
Published at the DeLTa Workshop at ICLR 2025

IMPLICIT BAYESIAN INFERENCE IS AN INSUFFICIENT
EXPLANATION OF LANGUAGE MODEL BEHAVIOR IN
COMPOSITIONAL TASKS

Szilvia Ujváry1, Anna Mészáros1, Wieland Brendel2,3,4, Patrik Reizinger∗2,3, and
Ferenc Huszár∗1

1University of Cambridge, Cambridge, United Kingdom
2Max Planck Institute for Intelligent Systems, Tübingen, Germany

3ELLIS Institute Tübingen, Tübingen, Germany
4Tübingen AI Center, Tübingen, Germany

ABSTRACT

Apparently rational behaviors of autoregressive LLMs, such as in-context learning,
have been attributed to implicit Bayesian inference (IBI): since training data is best
explained as a mixture, the optimal next-token-predictor learns to implicitly infer
latent concepts and completes prompts consistently with Bayesian inference. While
the optimal strategy in-distribution, Bayesian inference is generally suboptimal
on out-of-distribution (OOD) prompts due to model misspecification. As model
behavior on OOD prompts is only weakly constrained by pretraining, it is not
guaranteed that Bayesian behavior is extrapolated OOD. Our work investigates
with small-scale experiments the degree to which Bayesian inference remains
a good model of LM behavior on OOD prompts. We report two findings: (1)
Transformers are less prone to collapsing into a single mixture component than
Bayesian inference. Like tempered Bayesian inference, this may be advantageous
under model misspecification. (2) Transformers can generalize compositionally,
even when the Bayes posterior is undefined. We conclude that autoregressive LMs
can display rational-looking behavior that cannot be explained as any form of
generalized Bayesian inference using only the training data.

1 INTRODUCTION

Autoregressive language models (AR LMs) trained on next-token prediction show remarkable
emergent abilities, such as reasoning (Ouyang et al., 2022; Wei et al., 2022; Touvron et al., 2023),
and in-context learning (ICL) (Xie et al., 2022a; Min et al., 2022; Zhang et al., 2023). A common
narrative for explaining these behaviors, and model intelligence in general, is implicit Bayesian
inference (IBI). IBI posits that models trained on mixture data infer concepts from in-distribution
prompts and complete test prompts consistently with the Bayesian posterior predictive. Xie et al.
(2022a); Wang et al. (2024c) explained ICL, whereas Dalal & Misra (2024) more general language
model (LM) inference via IBI. The Bayesian view is advantageous as it can be loosely regarded as a
form of intelligence: the posterior predictive is constructed through systematic updates and converges
to the true data distribution when the Bayesian model is well-specified (Van der Vaart, 1998).
However, Bayesian models struggle to make accurate predictions under model misspecification, i.e.,
when the true parameter or data distribution has zero weight under the prior (Masegosa, 2020; Morn-
ingstar et al., 2022). Large Language Models (LLMs) are trained on massive mixture distributions
exposing them to various tasks (e.g., books, medical texts, journalism, technical manuals). Yet it is
unclear whether each user prompt is sufficiently close to the training data. Thus, LLMs might still
operate under model misspecification. In that case, their success is even more remarkable, and their
understanding is even less clear.

∗Joint senior authors. Correspondence to sru23@cam.ac.uk. Code available at:
github.com/szilviaujvary/llm_implicit_bayes

1

mailto:sru23@cam.ac.uk
https://github.com/szilviaujvary/llm-implicit-bayes

Published at the DeLTa Workshop at ICLR 2025

Training data:

ID test prompt:

Transformer

Implicit
Bayesian
Inference

OOD test prompt: ? ?

(a) Coinflip (b) Dyck

Transcen-
dence?

Transformer

Figure 1: Transformers can exhibit more complex behaviours out-of-distribution (OOD) on
mixture data than implicit Bayesian inference (IBI) would predict: we train Transformers on
mixture data for IBI and evaluate whether they can transcend this behaviour on OOD prompts.
(Left:) the coinflip experiments (1 stands for heads and 0 for tails)(§ 4.1) contain training sequences
with p(1) of either 0.1 or 0.6. On in-distribution (ID) test prompts, IBI predicts according to
one of the mixture components, but OOD behaviour (e. g, when p(1) = 0.3) can differ. (Right:)
Dyck experiments (§ 4.2) contain training sequences of either parentheses () or brackets []. The
Transformer completes the ID test prompts according to IBI, but OOD behaviour (e. g sequence
containing both () and []) is unconstrained by IBI

On out-of-distribution (OOD) prompts, model behavior is weakly constrained by the training data,
hence behaviors beyond the Bayesian one are possible. Recent work by Wang et al. (2024b) has
found that on tasks testing generalization from simple linear functions to more complex quadratic
functions, ICL tends to fit linear functions based on OOD downstream task context, providing an
example of extrapolating the Bayesian behavior even when it is suboptimal. In contrast, Zhang et al.
(2024) showed that models can outperform (transcend) this behavior with majority voting enabled
by low-temperature softmax: on chess tasks, LMs were able to beat all experts in the training data.
However, low temperature in the softmax is only a hyperparameter, and can be implemented in
(implicit) Bayesian models as well. Hence we can ask:

could there be other, more meaningful sources of transcendence over IBI in OOD tasks?

Our paper gives an affirmative answer. We showcase simple compositional tasks, where models
trained for IBI exhibit more complex behavior on OOD prompts beyond majority voting. To uncover
further sources of transcendence, we test on whether decoder-only Transformers (Vaswani et al.,
2017) can combine the components of their training data OOD. We create OOD tasks controlling the
level of model misspecification and compositionality (Fig. 1). We present two cases: coinflip data
and formal Dyck languages. In coinflip data, we study how a model handles two-component mixtures
with unseen head probabilities—the difficulty depends on whether the test mixture has probabilities
within or outside of the interval defined by the parameters of the two training components. For
Dyck languages, we investigate whether the model can compose the training components into more
complex languages—the difficulty depends on the (lack of) interaction between the components (for
details, cf. Tab. 3 and § 4.2). Our contributions are:
• Based on the limitations of Bayesian inference under model misspecification, we define three

models of LLM behavior on OOD prompts, which are all approximately consistent with IBI
in-distribution.

• After training small-scale Transformers to approximate IBI on the training data mixture, we test
which of these behaviors best matches Transformers’ predictions on OOD prompts.

• On low-probability OOD coinflips, we show that Transformers can outperform IBI via avoiding
collapse into one of the training data components.

• On compositional rule-learning tasks involving Dyck−{i} languages as training components and
evaluating on more complex Dyck−{i+ 1} prompts, we showcase OOD performance better than
generalizations of Bayesian inference, and suggest that Transformers combine information about
rules seen in separate training components.

2 BACKGROUND

We study next-token prediction in autoregressive probabilistic models. Let x1:L := (x1, x2, . . . , xL)
denote a token sequence from the set of all possible token sequences X of fixed maximal length

2

Published at the DeLTa Workshop at ICLR 2025

L. An autoregressive probabilistic model is defined a collection {p(xn+1|x1:n, w); 1 ≤ n ≤ L} of
conditional distributions with parameters w in some fixed parameter space W . For any distribution p,
let supp(p) denote its support. We provide an extended overview of related work in Appx. A.

2.1 IMPLICIT BAYESIAN INFERENCE

Intuition. Implicit Bayesian inference is a property of probabilistic models. Informally, it is
the ability to implicitly extract latent variables present in the training data—often interpreted as
concepts (Xie et al., 2022b)—and produce next-token distributions consistent with explicit Bayesian
inference over the latent variables of the train distribution. The word implicit means that the model
does not need to explicitly represent the latent variables or compute prior and posterior probabilities.
To formally define implicit Bayesian inference, we assume that our data can be viewed as a mixture
of simpler components, i.e. p(x1, . . . , xL) =

∫
Θ
p(θ)p(x1, . . . , xL | θ)dθ, with mixing variable θ in

some parameter space Θ. A Bayesian model perfectly fitting this data produces its next-token pre-
dictions according to the posterior predictive p(xn+1 | xn, ..., x1) =

∫
Θ
p(xn+1 | θ, xn, ..., x1)p(θ |

xn, ..., x1)d(θ), which marginalizes the likelihood of xn+1 given θ and the prompt x1, x2, . . . , xn

with respect to the posterior of θ. This can be interpreted as predicting the next-token using the latent
concepts that best fit the prompt.

Definition 1 (Implicit Bayesian Inference (IBI)). We say that a model performs implicit Bayesian
inference, if after training on a mixture data distribution, its produced next-token predictions align
with the next-token probabilities of the Bayesian posterior predictive over the train distribution.

Typically, model training can be interpreted as approximating IBI. Specifically, training autoregressive
models on the next-token prediction objective via minimizing cross-entropy encourages the model to
perfectly fit the posterior predictive corresponding to the training mixture (if the model is expressive
enough). In practice, models do not exactly reach the expected loss’s minimum; they only approximate
an explicit Bayesian model.

Optimality and model misspecification. IBI is desirable, as it is asymptotically optimal on in-
distribution data, i.e., it generalizes statistically. This only holds for well-specified Bayesian models,
i.e., models where the true parameter θ corresponding to the prompt is contained in Θ (Van der Vaart,
1998). However, when evaluated on out-of-distribution prompts from components outside of Θ,
the Bayesian posterior predictive is no longer asymptotically optimal, and neither is IBI. Although
minimal distribution shift can be tolerated in some cases (Xie et al., 2022a), even extensive training
data cannot cover all distributions, leading to some degree of model misspecification. Therefore, it is
interesting to ask whether language models approximating IBI in-distribution can transcend Bayesian
models in tasks where they are misspecified. In this paper, we test this on synthetic datasets with
varying levels of model misspecification.

2.2 FORMAL LANGUAGES

Formal languages are abstractions of natural languages, consisting of sequences of symbols from a
fixed alphabet that obey a set of rules called formal grammar. Although much simpler than natural
languages, their clear rules allow for a systematic study of OOD generalization. Moreover, as
programming and mathematical theorem-proving languages are also formal languages, studying this
family has real-world implications for code generation and mathematical reasoning in LLMs.

Dyck languages. Dyck languages consist of opening and closing brackets, and the rules depend
on the depth (number of bracket types) and whether the language is nested. We call a Dyck language
nested if, in addition to all bracket types being correctly matched (e.g. ([)]), they are also correctly
nested, just like in arithmetic expressions (e.g. [()]) and not nested (NN) otherwise. When referring
to a Dyck−i language, we mean the nested version, unless explicitly specified as NN Dyck−i. All
Dyck languages we consider are in Tab. 2 in Appx. D.2. According to the categorization of Chomsky
(1956), nested Dyck languages are context-free, that is, generating tokens obeys the same rule,
irrespective of the other tokens in the sequence. NN Dyck languages are context-sensitive, which
means that they depend on the position in the sequence, and are therefore considered harder in the
Chomsky hierarchy. However, context-sensitive languages have more lenient rules as they don’t
require correct nesting, and hence are often easier to learn with language models (Mészáros et al.,
2024). Our work uses Dyck languages to test whether models trained on mixtures of simpler Dyck
languages can extrapolate on more complex versions.

3

Published at the DeLTa Workshop at ICLR 2025

3 THREE MODELS FOR LANGUAGE MODEL BEHAVIOR ON OOD PROMPTS

IBI is only enforced on the training distribution, leaving other behaviors possible on OOD prompts.
Here we describe formally when deviation from a Bayesian model is possible OOD, and propose
extensions of IBI as hypotheses for explaining language models’ behaviour OOD. Our experiments
in § 4 test these behaviors. We motivate our approach with an example.

Figure 2: Longer test prompts make tem-
pered Bayes and the general algorithm con-
sistent with IBI on coinflip data: refer to the
text on the left for details

Example: Mixture of coinflips. Suppose ptrain is
a mixture of i.i.d. Bernoulli distributions, i.e.,

ptrain(x1:n) = 0.5·Bern(x1:n, θ1)+0.5·Bern(x1:n, θ2),

where Bern(x, θ) is the probability mass function of
a Bernoulli random variable with parameter θ. We
consider two models:
• Tempered Bayesian inference: defined as
ptempBayes(1|x1:n) := ptemp(θ1|x1:n) · 0.6 +
ptemp(θ2|x1:n) · 0.1, where the tempered posteriors
ptemp are computed by raising the component
likelihoods to 1/t, where t > 1.

• Generalist Model: defined as pgen(xn+1 =
1|x1, . . . , xn) =

∑n
i=1xn/n, framing the two

Bernoulli components as instantiating a more gen-
eral pattern: that the ratio of 0’s and 1’s in each
prompt is approximately constant.

A simulation in Fig. 2 shows that with increasing test prompt length both models become consistent
with IBI on the train data distribution, but they behave differently OOD: tempered Bayes does
concentrates on one of the training components less than regular Bayes, and the generalist model
approximates Bern(θ =

∑n
i=1 xi/n) draws.

In the rest of this section, we assume that an autoregressive model pM (xn+1|x1:n) has been trained
on a mixture distribution ptrain(x1:n) =

∑k
i=1 pi(x1:n)p(i) with component likelihoods pi(x1:n)

and component weights p(i). A straightforward extension of IBI to OOD data is to say that the model
does IBI in-distribution, and then re-uses the same mixture components OOD, which we call:
Definition 2 (Extrapolated Bayesian inference). An autoregressive model pM (xn+1|x1:n) performs
extrapolated Bayesian inference on test distribution ptest ̸= ptrain if pM (xn+1|x1:n) approximates
the Bayesian predictor corresponding to ptrain well, i.e., ∀x1:n ∼ ptest there exists a decomposi-
tion such that, pM (xn+1|x1:n) ≈

∑k
i=1 ωi(x1:n)pi(xn1

|x1:n), where ωi is the Bayesian posterior
p(i|x1:n) and pi(xn+1|x1:n) is the predictive likelihood of component i.

For practicality, we allow approximate equality to the Bayesian predictor—the degree of equality
can be picked for specific tasks. To describe the settings in which extrapolated Bayesian inference
happens, we make the following observation.
Observation 1. If supp(ptest) ⊆ supp(ptrain), then every model achieving zero KL divergence from
the train data distribution on ID test prompts, i.e., KL[ptrain(xn+1|x1:n)||pM (xn+1|x1:n)] = 0 must
perform extrapolated Bayesian inference. If supp(ptest) ̸⊆ supp(ptrain), a model can achieve zero
KL divergence without performing extrapolated Bayesian inference.

Even when supp(ptest) ⊆ supp(ptrain), practical models do not typically reach zero KL divergence.
If we relax the condition to KL < ϵ for some arbitrary ϵ > 0, then behaviors other than extrapolated
BI are possible. Hence we define two further extensions of IBI to OOD data. These behaviors can all
approximate IBI on the train data distribution, but can be better strategies OOD.
Definition 3 (Generalized Bayesian Inference). We say that an autoregressive model pM (xn+1|x1:n)
performs generalized Bayesian inference on test distribution ptest ̸= ptrain if ∀x1:n ∼
ptrain, pM (xn+1|x1:n) ≈ ptrain(xn+1|x1:n), and there exists a decomposition of pM into a mixture
model such that ∀x1:n ∼ ptest, pM (xn+1|x1:n) ≈

∑
i ω̃i(x1:n)p̃i(xn+1|x1:n).

Generalized Bayesian inference is more general than extrapolated Bayesian inference as it admits a
general notion of component mixing in the predictor: (1) the weights ω̃i(x1:n) may differ from the
Bayes posterior such as in our tempered Bayesian inference example, and (2) the predictive likelihoods

4

Published at the DeLTa Workshop at ICLR 2025

p̃i(xn+1|x1:n) may have larger support, potentially defining completions for zero-probability prompts
under ptrain. Similar definitions exist in PAC-Bayesian contexts (Alquier, 2024).
Definition 4 (Generalist Model). An autoregressive model pM (xn+1|x1:n) is a generalist model
if ∀x1:n ∼ ptrain, pM (xn+1|x1:n) ≈ ptrain(xn+1|x1:n), but the model pM (xn+1|x1:n) captures a
more general pattern in the data rather than approximating each component of ptrain.

What constitutes a “more general pattern in the data” can depend on the task. Intuitively, Generalized
Bayesian models are an interpolation between extrapolated BI and Generalist models, based on how
much the individual component predictions are aligned. That is, how much information is shared
between the components. A Generalist Model shares most information, since it frames all training
components as instances of the same pattern. The following observation shows that alignment of the
component predictives (which we call “information sharing”) can be beneficial OOD.
Observation 2. [Information sharing between components helps OOD] Suppose we have a General-
ized Bayesian model, i.e., pM (xn+1|x1:n) =

∑k
i=1 ω̃i(x1:n)p̃i(xn+1|x1:n), and ∀i : supp(ptest) ⊆

supp(p̃i). Then,

KL[ptest(xn+1 | x1:n)||pM (xn+1 | x1:n)] ≤ min
j

{KL[ptest(xn+1 | x1:n)||p̃j(xn+1 | x1:n)]}

+ Ex1:n+1

[
k∑

i=1

ω̃i(x1:n) log
p̃j(xn+1 | x1:n)

p̃i(xn+1 | x1:n)

]
.

The proof and an illustrative example for Dyck languages is in Appx. B. Observation 2 shows that
information sharing, quantified by the log of the prediction ratios between components, can be
beneficial because it helps bound the KL divergence between the (predictive) model and the OOD
test distribution better.

4 EXPERIMENS

Setup. Throughout this work, we focus on decoder-only Transformers. The models are initialized
with the full token dictionary, including tokens potentially not present in the train data distribution.
For the coinflip experiments, next-tokens were selected using sampling decoding, while we used
greedy decoding for the Dyck experiments, consistent with Mészáros et al. (2024). Complete details
of our experimental setup are in Appx. D.

4.1 EXTRAPOLATION TO OOD COINFLIPS: TRANSCENDENCE VIA GENERALIZED BI

Coinflip Datasets and Tasks. We train on a mixture of coinflips: two i.i.d. Bernoulli components
with success (head) probabilities 0.1 and 0.6, respectively. For each data point, we select the mixture
component with equal probability. Our test prompts have length 100 and have a different head
probability, making draws from most test distributions very unlikely under the train data. The test
prompts are drawn i.i.d. from:
1. Interpolation: a single Bernoulli with success probability θ ∈ [0.1, 0.6] (Fig. 3)
2. Extrapolation: a single Bernoulli with success probability θ ∈ [0, 0.1) ∪ (0.6, 1.0] (Fig. 3)
3. Markov Chain: a two-state Markov chain with stationary distribution [0.4, 0.6], matching the

portion of successes in the second component of the train data, a Bernoulli with parameter 0.6.
We initialize the Markov chain at its stationary distribution. (Fig. 4)

The above tasks are in order of increasing difficulty: models can interpolate between the train
components in the first task, but not in the second. The third task breaks the independence structure
seen in the train data via the Markov chain.

Metrics. We measure the probability of predicting heads or tails as the next token, and compare to
the Bayesian posterior predictive.

Results. Our results show that Transformers accurately learned the correct next-token probabilities
of p(1) and p(0) on the train data components, i.e., when p(1) = 0.1 or = 0.6 in the test prompt,
the model predicted accordingly (Fig. 3). Therefore, the Transformers closely approximate implicit
Bayesian inference on the ID prompts. The performance of Transformers on low-probability OOD
coinflips varies based on whether the OOD success probability p(1) is within or outside of the
interval [0.1, 0.6], i.e., the set of convex combinations of the success probabilities in the train data.
Transformers can extrapolate better than explicit Bayesian inference within the convex combination,
but their performance falls slightly below Bayesian inference outside.

5

Published at the DeLTa Workshop at ICLR 2025

Figure 3: Predicted head probabilities for OOD coinflip data: Models were trained on two mixture
components with p(1) set to either 0.1 or 0.6. The optimal solution (the y = x line) is black,
the Bayesian estimate green, the component p(1)’s a star ⋆ on the x−axis with training samples’
empirical probabilities as discrete lines. (Left:) comparing the Transformer to Bayesian inference on
test prompts of length 100 (means and standard deviations across 10 training seeds). (Right:) Trans-
former predictions for varying test prompt lengths l and tempering t. (Conclusion:) Transformers
closely match tempered Bayesian inference. This implicit tempering allows Transformers to beat
Bayesian inference within [0.1, 0.6] as they do not collapse into one training component and stay
closer to the optimal black line.
Explanation: Transformers implicitly temper the likelihood. To see what causes the superior
performance within [0.1, 0.6], we ablated the test prompt length from 10 to 500 Fig. 3 (right). This
revealed that Transformers’ predictions match Bayesian inference much better if we introduce
tempering into the Bayesian likelihood, i.e. the likelihood becomes L(x) = p(x | θ)1/t. Temperature
values t > 1 slow down the posterior’s convergence by weakening the likelihood, providing a more
balanced weighting of train components within [0.1, 0.6]. This is a useful approach to mitigate model
misspecification, as such models are less prone to collapsing into a single training data component.
To see how the models achieve this tempered IBI approximation, we ablated the architecture by
canceling out the effects of individual attention heads via replacing their outputs on test prompts with
random noise, a technique known in the mechanistic interpretability literature as knockout (Rai et al.,
2025). Interestingly, the resulting curves were similar to the curves using shorter prompt lengths
in Fig. 3, which suggests that the implicit tempering effect is better viewed as Bayesian prediction
based on smaller segments of the test prompts. Or equivalently, as tempering with large temperature
(both effects divide the log-likelihood by a large positive number). This can be interpreted as the
attention heads learning to focus on small segments of the test prompts (i.e., having small “attention
span”), which results in slower posterior convergence. The complete description of this ablation and
its results (Fig. 7) along with further ablations on the architecture can be found in Appx. D.1.

Figure 4: Transition probabilities and negative log-likelihood (nll ↓) on OOD Markov chain data:
Models were evaluated on prompts drawn from a Markov chain with transition probabilities (Left),
the chain was initialized at its stationary distribution p(head)= 0.6. The Transformers’ transition
probabilities (Center) were estimated from the next-token probabilities based on the previous token.
Compared to the Bayes model (Right), where each token is independent, the Transformer’s transition
matrix is slightly closer to the ground-truth transitions, but the nll is much higher.

The Transformer’s estimated transition matrix on Markov chain data is slightly closer to the true
transitions than those of a Bayesian model (Fig. 4). This indicates that the Transformer captured in

6

Published at the DeLTa Workshop at ICLR 2025

Figure 5: The role of information sharing in Transformers and Bayesian inference on Dyck
languages: We train Transformers (Left) on simpler Dyck languages (y−axis), then test whether
the models can finish test prompts for more complex (OOD) languages (x−axis) and compare it
to Bayesian inference with (Top Right) and without (Bottom Right) majority voting. We add
uninformative observation noise (via defining random outputs for unseen tokens) to all but the vanilla
Transformer (Top Left). ID tasks are marked in orange. The best result in each OOD task is
highlighted in red. (Conclusion:) Including more structure in the training language components (i.e.,
generalizing from Dyck-2 to Dyck-3) is easier for the Transformer than generalizing from simpler
Dyck-1 language components. Means and standard deviations were computed from at least 4 seeds

its predictions only a limited amount of the autocorrelations seen only in the test prompts. Hence this
task proved to be too difficult for Transformers.

Summary of Results Transformers are less prone to collapsing to a single component than IBI,
but this beneficial implicit tempering effect may be due to a limited attention span. When tested on
Markov chain data, Transformers struggle with extrapolation.

4.2 RULE-LEARNING: TRANSCENDENCE VIA GENERALIZED BI AND INFORMATION SHARING

Dyck language Datasets and Tasks. The training data comes from mixtures of Dyck−i (i ∈ {1, 2})
languages, containing either two or three components, depending on the task—the difference between
these components is the type of parentheses we use. Each component shares the same depth i. The
test prompts are from a Dyck−{i+ 1}. They have length 10, including SOS as the first token, and
start with 3 opening tokens containing all possible opening tokens in the test language, in arbitrary
order, followed by 6 tokens forming a correct sequence from the test language. For example, if the
test language is Dyck−3, an example test prompt is SOS ({ [{ ({ }) }. We include all
of our experimental scenarios in Tab. 3 in Appx. D.2.
Quantifying the compositionality of our tasks. Despite all involving zero-probability test
prompts, the tasks differ in terms of the degree of extra information the model needs to deduce from
the prompt to complete it according to the test languages’ rules. For example, a model trained on a
mixture of Dyck−1 (and Dyck−1 [only needs to follow both rules simultaneously to complete
prompts obeying NN Dyck−2 (, [, but needs to explicitly prefer the idea of nesting two types of
brackets when it’s evaluated on Dyck−2 (, [. Therefore, although both tasks are OOD, the first
one requires a simpler, more general notion of composition than the second. We provide a simple,
heuristic definition for quantifying the compositionality of our tasks in Appx. C, and present the
computed values in Tab. 3.
Defining a Generalized Bayes Model. Since all test prompts contain unseen tokens and thus
have zero likelihood under each individual train component, a Bayesian posterior cannot be defined
in these tasks. However, we can test for the presence of generalized Bayesian inference via adding

7

Published at the DeLTa Workshop at ICLR 2025

uninformative observation noise for the unseen token to each component likelihood in the Bayesian
model. Specifically, we augment component likelihoods so that, conditioned on any prompt, the
unseen tokens have constant probability 0.005 as next-tokens. Since our Transformers use greedy
decoding, which is equivalent to majority voting (Zhang et al., 2024), we also implement the Bayesian
model with majority voting. More details and ablations on the models’ construction are provided in
Appx. D.

Metrics. We evaluate grammatical accuracies in both the train and test grammars, assessing the
full, completed prompt in both Transformers and generalized Bayesian models. That is, we check
whether all grammar rules of the train/test languages hold. When evaluating in the OOD settings, we
also compared the models’ performance to chance-level accuracies, which were estimated a upper
bounds on the chance of completing the test prompts by sampling each token (excluding the padding
token) with equal probability. .

Figure 6: Attention heads for training data components
by knockout: using models trained on 3 Dyck-2 compo-
nents, we knock out attention heads and test how well the
resulting models obey each Dyck 2 grammar on the OOD
prompts (Dyck 3). Model accuracies on the train gram-
mars were converted into barycentric coordinates: being
close to vertex i means higher accuracy on component i.
Compared to the original model (red), performance moving
away from each component indicates specialization towards
that component in the knocked-out head. For example, head
3 (purple) specializes in component 1, the Dyck 2-(, [
language.

Results. Transformers approximate
IBI on the training data well, as indi-
cated by Fig. 5. Transformers beat the
generalized Bayes model without ma-
jority voting on all OOD tasks, but un-
derperform generalized Bayes with ma-
jority voting when trained on 3 Dyck
2 components. This indicates that this
generalized Bayesian model can at best
explain the Transformers’ extrapola-
tion only on this one task. An alter-
native approach (based on Observa-
tion 2) is to assume information shar-
ing between the Transformers’ compo-
nent approximations: our knockout ex-
periment (Fig. 6) confirms this since
removing the effect of single atten-
tion heads does not completely remove
knowledge about each train compo-
nents’ rules in the model. The large
standard deviations observed in the
Transformer results suggests that very
good extrapolation is possible, but not
consistently learnt.

Summary of Results. In rule-based
tasks, Transformers’ OOD perfor-
mance is better than generalized Bayes models’, and beyond majority voting, this transcendence
seems to result from information sharing between the train components’ approximations in the model.

5 DISCUSSION

Limitations. Our analysis is based on training small-scale models on small-scale data sets, which
limits the predictive power of our conclusions—nonetheless, we still observed a non-trivial OOD
behavior in Transformers. As suggested by prior works such as those on grokking (Liu et al., 2023;
2022; Wang et al., 2024a; Power et al., 2022), a qualitatively different behavior might emerge if we
trained much longer. We leave this for future work.
Conclusion. We have empirically shown that when trained on data mixtures, although their training
encourages implicit Bayesian inference, Transformers can meaningfully transcend this behaviour,
implementing more general approximations of Bayesian inference. These approaches can transfer
better to compositional OOD tasks. We have highlighted the benefits of information sharing between
the train components’ approximations, paving the way towards building generalist models.

ACKNOWLEDGEMENTS

This work was supported by a Turing AI World-Leading Researcher Fellowship G111021. Patrik
Reizinger acknowledges his membership in the European Laboratory for Learning and Intelligent

8

Published at the DeLTa Workshop at ICLR 2025

Systems (ELLIS) PhD program and thanks the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for its support. This work was supported by the German Federal
Ministry of Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A. Wieland
Brendel acknowledges financial support via an Emmy Noether Grant funded by the German Research
Foundation (DFG) under grant no. BR 6382/1-1 and via the Open Philantropy Foundation funded
by the Good Ventures Foundation. Wieland Brendel is a member of the Machine Learning Cluster
of Excellence, EXC number 2064/1 – Project number 390727645. This research utilized compute
resources at the Tübingen Machine Learning Cloud, DFG FKZ INST 37/1057-1 FUGG.

REFERENCES

Kartik Ahuja and Amin Mansouri. On Provable Length and Compositional Generalization, February
2024. URL http://arxiv.org/abs/2402.04875. arXiv:2402.04875 [cs, stat]. 13

Pierre Alquier. User-friendly introduction to pac-bayes bounds. Foundations and Trends® in
Machine Learning, 17(2):174–303, 2024. ISSN 1935-8245. doi: 10.1561/2200000100. URL
http://dx.doi.org/10.1561/2200000100. 5

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum,
and Tom Goldstein. End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapo-
lation Without Overthinking, October 2022. URL http://arxiv.org/abs/2202.05826.
arXiv:2202.05826 [cs]. 13

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages, 2020. URL https://arxiv.org/abs/2009.11264. 13

Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen,
and Wieland Brendel. Provably Learning Object-Centric Representations, May 2023. URL
http://arxiv.org/abs/2305.14229. arXiv:2305.14229 [cs]. 13

Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, and Wieland
Brendel. Interaction Asymmetry: A General Principle for Learning Composable Abstractions,
November 2024. URL http://arxiv.org/abs/2411.07784. arXiv:2411.07784 [cs]. 13

N. Chomsky. Three models for the description of language. IRE Transactions on Information Theory,
2(3):113–124, 1956. doi: 10.1109/TIT.1956.1056813. 3, 18

Siddhartha Dalal and Vishal Misra. Beyond the black box: A statistical model for llm reasoning and
inference, 2024. URL https://arxiv.org/abs/2402.03175. 1, 13

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the chomsky hierarchy, 2023. 13

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality, 2023. 13

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize dyck-n
languages?, 2020. URL https://arxiv.org/abs/2010.04303. 13

OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
20

Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
bayesian? a martingale perspective. ICML’24. JMLR.org, 2024. 13

PyTorch Lightning Falcon. Pytorch lightning: Accelerated research from prototypes to production.
https://github.com/PyTorchLightning/pytorch-lightning, 2019. 15

9

http://arxiv.org/abs/2402.04875
http://dx.doi.org/10.1561/2200000100
http://arxiv.org/abs/2202.05826
https://arxiv.org/abs/2009.11264
http://arxiv.org/abs/2305.14229
http://arxiv.org/abs/2411.07784
https://arxiv.org/abs/2402.03175
https://arxiv.org/abs/2010.04303
https://arxiv.org/abs/2303.08774
https://github.com/PyTorchLightning/pytorch-lightning

Published at the DeLTa Workshop at ICLR 2025

Sungjun Han and Sebastian Padó. Towards Understanding the Relationship between In-context
Learning and Compositional Generalization, March 2024. URL http://arxiv.org/abs/
2403.11834. arXiv:2403.11834 [cs]. 13

Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
Decoders for Latent Variables Identification and Cartesian-Product Extrapolation, July 2023. URL
http://arxiv.org/abs/2307.02598. arXiv:2307.02598 [cs, stat]. 13

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
learning neural network. Nature, 623(7985):115–121, November 2023. ISSN 1476-
4687. doi: 10.1038/s41586-023-06668-3. URL https://www.nature.com/articles/
s41586-023-06668-3. Publisher: Nature Publishing Group. 13

Ziming Liu, Eric J. Michaud, and Max Tegmark. Omnigrok: Grokking Beyond Algorithmic Data.
September 2022. URL https://openreview.net/forum?id=zDiHoIWa0q1. 8

Ziming Liu, Ziqian Zhong, and Max Tegmark. Grokking as Compression: A Nonlinear
Complexity Perspective, October 2023. URL http://arxiv.org/abs/2310.05918.
arXiv:2310.05918 [cs, stat]. 8

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019. URL
http://arxiv.org/abs/1711.05101. arXiv:1711.05101 [cs, math]. 20

Andres R. Masegosa. Learning under model misspecification: Applications to variational and
ensemble methods, 2020. URL https://arxiv.org/abs/1912.08335. 1, 13

R. Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D. Hardy, and Thomas L. Griffiths. Embers
of autoregression show how large language models are shaped by the problem they are trained
to solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, October
2024. doi: 10.1073/pnas.2322420121. URL https://www.pnas.org/doi/10.1073/
pnas.2322420121. Publisher: Proceedings of the National Academy of Sciences. 13

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?, 2022.
1

Pablo Moreno-Muñoz, Pol G. Recasens, and Søren Hauberg. On masked pre-training and the marginal
likelihood, 2023. URL https://arxiv.org/abs/2306.00520. 13

Warren R. Morningstar, Alex Alemi, and Joshua V. Dillon. Pacm-bayes: Narrowing the empirical
risk gap in the misspecified bayesian regime. In Gustau Camps-Valls, Francisco J. R. Ruiz, and
Isabel Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pp. 8270–8298. PMLR,
28–30 Mar 2022. URL https://proceedings.mlr.press/v151/morningstar22a.
html. 1, 13

Anna Mészáros, Szilvia Ujváry, Wieland Brendel, Patrik Reizinger, and Ferenc Huszár. Rule
extrapolation in language models: A study of compositional generalization on ood prompts, 2024.
URL https://arxiv.org/abs/2409.13728. 3, 5, 13

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks, 2021. 13

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. 15

10

http://arxiv.org/abs/2403.11834
http://arxiv.org/abs/2403.11834
http://arxiv.org/abs/2307.02598
https://www.nature.com/articles/s41586-023-06668-3
https://www.nature.com/articles/s41586-023-06668-3
https://openreview.net/forum?id=zDiHoIWa0q1
http://arxiv.org/abs/2310.05918
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1912.08335
https://www.pnas.org/doi/10.1073/pnas.2322420121
https://www.pnas.org/doi/10.1073/pnas.2322420121
https://arxiv.org/abs/2306.00520
https://proceedings.mlr.press/v151/morningstar22a.html
https://proceedings.mlr.press/v151/morningstar22a.html
https://arxiv.org/abs/2409.13728

Published at the DeLTa Workshop at ICLR 2025

Steven Pinker. The language instinct. William Morrow, New York, NY, December 1994. 13

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization Beyond Overfitting on Small Algorithmic Datasets, January 2022. URL http:
//arxiv.org/abs/2201.02177. arXiv:2201.02177 [cs]. 8

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018. URL https://api.semanticscholar.org/CorpusID:49313245. 20

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. pp. 24, 2018. 20

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic
interpretability for transformer-based language models, 2025. URL https://arxiv.org/
abs/2407.02646. 6

Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P. Dick, and Hidenori Tanaka. Compo-
sitional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks,
February 2024. URL http://arxiv.org/abs/2311.12997. arXiv:2311.12997 [cs]. 13

Patrik Reizinger, Szilvia Ujváry, Anna Mészáros, Anna Kerekes, Wieland Brendel, and Ferenc Huszár.
Position: Understanding LLMs Requires More Than Statistical Generalization. June 2024. URL
https://openreview.net/forum?id=pVyOchWUBa. 13

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized Positional Encodings Boost Length Generalization of
Transformers, May 2023. URL http://arxiv.org/abs/2305.16843. arXiv:2305.16843
[cs, stat]. 13

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Seyed Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples, 2023. 13

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM networks can
perform dynamic counting. In Jason Eisner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni, and
Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep Learning and Formal Lan-
guages: Building Bridges, pp. 44–54, Florence, August 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/W19-3905. URL https://aclanthology.org/W19-3905/.
13

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 1

A. W. Van der Vaart. "10.2 bernstein–von mises theorem", asymptotic statistics. Cambridge University
Press, 1998. 1, 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 2, 20

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked Transformers are Implicit Reasoners:
A Mechanistic Journey to the Edge of Generalization, October 2024a. URL http://arxiv.
org/abs/2405.15071. arXiv:2405.15071 [cs]. 8

Qixun Wang, Yifei Wang, Yisen Wang, and Xianghua Ying. Can in-context learning really generalize
to out-of-distribution tasks?, 2024b. URL https://arxiv.org/abs/2410.09695. 2, 13

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning, 2024c. URL https://arxiv.org/abs/2301.11916. 1, 13

11

http://arxiv.org/abs/2201.02177
http://arxiv.org/abs/2201.02177
https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2407.02646
http://arxiv.org/abs/2311.12997
https://openreview.net/forum?id=pVyOchWUBa
http://arxiv.org/abs/2305.16843
https://aclanthology.org/W19-3905/
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2405.15071
http://arxiv.org/abs/2405.15071
https://arxiv.org/abs/2410.09695
https://arxiv.org/abs/2301.11916

Published at the DeLTa Workshop at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022. 1

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision
rnns for language recognition, 2018. URL https://arxiv.org/abs/1805.04908. 13

Thaddäus Wiedemer, Jack Brady, Alexander Panfilov, Attila Juhos, Matthias Bethge, and Wieland
Brendel. Provable Compositional Generalization for Object-Centric Learning, October 2023a.
URL http://arxiv.org/abs/2310.05327. arXiv:2310.05327 [cs]. 13

Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Compositional
Generalization from First Principles, July 2023b. URL http://arxiv.org/abs/2307.
05596. arXiv:2307.05596 [cs, stat]. 13

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In Proceed-
ings of the 37th International Conference on Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA, 2023. Curran Associates Inc. 13

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020. 15

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference, 2022a. 1, 3, 13

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context
Learning as Implicit Bayesian Inference, July 2022b. URL http://arxiv.org/abs/2111.
02080. arXiv:2111.02080 [cs]. 3

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On Layer Normalization in the Transformer Architec-
ture, June 2020. URL http://arxiv.org/abs/2002.04745. arXiv:2002.04745 [cs, stat].
20

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L. Edelman, Milind Tambe,
Sham M. Kakade, and Eran Malach. Transcendence: Generative Models Can Outperform The
Experts That Train Them, October 2024. URL http://arxiv.org/abs/2406.11741.
arXiv:2406.11741. 2, 8, 19

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained Transformers Learn Linear Models In-
Context, October 2023. URL http://arxiv.org/abs/2306.09927. arXiv:2306.09927
[cs, stat]. 1

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028. 13

12

https://arxiv.org/abs/1805.04908
http://arxiv.org/abs/2310.05327
http://arxiv.org/abs/2307.05596
http://arxiv.org/abs/2307.05596
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2002.04745
http://arxiv.org/abs/2406.11741
http://arxiv.org/abs/2306.09927
https://arxiv.org/abs/2310.16028

Published at the DeLTa Workshop at ICLR 2025

A RELATED WORK

Implicit Bayesian Inference in Language Models. Several works interpret LLM capabilities
through a Bayesian lens, often as implicit Bayesian inference (Moreno-Muñoz et al., 2023). Most
works focus on explaining in-context learning as IBI. Although we don’t explicitly consider in-context
learning tasks, this line of work is very much relevant to us, since our coinflip experiments can be
rephrased as in-context learning tasks (due to using long test prompts). Xie et al. (2022a) show in a
theoretical setting that, on a mixture of HMMs data, IBI over the components achieves in-context
learning. Wang et al. (2024c) give a similar interpretation for ICL, calling LLMs implicit topic
models and providing evidence for real-world LLMs, while Wies et al. (2023) gives learnability
conditions via PAC-Bayes. Wang et al. (2024b) demonstrates that in in-context learning can fail to
generalize OOD due to collapsing into one of the train components. The most relevant for us from
their tested settings is generalization from simple linear functions to more complex quadratic ones. In
light of our results finding nontrivial deviation from IBI, their OOD tasks seem too different from
the training tasks, and require much more complex compositions of training components than our
tasks. There are also works critiquing the validity of the Bayesian connection: Falck et al. (2024)
demonstrates that ICL fails to display the necessary symmetry properties of Bayesian models. Dalal
& Misra (2024) study LLM inference in general, positing that next-token prediction is consistent
with Bayesian updating of next-token multinomial probabilities for each possible prompt. Our focus
differs as we are not assessing the technical validity of the IBI interpretation. We train Transformers
to approximate IBI on the training data and ask what the consequences are in OOD scenarios. There
are several extensions of the Bayesian framework attempting to address model misspecification
(Masegosa, 2020; Morningstar et al., 2022), proposing normative models of LLM inference that may
explain OOD behavior. The scope of this work is only to demonstrate the incompleteness of the IBI
narrative by showing examples where intelligent OOD extrapolation is not due to IBI.

Formal languages. Formal languages offer a controlled framework for modelling complex
natural languages, enabling the analysis of language model behaviour on fundamental tasks, such as
counting and learning hierarchical structures in the context of Dyck languages. Mészáros et al. (2024)
demonstrated that common machine learning architectures can accurately complete in-distribution
prompts for anbn-type counting tasks, Dyck-n languages, and excluding the Transformer, tasks
involving parity calculation. When testing OOD, most works focus on length generalization (Delétang
et al., 2023), finding that LSTMs can generalize well to longer sequences on anbn-type grammars
(Weiss et al., 2018) and on the Dyck-1 grammar (Suzgun et al., 2019; Weiss et al., 2018).Transformers
only perform well on Dyck-n languages when a start-of-sequence token was included (Ebrahimi
et al., 2020), and fail to length generalize on parity calculation tasks (Bhattamishra et al., 2020; Zhou
et al., 2023). Our work on Dyck languages is most similar to Mészáros et al. (2024), who study
rule extrapolation, the ability to complete prompts with partly broken rules when trained on formal
languages. Transformers excel in context-free and context-sensitive languages, including Dyck−2
languages. Our tasks differ in that we train models on mixture data with components obeying separate
rules, and evaluate them on their composition. This makes our paper a contribution towards the
compositional generalization research, too.

Compositional generalization. Most works on compositional generalization focus on computer
vision (Wiedemer et al., 2023a;b; Brady et al., 2024; 2023; Lachapelle et al., 2023). For natural
language, recent works started to studying OOD generalization, but mostly focusing on length
generalization (Ahuja & Mansouri, 2024; Han & Padó, 2024; Ramesh et al., 2024; Lake & Baroni,
2023; Nogueira et al., 2021; Dziri et al., 2023; Saparov et al., 2023), showing that the positional
encoding has a significant role in length generalization (Ruoss et al., 2023; Bansal et al., 2022). For
some cases, theoretical results also exist (Ahuja & Mansouri, 2024). The relevance of studying
compositional generalization in language models stems from the compositional nature of natural (and
formal) languages (Pinker, 1994). Studying OOD generalization in pre-trained models is non-trivial
as spurious correlations or the dominance of particular settings in the training data can lead to
substantial performance differences, even in the same task (McCoy et al., 2024). Hence we follow
previous works and train our models from scratch (Reizinger et al., 2024; Mészáros et al., 2024).

13

Published at the DeLTa Workshop at ICLR 2025

B PROOF AND DISCUSSION OF OBSERVATION 2

Observation 2. [Information sharing between components helps OOD] Suppose we have a General-
ized Bayesian model, i.e., pM (xn+1|x1:n) =

∑k
i=1 ω̃i(x1:n)p̃i(xn+1|x1:n), and ∀i : supp(ptest) ⊆

supp(p̃i). Then,

KL[ptest(xn+1 | x1:n)||pM (xn+1 | x1:n)] ≤ min
j

{KL[ptest(xn+1 | x1:n)||p̃j(xn+1 | x1:n)]}

+ Ex1:n+1

[
k∑

i=1

ω̃i(x1:n) log
p̃j(xn+1 | x1:n)

p̃i(xn+1 | x1:n)

]
.

Proof. For ease of notation, we leave out the conditionals’ arguments, i.e., we denote ptest(xn+1 |
x1:n) as ptest with the understanding that statements like x1:n ∼ ptest, and xn+1 ∼ ptest mean
x1:n ∼ ptest(x1:n) and xn+1 ∼ ptest(xn+1 | x1:n), respectively. Then,

KL[ptest||pM] = Ex1:n∼ptest

[
Exn+1∼ptest

[
log

ptest∑k
i=1 ωi(x1:n) · pi

]]
(1)

= Ex1:n+1∼ptest

[
log

ptest

pj
· pj∑k

i=1 ωi(x1:n) · pi

]
(2)

= Ex1:n+1∼ptest

[
log

ptest

pj
+ log

pj∑k
i=1 ωi(x1:n) · pi

]
(3)

= KL[ptest||pj] + Ex1:n+1∼ptest

[
log

pj∑k
i=1 ωi(x1:n) · pi

]
(4)

≤ KL[ptest||pj] + Ex1:n+1∼ptest

[k∑
i=1

ωi(x1:n) log
pj
pi

]
, (5)

where the last inequality is due to Jensen’s inequality. This equation is true for all components pj of
pM , hence it is true for the one achieving minimal KL divergence from ptest. Due to our condition on
the supports, none of the terms on the RHS are infinite. We focus on this component as this is the
one a Bayesian weighting of components would select most confidently. However, how much other
components’ predictions are aligned to this component matters for predictive performance so long as
these components have nonzero weight.

Observation 2 shows that alignment of the component predictives (which we call “information
sharing”) helps us bound the KL divergence between the (predictive) model and the OOD test
distribution better. Therefore, high information sharing (that is, a low value for the second term in the
bound) helps us guarantee a better predictive model for the OOD task at hand.

Example (Dyck languages). Suppose the training distribution is a mixture of two Dyck 1
languages, i.e. p1 :=Dyck 1-(,) and p2 :=Dyck 1-[,] respectively, and the test language
is Dyck 2 containing both bracket types. Let us consider the test prompt ([, which has zero
probability under the training distribution, as the two types of opening tokens can never occur together
under the training distribution. Suppose we have two models that implement (implicit) generalized
Bayesian inference: Model 1 and Model 2. Model 1 approximates p1 and p2 with components p̃1
and p̃2 that have support on all tokens, but the information stored about the unseen tokens is random
and does not respect the tokens’ rules, e.g. p1(· | ([) puts nonzero weight on invalid next-token).
Suppose that Model 2’s components approximating p1, p2, p̄1 and p̄2 have incomplete information
about the rules of the unseen tokens. Example next-token distributions for prompt ([are given
in Appx. B. The only invalid next-token is) (corresponding cells shaded in red). Model 2 mixes
components giving lower probability to the invalid next-token than Model 1, hence on average, Model
2 performs better.

C MEASURING FORMAL LANGUAGE TASK COMPOSITIONALITY

In this section, we present a heuristic measure for the compositionality of our Dyck language
extrapolation tasks.

14

Published at the DeLTa Workshop at ICLR 2025

Component () []

p1 (Train distribution) Undefined Undefined Undefined Undefined
p2 (Train distribution) Undefined Undefined Undefined Undefined

p̃1 (Model 1) 0.495 0.495 0.005 0.005
p̃2 (Model 1) 0.005 0.005 0.495 0.495
p̄1 (Model 2) 0.6 0.1 0.1 0.2
p̄1 (Model 2) 0.004 0.001 0.495 0.495

Dyck 2 (Test distribution) 1/3 0 1/3 1/3

Table 1: Example next-token distributions for prompt ([of the components of the models con-
sidered. Cells corresponding to the only invalid next-token,) are shaded in red). Model 2 mixes
components giving smaller probabilities to the invalid next-token, hence performs better.

Definition 5 (Task Compositionality). Consider an OOD task where a model was trained on the
mixture of languages L1, L2, . . . , Lm which have no conflicting rules (that is, there exist sequences
simultaneously satisfying all rules of these languages), and tested on another language Lm+1, using
test prompts x1:k ∈ Dtest. Then the compositionality c of this task is defined as

c =
| {x1:n | n > k, x1:k ∈ Dtest and x1:n satisfies the rules of L1, L2, . . . , Lm and Lm+1} |

| {x1:n | n > k, x1:k ∈ Dtest and x1:n satisfies the rules of L1, L2, . . . and Lm} |
.

Task compositionality measures the degree of information contained in the rules of all training
languages towards the test language as it quantifies how easy to guess correct test completions
based on all the constraints the training components’ rules place on the possible completions. c = 1
indicates full compositionality, while c = 0 means complete lack of compositionality.
The task compositionality values of our Dyck language tasks are reported in Tab. 3. Their calculation
is simple, but we include an example here for completeness.

Example 1: Task compositionality for not nested test languages. These tasks all have task
compositionality = 1, because satisfying the rules of the (nested) train languages implies pairing
all bracket types in the test prompts. Since this is all the not nested language rules require, task
compositionality is 1.

Example 2: Task compositionality of the Dyck 2 – ([, Dyck 2 – ({ → Dyck 3 – ([{ task.
Our OOD test prompts have the form [3 different open tokens] + [6 tokens forming a valid instance of
Dyck 3]. Since the latter part is a valid sequence, we may ignore it for our calculation and focus on the
three opening tokens instead. These tokens (, [and { have 6 permutations. For simplicity, we only
consider completions of length 3: this is how many tokens are required to close all opening brackets.
In the case of { ([and [({, a model nesting both of the pairs (, [and (, { correctly
must finish both prompts correctly, as there are no completions where both of the above token pairs
are nested correctly, but the tree tokens are not. In the other four permutations, there exists exactly
one correct and one incorrect completion for the test language, consistent with the training rules. For
example, for { [(, the completion) }] is wrong, but the pairs (, [and (, { are both nested
correctly. The correct completion is)] }. Therefore, c = (2/6) · 1 + (4/6) · 0.5 = 2/3.

D EXPERIMENTAL DETAILS

Reproducibility and codebase. We use PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon,
2019), and HuggingFace Transformers (Wolf et al., 2020). If accepted, we plan to make our codebase
and experimental logs publicly available.

D.1 COINFLIP EXPERIMENTS

i.i.d. coinflip data (Fig. 3). The training data is generated by sampling a binary component variable
with success probability 0.5, and based on the outcome, drawing i.i.d. Bernoullis with success
probabilities 0.1 and 0.6, respectively. The coinflip outcomes are represented with tokens 3 and 4.
Train prompts have varying length drawn randomly between 1 and 256. The test prompts (excluding
the length ablation) have length 100 and are Bernoullis drawn i.i.d. with success probabilities ranging
between 0 and 1.

15

Published at the DeLTa Workshop at ICLR 2025

Figure 7: The different “attention spans" of attention heads for OOD coinflip data: prompt
length is 500 and attention head outputs are randomized (knocked out) (Left:) one out of three heads
knocked out, (Right:) two out of three heads knocked out. (Conclusion:) Similarity to tempered
Bayes and shorter prompt length curves in Fig. 3 suggests that heads have differing “attention spans".
For example, without Head 3, the model is close to the full transformer on an OOD prompt of length
only 10 (blue dashed curve in Fig. 3 right).

Markov chain data (Fig. 4). For the Markov chain experiment, the training data was i.i.d.
Bernoullis exactly as above. The test prompts were sampled i.i.d from a two-state Markov chain
with stationary distribution [0.4, 0.6], matching the portion of successes in the second component of
the train data, a Bernoulli distribution with success parameter 0.6. The transition matrix p(T |T) =
0.7, p(H|H) = 0.8 was used, consistently with the desired stationary distribution. We initialized the
Markov chain at its stationary distribution.

Metrics. We measure the probability of predicting heads or tails as the next token, given the test
prompt. We use softmax decoding with temperature 1. The next-step probabilities computed at each
step of the test prompts’ completion were averaged. For the Markov chain experiment, the quantities
p(T |T), p(H|T), p(T |H), p(H|H) were computed by averaging the next-step predictions where the
last token in the conditioned prompt was Heads and Tails, respectively.

Ablations. The experimental details of our ablation experiments are as follows:
• Test prompt length ablation (Fig. 3, Fig. 8): We evaluated Transformers on test prompts of

length up to 500. The reported values are averages across all checkpoints. We created the curves
corresponding to the varying test prompt lengths l ≤ 500 by considering only the first l tokens
of each test prompt. The Bayesian and tempered Bayesian results were generated by perform-
ing explicit (tempered) Bayesian inference on the same train data as used for the Transformer
checkpoints.

• Knockout experiments (Fig. 7, Fig. 9): We randomly picked a checkpoint from the coinflip
experiments. We augmented the Transformer decoder architecture by replacing the outputs of
attention heads on each test prompt with random N(0, 1) noise. We use the same test prompts as
in the prompt length ablation experiment. We performed two versions: replacing the outputs of
only one attention head, and every attention head except one. All other hyperparameters in the
architecture and training were unchanged.

• Ablations on the attention head structure (Fig. 8, Fig. 9): We trained a Transformer with only
one attention head, and a version where attention heads were averaged instead of concatenated
in the architecture. We repeated the test prompt length ablation for both, and the attention head
knockout experiment for the averaged heads version. All other hyperparameters in the architecture
and training were unchanged.

Additional Results. Our ablations on the attention head structure produces similar results as the
original models in which attention heads were concatentated (Fig. 8, Fig. 9). The main difference was
that he one attention head and averaged attention heads setups required slightly higher temperatures
to match tempered Bayesian inference, indicating that the models’ attention spans were even smaller
(Fig. 8).

16

Published at the DeLTa Workshop at ICLR 2025

Figure 8: Predicted head probabilities for OOD coinflip data ablating the architecture and test
prompt lengths: Models were trained on two mixture components with p(head) set to either 0.1 or
0.6. The optimal solution (the y = x line) is black, the Bayesian estimate green, the component
p(head)′s a star ⋆ on the x−axis with training samples’ empirical probabilities as discrete lines.
(Upper Left:) comparison of three attention configurations in the Transformer architecture does not
show significant differences; (Upper Right and Lower Rows:) increasing the test prompts’ lengths
shows the tempered Bayesian inference-like behavior for all three configurations. The one attention
head and averaged attention heads setup required slightly higher temperatures to match tempered
Bayesian inference.

Figure 9: Performance of Transformers with averaged attention heads on OOD prompt length
500 with attention head outputs randomized (knocked out): (Left:) one out of three attention
heads knocked out, (Right:) two out of three attention heads knocked out. Just like in the original
Transformer models where attention heads were concatenated (Fig. 7), similarity to tempered Bayes
suggests that attention heads have differing attention spans. For example, without Head 3, the model
is close to the full transformer on an OOD prompt of length only 10.

17

Published at the DeLTa Workshop at ICLR 2025

D.2 DYCK LANGUAGE EXPERIMENTS

Language Vocabulary Rules Classification

Dyck−1 ((R1) (and) matched context-free

Dyck−2 (, [(R1) (and) matched and nested
(R2)[and] matched and nested context-free

NN Dyck−2 (, [(R1) (and) matched
(R2)[and] matched context-sensitive

Dyck−3 (, [, {
(R1) (and) matched and nested
(R2)[and] matched and nested
(R3){ and } matched and nested

context-free

NN Dyck−3 (, [, {
(R1) (and) matched
(R2)[and] matched
(R3){ and } matched

context-sensitive

Table 2: All Dyck languages studied in our paper: We include the types of brackets used in the
language in the Vocabulary columns (closing versions are also included), we list their rules and their
classification under the Chomsky hierarchy (Chomsky, 1956)

Training data. For training, we generate data from mixtures of Dyck−i, for i ∈ {1, 2} languages,
containing either two or three components, depending on the task. Each component shares the same
depth i. The prior probability of each training component is equal. Within each component, we
pick the proportion of bracket types so that the different bracket types appear roughly with equal
probability in the full mixture. For instance, if the training components are Dyck 2−(, [and
Dyck 2−(, {, we decrease the weight of (. Train prompts have maximal length 256. Besides the
parentheses-type tokens ((3),) (4), [(5),] (6), { (7), } (8), we use SOS (0), EOS (1), and PAD (2)
tokens.

Test data. Our in-distribution test prompts are drawn from the training distribution. The OOD test
prompts are from a nested Dyck−igrammar with depth i one higher than the train data’s components.
They have length 10, including SOS as the first token, and start with 3 opening tokens containing
all possible opening tokens in the test language, in arbitrary order, followed by 6 tokens forming a
correct sequence from the test language. Example test prompts are given in Table 4. We evaluate
models on 64 ID and 64 OOD test prompts.

Metrics. We evaluated grammatical accuracies in both the train and test grammars, assessing the
full, completed prompt. That is, we checked whether all grammar rules of the train/test languages hold.
For the not nested (NN) languages, we computed evaluated the completed prompt with respect to the
not nested grammatical rules. In these cases, the prompt itself satisfied the stricter, nested grammar
rules. The same checkpoints were used to compute the nested and not nested (NN) grammatical
accuracies in each row of the figures. In each training session, we saved the model achieving highest
grammatical accuracy with respect to the nested language on the OOD test prompts.

Train language components Test language Task compositionality
(Appx. C)

Dyck−2 (, [Dyck−2 (, { Dyck−2 [, { NN Dyck−3(, [, { 1
Dyck−2 (, [Dyck−2 (, { NN Dyck−3 (, [, { 1
Dyck−2 (, [Dyck−2 (, { Dyck−2 [, { Dyck−3 (, [, { 1
Dyck−2 (, [Dyck−2 (, { Dyck−3 (, [, { 2/3
Dyck−1 (Dyck−1 [NN Dyck−2 (, [1
Dyck−1 (Dyck−1 [Dyck−1 { NN Dyck−3 (, [{ 1
Dyck−1 (Dyck−1 [Dyck−2 (, [1/3
Dyck−1 (Dyck−1 [Dyck−1 { Dyck−3 (, [{ 1/6

Table 3: Dyck languages used for training and testing: We list the scenarios in increasing order of
task difficulty. Please refer to Tab. 2 for the description of the language rules

18

Published at the DeLTa Workshop at ICLR 2025

Test language Example test prompt

Dyck 2 - (, [SOS ([[() () []
Dyck 2 - (, { SOS { [{ { () } ()
Dyck 2 - [, { SOS [[{ { [{ }] }
Dyck 3 - (, [, { SOS [{ (() [{ }]

Table 4: Example prompts for the Dyck test languages.

Selection of the Dyck checkpoints. In order to make sure our trained models stay approximate
Implicit Bayesian Inference on the train components, we filtered checkpoints that achieved in-
distribution test accuracy above 0.8. Out of at least 10 training seeds for each experiment, this left at
least 4.

The Generalized Bayesian Models (Fig. 5, Fig. 10). We extended Implicit Bayesian Inference
to zero-probability prompts. Instead of fitting a model on data, we use the data generating function
used to generate the train data as the Bayesian likelihood, and perform explicit Bayesian inference
with it. This is equivalent to using a model that perfectly fits the data generating distribution. In
order to define a posterior on zero-probability prompts, we augment this likelihood in two ways: (1)
adding uninformative (Fig. 5) and (2) informative (Fig. 10) observation noise to the each component’s
likelihood. This requires modifying the likelihood of each component, so that previously unseen
bracket-type tokens always have nonzero probability, i.e., they can be predicted as next-tokens,
conditioned on any prompt. In the uninformative case, the augmented probability was constant
ϵ = 0.005 for each unseen bracket-type token. In the informative case, the rules of the nested Dyck
languages were partially broken. The unseen tokens were added to the stack (necessary for generating
valid nesting) 90% of the times they were generated. To further enable incorrect prompts, invalid
closure without the opening pair of the bracket at the top of the stack was given nonzero probability:
for example, the model can predict } seeing prompt ()[. When only a single component is present,
the informative noise method achieved 90% accuracy on the rule corresponding to the unseen token,
and 100% on the rules of the seen tokens. Since there was no natural way to incorporate finishing the
prompt into the likelihood as the Transformer learns this from the train data lengths only, we evaluated
our generalized Bayes models after 5 next-token predictions, making the completed test prompt have
length 15 (including the first SOS token). This length was selected by observing that the trained
Transformers have finished test prompts after 5 next-token predictions. Since our Transformers use
greedy decoding, which is equivalent to zero temperature in the softmax, and thus majority voting
(Zhang et al., 2024), we also implement the Bayesian model with majority voting. We do this via
tempering the likelihood of each component with temperature t = 0.01, i.e. L(x) := p(x | θ)1/t.
This allows the posterior to concentrate on the most popular next tokens faster.

Observation Noise in the Transformer Experiments (Fig. 5, Fig. 10). To match the augmented
Bayesian models, Transformers were trained on train data generated using the augmented likelihoods
both in the uninformative and informative observation noise case. This meant that previously unseen
tokens were present in the data component realizations. Hence the test prompts were no longer
zero-probability under the training data distribution. All other experimental configurations were left
unchanged.

Ablations.
• Knockout experiment (Fig. 6): We performed this experiment for the task of completing Dyck−3

after pre-training on three Dyck−2 language components (involving all possible bracket types. We
used the best-performing model checkpoint (in terms of OOD accuracy on the nested language).
As in the coinflip experiments, we replaced the outputs of each individual attention head on the test
prompts with random N(0, 1) noise, leaving all the other parameters unchanged. We computed
the nested grammatical accuracy of the completed prompts with respect to all three train data
components.

• 10 component ablation: In order to encourage Transformers learn the general pattern of Dyck 2
languages independently from the used tokens, we carried out an ablation increasing the number
of Dyck 2 components in the training data. We created two more bracket types, and trained
Transformers on all possible Dyck−2 languages using two of the five bracket types. We increased

19

Published at the DeLTa Workshop at ICLR 2025

Figure 10: Comparing Transformers to Bayes with informative observation noise on Dyck
languages: We train Transformers on simpler Dyck languages (y−axis, then test whether the
models can finish test prompts for more complex (OOD) languages. Including more structure in the
training language components (i.e., generalizing from Dyck-2 to Dyck-3) is easier for the Transformer
than generalizing from simpler Dyck-1 language components. Means and standard deviations were
computed from at least 4 seeds filered from 10 based on ID test accuracy.

the train data size so that the model sees the same number of examples from each component as in
the 3 train component setup. We also increased the maximum number of epochs from 50, 000 to
100, 000. We generated OOD test prompts from only one Dyck−3 language - the onle containing
the same tokens as the other experiments.

Additional Results. The generalized Bayes model using informative observation noise out-
performed the Transformers both with and without majority voting (Fig. 10). The Transformers’
performance increased when trained on data cointaining the same observation noise. These results
indicate that Transfomers might implicitly implement informative observation noise better than
random noise (as suggested by the uninformative noise and knockout experiments), but thie shared
information content across rules is much less than in our artificial Bayesian models.
In the 10 component ablation, models achieved mean OOD accuracy of 0.181, with standard deviation
0.123, which is below than 0.42 ± 0.24 which was achieved when using three components. This
indicates that seeing more examples from the same pattern (a Dyck 2 language) did not help the
Transformers to synthetize the individual components into a general algorithm.

D.3 MODELS

We use a Transformer decoder (Vaswani et al., 2017) in flavor of the decoder-only GPT models (Rad-
ford & Narasimhan, 2018; Radford et al., 2018; et al., 2024). We apply standard positional encoding,
layer normalization, ReLU activations, the AdamW optimizer (Loshchilov & Hutter, 2019) with
inverse square root learning rate schedule (Xiong et al., 2020). In the coinflip and Dyck experiments,
the model can predict up to length 250 and 300, respectively, and is trained for 4000 and 50, 000
epochs, respectively, using the standard cross entropy (CE) loss.

20

Published at the DeLTa Workshop at ICLR 2025

Table 5: Transformer parameters for coinflip experiments

PARAMETER VALUE (NORMAL)

MODEL TRANSFORMER DECODER
NUMBER OF LAYERS 4
DROPOUT PROBABILITY 0.1
MODEL DIMENSION 8
FEEDFORWARD DIMENSION 1024
NUMBER OF ATTENTION HEADS 4
LAYER NORM ϵ 6e−3
ACTIVATION RELU
OPTIMIZER ADAMW
LEARNING RATE SCHEDULER INVERSE SQUARE ROOT
BATCH SIZE 128
LEARNING RATE 2e−3
PROMPT PREDICTION CUTOFF LENGTH 256
NUMBER OF EPOCHS 40000

Table 6: Transformer parameters for Dyck experiments

PARAMETER VALUE (NORMAL)

MODEL TRANSFORMER DECODER
NUMBER OF LAYERS 7
DROPOUT PROBABILITY 0.1
MODEL DIMENSION 10
FEEDFORWARD DIMENSION 1024
NUMBER OF ATTENTION HEADS 5
LAYER NORM ϵ 6e−3
ACTIVATION RELU
OPTIMIZER ADAMW
LEARNING RATE SCHEDULER INVERSE SQUARE ROOT
BATCH SIZE 128
LEARNING RATE 2e−3
PROMPT PREDICTION CUTOFF LENGTH 300
NUMBER OF EPOCHS 50, 000

21

Published at the DeLTa Workshop at ICLR 2025

E ACRONYMS

CE cross entropy

AR LM autoregressive language model

IBI implicit Bayesian inference
ICL in-context learning

LLM Large Language Model
LM language model

OOD out-of-distribution

22

	Introduction
	Background
	Implicit Bayesian Inference
	Formal Languages

	Three Models for Language Model Behavior on OOD prompts
	Experimens
	Extrapolation to <ood> Coinflips: Transcendence via Generalized BI
	Rule-learning: Transcendence via Generalized BI and Information Sharing

	Discussion
	Related Work
	Proof and discussion of Observation 2
	Measuring Formal Language Task Compositionality
	Experimental details
	Coinflip Experiments
	Dyck Language Experiments
	Models

	Acronyms

