the optimal policy affects performance. In Figure 2b, we vary the295

behavioral policy πβ underlying the offline data, ranging from optimal (density ratio 1) to subopti-296

mal (large density ratio). We report the accuracy of transition and reward models in Appendix D.297

We observe that preference elicitation methods perform best when the data is close to optimal (ex-298

cept for a fully optimal, non-diverse dataset making reward learning from preferences challenging).299

More preference samples are required if the dataset has poor coverage of the optimal policy (large300

CT (FT , π
∗)), as transition and reward models become less accurate over the distribution of interest.301

Gridworld and Sepsis Simulation. Finally, we validate our findings on more complex environ-302

ments detailed in Appendix C: a gridworld experiment and a simulation of sepsis management in303

intensive care [Oberst and Sontag, 2019]. This example highlights another important advantage of304

Sim-OPRL over OPRL. In a sensitive setting such as healthcare where access is carefully controlled,305

it may be attractive to query experts about synthetic trajectories rather than real samples. Sample306

complexity results are given in Table 2, with similar conclusions: Sim-OPRL affords a higher pref-307

erence sampling efficiency than OPRL baselines. For the sepsis environment, we note the number of308

preference samples needed to achieve our target suboptimality is large, likely due to the sparse na-309

ture of the reward function. In a real-world application, we could potentially warm-start the reward310

model by leveraging proxy rewards signals in the offline data [Yu et al., 2021].311

8 Conclusion312

Our work shows the potential of integrating human feedback within the framework of offline RL.313

We address the challenges of preference elicitation in a fully offline setup by exploring two key314

methods: sampling from the offline dataset [Shin et al., 2022, OPRL] and generating model rollouts315

(Sim-OPRL). By employing a pessimistic approach to handle out-of-distribution data and an opti-316

mistic strategy to acquire informative preferences, Sim-OPRL balances the need for robustness and317

informativeness in learning an optimal policy. We provide theoretical guarantees on the sample com-318

plexity of both approaches, demonstrating that performance depends on how well the offline data319

covers the optimal policy. Empirical evaluations in various environments confirm the effectiveness320

of our algorithm, as Sim-OPRL consistently outperforms baselines across different environments.321

Overall, our approach not only advances the state-of-the-art in offline preference-based RL but also322

takes a significant step toward improving the practical utility of offline RL. This opens up new av-323

enues for real-world applications of RL in healthcare, robotics, and manufacturing, where interaction324

with the environment is challenging but domain experts can be queried for feedback.325
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A Theoretical Details412

This appendix provides proofs for the presented theorems and lemmas. In subsection A.1, we pro-413

vide details on how we define the maximum likelihood estimators and confidence intervals of the414

preference and transition models. In subsection A.2 we provide the proof that our uncertainty-415

penalized objective in Equation (2) lower bounds the true value function and thus forms a valid416

pessimistic framework. In Appendix A.3, we show that the suboptimality of our offline preference417

elicitation framework is not lower-bounded by the performance of the optimal offline policy. In418

Appendix A.4, we provide our proof of theorem 5.1, analyzing the suboptimality of preferences419

sampled from an offline dataset. Finally, in Appendix A.5, we prove Theorem 6.1, which analyzes420

the suboptimality of preference sampling over simulated rollouts.421

A.1 Maximum Likelihood and Confidence Intervals422

Let Fg denote a function class over X → ∆Y , where X ,Y are measurable sets, and g ∈ Fg denotes423

a function to be estimated.424

Let ĝ denote the maximum likelihood estimator (MLE) of g based on a datasetD = {(xn, yn)}Nn=1:425

ĝ = argmaxg̃∈Fg
E(x,y)∼D log(g̃(y|x)). We construct the confidence set around the MLE as follows:426

G = {g̃ ∈ Fg | E(x,y)∼D

[
log

ĝ(y|x)
g̃(y|x)

]
≤ β}

Lemma A.1 (MLE Guarantee, Lemma 1 in Zhan et al. [2023a]). Let δ ∈ (0, 1] and define the event
E that g ∈ G. If

β =
cMLE log(NFg (1/N)/δ)

N
,

where cMLE > 0 is a universal constant, then P (E) ≥ 1− δ/2.427

Proof. The proof follows that of Lemma 1 in Zhan et al. [2023a] and uses Cramér-Chernoff’s428

method.429

Let B̄ be a 1/N -bracket of Fg with |B̄| = NFg (1/N). Denote the set of all right brackets in B̄ by430

B̃ = {b : ∃b′s.t.[b′, b] ∈ B̄}. For b ∈ B̃, we have:431

E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
=

N∏
n=1

E
[
exp

(
log

b(yn|xn)

g(yn|xn)

)]

=

N∏
n=1

E
[
b(yn|xn)

g(yn|xn)

]

=

N∏
n=1

E

[∑
y

b(y|xn)

]
≤ (1 + 1/N)

N ≤ e.

as samples in D as i.i.d. We use the Tower property in the third step and the fact that b is a 1/N -432

bracket for Fg in the fourth: there exists g′ ∈ Fg such that ∥g(·|x) − b(·|x)∥1 ≤ 1/N and thus433

∥b(·|x)∥1 ≤ 1 + 1/N , for all x ∈ X .434

Then by Markov’s inequality, for any δ ∈ (0, 1], we have:435

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> log(1δ)

)
≤ E

[
exp

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)

)]
· exp(− log(1/δ))

≤ eδ.

By union bound, we have for all b ∈ B̃,436

P

(
N∑

n=1

log
b(yn|xn)

g(yn|xn)
> cMLE log(NFg

(1/N)/δ)

)
≤ δ/2,
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where cMLE > 0 is a universal constant.437

Finally, for all g̃ ∈ Fg , there exists b ∈ B̃ such that g(·|x) ≤ g̃(·|x) for all x ∈ X . As a result, for438

all g̃ ∈ Fg , we have:439

P

(
N∑

n=1

log
g̃(yn|xn)

g(yn|xn)
> cMLE log(NFg

(1/N)/δ)

)
≤ δ/2.

440

Under this event E , we have g ∈ G with probability 1− δ/2. A confidence interval constructed via441

loglikelihood also incurs a bound on the total variation (TV) distance between g and g̃ ∈ G:442

Lemma A.2 (TV-distance to MLE). Under the event E , we have, with probability 1 − δ, for all443

g̃ ∈ G:444

Ex∼D
[
∥g(·|x)− g̃(·|x)∥21

]
≤

c log(NFg
(1/N)/δ)

N
, (4)

where c > 0 is a universal constant.445

Proof. The proof follows that of Liu et al. [2022], Proposition 14.446

This guarantees that the true reward function is within an interval around the MLE estimate with447

high probability.448

We apply these lemmas to our MLE estimates of transition and reward functions in Algorithm 1 to449

obtain the following guarantees.450

Let ER denote the event R ∈ R and ET denote the event T ∈ T , R and T denote the respective451

confidence sets around the MLE. By Lemma A.1, events ER and ET have probability 1− δ/2 if we452

choose βR = c′R log(NFR
(1/Np)/δ)/Np and βT = c′T log(HNFT

(1/No)/δ)/No, where c′R, c
′
T453

are universal constants.454

A.2 Model-based Pessimism and Uncertainty Penalties455

Lemma A.3 (Telescoping Lemma). For any reward model R ∈ FR, and any two transition models456

T, T̂ ∈ FT :457

V π
T,R − V π

T̂ ,R
≤ Eτ∼dπ

T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj)∥1

 ·Rmax

Proof. The proof follows that of Lemma 4.1 in Yu et al. [2020] or Lemma 4 in Zhan et al. [2023a].458

Let Wj be the expected return under policy π, with transition model T̂ for the first j steps, then459

transition model T for the rest of the episode. We have:460

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1.

Now,461

Wj = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]

]
Wj+1 = Rj + Esj ,aj∼π,T̂

[
Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
where Rj is the expected return of the first j steps taken in T̂ . Therefore,462

Wj −Wj+1 = Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]
≤ Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]
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under the boundedness assumption for R. Finally, we have:463

V π
T,R − V π

T̂ ,R
=

H−1∑
j=0

Wj −Wj+1

=

H−1∑
j=0

Esj ,aj∼π,T̂

[
Esj+1∼T (·|sj ,aj)[V

π
T,R(sj+1)]− Esj+1∼T̂ (sj ,aj)

[V π
T,R(sj+1)]

]

≤
H−1∑
j=0

Esj ,aj∼π,T̂

[
∥T (·|sj , aj)− T̂ (·|sj , aj)∥1 ·Rmax

]

= Eτ∼dπ
T̂

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̂ (·|sj , aj) ·Rmax∥1


464

Lemma A.4 (Pessimistic Transition Model). Under event ET , for all π ∈ Π, R̃ ∈ FR:

V π
T̂ ,R̃−uT

≤ V π
T,R̃

.

Proof.

V π
T,R̃

= V π
T̂ ,R̃
− (V π

T̂ ,R̃
− V π

T,R̃
)

≥ Eτ∼dπ
T̂

[
R̃(τ)

]
− Eτ∼dπ

T̂
[uT (τ)]

= Eτ∼dπ
T̂

[
R̃(τ)− uT (τ)

]
where we have used the telescoping lemma (Lemma A.3), and where uT (τ) =

∑
(s,a)∈τ uT (s, a) ≥465 ∑

(s,a)∈τ ∥T̂ (·|s, a)− T (·|s, a)∥1 ·Rmax under event ET .466

Lemma A.5 (Pessimistic Reward Model). Under event ER, for all π ∈ Π, T̃ ∈ FT :

V π
T̃ ,R̂−uR

≤ V π
T̃ ,R

.

Proof.

V π
T̃ ,R

= V π
T̃ ,R̂
− (V π

T̃ ,R̂
− V π

T̃ ,R
)

= Eτ∼dπ
T̃

[
R̂(τ)

]
− Eτ∼dπ

T̃

[
R̂(τ)−R(τ)

]
≥ Eτ∼dπ

T̃

[
R̂(τ)− uR(τ)

]
where we have used the fact that |R̂(τ) − R(τ)| ≤

∑
s,a∈τ |R̂(s, a) − R(s, a)| =467 ∑

(s,a)∈τ uR(s, a) = uR(τ) under event ER.468

Combining the above two lemmas gives the following result:469

Corollary A.1. Under events ET and ER, for all π ∈ Π:

V π
T̂ ,R̂−uT−uR

≤ V π
T,R.

This justifies the overall objective considered in our pessimistic policy optimization procedure in470

Section 4.471

A.3 Suboptimality lower bound: a counterexample472

Let π∗
offline = argmaxπ∈Π minT̃∈T V π

T̃ ,R
denote the optimal offline policy, which has access to473

the ground-truth reward function. In this section, we ask whether its suboptimality ϵT = V π∗

T,R −474

V
π∗
offline

T,R is a lower bound for the suboptimality of our learned policy π̂∗ after preference elicitation.475
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s2 R = 0

(a
0
, 0
.8
)

(a
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Figure 3: Tabular MDP. The environment starts in state s0 and has horizon H = 1. Transition probabilities
from state s0 are given for the two binary actions a0, a1 (which send the agent to the other state with comple-
mentary probability).

Counterexample. Consider the MDP illustrated in Figure 3. Assume the following MLE estimate476

and uncertainty function for both the transition and reward models:477

T̂ (s1|s0, a0) = 0.5; uT (s0, a0) = 0.4

T̂ (s1|s0, a1) = 0.5; uT (s0, a1) = 0.1

r̂(s1) = r̂(s2) = 0.5; uR(s1) = uR(s2) = 0.5

Assuming access to the learned transition model and the true reward function, we pessimistically478

estimate the value of both actions:479

V a0

T̂inf ,R
= 0.1 · 1 + 0.9 · 0 = 0.1

V a1

T̂inf ,R
= 0.6 · 0 + 0.4 · 1 = 0.4

Thus, we have: π∗
offline(s0) = argmaxaV

a
T̂inf ,R

= a1. The offline policy picks the suboptimal480

action since the worst-case returns of this action are lower than those estimated for a0. Evaluating481

this policy in the real environment, we get ϵT = V π∗

T,R − V
π∗
offline

T,R = 0.6 · 0 + 0.4 · 1 = 0.4.482

We now estimate the optimal policy in the learned transition and reward model. Applying pessimism483

with respect to both models, we get an equal estimated value of 0 for both actions a0 and a1. If policy484

optimization converges to π̂∗ = a0, we reach the suboptimality V π∗

T,R − V π̂∗

T,R = 0.8 · 1 + 0.2 · 0 =485

0.8 > ϵT .486

This example demonstrates that ϵT is not a lower bound for the suboptimality of π̂∗, as policy π̂∗487

can achieve lower suboptimality than π∗
offline if errors in transition and reward model estimation488

compensate each other.489

A.4 Suboptimality of OPRL: Proof of Theorem 5.1490

A.4.1 Suboptimality Decomposition491

Recall that T̂inf , R̂inf = argminT̃∈T ,R̃∈RV π
T̂ ,R̂

denote the pessimistic transition and reward models,492

such that π̂∗ = argmaxπ∈ΠV
π
T̂inf ,R̂inf

. We have:493

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V π∗

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π∗

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf ,R̂inf
)

≤ V π∗

T,R − V π∗

T̂inf ,R̂inf
, (5)

where we have first used the optimality of π̂∗ (stating that V π̂∗

T̂inf ,R̂inf
≥ V π

T̂inf ,R̂inf
, for all π) and494

then the pessimism principle (stating that V π̂∗

T̂inf ,R̂inf
≤ V π̂∗

T,R).495
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Finally, we decompose the last term above as follows:496

V π∗
− V π̂∗

≤ (V π∗

T,R̂inf
− V π∗

T̂inf ,R̂inf
)︸ ︷︷ ︸

transition term

+(V π∗

T,R − V π∗

T,R̂inf
)︸ ︷︷ ︸

reward term

(6)

We further analyze each term in the following sections.497

A.4.2 Analysis of the transition term498

In this section, we now upper bound the transition term defined in Equation (6).499

Lemma A.6 (Lemma 4, Zhan et al. [2023a]). Under the event ET , with probability 1 − δ, we have500

for all T̃ ∈ T , for all R̃ ∈ GR, for all π:501

Edπ
T
[R̃(τ)]− Edπ

T̃
[R̃(τ)] ≤ HRmaxCT (FT , π)

√
cT log(HNFT

(1/No)/δ)

No
,

where cT > 0 is a constant.502

Proof. From the telescoping lemma (Lemma A.3), we have:503

V π
T,R̃
− V π

T̃ ,R̃
≤ RmaxEτ∼dπ

T

 ∑
sj ,aj∈τ

∥T (·|sj , aj)− T̃ (·|sj , aj)∥1


≤ HRmaxE(s,a)∼dπ

T

[
∥T (·|s, a)− T̃ (·|s, a)∥1

]
≤ HRmaxCT (FT , π)

√
E(s,a)∼Doffline

[∥T (·|s, a)− T̃ (·|s, a)∥21]

Under event ET , by Lemma A.2, we have, with probability 1− δ, for all T̃ ∈ T :

E(s,a)∼Doffline
[∥T (·|s, a)− T̃ (·|s, a)∥21] ≤

1

No
cT log(HNFT

(1/No)/δ)

This concludes our proof.504

505

A.4.3 Analysis of the reward term506

Next, we upper bound the reward term defined in Equation (6).507

As in Zhan et al. [2023a], we consider the following value function: V π
T,R = Eτ∼dπ

T
[R(τ)] −508

Eτ∼dpref
[R(τ)], where dpref is a fixed reference trajectory distribution. This baseline subtraction,509

which doesn’t affect either the optimal policy or the analysis of the transition term, is needed as the510

approximated confidence set is based on the uncertainty in preference between two trajectories, not511

in the reward of a single one.512

Definition A.1 (Preference concentrability coefficient). The concentrability coefficient w.r.t. reward513

classes FR, a target policy π∗ and a reference trajectory distribution dpref is defined as:514

CR(FR, π
∗) =

Eτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

Eτ1,τ2∼Doffline
[uPR

(τ1, τ2)]

Note that, for the purpose of our analysis, our definition differs from that of Zhan et al. [2023a] who515

instead consider the max ratio of difference in rewards term: |R(τ1)−R(τ2)− R̃(τ1)+ R̃(τ2)| over516

the entire function class FR.517

Lemma A.7. Let trajectories for preference elicitation be sampled uniformly from the offline518

dataset. Under the event ER, with probability 1 − δ, we have for all T̃ ∈ GT , for all R̃ ∈ R,519

for all π:520

V π∗

T,R − V π∗

T,R̂inf
≤ 2κCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
,
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where cR > 0 is a constant and κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity521

of the sigmoid function.522

Proof.

V π∗

T,R − V π∗

T,R̂inf
= Eτ∼dπ∗

T
[R(τ)]− Eτ∼dpref

[R(τ)]− Eτ∼dπ∗
T
[R̂inf (τ)] + Eτ∼dpref

[R̂inf (τ)]

= Eτ1∼dπ∗
T ,τ2∼dpref

[R(τ1)−R(τ2)]− (R̂inf (τ1)− R̂inf (τ2))]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[|PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)|]

≤ κEτ1∼dπ∗
T ,τ2∼dpref

[uPR
(τ1, τ2)]

= κCR(FT , π
∗)Eτ1,τ2∼Doffline

[uPR
(τ1, τ2)] (7)

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function.523

In the first inequality, we have applied the mean value theorem, under Assumption 3.2. In the second524

inequality, we have used the definition of uncertainty function uPR
as we know R̂inf ∈ R.525

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:526

E(τ1,τ2)∼Dpref
[∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤

cR log(NFR
(1/Np)/δ)

Np
, (8)

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty527

function:528

E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)] ≤ 2

√
cR log(NFg (1/Np)/δ)

Np
(9)

Under uniform sampling, the distribution of preferences in Dpref is that of the offline dataset:529

E(τ1,τ2)∼Doffline
[uPR

(τ1, τ2)] = E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)]

Thus,530

V π∗

T,R − V π∗

T,R̂inf
≤ 2κCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
.

531

Lemma A.8. Let trajectories for preference elicitation be sampled through uncertainty sampling532

from the offline dataset. Under the event ER, with probability 1− δ, we have for all T̃ ∈ GT , for all533

R̃ ∈ R, for all π:534

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FT , π)

√
cR log(NFR

(1/Np)/δ)

Np
,

where cR > 0 is a constant and α ≤ 1.535

Proof. The proof follows closely that of Lemma A.7. We introduce the preference concentrability
coefficient defined for a general preference dataset:

C ′
R(FR, π

∗) =
Eτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)]

We start from Equation (7):536

V π∗

T,R − V π∗

T,R̂inf
≤ κEτ1∼dπ∗

T ,τ2∼dpref
[uPR

(τ1, τ2)]

= κC ′
R(FT , π

∗)Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)]

≤ 2κC ′
R(FT , π

∗)

√
cR log(NFg

(1/Np)/δ)

Np
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where we have used Equation (9).537

Now consider the dataset of uncertainty-sampled preferences Dpref . By definition, we have:

Eτ1,τ2∼Dpref
[uPR

(τ1, τ2)] ≥ Eτ1,τ2∼Doffline
[uPR

(τ1, τ2)]

Thus, we have: C ′
R(FT , π

∗) ≤ CR(FT , π
∗). In other words, we can write: C ′

R(FT , π
∗) =538

αCR(FT , π
∗), where α ≤ 1. This concludes our proof.539

We now conclude the proof of Theorem 5.1 under events ER and ET .540

From Lemma A.6, we upper bound the transition term:

V π∗

T,R̂inf
− V π∗

T̂inf ,R̂inf
≤ HRmaxCT (FT , π

∗)

√
cT log(HNFT

(1/No)/δ)

No

From Lemmas A.7 and A.8, we upper bound the reward term:

V π∗

T,R − V π∗

T,R̂inf
≤ 2ακCR(FT , π

∗)

√
cR log(NFR

(1/Np)/δ)

Np
,

where α = 1 for uniform sampling or α ≤ 1 for uncertainty sampling.541

Combining with Equation (6), we obtain Theorem 5.1.542

A.5 Suboptimality of Sim-OPRL: Proof of Theorem 6.1543

A.5.1 Suboptimality Decomposition544

We decompose the suboptimality slightly differently to Equation (5), introducing the optimal545

offline policy (optimal in the pessimistic model under the true reward function): π∗
offline =546

argmaxπ∈ΠV
π
T̂inf ,R

.547

V π∗
− V π̂∗

= V π∗

T,R − V π̂∗

T,R

= (V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)− (V π̂∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf
)− (V π̂∗

T,R − V π̂∗

T̂inf ,R̂inf
)

≤ V π∗

T,R − V
π∗
offline

T̂inf ,R̂inf

= (V π∗

T,R − V π∗

T̂inf ,R
) + (V π∗

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)

≤ (V π∗

T,R − V π∗

T̂inf ,R
)︸ ︷︷ ︸

transition term

+(V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
)︸ ︷︷ ︸

reward term

(10)

where we have followed the same analysis as in Appendix A.4.1 and used the optimality of π∗
offline548

in the last inequality.549

The analysis of the transition term is identical to the above (Appendix A.4.2). We analyze the reward550

term next.551

A.5.2 Analysis of the reward term552

Lemma A.9 (Optimal Offline Policy In Set). Let Πoffline denote the following set of near-optimal553

pessimistic policies, under the pessimitic transition model T̂inf and the reward confidence setR:554

Πoffline = {π | π = argmaxπ∈ΠEτ∼dπ
T̂inf

[
R̃(τ)

]
∀R̃ ∈ R}

Under event ER, we have π∗
offline ∈ Πoffline.555
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Proof. Recall the definition of π∗
offline: π∗

offline = argmaxπ∈ΠV
π
T̂inf ,R

. Note that there is no need556

to consider the preference baseline term in V π when building Πoffline since it is independent of the557

policy. Under event ER, we have R ∈ R. Thus, π∗
offline ∈ Πoffline.558

Lemma A.10. Under event ER, we have, with probability 1− δ:559

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2
√

κ2cR/Np log(NFR
(1/Np)/δ)

Proof.

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf

= (V π∗

T̂inf ,R
− V π∗

T̂inf ,R̂
) + (V π∗

T̂inf ,R̂
− V π∗

T̂inf ,R̂inf
)

= E
τ∼d

π∗
offline

T̂inf

[R(τ)]− Eτ∼dpref
[R(τ)]− E

τ∼d
π∗
offline

T̂inf

[R̂inf (τ)] + Eτ∼dpref
[R̂inf (τ)]

= E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R(τ1)−R(τ2)]− E
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[R̂inf (τ1)− R̂inf (τ2)]

≤ κE
τ1∼d

π∗
offline

T̂inf
,τ2∼dpref

[PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2)],

where κ = supr∈[−Rmax,Rmax]
1

σ′(r) measures the degree of non-linearity of the sigmoid function.560

We have applied the mean value theorem, under Assumption 3.2.561

As Rinf ∈ R, we have: PR(τ1 ≻ τ2)− PR̂inf
(τ1 ≻ τ2) ≤ uPR

(τ1, τ2).562

Let dpref correspond to the distribution of the preference data, which consists of rollouts from563

exploratory policies within the learned environment model: dpref = dπ1

T̂inf
/2+dπ2

T̂inf
/2. Recall that564

the near-optimal policy set Πoffline includes policy π∗
offline (Lemma A.9) and that π1, π2 are the565

two more exploratory policies within this set:566

E
τ1∼d

π∗
offline

T̂
,τ2∼dpref

[uPR
(τ1, τ2)] ≤ max

π1,π2∈Πoffline

Eτ1∼d
π1

T̂ ,τ2∼d
π2
T̂

[uPR
(τ1, τ2)].

Now, under event ER, by Lemma A.2, we have, with probability 1− δ for all R̃ ∈ R:567

E(τ1,τ2)∼Dpref
[∥PR(τ1 ≻ τ2)− PR̃(τ1 ≻ τ2)∥21] ≤

cR log(NFR
(1/Np)/δ)

Np
,

where cR > 0 is a constant. This implies the following upper bound for the preference uncertainty568

function:569

E(τ1,τ2)∼Dpref
[uPR

(τ1, τ2)] ≤ 2

√
cR log(NFg (1/Np)/δ)

Np
.

Thus, we obtain:570

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2κ

√
cR log(NFg (1/Np)/δ)

Np
.

The resulting sample complexity of O(κ
2d
ϵ2 ) matches that of active preference learning within a571

known environment [Saha et al., 2023, Chen et al., 2022].572

573

We now conclude the proof of Theorem 6.1 under events ER and ET .574

From Lemma A.6, we upper bound the transition term:

V π∗

T,R − V π∗

T̂inf ,R
≤ HRmaxCT (FT , π

∗)

√
cT log(HNFT

(1/No)/δ)

No
.
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From Lemma A.10, we upper bound the reward term:

V
π∗
offline

T̂inf ,R
− V

π∗
offline

T̂inf ,R̂inf
≤ 2κ

√
cR log(NFR

(1/Np)/δ)

Np
.

Combining with Equation (10), we obtain Theorem 6.1.575

B Implementation Details576

We trained all models on two 64-core AMD processors or a single NVIDIA RTX2080Ti GPU. The577

total wall-clock time for running all experiments presented in this paper amounted to less than 72578

hours.579

Transition and Reward Function Training. For all baselines, transition and reward models were580

implemented as linear classifiers (for the Star MDP) or as two-layer perceptions with ReLU activa-581

tion and hidden layer dimension 32 (Gridworld and Sepsis environments). Training was carried out582

for two or one epochs for the transition and reward models respectively, with the Adam optimizer583

[Kingma and Ba, 2014] and a learning rate of 10−3.584

We provide a more detailed practical algorithm for Sim-OPRL in Algorithm 3. For both our method585

and baselines relying on uncertainty sets (OPRL and PbOP), we estimated uncertainty sets by train-586

ing models initialized with different random seeds on different bootstraps of the data (sampling 90%587

of the data with replacement). We consider ensembles of size |T | = |R| = 5 for both transition and588

reward models. Hyperparameters λT , λR control the degree of pessimism in practice and could be589

considered equivalent to adjusting margin parameters βT , βR in our conceptual algorithm proposed590

in Section 4. Since the exact values prescribed by our theoretical analysis cannot be estimated, the591

user must set these parameters themselves. Hyperparameter optimization in offline RL is a chal-592

lenging problem [Levine et al., 2020]; for our experiments, we simply set λT = 0.5, λR = 0.1593

(StarMDP, Gridworld) and λT = λR = 1 for the Sepsis environment.594

Algorithm 3 Sim-OPRL: Practical Algorithm

Input: Observational trajectories dataset Doffline. Hyperparameters λT , λR.
Output: π̂∗

1: Train an ensemble T of transition models via bootstrapping on the observational data Doffline:

T̂ (·|s, a) = 1

|T |
∑
T̃∈T

T̃ (·|s, a); uT (s, a) = max
T1,T2∈T

|T1(·|s, a)− T2(·|s, a)| ·Rmax

2: Dpref ← ∅.
3: for k = 1, ...Np do
4: Estimate optimal offline policy set:

Πoffline = {π | π = argmaxπ∈ΠE(s,a)∼dπ
T̂

[
R̃(s, a)− λTuT (s, a)

]
∀R̃ ∈ R}

5: Identify exploratory policies: π1, π2 = argmaxπ1,π2∈Πoffline
Eτ1∼d

π1
T̂

,τ2∼d
π2
T̂

[uPR
(τ1, τ2)]

6: Rollouts in model: τ1 ∼ dπ1

T̂
, τ2 ∼ dπ2

T̂
.

7: Collect preference label o for (τ1, τ2).
8: Dpref ← Dpref ∪ {(τ1, τ2, o)}.
9: Train an ensembleR of reward models via bootstrapping of the preference data Dpref :

R̂(s, a) =
1

|R|
∑
R̃∈R

R̃(s, a); uR(s, a) = max
R1,R2∈R

|R1(·|s, a)−R2(·|s, a)|

10: end for
11: π̂∗ ← argmaxπ∈ΠE(s,a)∼dπ

T̂
[R̂(s, a)− λRuR(s, a)− λTuT (s, a)]
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Near-Optimal Policy Set and Exploratory Policies. Both Sim-OPRL and PbOP require con-595

structing a set of near-optimal policies within a learned model of the environment. Note that the596

PbOP algorithm in Chen et al. [2022] proposes to construct the near-optimal policy set by consider-597

ing all policies that have a preference greater than 1/2 over all other policies in Π, under a transition598

and preference uncertainty bonus. This is infeasible to estimate in practice; we modified the algo-599

rithm to allow for practical implementation. The motivation in building the set of plausibly optimal600

policies remains the same, but the theoretical guarantees may not hold.601

We build Πoffline by maintaining a policy model for all R̃ ∈ R, i.e., each element of the reward602

ensemble. Policy models are optimized to maximize returns under the transition model T̂ and the603

reward function R̃ − λTuT (Sim-OPRL) or R̃ + λTuT (PbOP). Next, the most exploratory poli-604

cies are identified by generating 10 rollouts of each of the candidate policies within the learned605

(SimOPRL) or true (PbOP) model. The trajectories (τ1, τ2) maximizing the preference uncertainty606

function uPR
(τ1, τ2) are used for preference feedback. In PbOP, the trajectories are then added to607

the trajectories buffer and the transition model is retrained for 20 (Star MDP, Gridworld) or 200608

steps (Sepsis).609

Preference Feedback Collection. Preference labels are provided through the ground-truth reward610

function associated with every environment. As stated in Section 4, for computational efficiency, we611

sample preferences in batches of 4 (Star MDP, Gridworld) or 100 (Sepsis) to reduce the number of612

model updates needed.613

Policy Optimization. Policy optimization stages, both in estimating optimal policy sets in Sim-614

OPRL and PbOP and in outputting final policies, are carried out exactly through linear programming615

for the Star MDP and Gridworld using cvxopt [Diamond and Boyd, 2016], based on code from616

Lindner et al. [2021], and using Proximal Policy Optimization [Schulman et al., 2017] implemented617

in stable-baselines3 [Raffin et al., 2021] for the Sepsis environment. In the latter case, after618

every preference collection episode, reward and policy models were trained from the checkpoint of619

the previous iteration, for only 20 steps to minimize computation.620

Baselines and Ablations. We implement both OPRL baselines within our model-based offline621

preference-based algorithm described in Section 4. Uncertainty sampling is taking the pair with622

maximum preference uncertainty over 45 pairs for every sample, to reduce the load of computing623

preference uncertainty over the entire trajectory buffer.624

Our ablation study for Figure 1c is conducted as follows. For Sim-OPRL without pessimism in the625

output policy, we output the policy that maximizes the value function under the MLE estimate of626

the transition and reward function, T̂ and R̂, after preference acquisition. For Sim-OPRL without627

pessimism in the simulated rollouts, we estimate the optimal policy set Πoffline in the MLE esti-628

mate of the transition model instead of its pessimistic counterpart. Finally, for Sim-OPRL without629

optimism in the simulated rollouts, we generate rollouts from any two policies in Πoffline instead630

of the most explorative ones.631

C Environment Details632

s1

s4 R = 10

s2

R = 6

s3 R = −1

s0

a0

a1

a0

a1a
3a

2
a
2

a
3

Figure 4: Star MDP illustrated in Figure 1a. Transition probabilities are 0.9 for all solid arrows. Omitted
actions or complementary transitions keep the state unchanged.
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Star MDP. We illustrate the transition dynamics underlying the Star MDP in Figure 4. Transition633

probabilities are 0.9 for all depicted solid arrows, and leave the state unchanged otherwise. Other634

actions also keep the state unchanged with probability 1. Episodes have length H = 3 and start635

from s0. Unless specified otherwise, the offline dataset Doffline consists of 40 trajectories which636

only cover states (s0, s1, s3) and (s3, s1, s2).637

Start

10

−1

−1

−1

−1

20

Figure 5: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities
are 0.9. Thick lines indicate an obstacle, through which state transitions have probability zero.

Gridworld. We illustrate the gridworld environment in Figure 5. The environment consists of a638

4 × 4 grid with states associated with different rewards, including a negative-reward region in the639

top-right corner, a high-reward but unreachable state, and a moderate-reward state at the bottom640

right corner. Each episode starts in the top-left corner. Transition probabilities for each of the four641

actions (top, left, bottom, right) are 0.9 for the intended direction, and 0.1 for the others;642

and action stay remains in the current state with probability 1. Transitions beyond the grid limits or643

through obstacles have probability zero, with the remainder of the probability mass for each action644

being distributed amongst other directions equally. The offline dataset contains 150 episodes and645

the behavioral policy is ϵ-optimal with noise ϵ = 0.1. Episodes have length H = 10.646

Sepsis Simulation. The sepsis simulator [Oberst and Sontag, 2019] is a commonly used envi-647

ronment for medically-motivated RL work [Tang and Wiens, 2021]. We use the original authors’648

publicly available code: https://github.com/clinicalml/gumbel-max-scm/tree/sim-v2/649

sepsisSimDiabetes (MIT license). The state space consists of five discrete observational vari-650

ables (heart rate, blood pressure, oxygen concentration, glucose, diabetes status) and the action651

space consists of three different binary treatment options (antibiotic administration, vasopressor ad-652

ministration, mechanical ventilation). The probability that each treatment affects the value of each653

vital sign is determined by Oberst and Sontag [2019] to reflect patients’ physiology. The ground654

truth reward function is sparse and only assigns a positive reward of +1 to surviving patients and655

a negative reward of −1 if death occurs (3 or more abnormal vitals) during their stay. The offline656

trajectories dataset includes 10,000 episodes following an ϵ-optimal policy with noise ϵ = 0.1 and657

the episode length is H = 20.658

D Additional Results659

We include additional results in this section.660

In Figure 6, we report the accuracy of the transition and preference model achieved for the Star MDP661

as we vary the size of optimality of the offline dataset. Accuracy is measured against all possible662

state transitions and over 100 pairs of random trajectories (random combinations of the 5 states and663

4 actions in a sequence of H = 3). This complements our analysis in Section 7 and fig. 2. We664

see a steady improvement in both transition and reward model quality as we increase the amount of665

observational data in Figure 6a, which explains the observed dependence of Np on No in Figure 2a.666

In Figure 6b, we notice low model performance at both extremes of the x-axis. When the dataset is667

fully optimal, we find that all trajectories involve the same sequence of actions and states, so learning668

a transition or reward model from this data is challenging. We reach a similar conclusion at the other669

end of the spectrum at high density ratios, where the coverage the optimal states reduces. We reach670

21
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Figure 6: Transition and preference model accuracy as function of the properties of the observational data
(Star MDP). Preference elicitation is carried out until 10 preferences are queried. Mean and 95% confidence
intervals over 20 experiments. Note that the transition model is the same for the two methods, as they have
access to the same dataset.

highest performance for both models at intermediate values, when diversity of the observational data671

is high.672

Still, it is important to stress that the highest accuracy of both models does not necessarily translate673

to the best-performing policy: good performance on the distribution induced by the optimal policy674

is more important, as formalized by the concentrability coefficients.675

Next, we plot performance as a function of preferences sampled for our two additional environments676

in Figure 7. We reach similar conclusion to those drawn from the Star MDP in Section 7: within677

the offline preference elicitation approaches, OPRL with uniform sampling is the least efficient,678

OPRL with uncertainty sampling performs better, and Sim-OPRL even better. The PbOP method679

naturally reaches a superior policy with fewer samples as it allows environment interaction and can680

thus improve its estimate of the transition model in parallel to learning the preference function.681
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(a) Gridworld.
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(b) Sepsis simulation.

Figure 7: Empirical results on additional environments. Mean and 95% confidence interval over 20 experi-
ments. Environment returns are normalised between 0 and 100. Only OPRL and Sim-OPRL are fully offline.

E Broader Impact682

Better preference elicitation strategies for offline reinforcement learning have the potential to facili-683

tate and improve decision-making in real-world safety-critical domains like healthcare or economics,684

by reducing reliance on direct environment interaction and reducing human effort in providing feed-685

back. Potential downsides could include the amplification of biases in the offline data, potentially686

leading to suboptimal or unfair policies. Thorough evaluation is therefore crucial to mitigate this687
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before deploying models in such real-world applications. In addition, human preferences may not688

be fully captured by binary comparisons. As noted in our conclusion, we hope that future work will689

explore richer feedback mechanisms to better model complex decision-making objectives.690
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