
TAMS: Translation-Assisted Morphological Segmentation

Enora Rice1 Ali Marashian1 Luke Gessler1 Alexis Palmer1
Katharina von der Wense1,2

1University of Colorado Boulder 2 Johannes Gutenberg University Mainz
enora.rice@colorado.edu

Abstract

Canonical morphological segmentation is the
process of analyzing words into the standard
(aka underlying) forms of their constituent mor-
phemes. This is a core task in language docu-
mentation, and NLP systems have the potential
to dramatically speed up this process. But in
typical language documentation settings, train-
ing data for canonical morpheme segmentation
is scarce, making it difficult to train high qual-
ity models. However, translation data is often
much more abundant, and, in this work, we
present a method that attempts to leverage this
data in the canonical segmentation task.

We propose a character-level sequence-to-
sequence model that incorporates representa-
tions of translations obtained from pretrained
high-resource monolingual language models as
an additional signal. Our model outperforms
the baseline in a super-low resource setting
but yields mixed results on training splits with
more data. While further work is needed to
make translations useful in higher-resource set-
tings, our model shows promise in severely
resource-constrained settings.

1 Introduction

Morphological segmentation is the task of breaking
words into morphemes, the smallest semantic units
of a language. Morphemes can merge and change
during word formation, and the precise morpho-
logical composition of a word is often obfuscated
in its surface form. Segmentation can thus take
two forms: surface/linear segmentation and canon-
ical segmentation, which divides a word into the
“canonical” forms of its morphemes (cf. Figure 1).

One important motivation for automated canoni-
cal segmentation is to expedite the process of lin-
guistic analysis, including the creation of Inter-
linear Glossed Text (IGT). IGT is a form of mor-
phological annotation that typically adheres to the
Leipzig glossing format (Lehmann, 1982), a docu-
mentation style wherein each line of the target text

Figure 1: Canonical segmentation of the English word
"Cylindrically"

is broken up into a transcription line, a gloss line
(morphological annotation), and a translation line.
IGT is a crucial resource in language documen-
tation work, but it is costly and time-consuming
to generate. The task of morphological segmenta-
tion is a key component in glossing, and automated
canonical segmentation could aid in this process.
Prior work has shown that automated methods have
the potential to assist language documentation and
revitalization (Palmer et al., 2009; Moeller et al.,
2020; Moeller and Hulden, 2021; Chaudhary et al.,
2022; Ahumada et al., 2022).

Neural models have been shown to perform well
on the task of canonical segmentation (Kann et al.,
2016; Ruzsics and Samardžić, 2017), but the suc-
cess of these models has been restricted by the
availability of annotated segmentation data. IGT,
though a limited resource, is one important source
of training data for canonical segmentation. How-
ever, until now, primarily the transcription and
gloss lines of IGT have been used as input to seg-
mentation models, while the translations have been
overlooked. Moreover, in real-world documenta-
tion settings, translated data is often much more
available than morphologically analyzed data, mak-
ing it practically attractive as an additional input.
Here we consider how supervised canonical seg-
mentation methods can be improved by leveraging
this underutilized data source. Translations also
provide the opportunity to make use of pretrained
models that likely have much higher-quality repre-
sentations than any model for the target language.

ar
X

iv
:2

40
3.

14
84

0v
1 

 [
cs

.C
L

] 
 2

1 
M

ar
 2

02
4



Our work is inspired in part by Zhao et al. (2020)
who experiment with leveraging translations for
the task of automatic interlinear glossing. They use
a multi-source word-level transformer to jointly
model the transcription and translation sequences,
and outperform previous baselines. Their work
shows promise for the utility of translation data
in morphological analysis tasks. However, they
assume the presence of well-segmented data and
state that "proper segmentation remains a challenge
and that the creation of segmentation tools is a
valuable endeavor." Our work endeavors to address
the segmentation issue.

We treat canonical segmentation as a sequence-
to-sequence problem and use a character-level
pointer-generator LSTM (See et al., 2017) to map
each surface form word to its segmented, canon-
icalized form. We experiment with Tsez and
Lezgi, two Northeast Caucasian languages, and
Arapaho, a Plains Algonquian language. We lever-
age existing sentence-level English translations
present in the IGT data from the SIGMORPHON
2023 Shared Task on Interlinear Glossing (Ginn
et al., 2023) and create two datasets of word-level
transcription–translation alignments: automatically
with awesome-align1(Dou and Neubig, 2021), and
manually according to conventions described in
§4.3.2. We then embed these translations with
BERT (Devlin et al., 2019) and experiment with
incorporating them into our baseline model’s en-
coder and decoder. We also analyze the impact of
training set size on the efficacy of our approach by
limiting our training split to simulate varied levels
of resourcedness. Finally, we analyze the effect
of automatic vs. manual word-alignments on the
subset of the Tsez data that we manually aligned.2

We find that our approach is most impactful in
the extremely low data setting (n=100) and outper-
forms the baseline by an average of 2.33% and as
high as 3.88% accuracy. However, in the higher
data settings, incorporating translations may or may
not be beneficial. Our results also suggest that gold
aligned data may not be necessary to see improve-
ments over the baseline.

2 Related Work

Modeling Morphological Segmentation Recent
work on neural methods for canonical segmentation

1Licensed under the BSD 3-Clause License.
2We will make our manual alignments publicly available

upon acceptance.

primarily focuses on LSTMs. Kann et al. (2016)
use a bidirectional RNN encoder-decoder with a
neural reranker. Mager et al. (2020) adapt this
work to the low-resource setting and find that the
pointer-generator network vastly improves over the
performance of the LSTM canonical segmentation
model for this setting. Recent work has also used
the transformer for canonical segmentation: Mo-
eng et al. (2021) test several sequence-to-sequence
models for the task and find that the transformer
performs the best on 4 Nguni languages.

Morphological Information within Embeddings
Previous work has suggested that distributional
similarity is an informative cue for morphology
(Yarowsky and Wicentowski, 2000; Schone and Ju-
rafsky, 2001) and static word embeddings encode
some morphological information (Musil, 2021;
Soricut and Och, 2015). Other work has suggested
that BERT embeddings could encode grammati-
cal and morphological information (Nastase and
Merlo, 2023; Jawahar et al., 2019). BERT embed-
dings have also been used for part-of-speech tag-
ging (Tsai et al., 2019; Singh et al., 2021; Mohseni
and Tebbifakhr, 2019). We aim to leverage the mor-
phological cues intrinsic to pretrained embeddings
of English translations to improve our segmenta-
tion models.

3 Incorporating Translations into
Morphological Segmentation Models

Here, we present our method for using translations
as a source of additional signal for morphological
analysis. Our method relies on alignments to iden-
tify word forms in the translation that are relevant
for the target word, and embeddings of words in
the translation obtained from a high-resource lan-
guage model are used to assist in the segmentation
of the word. We describe several approaches for
turning these embeddings into a fixed-length rep-
resentation and for incorporating them as input to
the segmentation model.

3.1 Encoder–Decoder Networks
The most common architecture for morphological
analysis is the neural encoder–decoder architecture
with attention (Bahdanau et al., 2015). An encoder–
decoder network estimates the probability of an
output sequence y = y1, . . . , yT ′ in terms of an
input sequence x = x1, . . . , xT by decomposing
the output sequence’s joint probability using the
chain rule of probability, where yt is conditioned on



all previous output items and some representation
of the input sequence vt computed using a function
g:

p(y1, . . . , yT ′) =
T ′∏
t=1

p(yt|vt, y1, . . . , yt−1)

vt = g(x, y1, . . . , yt−1)

For morphological tasks, this architecture is com-
monly implemented by treating words as character
sequences and using RNNs for the encoder and the
decoder. The encoder is responsible for producing
representations of x which are useful for the de-
coder, and the decoder is responsible for producing
conditional probability distributions for making a
prediction for y, ŷ.

3.2 Translation Assistance
The translations of textual data from low-resource
languages are usually written in a high-resource lan-
guage such as English or Spanish. High-resource
languages have very high-quality pretrained lan-
guage models (PLMs) and therefore rich word rep-
resentations available to them, and we hypothesize
that incorporating this signal into the process of
morphological segmentation may be helpful. For
example, information from the high-resource lan-
guage might help the segmenter resolve lexical am-
biguities. Here, we propose several related methods
for incorporating information from a high-resource
translation into an RNN-based encoder–decoder
morphological segmenter. For clarity, we will con-
cretely consider a unidirectional LSTM-based en-
coder, though our approach is trivially applicable to
other RNN-based encoder–decoder architectures.
We refer to the network’s embedding and hidden
dimension sizes as emb and hid, respectively.

Consider a translated sentence with X , Y , and
R. X = x1, . . . ,xn is a sequence of unsegmented
words. Y = y1, . . . ,yn is the sequence of the
corresponding segmented words. R = r1, . . . , rm
is the sequence of words in the translation. We use
a PLM to obtain a dense representation for each
translation word, d = d1, . . . , dm. We additionally
refer to any sentence-wide representation (such as
BERT’s [CLS] token) that the PLM might produce
as d0. We refer to the PLM’s hidden representation
size as hPLM.

Alignment A preliminary step is to produce an
word-level alignment between source words and
translation words like so, where align represents

an aligner’s decision on whether two words are
aligned:

A = {⟨xi, rj⟩|xi ∈ X ∧ rj ∈ R ∧ align(xi, rj)}

Translation Representation For each word x,
we now have some aligned translation word repre-
sentations dalign = da, . . . , db. We next produce v,
a fixed-length representation of dalign which will
be of length emb. We investigate three different
strategies for producing this representation which
differ in how they treat the sentence-wide represen-
tation d0.

For the CLS-None strategy, we discard d0 and
average pool dalign before using a model parameter
Wtrans ∈ RhPLM×emb to project the vector from
the hidden size of the PLM to the embedding size
of the model:

v = avg(da, . . . , db)Wtrans

The CLS-Avg strategy is identical to CLS-None
except that d0 is included in the average:

v = avg(d0, da, . . . , db)Wtrans

For the CLS-Concat strategy, we first average
the aligned words like in CLS-None, but we in-
troduce two model parameters, Wtrans,Wcls ∈
RhPLM× 1

2
emb, where Wtrans is applied to the av-

eraged words and Wcls is applied to d0, and their
concatenation is used as the final fixed vector:

v1 = avg(da, . . . , db)Wtrans

v2 = d0Wcls

v = v1 ⊕ v2

Incorporation Strategies After we have com-
puted v, we must somehow incorporate it into the
encoder and/or the decoder’s process.

For Concat, we double the model’s input size to
2× emb and concatenate v to the input embedding
at each time step in the LSTM. Concat-Half is
identical to Concat, except the model’s input size
is held constant, with character embeddings and v
sharing the dimensions equally. The model’s char-
acter embedding module and Wtrans above have
their output dimensions halved accordingly. For
Init-State, assuming that there is some integer z
such that z× emb = hid, we initialize the LSTM’s
hidden state as z concatenations of v to itself,

⊕z
1 v.

For Init-Char, we modify the LSTM’s input se-
quence so that v appears first, as if it were the em-
bedding of a character. All strategies are applicable



to either the encoder or the decoder; we experiment
with most combinations, except for Init-Char in the
decoder.

4 Data

To perform our experiments, we use IGT data from
the SIGMORPHON 2023 Shared Task on Interlin-
ear Glossing (Ginn et al., 2023) in three languages:
Lezgi, Tsez, and Arapaho. All of the data is li-
censed under CC BY-NC 4.0. Each word in this
IGT format has a surface form, a canonical form,
morpheme-level glosses, and an English translation
for the sentence the word appears in. An example
is shown in Figure 2, which also provides a sample
of our manual alignment process.

4.1 Languages

We experiment with three languages: Arapaho,
Lezgi, and Tsez. All three languages present inter-
esting modeling challenges given the complexity
of their morphological processes. In addition, the
experiments cover different types of difficult mor-
phology, as the two language families represented
are typologically distinct.

4.1.1 Tsez
Tsez [ddo] belongs to the Tsezic subgroup, which
is part of the larger Nakh-Daghestanian language
family. Its morphology is highly agglutinative and
suffixing. Tsez has complex nominal case morphol-
ogy that allows multiple case suffixes to modify a
single word, and there are around 250 possible com-
binations of these case suffixes. In terms of verbal
morphology, Tsez separates verbs into four groups
depending on the final segment of the stem, which
affects the surface representation of the compos-
ite morphemes, including five possible indicative
tense-aspect suffixes (Comrie and Polinsky). Tsez
also has a rich set of converbs that are derived from
the verb stem through multi-step morphophonolog-
ical processes. We consider Tsez to be our devel-
opment language and conduct all hyperparameter
tuning on Tsez.

4.1.2 Lezgi
Lezgi [lez] belongs to the Lezgic branch within
the Nakho-Daghestanian language family. Like,
Tsez, Lezgi is a highly agglutinative language with
a largely suffixing morphology. Lezgi morphol-
ogy is predominantly inflectional and nouns are
inflected for number, case, and localization. There

are 18 nominal cases in Lezgi, 14 of which are loca-
tive (Haspelmath, 1993). Morphologically, verb
stems are divided into three groups – Masdar, Im-
perfective, and Aorist stems – which impact the
inflectional suffixes they can take on. Three dis-
tinct verb forms can be derived from the Masdar
stem, nine from the Imperfective, and five from
the Aorist (Haspelmath, 1993). Several additional
secondary verbal categories particularly relating to
mood can be achieved via suffixing on the verb.
Given its close phylogenetic relationship to Tsez,
we consider Lezgi to be an in-family test language.

4.1.3 Arapaho
Arapaho [arp] is an Algonquian language that
is highly agglutinating and polysynthetic. Noun
stems can be inflected for plurality, obviation, voca-
tive, and locative cases through suffixing. Nouns
also necessarily belong to either animate or inani-
mate gender, and gender impacts the surface rep-
resentation of many inflectional markers. Arapaho
nouns also participate in derivational morphology,
and modified nouns can be derived from indepen-
dent nouns or verbs. Arapaho verbal morphology
is even more complex. In terms of inflectional
morphology, verb stems can be divided into four
different classes that each take different markers
for person, number, and obviation. Verbs can also
be broken up into four different orders– affirmative,
non-affirmative, conjunct, and imperative– which
also impact the inflectional morphemes. Arapaho
derivational verbal morphology is extensive, and
unique verb forms can be derived through processes
of prefixation, suffixation, denominalization, redu-
plication, and noun incorporation. We consider
Arapaho to be an out-of-family test language.

4.2 Preprocessing

The transcription and translation lines are not al-
ways pretokenized in these datasets (e.g., punctua-
tion sometimes appears next to words) and it is nec-
essary to tokenize the data for this reason. We use
HuggingFace transformers’ (?) BertPreTokenize

pretokenizer for this purpose, with some additional
processing to make language-specific corrections.
(In Arapaho, for example, the apostrophe charac-
ter ' represents a consonant, and it should not be
separated from words it appears in.) After this pro-
cessing, we verify that there are equal numbers of
surface and canonical forms, and we discard any
sentences for which this is not true. Finally, we ini-
tialize our training instances by finding all unique



Figure 2: Manual Word Alignment of Tsez IGT: Now
the boy went home

pairs of surface and canonical forms at the word
level and choose one randomly if there is more than
one occurrence of it in the corpus. Both surface
and canonical forms are NFD normalized. Our full
datasets consist of 53800 words in Arapaho, 10952
words in Tsez, and 2060 words in Lezgi. In our
experiments, the Arapaho dataset is downsampled
to 16666 words in order to bring its size closer to
the other two datasets.

4.3 Word Alignment

To facilitate canonical segmentation on the word
level, we preprocess our dataset by aligning words
in the transcription line to their corresponding
word(s) in the translation line. We experiment with
two alignment methods: automatic and manual.

4.3.1 Automatic Alignment
We automatically align with awesome-align (Dou
and Neubig, 2021), which extracts word alignments
from multilingual BERT and does not require train-
ing data for application to a new target language.
We use awesome-align’s default hyperparameters
except for the following: we use softmax extraction,
set the softmax threshold to 5e-6, and set batch size
to 32. After alignment, we split the instances for
our main experiments into train, development, and
test sets at a 60/20/20 ratio.

4.3.2 Manual Alignment
We manually create gold alignments for the Tsez
data according to the general principles laid out in
Melamed (1998). Melamed (1998) provides con-
ventions for navigating complications that arise
when translation is not literal, such as omissions,
phrasal correspondence and idioms, amongst other
linguistic nuances. Additionally, we define several
language-specific principles outlined in Appendix
A that address unique difficulties in mapping Tsez
grammatical constructions to English. Figure 2

shows an example sentence in Tsez that we have
manually aligned. Our full gold-aligned dataset
consists of 1419 words, which we divide into 500-
word training and test sets, and a 419-word devel-
opment set.

5 Experiment

We experiment with the strategies described in
§3.2 for incorporating information from transla-
tions into our morphological segmentation model.
We proceed by first tuning our exact approach on
the development split of a single language, Tsez,
by exhaustively considering every combination of
encoder, decoder, and CLS-token translation in-
corporation strategies. We then apply our top-
performing model to the test splits of all three lan-
guages. All experiments are performed on NVIDIA
A100 GPUs, and all model implementations were
based on those provided by Yoyodyne.3

5.1 Translation Vectors

We use bert-base-cased (Devlin et al., 2019) to
generate contextual word embeddings of the trans-
lations of each word in our aligned dataset. We
then generate fixed-length translation vectors by
averaging the embeddings of each word-piece in
the translation sequence that was aligned to the
word under consideration, as described in §3.

5.2 Evaluation Metrics

We employ three common metrics for evaluation.
The first is whole-word accuracy, indicating the
proportion of words that were segmented entirely
correctly. To get a better picture of subword-level
errors, we also use character-level edit distance.
Finally, we use the modified F1 score outlined in
Mager et al. (2020) to calculate the F1 score at the
morpheme level. We consider precision to be the
proportion of morphemes in the prediction that also
occur in the gold, and recall to be the proportion of
morphemes in gold that also occur in the prediction.

5.3 Model and Hyperparameters

In preliminary experiments, we conduct a hyperpa-
rameter search in order to determine which model
architectures, model sizes, and optimization meth-
ods are most effective for these datasets.

Baselines and Settings for Hyperparameter Tun-
ing Our baseline models for this task perform

3https://github.com/CUNY-CL/yoyodyne

https://github.com/CUNY-CL/yoyodyne


canonical segmentation without taking translations
into account. The architectures we consider are
a Transformer, a pointer-generator LSTM with a
bidirectional encoder, and an attentive LSTM. De-
tails are outlined in Appendix B. As it would be
prohibitively expensive to do this in every exper-
imental setting, we limit the scope of this search
to baseline models on the Tsez datasets on three
training split sizes: 100, 500, and 6572.

Architectures The pointer-generator LSTM (See
et al., 2017) performs better in all settings than ei-
ther of the two other model architectures, and we
therefore adopt it for all subsequent experiments.
Moreover, this choice is supported by evidence
from Mager et al. (2020) that the pointer-generator
is well suited to the low-resource canonical seg-
mentation task.

The pointer-generator LSTM differs from a reg-
ular LSTM encoder-decoder in that it has a pointer
network (Vinyals et al., 2015), which allows the
model to copy over specific characters in the input
sequence to the output sequence.

The decoder assesses the probability of copying
an element from the input to the output rather than
generating it, then computes the probability distri-
bution of the output at each time step by combining
the probability distribution across the output vocab-
ulary with the attention distribution over the input
characters. The weights, indicating the probabil-
ity of generation or copying, are determined by a
feedforward network.

Data Size Matters The results of hyperparameter
tuning are very similar for the 500-sentence and full
data settings, but vary notably for the 100-sample
setting.

In all subsequent experiments, we train our 100
training sample models with one set of hyperparam-
eters and all other models with a separate set. In the
100-sample setting, we use a batch size of 16, two
encoder and two decoder layers, an embedding size
of 512 and a hidden size of 1024. We set dropout to
3.662× 10−1, learning rate to 2.411× 10−4, and
train for up to 607 epochs.

For all other experimental settings, we use a
batch size of 64, one encoder and one decoder layer,
an embedding size of 1024, and a hidden size of
2048. We set dropout to 2.212×10−1, learning rate
to 8.056× 10−4, and train for up to 627 epochs.

Both settings use the Adam optimizer and the
ReduceLROnPlateau scheduler.

Incorporating Translation Information We
treat translation incorporation strategy as a hyper-
parameter and test all combinations on the Tsez
development set to determine the optimal approach.

We take the average whole-word accuracy for
configuration across all training split sizes on the
Tsez development set using the CLS-None strategy.
The full results of this search are shown in Table 1.
From this search, we find that the overall highest
performing strategy configuration is Init-State in
the encoder and Concat-Half in the decoder. This
configuration outperforms the baseline by an aver-
age of 1.58% and is the top performer on the 100
and 500 train sample settings. Only in the highest
train data setting does the baseline outperform our
top configuration.

For the 100 train sample setting, Concat in the
encoder and Concat-Half in the decoder, the sec-
ond highest performing configuration overall, was
the top configuration. With this in mind, we per-
form a second search over the CLS strategies on
these two configurations, shown in Table 2. From
this, we find that the overall highest performing
configuration is Init-State in the encoder, Concat-
Half in the decoder and CLS-Concat as our CLS
Strategy; we call this model TAMS.

6 Results with Final Model Configuration

As described above, we perform search over the
Tsez development set to determine the overall high-
est performing model, which we call TAMS. This
configuration consists of Init-State in the encoder,
Concat-Half in the decoder, and CLS-Concat as
the CLS strategy.

6.1 Test Languages

We apply our final model configuration to the auto-
matically aligned test sets in each of our three lan-
guages: Tsez (development language), Lezgi (in-
family test language), and Arapaho (out-of-family
test language.

Results are shown in Table 3. In most cases, we
see that edit distance, F1, and accuracy are in agree-
ment, so we focus on accuracy as our main evalua-
tion metric. We report the average accuracy across
languages for each training data setting in Table
4. We find that on average our model outperforms
the baseline in every train data setting except for
n=500. In general, performance gains are highest
on the lower-resource settings, while on the higher-
resource settings, performance improvements are



Encoder Strat. Decoder Strat. n = 100 n = 250 n = 500 n = 6572 Average
Init-State Concat-Half 22.47 34.02 45.39 80.46 45.58
Concat Concat-Half 24.66 32.33 45.02 80.09 45.53
Concat-Half Concat-Half 24.57 32.51 44.20 80.82 45.53
None Concat-Half 23.56 32.19 44.57 81.10 45.35
Concat Init-State 23.70 31.46 45.21 80.82 45.30
Concat Concat 22.92 32.05 44.84 80.55 45.09
Init-State None 22.60 31.46 44.43 80.91 44.85
None Concat 23.11 31.23 44.38 80.46 44.79
Concat None 23.24 30.18 45.21 80.46 44.77
Init-State Init-State 21.60 31.28 45.21 80.91 44.75
Concat-Half None 23.01 30.87 43.15 81.32 44.59
None Init-State 22.15 31.83 43.11 81.00 44.52
Concat-Half Concat 23.06 31.46 43.01 80.23 44.44
Init-State Concat 22.51 31.00 43.70 80.50 44.43
Concat-Half Init-State 22.88 31.42 40.96 81.32 44.14
None None 22.56 28.90 43.06 81.87 44.10
Init-Char Concat-Half 24.11 29.54 40.91 79.63 43.55
Init-Char Concat 21.74 31.23 39.54 79.27 42.95
Init-Char Init-State 22.33 24.89 41.55 80.09 42.21
Init-Char None 23.29 22.60 39.36 80.91 41.54

Table 1: Model tuning 1: Accuracy (%) of all translation incorporation strategies on Tsez’s silver-aligned
development split with no information from the CLS token (CLS-None).

Encoder Strat. Decoder Strat. CLS Strat. n = 100 n = 250 n = 500 n = 6572 Average
Init-State Concat-Half CLS-Concat 23.29 33.79 45.16 80.68 45.73
Init-State Concat-Half CLS-None 22.47 34.02 45.39 80.46 45.58
Concat Concat-Half CLS-None 24.66 32.33 45.02 80.09 45.53
Concat Concat-Half CLS-Avg 23.70 32.42 45.30 80.41 45.46
Init-State Concat-Half CLS-Avg 22.79 33.42 45.02 80.55 45.45
Concat Concat-Half CLS-Concat 23.20 30.41 46.12 80.32 45.01
None None - 22.56 28.90 43.06 81.87 44.10

Table 2: Model tuning 2: Accuracy (%) of CLS strategies with top-performing translation incorporation configura-
tions on the Tsez silver-aligned development split.

slight if present at all. In the n=100 setting, TAMS
outperforms the baseline by an average of 2.33%,
suggesting that our model is most beneficial in truly
low-data settings. Even for Lezgi, the language for
which TAMS has the most varied results, on the
100 sample train-split TAMS yields a 3.88% in-
crease in accuracy over the baseline. We also see
consistent gains on Arapaho in all data settings ex-
cept for n=500 which indicates that with further
work, our model could be useful for polysynthetic
languages. This is particularly exciting consider-
ing the relative difficulty of segmenting polysyn-
thetic languages. However, TAMS’ performance
on Lezgi is very uneven despite Lezgi’s linguistic
similarity to Tsez, which indicates that the exact

translation incorporation configuration we use in
TAMS may not be fully extensible to other lan-
guages even if they are morphologically similar,
and one may need to tune the translation strategy
to fit their particular data setting.

6.2 Manual vs. Automatic Alignment

We additionally train a TAMS model on gold-
aligned Tsez data (Gold) and compare it to a a
TAMS model trained on equivalent data aligned
with awesome-align (Awesome-Gold). We eval-
uate on gold-aligned data (note: this data split is
distinct from the one in §6.1). We report the perfor-
mance metrics of each model in Table 5. We find
that the TAMS model trained with Awesome-Gold



Tsez Lezgi Arapaho
Train Limit Metrics TAMS Baseline TAMS Baseline TAMS Baseline

Accuracy 23.24 22.65 27.91 24.03 12.34 9.82
n = 100 F1 43.31 41.24 41.92 38.32 28.61 23.84

ED 3861 4065 808 902 37024 37719
Accuracy 35.39 31.05 33.25 34.71 19.65 18.08

n = 250 F1 57.14 54.74 51.06 53.00 41.36 40.61
ED 3156 3442 691 715 29022 30344

Accuracy 44.52 43.11 40.78 41.99 30.59 31.53
n = 500 F1 64.43 63.43 55.66 57.42 51.91 53.02

ED 2427 2655 636 639 21339 21261
Accuracy 80.78 82.60 46.84 44.66 67.72 67.08

n = all F1 89.52 90.44 62.48 60.75 81.62 81.11
ED 701 652 532 568 9899 10495

Table 3: Final results per language: Performance on all languages’ test sets on silver-aligned data.

Train Limit TAMS (abs/∆) Baseline
n = 100 21.16 (+2.33) 18.83
n = 250 29.43 (+1.48) 27.95
n = 500 38.63 (-0.25) 38.88

Full Train Split 65.11 (+0.33) 64.78

Table 4: Final results, all languages: Average accuracy
(%) by training split size across all languages.

Model Metrics Gold Awesome-Gold
Accuracy 53.60 54.60

TAMS F1 67.98 67.89
ED 450 443

Baseline
Accuracy 55.40

F1 70.19
ED 435

Table 5: Manual vs. automatic alignment: Perfor-
mance on Tsez’s gold-aligned test split (n=500).

data actually outperforms its Gold counterpart on
every metric except for F1. This suggests that gold
alignment data might not be necessary to see the
best possible performance from TAMS. This is
a positive result because automatic alignment is
much less costly than expert alignment and makes
training a TAMS model more feasible for a broader
range of languages. That said, the baseline out-
performs both TAMS models, which complicates
our analysis. Another potential issue is awesome-
align’s use of mBERT, whose performance varies
across languages (Wu and Dredze, 2020). Further
work experimenting with different more languages
and data resource levels is necessary to be more
conclusive about gold vs. automatic alignment.

7 Conclusion

We present a novel method for incorporating in-
formation from translations into a morphological
segmentation model to support low-resource canon-
ical segmentation. Using Tsez as a development
language, we determine our best-performing model
(TAMS), which uses a fixed-length representation
of the translation in two ways: to initialize the
hidden state in the encoder (Init-State) and to con-
catenate to the input at each time step in the de-
coder (Concat-Half). Our model is most beneficial
in the super low-resource setting (n=100), where
it outperforms the baseline by 2.33% on average
across three morphologically complex languages.
And although we only tune our model on the Tsez
development set, we also see impressive perfor-
mance gains in all but one training split for Ara-
paho, a typologically and morphologically distinct
polysynthetic language. This promising result sug-
gests that TAMS could be beneficial for a wide
range of languages. However, our results are more
mixed in higher-resource settings which indicates
that there is still more work to be done to deter-
mine whether translations are a valuable addition
to canonical segmentation models in cases where
more data is available. Overall, canonical segmen-
tation for morphologically complex languages re-
mains a challenging task, but we believe that this
work indicates that translations should be explored
further as an additional data resource.

There are several avenues for future work we
wish to highlight. A first possible improvement
strategy could be to experiment with providing



more explicit information instead of or in addi-
tion to translations, such as the POS tags of the
aligned English words. Second, it would be inter-
esting to see whether our results can be reproduced
on other languages and with other PLMs. Third,
there may be other ways to use translation-based
representations with LSTMs.

Limitations

Due to data availability, we experimented only on
two language families, Northeast Caucasian and
Algonquian, but ideally we would have tested on
more language families. We cannot concretely say
that our models would perform equivalently on a
more diverse set of languages. Another limitation
was in the exhaustiveness of our hyperparameter
search. Ideally, we would have searched each pos-
sible CLS-token strategy with each possible config-
uration of translation incorporation strategies but
we were unable to due to the GPU hours that would
have been required.

8 Acknowledgements

Thanks to Bernard Comrie for helping us out with
the Tsez dataset.

References
Cristian Ahumada, Claudio Gutierrez, and Antonios

Anastasopoulos. 2022. Educational tools for ma-
puzugun. In Proceedings of the 17th Workshop on In-
novative Use of NLP for Building Educational Appli-
cations (BEA 2022), pages 183–196, Seattle, Wash-
ington. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Aditi Chaudhary, Zaid Sheikh, David R Mortensen, An-
tonios Anastasopoulos, and Graham Neubig. 2022.
Autolex: An automatic framework for linguistic ex-
ploration.

Bernard Comrie and Maria Polinsky. Tsez. Unpub-
lished manuscript.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), page
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zi-Yi Dou and Graham Neubig. 2021. Word align-
ment by fine-tuning embeddings on parallel corpora.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, page 2112–2128, Online.
Association for Computational Linguistics.

Michael Ginn, Sarah Moeller, Alexis Palmer, Anna
Stacey, Garrett Nicolai, Mans Hulden, and Miikka
Silfverberg. 2023. Findings of the sigmorphon 2023
shared task on interlinear glossing. In Proceedings
of the 20th SIGMORPHON workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, page 186–201, Toronto, Canada. Associa-
tion for Computational Linguistics.

Martin Haspelmath. 1993. A grammar of Lezgian. Mou-
ton de Gruyter.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, page 961–967, Austin, Texas.
Association for Computational Linguistics.

Christian Lehmann. 1982. Directions for interlinear
morphemic translations. 16(1–4):199–224.

Manuel Mager, Özlem Çetinoğlu, and Katharina Kann.
2020. Tackling the low-resource challenge for canon-
ical segmentation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), page 5237–5250, Online. As-
sociation for Computational Linguistics.

I. Dan Melamed. 1998. Annotation style guide
for the blinker project. (arXiv:cmp-lg/9805004).
ArXiv:cmp-lg/9805004.

Sarah Moeller and Mans Hulden. 2021. Integrating au-
tomated segmentation and glossing into documentary
and descriptive linguistics. In Proceedings of the
4th Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages Volume 1
(Papers), pages 86–95, Online. Association for Com-
putational Linguistics.

Sarah Moeller, Ling Liu, Changbing Yang, Katharina
Kann, and Mans Hulden. 2020. IGT2P: From in-
terlinear glossed texts to paradigms. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
5251–5262, Online. Association for Computational
Linguistics.

Tumi Moeng, Sheldon Reay, Aaron Daniels, and Jan
Buys. 2021. Canonical and Surface Morphological
Segmentation for Nguni Languages.

https://doi.org/10.18653/v1/2022.bea-1.23
https://doi.org/10.18653/v1/2022.bea-1.23
http://arxiv.org/abs/2203.13901
http://arxiv.org/abs/2203.13901
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2021.eacl-main.181
https://doi.org/10.18653/v1/2023.sigmorphon-1.20
https://doi.org/10.18653/v1/2023.sigmorphon-1.20
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/D16-1097
https://doi.org/10.18653/v1/D16-1097
https://doi.org/10.1515/flin.1982.16.1-4.199
https://doi.org/10.1515/flin.1982.16.1-4.199
https://doi.org/10.18653/v1/2020.emnlp-main.423
https://doi.org/10.18653/v1/2020.emnlp-main.423
http://arxiv.org/abs/cmp-lg/9805004
http://arxiv.org/abs/cmp-lg/9805004
https://aclanthology.org/2021.computel-1.11
https://aclanthology.org/2021.computel-1.11
https://aclanthology.org/2021.computel-1.11
https://doi.org/10.18653/v1/2020.emnlp-main.424
https://doi.org/10.18653/v1/2020.emnlp-main.424
https://ui.adsabs.harvard.edu/abs/2021arXiv210400767M type: article
https://ui.adsabs.harvard.edu/abs/2021arXiv210400767M type: article


Mahdi Mohseni and Amirhossein Tebbifakhr. 2019.
Morphobert: a persian ner system with bert and mor-
phological analysis. In Proceedings of the First In-
ternational Workshop on NLP Solutions for Under
Resourced Languages (NSURL 2019) co-located with
ICNLSP 2019 - Short Papers, page 23–30, Trento,
Italy. Association for Computational Linguistics.

Tomáš Musil. 2021. Representations of meaning in neu-
ral networks for NLP: a thesis proposal. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Student Research Workshop, pages 24–31,
Online. Association for Computational Linguistics.

Vivi Nastase and Paola Merlo. 2023. Grammati-
cal information in BERT sentence embeddings as
two-dimensional arrays. In Proceedings of the
8th Workshop on Representation Learning for NLP
(RepL4NLP 2023), pages 22–39, Toronto, Canada.
Association for Computational Linguistics.

Alexis Palmer, Taesun Moon, and Jason Baldridge.
2009. Evaluating automation strategies in language
documentation. In Proceedings of the NAACL HLT
2009 Workshop on Active Learning for Natural Lan-
guage Processing, page 36–44, Boulder, Colorado.
Association for Computational Linguistics.

Tatyana Ruzsics and Tanja Samardžić. 2017. Neu-
ral sequence-to-sequence learning of internal word
structure. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 184–194, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Patrick Schone and Daniel Jurafsky. 2001. Knowledge-
free induction of inflectional morphologies. In Sec-
ond Meeting of the North American Chapter of the
Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Pranaydeep Singh, Gorik Rutten, and Els Lefever. 2021.
A pilot study for BERT language modelling and mor-
phological analysis for ancient and medieval Greek.
In Proceedings of the 5th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
128–137, Punta Cana, Dominican Republic (online).
Association for Computational Linguistics.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627–1637, Denver, Colorado. Association for Com-
putational Linguistics.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3632–
3636, Hong Kong, China. Association for Computa-
tional Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual bert? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, page 120–130, Online. Association for Compu-
tational Linguistics.

David Yarowsky and Richard Wicentowski. 2000. Min-
imally supervised morphological analysis by multi-
modal alignment. In Proceedings of the 38th Annual
Meeting of the Association for Computational Lin-
guistics, pages 207–216, Hong Kong. Association for
Computational Linguistics.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-
los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of the
28th International Conference on Computational Lin-
guistics, page 5397–5408, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

https://aclanthology.org/2019.nsurl-1.4
https://aclanthology.org/2019.nsurl-1.4
https://doi.org/10.18653/v1/2021.naacl-srw.4
https://doi.org/10.18653/v1/2021.naacl-srw.4
https://doi.org/10.18653/v1/2023.repl4nlp-1.3
https://doi.org/10.18653/v1/2023.repl4nlp-1.3
https://doi.org/10.18653/v1/2023.repl4nlp-1.3
https://aclanthology.org/W09-1905
https://aclanthology.org/W09-1905
https://doi.org/10.18653/v1/K17-1020
https://doi.org/10.18653/v1/K17-1020
https://doi.org/10.18653/v1/K17-1020
https://aclanthology.org/N01-1024
https://aclanthology.org/N01-1024
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2021.latechclfl-1.15
https://doi.org/10.18653/v1/2021.latechclfl-1.15
https://doi.org/10.3115/v1/N15-1186
https://doi.org/10.3115/v1/N15-1186
https://doi.org/10.18653/v1/D19-1374
https://doi.org/10.18653/v1/D19-1374
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.3115/1075218.1075245
https://doi.org/10.3115/1075218.1075245
https://doi.org/10.3115/1075218.1075245
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471


A Manual Word Alignment Directives

A.1 High-level Directives
• Align English prepositions with the Tsez word with the equivalent case marker

• If some grammatical information is expressed in one language but not the other, behave as if it were
expressed in the corresponding phrase. In such cases, the extra word (the, for example) should be
aligned to the head of the corresponding phrase.

• But, if the definiteness is expressed on a modifier of the noun head (like an attributive adjective),
then align the article to the modifier bearing the definiteness information instead.

A.2 Lower-level Directives
• Pronominal subjects that are not expressed in Tsez and are expressed in English should have the

English subject aligned to the head predicate in Tsez

• If in English you have a PP and in Tsez you have a relative clause where the subject position has the
gap, align the preposition introducing the PP with the relative clause’s predicate

• If a quotative verb like “say” is used a variable amount of times in one language compared to the
other, then align all instances of the quotative verbs together, so long as the quoted material they’re
all referring to is identical.

• Always align the expletive there with the existential verb in Tsez. And if there is an adverbial
there-equivalent in Tsez, do not align it with anything in English unless there really is an adverbial,
non-expletive there or similar in English

• For articles in English, if there’s something very close to an article in Tsez (‘a’, or ‘this’, or . . . ), then
prefer aligning the English article to the similar word instead of the noun.

B Hyperparameter Tuning

We conduct hyperparameter tuning for the baseline Tsez models without translation using random search
with the full training set of 6572. We then took the top two architectures and performed a hyper-parameter
sweep with 100 and 500 training samples to simulate a lower-resource setting. The top performing models
for each architecture and training set size are outlined in Tables 8, 7, 6. The search space of architecture
specific hyperparameters is outlined in Table 9 and Table 10 and the search space of optimization
parameters is outlined in Table 11. All models used Adam optimization. We report whole-word accuracy
on the development set.

Table 6: Best Performing Hyperparameters for Each Architecture with 6572 Training Samples

Hyperparameter Transformer Pointer-Generator LSTM Attentive LSTM
Embedding Size 512 896 512
Hidden Size 1024 1856 960
Dropout 0.3022 0.2212 0.07615
Attention Heads 8 1 1
Encoder Layers 4 1 2
Decoder Layers 2 1 1
Batch Size 16 64 128
Learning Rate (LR) 0.0001975 0.0008056 0.0002227
Beta1 0.8153 0.8218 0.841
Beta2 0.9874 0.9845 0.9815
Scheduler reduceonplateau reduceonplateau None
Num Warmup Samples - - -
Reduce LR Factor 0.3095 0.782 -
Reduce LR Patience 40 30 -
Min LR 0.3095 0.0007737 -
Accuracy 0.8629 0.8634 0.8645



Table 7: Best Performing Hyperparameters for Each Architecture with 500 Training Samples

Hyperparameter Pointer-Generator LSTM Attentive LSTM
Embedding Size 320 320
Hidden Size 1728 2048
Dropout 0.3915 0.4794
Attention Heads 1 1
Encoder Layers 1 2
Decoder Layers 1 1
Batch Size 64 16
Learning Rate 0.0007847 0.00008051
Beta1 0.8699 0.8789
Beta2 0.9803 0.9971
Scheduler - -
Num Warmup Samples - -
Reduce LR Factor - -
Reduce LR Patience - -
Min LR - -
Accuracy 0.5059 0.5059

Table 8: Best Performing Hyperparameters for Each Architecture with 100 Training Samples

Hyperparameter Pointer-Generator LSTM Attentive LSTM
Embedding Size 640 192
Hidden Size 896 384
Dropout 0.3662 0.3132
Attention Heads 1 1
Encoder Layers 2 1
Decoder Layers 2 1
Batch Size 16 16
Learning Rate 0.0002411 0.0000523
Beta1 0.8716 0.8263
Beta2 0.9848 0.9875
Scheduler ’reduceonplateau’ -
Num Warmup Samples - -
Reduce LR Factor 0.686 -
Reduce LR Patience 30 -
Min LR 0.0005021 -
Accuracy 0.2409 0.157

Table 9: Architecture Hyperparameters Search Space

Hyperparameter Distribution Minimum Maximum
Embedding Size q_uniform 128 1024
Hidden Size q_uniform 128 2048
Dropout uniform 0 0.5

Table 10: Conditional Hyperparameters based on Architecture Type

Model Attention Heads Number of Encoder Layers Number of Decoder Layers
Transformer [2, 4, 8] [2, 4, 6, 8] [2, 4, 6, 8]
Pointer-Generator LSTM [1] [1, 2] [1, 2]
Attentive LSTM [1] [1, 2] [1, 2]



Table 11: Optimization Hyperparameters Search Space

Hyperparameter Distribution Values
Batch Size categorical [16, 32, 64]
Learning Rate log_uniform_values 1× 10−6 to 0.01
Beta1 uniform 0.8 to 0.999
Beta2 uniform 0.98 to 0.999
Scheduler values [’reduceonplateau’, ’warmupinvsqrt’, None]
Num Warmup Samples q_uniform 0 to 5000000
Reduce LR Factor uniform 0.1 to 0.9
Reduce LR Patience q_uniform 10 to 50
Min LR uniform 1× 10−7 to 0.001


