Under review as a conference paper at ICLR 2025

UNSUPERVISED-TO-ONLINE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline-to-online reinforcement learning (RL), a framework that trains a policy
with offline RL and then further fine-tunes it with online RL, has been considered a
promising recipe for data-driven decision-making. While sensible, this framework
has drawbacks: it requires domain-specific offline RL pre-training for each task,
and is often brittle in practice. In this work, we propose unsupervised-to-online
RL (U20 RL), which replaces domain-specific supervised offline RL with unsu-
pervised offline RL, as a potentially better alternative to offline-to-online RL. U20
RL not only enables reusing a single pre-trained model for multiple downstream
tasks, but also learns better representations, which often result in even better per-
formance and stability than supervised offline-to-online RL. To instantiate U20
RL in practice, we propose a general recipe for U20 RL to bridge task-agnostic un-
supervised offline skill-based policy pre-training and supervised online fine-tuning.
Throughout our experiments in eleven state-based and pixel-based environments,
we empirically demonstrate that U20 RL often achieves strong performance that
matches or even outperforms previous offline-to-online RL approaches when the
dataset consists of diverse trajectories, while being able to reuse a single pre-trained
model for a number of different downstream tasks.

1 INTRODUCTION

Across natural language processing (NLP), computer vision (CV), and speech processing, ubiquitous
in the recent successes of machine learning is the idea of adapting an expressive model pre-trained on
large-scale data to domain-specific tasks via fine-tuning. In the domain of reinforcement learning
(RL), offline-to-online RL has been considered an example of such a recipe for leveraging offline data
for efficient online fine-tuning. Offline-to-online RL first trains a task-specific policy on a previously
collected dataset with offline RL, and then continues training the policy with additional environment
interactions to further improve performance.

But, is offline-to-online RL really the most effective way to leverage offline data for online RL?
Offline-to-online RL indeed has several limitations. First, it pre-trains a policy with a domain-specific
task reward, which precludes sharing a single pre-trained model for multiple downstream tasks. This
is in contrast to predominant pre-training recipes in large language models or visual representation
learning, where they pre-train large models with self-supervised or unsupervised objectives to learn
useful representations, which can facilitate learning a wide array of downstream tasks. Second,
naive offline-to-online RL is often brittle in practice (Lee et al., 2022; Nakamoto et al., 2023). This
is mainly because pre-trained offline RL agents suffer the distributional shift between the offline
and online interaction data (Lee et al., 2022; Nakamoto et al., 2023) or experience feature collapse
(Section 5), which necessitates specialized, potentially complicated techniques.

In this work, our central hypothesis is that unsupervised pre-training of diverse policies from offline
data can serve as an effective data-driven recipe for online RL, and can be more effective than even
domain-specific (“supervised”) offline pre-training. We call this recipe unsupervised-to-online
RL (U20 RL). U20 RL has two appealing properties. First, unlike offline-to-online RL, a single
pre-trained model can be fine-tuned for different downstream tasks. Since offline unsupervised RL
does not require task information, we can pre-train diverse policies on unlabeled data before knowing
downstream tasks. Second, by pre-training multi-task policies with diverse intrinsic rewards, the
agent extracts rich representations from data, which often helps achieve even better final performance

Under review as a conference paper at ICLR 2025

Offline-to-Online RL

(Supervised) Offline RL Pre-training Online RL Fine-tuning
——— (s,a,m,5) (s,a,1,5")
Offline | £ * e €Oy *
dataset ! - - ! v—>
w(a | s) mw(a|s)

Unsupervised-to-Online RL
Unsupervised Offline RL Pre-training Bridging Online RL Fine-tuning
- A ,

Offline | (s,a, 8,7, 2) ! Vs —— (s,a,7,¢) . (s,a,m,5") . Pt
e Bk @4 Sk
2€Z m(a| s, z)\\ m(a|s,2") 7(a| s, z*)v

Figure 1: Ilustration of U20 RL. In this work, we propose to replace supervised offline RL with unsupervised
offline RL in the offline-to-online RL framework. We call this scheme unsupervised-to-online RL (U20 RL).
U20 RL consists of three stages: (1) unsupervised offline RL pre-training, (2) bridging, and (3) online RL
fine-tuning. In unsupervised offline RL pre-training, we train a multi-task skill policy mg(a | s, z) instead of a
single-task policy 7g(a | s). Then, we convert the multi-task policy into a task-specific policy in the bridging
phase. Finally, we fine-tune the skill policy with online environment interactions.

and stability than supervised offline-to-online RL. This resembles how general-purpose unsupervised
pre-training in other domains, such as with LLMs or self-supervised representations (Brown et al.,
2020; Devlin et al., 2019; Radford et al., 2019; He et al., 2021; 2020; Hénaff et al., 2020), improves
over the performance of domain-specific specialist pre-training.

U20 RL consists of three stages: unsupervised offline policy pre-training, bridging, and online
fine-tuning (Figure 1). In the first unsupervised offline pre-training phase, we employ a skill-based
offline unsupervised RL or offline goal-conditioned RL method, which trains diverse behaviors
(or skills) with intrinsic rewards and provides an efficient mechanism to identify the best skill for
a given task reward. In the subsequent bridging and fine-tuning phases, we adapt the best skill
among the learned policies to the given downstream task reward with online RL. Here, to prevent a
potential mismatch between the intrinsic and task rewards, we propose a simple yet effective reward
scale matching technique that bridges the gap between the two training schemes and thus improves
performance and stability.

Our main contributions in this work are twofold. First, to the best of our knowledge, this is the first
work that makes the (potentially surprising) observation that it is often better to replace supervised
offline RL with unsupervised offline RL in the offline-to-online RL setting. We also identify the
reason behind this phenomenon: this is mainly because offline unsupervised pre-training learns better
representations than task-specific supervised offline RL. Second, we propose a general recipe to
bridge skill-based unsupervised offline RL pre-training and online RL fine-tuning. Through our
experiments on eleven state-based and pixel-based environments, we demonstrate that U20 RL often
outperforms standard offline-to-online RL both in terms of sample efficiency and final performance,
while being able to reuse a single pre-trained model for multiple downstream tasks.

2 RELATED WORK

Online RL from prior data. Prior works have proposed several ways to leverage a previously
collected offline dataset to accelerate online RL training. They can be categorized into two main
groups: offline-to-online RL and off-policy online RL with offline data. Offline-to-online RL first
pre-trains a policy and a value function with offline RL (Lange et al., 2012; Levine et al., 2020;
Fujimoto & Gu, 2021; Fujimoto et al., 2019; Kumar et al., 2019; Tarasov et al., 2023a; Wu et al.,
2019a; Kostrikov et al., 2021; Kumar et al., 2020; Hansen-Estruch et al., 2023; Kostrikov et al.,
2022; Nair et al., 2020; Peng et al., 2019; Wang et al., 2020), and then continues to fine-tune them
with additional online interactions (Lee et al., 2022; Nair et al., 2020; Nakamoto et al., 2023; Yu &
Zhang, 2023; Lei et al., 2023; Zheng et al., 2022; Mark et al., 2022; Zhao et al., 2023). Since naive
offline-to-online RL is often unstable in practice due to the distributional shift between the dataset and

Under review as a conference paper at ICLR 2025

online interactions, prior works have proposed several techniques, such as balanced sampling (Lee
et al., 2022), actor-critic alignment (Yu & Zhang, 2023), adaptive conservatism (Wang et al., 2023a),
and return lower-bounding (Nakamoto et al., 2023). In this work, unlike offline-to-online RL, which
trains a policy with the target task reward, we offline pre-train a multi-task policy with unsupervised
(intrinsic) reward functions. This makes our single pre-trained policy reusable for any downstream
task and learn richer representations. The other line of research, off-policy online RL, trains an online
RL agent from scratch on top of a replay buffer filled with offline data, without any pre-training (Ball
et al., 2023; Li et al., 2023; Luo et al., 2024; Song et al., 2023). While this simple approach often
leads to improved stability and performance (Ball et al., 2023), it does not leverage the benefits of pre-
training; in contrast, we do leverage pre-training by learning useful features via offline unsupervised
RL, which we show leads to better fine-tuning performance in our experiments.

Unsupervised RL. The goal of unsupervised RL is to leverage unsupervised pre-training to facilitate
downstream reinforcement learning. Prior works have mainly focused on unsupervised representation
learning and unsupervised behavior learning. Unsupervised representation learning methods (Ser-
manet et al., 2018; Shah & Kumar, 2021; Parisi et al., 2022; Xiao et al., 2022; Nair et al., 2022;
Ma et al., 2023b;a; Ghosh et al., 2023; Seo et al., 2022b;a; 2023) aim to extract useful (visual)
representations from data. These representations are then fed into the policy to accelerate task
learning. In this work, we focus on unsupervised behavior learning, which aims to pre-train policies
that can be directly adapted to downstream tasks. Among unsupervised behavior learning methods,
online unsupervised RL pre-trains useful policies by either maximizing state coverage (Pathak et al.,
2017; 2019; Mendonca et al., 2021; Liu & Abbeel, 2021) or learning distinct skills (Gregor et al.,
2016; Eysenbach et al., 2019b; Sharma et al., 2020; Park et al., 2024d) via reward-free interactions
with the environment. In this work, we consider offline unsupervised RL, which does not allow any
environment interactions during the pre-training stage.

Offline unsupervised RL. Offline unsupervised RL methods focus on learning diverse policies (i.e.,
skills) from the dataset, rather than exploration, as online interactions are not permitted in this problem
setting. There exist three main approaches to offline unsupervised RL. Behavioral cloning-based
approaches extract skills from an offline dataset by training a generative model (e.g., variational
autoencoders (Kingma & Welling, 2014), Transformers (Vaswani et al., 2017), etc.) (Ajay et al.,
2021; Pertsch et al., 2021; Singh et al., 2021). Offline goal-conditioned RL methods learn diverse
goal-reaching behaviors with goal-conditioned reward functions (Chebotar et al., 2021; Eysenbach
et al., 2022; Ma et al., 2022; Park et al., 2024b; Wang et al., 2023b; Yang et al., 2023; Fang et al.,
2022; 2023). Offline unsupervised skill learning approaches learn diverse skills based on intrinsically
defined reward functions (Park et al., 2024c; Touati et al., 2022; Hu et al., 2023). Among these
approaches, we use methods in the second and third categories (i.e., goal- or skill-based unsupervised
offline RL) as part of our method.

Our goal in this work is to study how unsupervised offline RL, as opposed to supervised task-specific
offline RL, can be employed to facilitate online RL fine-tuning. While somewhat similar unsupervised
pre-training schemes have been explored in prior works, they either consider hierarchical RL (or
zero-shot RL) with frozen learned skills without fine-tuning (Ajay et al., 2021; Pertsch et al., 2021;
Touati et al., 2022; Park et al., 2024c; Hu et al., 2023), assume online-only RL (Laskin et al., 2021),
or are limited to the specific setting of goal-conditioned RL (Fang et al., 2022; 2023; Eysenbach et al.,
2019a; Nasiriany et al., 2019). To the best of our knowledge, this is the first work that considers
the fine-tuning of skill policies pre-trained with unsupervised offline RL in the context of offline-to-
online RL. Through our experiments, we show that our fine-tuning framework leads to significantly
better performance than previous approaches based on hierarchical RL, zero-shot RL, and standard
offline-to-online RL.

3 PRELIMINARIES

We formulate a decision making problem as a Markov decision process (MDP) (Sutton & Barto,
2018), which is defined by a tuple of (S, A, P,r, p,7), where S is the state space, A is the action
space, P: S x A — A(S) is the transition dynamics, 7: S X A X § — R is the task reward
function, p € A(S) is the initial state distribution, and v € (0, 1) is the discount factor. Our aim
is to learn a policy 7: & — A(A) that maximizes the expectation of cumulative task rewards,

Er [Zfio VtT(St, Qt, 3t+1)].

Under review as a conference paper at ICLR 2025

Offline RL and implicit Q-learning (IQL). The goal of offline RL is to learn a policy solely from
an offline dataset Dogs, which consists of transition tuples (s, a, s,). One straightforward approach
to offline RL is to simply employ an off-policy RL algorithm (e.g. TD3 (Fujimoto et al., 2018)).
For instance, we can minimize the following temporal difference (TD) loss to learn an action-value
function (Q-function) from data:

»CTD(QS) = E(s,a,s’,r)NDoff [(7’ + ’YH}?X QJ&(S/» a/) - Q¢(87 CL))2 ’ (1)

where (), denotes the parameterized action-value function, and () ; represents the target action-value

function (Mnih et al., 2013), whose parameter ¢ is updated via Polyak averaging (Polyak & Juditsky,
1992) using ¢. We can then train a policy 7 to maximize E,r [Q4(s,a)].

While this simple off-policy TD learning can be enough when the dataset has sufficiently large
state-action coverage, offline datasets in practice often have limited coverage, which makes the agent
susceptible to value overestimation and exploitation, as the agent cannot get corrective feedback from
the environment (Levine et al., 2020). To address this issue, Kostrikov et al. (2022) proposed implicit
Q-learning (IQL), which fits an optimal action-value function without querying out-of-distribution
actions: IQL replaces the arg max operator, which potentially allows the agent to exploit Q-values
from out-of-distribution actions, with an expectile loss that implicitly approximates the maximum
value. Specifically, IQL minimizes the following losses:

L2(0) = E(sas ryDoee [+ 7V (s)) — Qu(s,a))?] 2)
L1 () = E(sa)dner [((Q3(5,0) = Vi (s))] 3)

where () and @ ; respectively denote the action-value and target action-value functions, V,, denotes
the value function, ¢2(x) = |7 — 1(x < 0)|2? denotes the expectile loss (Newey & Powell, 1987)
and 7 denotes the expectile parameter. Intuitively, the asymmetric expectile loss in Equation 3 makes
Vi implicitly approximate max, @ (s, a) by penalizing positive errors more than negative errors.

Hilbert foundation policy (HILP). Our unsupervised-to-online recipe requires an offline unsuper-
vised RL algorithm that trains a skill policy mg(a | s, z) from an unlabeled dataset, and we mainly
use HILP (Park et al., 2024c) in our experiments. HILP consists of two phases. In the first phase,
HILP trains a feature network £: S — Z that embeds temporal distances (i.e., shortest path lengths)
between states into the latent space by enforcing the following equality:

d*(s,g9) = 1€(s) —€(9)l2 4)

forall s, g € S, where d*(s, g) denotes the temporal distance (the minimum number of steps required
to reach g from s) between s and g. In practice, given the equivalence between goal-conditioned
values and temporal distances, £ can be trained with any offline goal-conditioned RL algorithm (Park
et al., 2024b) (see Park et al. (2024c) for further details). After training £, HILP trains a skill policy
mg(a | s, z) with the following intrinsic reward using an off-the-shelf offline RL algorithm (Kostrikov
et al., 2022; Fujimoto et al., 2018):

(s, a,8',2) = (§(s') — £(s)) " 2, Q)

where z is sampled from the unit ball, { z € Z : ||z|| = 1}. Intuitively, Equation 5 encourages
the agent to learn behaviors that move in every possible latent direction, resulting in diverse state-
spanning skills (Park et al., 2024c). Note that Equation 5 can be interpreted as the inner product
between the task vector z and the feature vector f(s,a,s’) := £(s") — £(s) in the successor feature
framework (Dayan, 1993; Barreto et al., 2017).

4 UNSUPERVISED-TO-ONLINE RL (U20 RL)

Our main hypothesis in this work is that task-agnostic offline RL pre-training of unsupervised skills
can be more effective than task-specific, supervised offline RL for online RL fine-tuning. We call this
recipe unsupervised-to-online RL (U20 RL). In this section, we first describe the three stages of
U20 RL (Figure 1): unsupervised offline policy pre-training (Section 4.1), bridging (Section 4.2),
and online fine-tuning (Section 4.3). We then explain why unsupervised-to-online RL is potentially
better than standard supervised offline-to-online RL (Section 4.4).

Under review as a conference paper at ICLR 2025

4.1 UNSUPERVISED OFFLINE POLICY PRE-TRAINING

In the first unsupervised offline policy pre-training phase (Figure 1 (bottom left)), we train diverse
policies (or skills) with intrinsic rewards to extract a variety of useful behaviors as well as rich
features from the offline dataset Doss. In other words, instead of training a single-task policy
mg(a | s) with task rewards (s, a, s’) as in standard offline-to-online RL, we train a mulri-task skill
policy mg(a | s, z) with a family of unsupervised, intrinsic rewards % (s, a, s’, z), where z is a skill
latent vector sampled from a latent space Z = R<. Even if D¢ contains reward labels, we do not
use any reward information in this phase.

Among existing unsupervised offline policy pre-training methods (Section 2), we opt to employ
successor feature-based methods (Dayan, 1993; Barreto et al., 2017; Wu et al., 2019b; Touati et al.,
2022; Park et al., 2024c¢) or offline goal-conditioned RL methods (Chebotar et al., 2021; Park et al.,
2024b) for our unsupervised pre-training, since they provide a convenient mechanism to identify
the best skill latent vector given a downstream task, which we will utilize in the next phase. More
concretely, we mainly choose to employ HILP (Park et al., 2024c) (Section 3) as an unsupervised
offline policy pre-training method in our experiments for its state-of-the-art performance in previous
benchmarks (Park et al., 2024c). We note, however, that any other unsupervised offline successor
feature-based skill learning methods (Touati et al., 2022) or offline goal-conditioned RL methods (Park
et al., 2024b) can also be used in place of HILP (see Appendix A.2).

4.2 BRIDGING OFFLINE UNSUPERVISED RL AND ONLINE SUPERVISED RL

After finishing unsupervised offline policy pre-training, our next step is to convert the learned multi-
task skill policy into a task-specific policy that can be fine-tuned to maximize a given downstream
reward function r (Figure 1 (bottom middle)). There exist two challenges in this step: (1) we need a
mechanism to identify the skill vector z that best solves the given task and (2) we need to reconcile
the gap between intrinsic rewards and downstream task rewards for seamless online fine-tuning.

Skill identification. Since we chose to use a successor feature- or goal-based unsupervised pre-
training method in the previous phase, the first challenge is relatively straightforward. For goal-
oriented tasks (e.g., AntMaze (Fu et al., 2020) and Kitchen (Gupta et al., 2020)), we assume the
task goal g to be available, and we either directly use g (for goal-conditioned methods) or infer the
skill z* that corresponds to g based on a predefined conversion formula (for successor feature-based
methods that support such a conversion (Touati et al., 2022; Park et al., 2024c)). For general reward-
maximization tasks, we employ successor feature-based unsupervised pre-training methods, and use
the following linear regression to find the skill latent vector z* that best approximates the downstream
task reward function 7 : S x A x § — R (Touati et al., 2022; Park et al., 2024c¢):

Z* = argminE (s o s)D,rnee [(r(s, a,s’) — f(s,a, s’)Tz)ﬂ , 6)
z2€EZ

where f is the feature network in the successor feature framework (Section 3) and Dy eyarq iS
reward-labeled dataset. This reward-labeled dataset Dyeyarq can be either the full offline dataset D¢+
(if it is fully reward-labeled), a subset of the offline dataset (if it is partially reward-labeled), or a
newly collected dataset with additional environment interactions. In our experiments, we mainly use
a small number (e.g., 0.2% for DMC tasks) of reward-labeled samples from the offline dataset for
Drovara, following previous works (Touati et al., 2022; Park et al., 2024c¢), but we do not require
Drevara to be a subset of Dy¢s (see Appendix A.4).

Reward scale matching. After identifying the best skill latent vector z*, our next step is to bridge
the gap between intrinsic and extrinsic rewards. Since these two reward functions can have very
different scales, naive online adaptation can lead to abrupt shifts in target Q-values, potentially
causing significant performance drops in the early stages of online fine-tuning. While one can employ
sophisticated reward-shaping techniques to deal with this issue (Ng et al., 1999; Gleave et al., 2021),
in this work, we propose a simple yet effective reward scale matching technique that we find to be
effective enough in practice. Specifically, we compute the running mean and standard deviation of
intrinsic rewards during the pre-training phase, and normalize the intrinsic rewards with the calculated
statistics. Similarly, during the fine-tuning phase, we compute the statistics of task rewards and
normalize the task rewards so that they have the same scale and mean as normalized intrinsic rewards.
This way, we can prevent abrupt shifts in reward scales without altering the optimal policy for the

Under review as a conference paper at ICLR 2025

BEREEERTR

(a) Walker (b) Cheetah (¢) Quadruped (d) Jaco (e) AntMaze- (f) AntMaze- (g) Kitchen (h) Adroit- (i) Adroit- (j) OGBench- (k) OGBench-
Large Ultra Pen Door Cube-Single Cube-Double

Figure 2: Environments. We evaluate U20 RL on cleven state-based or pixel-based environments.

downstream task. In our experiments, we find that this simple technique is crucial for achieving good
performance, especially in environments with dense rewards (Q6 in Section A.8).

4.3 ONLINE FINE-TUNING

Our final step is to fine-tune the skill policy with online environment interactions (Figure 1 (bottom
right)). This step is straightforward: since we have found z* in the previous stage, we can simply
fix the skill vector z* in the policy mg(a | s,2*) and the Q-function Q4(s,a, z*), and fine-tune
them with the same (offline) RL algorithm used in the first phase (e.g., IQL (Kostrikov et al., 2022),
TD3 (Fujimoto et al., 2018)) with additional online interaction data. While one can employ existing
specialized techniques for offline-to-online RL for better online adaptation in this phase, we find in
our experiments that, thanks to rich representations learned by unsupervised pre-training, simply
using the same (offline) RL algorithm is enough to achieve strong performance that matches or even
outperforms state-of-the-art offline-to-online RL techniques.

4.4 WHY 1S U20 RL POTENTIALLY BETTER THAN OFFLINE-TO-ONLINE RL?

Our main claim is that unsupervised offline RL is better than supervised offline RL for online fine-
tuning. However, this might sound counterintuitive. Especially, if we know the downstream task
ahead of time, how can unsupervised offline RL potentially lead to better performance than supervised
offline RL, despite the fact that the former does not use any task information during the offline phase?

We hypothesize that this is because unsupervised multi-task offline RL enables better feature learning
than supervised single-task offline RL. By training the agent on a number of diverse intrinsically
defined tasks, it gets to acquire rich knowledge about the environment, dynamics, and potential
tasks in the form of representations, which helps improve and facilitate the ensuing task-specific
online fine-tuning. This resembles the recent observation in machine learning that large-scale
unsupervised pre-training improves downstream task performances over task-specific supervised
pre-training (Brown et al., 2020; Devlin et al., 2019; Radford et al., 2019; He et al., 2021; 2020;
Hénaff et al., 2020). In our experiments, we empirically show that U20 RL indeed learns better
features than its supervised counterpart (Q4 in Section 5).

Another benefit of U20 RL is that it does not use any task-specific information during pre-training.
This is appealing because we can reuse a single pre-trained policy for a number of different down-
stream tasks. Moreover, it enables leveraging potentially large, task-agnostic offline data during
pre-training, which is often cheaper to collect than task-specific, curated datasets (Lynch et al., 2019).

5 EXPERIMENTS

In our experiments, we evaluate the performance of U20 RL in the context of offline-to-online RL. We
aim to answer the following research questions: (1) Is U20 RL better than previous offline-to-online
RL strategies? (2) Can a single pre-trained model from U20 be fine-tuned to solve multiple tasks?
(3) What makes unsupervised offline RL result in better fine-tuning performance than supervised
offline RL? (4) Which components of U20 RL are important?

Environments and offline datasets. In our experiments, we consider eleven tasks across five
benchmarks (Figure 2). ExXORL (Yarats et al., 2022) is a benchmark suite that consists of offline
datasets collected by exploratory policies (e.g., RND (Burda et al., 2019)) on the DeepMind Control
Suite (Tassa et al., 2018). We consider four embodiments (Walker, Cheetah, Quadruped, and Jaco),
each of which has four tasks. AntMaze (Fu et al., 2020; Jiang et al., 2023) is a navigation task,
whose goal is to control an 8-DoF quadruped agent to reach a target position. We consider the two
most challenging mazes with the largest sizes, large and ultra, and two types of offline datasets,

Under review as a conference paper at ICLR 2025

U20 (Ours) 020 [l Online w/ Off Data
100 AntMaze-ultra-diverse 100 AntMaze-ultra-play 100 AntMaze-large-diverse 100 AntMaze-large-play
c =4 c f=4
5 5 S s R
80 80 ~
@ @ @ - @
-4 -4 -4 o
- 60 5 60 5 60 5 60
(9 (9] 9 (9
N N N N
= 40 = 40 = 40 = 40
© © © ©
€ 2 £ 2 E 2 £ 2
o o o o
=z =z P4 =z
Ok 200k 400k 600k 800K 1000k %k 200k 400k 600k 800K 1000k O6k 200k 400k 600k 800K 1000k Ok 200k 400k 600k 800K 1000k
Environment Steps Environment Steps Environment Steps Environment Steps
Kitchen-partial Kitchen-mixed Visual-Kitchen-partial Visual-Kitchen-mixed
100 100 100 100
c = c c
€ IS IS IS
2 80 2 80 2 80 2 80
Q — QU [9] Q
< /’ — < 2
5 60 - 60 < 60 < 60
g M S — L
= 40 = 40 = 40 = 40
© © © ©
g 20 g 20 g 20 § 20
o o o o
z z = z
Ok 100k 200k 300k 400k 500k O6k 100k 200k 300k 400k 500k O6k 100k 200k 300k 400K 500k Ok 100k 200k 300k 400k 500k
Environment Steps Environment Steps Environment Steps Environment Steps
Jaco Reach Top Left
- 1000 Walker Run 100 Cheetah Run - 1000 Quadruped Run £ 250 P S R e
5 5 ———- SR £ a0 YT
T 800 m——— T 800 AWV T 800 wh Mv'-“/'ﬁ‘ \VV 9 200
< - -4 -4 < 'vl
T 600 T s00 T 600 B 150
N N N 4 =
© 400 © 4007/, ® 400}," © 100
£ £ J € £
£ £ £
S 200 S 200 S 200 Q 504
[=4 = f= c
f=4 c c =
= S o = S o
k 200k 400k 600k 800k 1000k 0Ok 200k 400k 600k 800k 1000k 0k 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps
100 Adroit-pen-binary 100 Adroit-door-binary 10E;)GBench—cube—singIe—play 1(%GBench-cube—double-play
€ £ | £ £
2 80 T — 2 80 S~ 2 80 2 80
Q QU Q Q
-4 -4 -4 o«
- 60 5 60 5 60 5 60
R R I R
= 40 = 40 = 40 = 40
© © © ©
€ 2 £ 2 E 2 E %
o o o o
= =z = =
OGk 200k 400k 600k 800K 1000k %k 200k 400k 600k 800K 1000k O6k 200k 400k 600k 800K 1000k %k 200k 400k 600k 800K 1000k
Environment Steps Environment Steps Environment Steps Environment Steps

Figure 3: Online fine-tuning plots of U20 RL and previous offline-to-online RL frameworks (8 seeds).
Across the benchmarks, our U20 RL mostly shows consistently better performance than standard offline-to-
online RL and off-policy online RL with offline data.

diverse and play. Kitchen (Gupta et al., 2020; Fu et al., 2020) is a robotic manipulation task,
where the goal is to control a 9-DoF Franka robot arm to achieve four subtasks sequentially. We
consider two types of offline datasets from the D4RL suite (Fu et al., 2020), partial and mixed.
Visual Kitchen (Gupta et al., 2020; Fu et al., 2020; Park et al., 2024c) is a pixel-based variant of
the Kitchen environment, where an agent must achieve four subtasks purely from 64 x 64 x 3 pixel
observations instead of low-dimensional state information. Adroit (Fu et al., 2020) is a dexterous
manipulation benchmark, where the goal is to control a 24-DoF robot hand to twirl a pen or open a
door. OGBench-Cube (Park et al., 2024a) is an additional manipulation benchmark whose goal is to
control a 6-DoF URS5e robot arm to perform pick-and-place manipulation of multiple cubes from an
unlabeled, diverse dataset. We use a single-task version of OGBench-Cube to make it compatible
with our offline-to-online RL setting. We provide further details in Appendix C.1.

Implementation. In our experiments, we mainly employ HILP (Park et al., 2024c) as the unsu-
pervised offline policy pre-training algorithm in U20 RL. For the offline RL backbone, we use
TD3 (Fujimoto et al., 2018) for EXORL and IQL (Kostrikov et al., 2021) for others following previous
works (Touati et al., 2022; Park et al., 2024c). Since both IQL and TD3+BC (Fujimoto & Gu, 2021;
Tarasov et al., 2023a) have been known to achieve strong performance in the offline-to-online RL
setting (Tarasov et al., 2023b), we use them for the online fine-tuning phase in U20 RL as well. For
sparse-reward tasks (AntMaze, Kitchen, and Adroit), we do not apply reward scale matching. For
AntMaze, Kitchen, and Adroit, we report normalized scores, following Fu et al. (2020). In our experi-
ments, we use 8 random seeds and report standard deviations with shaded areas, unless otherwise
stated. We refer the reader to Appendix C for the full implementation details and hyperparameters.

Q1. Is U20 RL better than previous offline-to-online RL frameworks?

Under review as a conference paper at ICLR 2025

Table 1: Comparison between U20 RL and previous offline-to-online RL methods. We denote how
performances change before and after online fine-tuning with arrows. Baseline scores except RLPD (Ball et al.,
2023) are taken from Nakamoto et al. (2023); Wang et al. (2023a). Scores within the 5% of the best score are
highlighted in bold, as in Kostrikov et al. (2022). We use 8 random seeds for each task for U20 RL.

Task antmaze-ultra-diverse antmaze-ultra-play antmaze-large-diverse antmaze-large-play kitchen-partial kitchen-mixed
CQL - - 25 — 87 34 — 76 71 =175 56 — 50
QL 13 —29 17— 129 40 — 59 41 — 51 40 — 60 48 — 48
AWAC - - 00 — 00 00 — 00 01— 13 02— 12
O3F - - 59 — 28 68 — 01 11—22 06 — 33
OoDT - - 00 — 01 00 — 00 - -
CQL+SAC - - 36 — 00 21 — 00 71 — 00 59 — 01
Hybrid RL - - — 00 — 00 — 00 — 01
SAC+od - - — 00 — 00 — 07 — 00
SAC B - — 00 — 00 — 03 — 02
IQL+od — 04 — 05 — 71 — 56 — 74 — 61
FamO20 - - — 64 — 61 - -
RLPD 00 — 00 00 — 00 00 — 94 00 — 81 - -
Cal-QL 05 — 05 15—13 33595 26 — 90 67 =179 38 — 80
U20 (Ours) 22 — 54 17 — 58 11 —95 14 — 88 48 =175 48 — 74

We begin our experiments by comparing our approach, unsupervised-to-online RL, with two previous
offline-to-online RL frameworks (Section 2): offline-to-online RL (020 RL) and off-policy online
RL with offline data (Online w/ Off Data). To recall, offline-to-online RL (Lee et al., 2022; Nair
et al., 2020; Nakamoto et al., 2023; Yu & Zhang, 2023; Lei et al., 2023) first pre-trains a policy
with supervised offline RL using the task reward, and then continues training it with online rollouts.
Off-policy online RL (Ball et al., 2023; Luo et al., 2024; Song et al., 2023) trains a policy from scratch
on top of a replay buffer filled with offline data. Here, we use the same offline RL backbone (i.e.,
TD3 for ExORL and IQL for AntMaze, Kitchen, and Adroit) to ensure apples-to-apples comparisons
between the three frameworks. We will compare U20 RL with previous specialized offline-to-online
RL techniques in Q2 of Section 5.

Figure 3 shows the online fine-tuning curves on 14 different tasks. The results suggest that U20
RL generally leads to better performance than both offline-to-online RL and off-policy online RL
across the environments, despite not using any task information during pre-training. Notably, U20
RL significantly outperforms these two previous frameworks in the most challenging AntMaze tasks
(antmaze-ultra-{diverse, play}).

Q2. How does U20 RL compare to previous specialized offline-to-online RL techniques?

Next, we compare U20 RL with 13 previous specialized offline-to-online RL methods, including
CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022), AWAC (Nair et al., 2020), O3F (Mark
et al., 2022), ODT (Zheng et al., 2022), CQL+SAC (Kumar et al., 2020; Haarnoja et al., 2018),
Hybrid RL (Song et al., 2023), SAC+od (offline data) (Haarnoja et al., 2018; Ball et al., 2023),
SAC (Haarnoja et al., 2018), IQL+od (offline data) (Kostrikov et al., 2022; Ball et al., 2023),
FamO20 (Wang et al., 2023a), RLPD (Ball et al., 2023), and Cal-QL (Nakamoto et al., 2023). We
show the comparison results in Table 1, where we take the scores from Nakamoto et al. (2023); Wang
et al. (2023a) for the tasks that are common to ours. Since Cal-QL achieves the best performance in
the table, we additionally make a comparison with Cal-QL on antmaze-ultra-{diverse, play}
as well, by running their official implementation with tuned hyperparameters.

Table 1 shows that U20 RL achieves strong performance that matches or sometimes even outperforms
previous offline-to-online RL methods, even though U20 RL does not use any task information
during offline pre-training nor any specialized offline-to-online techniques. In particular, in the most
challenging antmaze-ultra tasks, U20 RL outperforms the previous best method (Cal-QL) by a
significant margin. This is very promising because, even if U20 RL does not necessarily outperform
the state-of-the-art methods on every single task (though it is at least on par with the previous best
methods), U20 RL enables reusing a single unsupervised pre-trained policy for multiple downstream
tasks, unlike previous offline-to-online RL methods that perform fask-specific pretraining.

Q3. Can a single pre-trained model from U20 be fine-tuned to solve multiple tasks?

One important advantage of U20 RL is that it can reuse a single task-agnostic dataset for multiple
different downstream tasks, unlike standard offline-to-online RL. To demonstrate this, we train U20
RL with four different tasks from the same task-agnostic EXORL dataset on each DMC environment,
and report the full training curves in Figure 7 of Appendix A.1. The results show that, for example,

Under review as a conference paper at ICLR 2025

a single pre-trained model on the Walker domain can be fine-tuned for all four tasks (Walker Run,
Walker Flip, Walker Stand, and Walker Walk). Note that even though U20 RL uses a single task-
agnostic pre-trained model, the performance of U20 RL matches or even outperforms O20 RL,
which pre-trains a model with task-specific rewards.

Q4. Why does U20 RL often outperform supervised offline-to-online RL?

Walker Run Cheetah Run 00, ANtMaze-large-diverse Kitchen-partial
u20 u20 u20
020 020 020

20000

H

-
o
=3
S
S
®
3
3

o
3
3

10000 5000

IS
S
3

5000

Feature Dot Product
N
8

Feature Dot Product
Feature Dot Product
&

Feature Dot Product

u20

020
%k 200k 400k 600k 800k 1000k O6k 200k 400k 600k 800k 1000| %k 200k 400k 600k 800K 1000k k 100k 200k 300k 400k 500k

Pre-training Steps Environment Steps Pre-training Steps Pre-training Steps

=

Figure 4: Feature dot products during offline RL pre-training (lower is better, 8 seeds). The plots
show that unsupervised offline pre-training effectively prevents feature collapse (co-adaptation), yielding better
representations than supervised offline pre-training.

In the above experiments, we showed that U20 RL often even outperforms previous supervised
offline-to-online RL methods. We hypothesized in Section 4.4 that this is because unsupervised
offline pre-training yields better representations that facilitate online task adaptation. To empirically
verify this hypothesis, we measure the quality of the value function representations using the method
proposed by Kumar et al. (2022). Specifically, we define the value features (4(s, a) as the penultimate
layer of the value function Qg, i.e., Q4 (s,a) = wg ¢s(s,a), and measure the dot product between

consecutive state-action pairs, (4(s,a) " (4(s’,a’) (Kumar et al., 2022). Intuitively, this dot product
represents the degree to which these two representations are “collapsed” (or “co-adapted”), which is
known to be correlated with poor performance (Kumar et al., 2022) (i.e., the lower the better).

Figure 4 compares the dot product metrics of unsupervised offline RL (in U20 RL) and supervised
offline RL (in O20 RL) on four benchmark tasks. The results suggest that our unsupervised multi-task
pre-training effectively prevents feature co-adaptation and thus indeed yields better representations
across the environments. This highlights the benefits of unsupervised offline pre-training, and
(partially) explains the strong online fine-tuning performance of U20 RL. We additionally provide
further analyses with different offline unsupervised RL algorithms (e.g., graph Laplacian-based
successor feature learning (Touati et al., 2022; Wu et al., 2019b)) in Appendix A.2.

QS. Is fine-tuning better than other alternative strategies (e.g., hierarchical RL)?

In this work, we focus on the fine-tuning of of-
fline pre-trained skill policies, but this is not
the only way to leverage pre-trained skills for Walker Run
downstream tasks. To see how our fine-tuning
scheme compares to other alternative strategies,
we compare U20 RL with three previously con-
sidered approaches: hierarchical RL (HRL,

eg. OPAL (A.]ay et al'7 2021)7 SPiRL (Pertsch Olk 200k 400k 600k 800k 1000k %ok 200k 400k 600Kk BOOK 1000k
et al., 2021)) (Ajay et al., 2021; Pertsch et al., Environment Steps Environment Steps
2021; Touati et al., 2022; Park et al., 2024c; Hu _. R .. .

et al., 2023), zero-shot RL (Touati et al., 2022; Figure 5h Fine-tuning s batter than presious strate-
Park et al.., 2024C), anq PEX. (Zhang et al.., 2023). Egsle: é :(lll:). as uerarchica » zero-shot RL, an

HRL additionally trains a high-level policy that

combines fixed pre-trained skills in a sequential manner. Zero-shot RL simply finds the skill policy
that best solves the downstream task, with no fine-tuning or hierarchies. PEX combines fixed pre-
trained multi-task policies and a newly initialized policy with a multiplexer that chooses the best
policy.

Our fine-tuning PEX HRL Zero-shot

100 AntMaze-large-diverse

=

80

®
3
3

60

@
2
3

40

IS
S
3

20

N
S
2

Normalized Return

Unnormalized Return

Figure 5 shows the comparison results on top of the same pre-trained unsupervised skill policy. Since
PEX is not directly compatible with IQL, we evaluate PEX only on the tasks with TD3 (e.g., EXORL
tasks). The plots suggest that our fine-tuning strategy leads to significantly better performance than
previous approaches. This is because pre-trained offline skill policies are often not perfect (due to
the limited coverage or suboptimality of the dataset), and thus using a fixed offline policy is often

Under review as a conference paper at ICLR 2025

not sufficient to achieve strong performance in downstream tasks. We provide additional results in
Appendix A.6.

[U20 (Ours) 020

100 AntMaze-large-diverse 100 AntMaze-ultra-diverse 100 _Kitchen-complete
£ £ £
2 80 2 8o 2 80
() Q Q
-4 4 -4
o 60 5 60 - 60/_/___
19 [9
N o0 2 40 E 4
© © ©
g 20 g 20 g 20 — u20
= =4 =z 020

O6k 200k 400k 600k 800K 1000k k 200k 400k 600k 80Ok 1000k Ok 100k 200k 300k 400k 500k
Environment Steps Environment Steps Environment Steps

Figure 6: Online RL learning curves with expert-only datasets (4 seeds).

Q6. Negative results: When is U20 RL better than 020 RL?

While we showed strong results of U20 RL throughout the paper, U20 RL is not always better
than O20 RL. Specifically, U20 RL may not be as effective when the dataset is monolithic (e.g.,
consists of only expert trajectories, has less diversity, etc.). To empirically show this, we conduct an
additional experiment with a different dataset in antmaze-large and antmaze-ultra that consists
of monolithic, expert trajectories (we collect a 1M-sized dataset by rolling out an offline pre-trained
policy) as well as kitchen-complete dataset, which also consists of expert trajectories. Figure 6
shows the (negative) results, which suggest that U20 RL is not particularly better than O20 RL
on these monolithic, optimal datasets. However, we emphasize that U20 RL achieves similar final
performance to O20 RL even on these datasets, and has the unique strength that a single unsupervised
pre-trained model can be fine-tuned to many different reward functions, unlike standard O20 RL.

We refer to the reader to Appendix for further analysis including (1) combining U20 RL with other
offline unsupervised skill learning methods (Appendix A.2), (2) comparisons between U20 RL and
pure representation learning schemes (Appendix A.3), (3) U20 RL without reward samples in the
bridging phase (Appendix A.4), (4) an ablation study with different skill identification strategies (Ap-
pendix A.5), (5) additional results with different online RL strategies (Appendix A.6), (6) comparison
to O20 RL combined with methods for mitigating the feature collapse issue (Appendix A.7), and (7)
ablation studies on each component in U20 RL such as reward scale matching, value transfer and
policy transfer (Appendix A.8).

6 CONCLUSION

In this work, we investigated how unsupervised pre-training of diverse policies enables better online
fine-tuning than standard supervised offline-to-online RL. We showed that our unsupervised-to-
online recipe often achieves even better performance and stability than previous offline-to-online
RL approaches, thanks to the rich representations learned by pre-training on diverse tasks. We also
demonstrated that U20 RL enables reusing a single offline pre-trained policy for multiple downstream
tasks.

Limitation. As shown in Q7 of Section 5, U20 RL is not necessarily better than O20 RL when the
offline dataset is monolithic and heavily tailored toward the downstream task. We believe U20 RL is
most effective (compared to standard offline-to-online RL) when the dataset is highly diverse so that
the unsupervised offline RL method can learn a variety of behaviors and thus learn better features
and representations. Given the recent successes in large-scale self-supervised and unsupervised
pre-training from unlabeled data, we believe U20 RL serves as a step toward a general recipe for
scalable data-driven decision-making.

REPRODUCIBILITY STATEMENT

We provide implementation details in Section 5 and Appendix C including hyperparameters. We
also provide pseudo-code in Appendix B and have attached our source code to the OpenReview
submission page.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference on
Learning Representations, 2021.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, 2023.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex Irpan,
Benjamin Eysenbach, Ryan C Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. In International Conference on Machine Learning, 2021.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5:613-624, 1993.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2019.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In Advances in Neural Information Processing Systems,
2019a.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019b.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. In Advances in Neural Information Processing Systems,
2022.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In International Conference on Intelligent Robots
and Systems, 2022.

Kuan Fang, Patrick Yin, Ashvin Nair, Homer Rich Walke, Gengchen Yan, and Sergey Levine.
Generalization with lossy affordances: Leveraging broad offline data for learning visuomotor tasks.
In Conference on Robot Learning, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, 2019.

11

Under review as a conference paper at ICLR 2025

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
data via latent intentions. In International Conference on Machine Learning, 2023.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying differences
in reward functions. In International Conference on Learning Representations, 2021.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377,2021.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Ali Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. In
International Conference on Machine Learning, 2020.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction
via random intent priors. In Advances in Neural Information Processing Systems, 2023.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktidschel, Edward Grefenstette,
and Yuandong Tian. Efficient planning in a compact latent action space. In International Conference
on Learning Representations, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 2020.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
DR3: Value-based deep reinforcement learning requires explicit regularization. In International
Conference on Learning Representations, 2022.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45-73. Springer, 2012.

12

Under review as a conference paper at ICLR 2025

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. In Advances in
Neural Information Processing Systems Datasets and Benchmarks Track, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, 2022.

Kun Lei, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang Gao, and Huazhe Xu. Uni-o04: Unifying
online and offline deep reinforcement learning with multi-step on-policy optimization. arXiv
preprint arXiv:2311.03351, 2023.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
with unlabeled prior data. In Advances in Neural Information Processing Systems, 2023.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. arXiv preprint
arXiv:2103.04551, 2021.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,
Chelsea Finn, Abhishek Gupta, and Sergey Levine. Serl: A software suite for sample-efficient
robotic reinforcement learning. arXiv preprint arXiv:2401.16013, 2024.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning, 2019.

Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned
reinforcement learning via f-advantage regression. In Advances in Neural Information Processing
Systems, 2022.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference on
Machine Learning, 2023a.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: Towards universal visual reward and representation via value-implicit pre-training. In
International Conference on Learning Representations, 2023b.

Max Sobol Mark, Ali Ghadirzadeh, Xi Chen, and Chelsea Finn. Fine-tuning offline policies with
optimistic action selection. In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. In Advances in Neural Information Processing Systems,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning.
In Advances in Neural Information Processing Systems, 2023.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. In Advances in Neural Information Processing Systems, 2019.

13

Under review as a conference paper at ICLR 2025

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Economet-
rica: Journal of the Econometric Society, pp. 819-847, 1987.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
1999.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In International Conference on Machine
Learning, 2022.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024a.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
rl with latent states as actions. In Advances in Neural Information Processing Systems, 2024b.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
arXiv preprint arXiv:2402.15567, 2024c.

Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable unsupervised RL with metric-
aware abstraction. In International Conference on Learning Representations, 2024d.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International Conference on Machine Learning, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning, 2021.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Jjournal on control and optimization, 1992.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, 2022a.

Younggyo Seo, Kimin Lee, Stephen James, and Pieter Abbeel. Reinforcement learning with action-
free pre-training from videos. In International Conference on Machine Learning, 2022b.

Younggyo Seo, Junsu Kim, Stephen James, Kimin Lee, Jinwoo Shin, and Pieter Abbeel. Multi-view
masked world models for visual robotic manipulation. In International Conference on Machine
Learning, 2023.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and
Sergey Levine. Time-contrastive networks: Self-supervised learning from video. In International
Conference on Robotics and Automation, 2018.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In
International Conference on Machine Learning, 2021.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. In International Conference on Learning
Representations, 2021.

14

Under review as a conference paper at ICLR 2025

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun.
Hybrid RL: Using both offline and online data can make RL efficient. In International Conference
on Learning Representations, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the mini-
malist approach to offline reinforcement learning. In Advances in Neural Information Processing
Systems, 2023a.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. In Advances in Neural
Information Processing Systems, 2023b.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
International Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song, and
Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforcement
learning. In Advances in Neural Information Processing Systems, 2023a.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching rein-
forcement learning via quasimetric learning. In International Conference on Machine Learning,

2023b.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. In Advances in Neural Information Processing Systems, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019a.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: Learning representations with
efficient approximations. In International Conference on Learning Representations, 2019b.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential for
unseen goal generalization of offline goal-conditioned r1? In International Conference on Machine
Learning, 2023.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. arXiv preprint arXiv:2201.13425, 2022.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning. In
International Conference on Machine Learning, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforcement
learning. In International Conference on Learning Representations, 2023.

Kai Zhao, Yi Ma, Jinyi Liu, HAO Jianye, Yan Zheng, and Zhaopeng Meng. Improving offline-to-
online reinforcement learning with g-ensembles. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems, 2023.

Qinqging Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In International
Conference on Machine Learning, 2022.

15

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTS

A.1 FULL EXORL EXPERIMENTS

U20 (Ours) 020 [l Online w/ Off Data
Jaco Reach Top Left
- 1000 Walker Run 100 Cheetah Run - 1000 Quadruped Run € 250] =
E S VYT S e ”V\[5 [parer g g
5 - 3 A Z eY Tal i @ 200
© 800 e ©Q 800 W @ 800 o Q
< — 4 < .)“"‘v‘ W o
° g ° ° o
o 600 © 600 @ 6001/ . @ 150
N N N & N
© 400 © 4007/, ® AUOJV © 100
£ £ £ 13
S 200 S 200 S 200 Q 504
[=4 = f= =4
= = C c
> 0 > 0 > 0 D o
k 200k 400k 600k 800k 1000k 0Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps
Walker Flip Cheetah Run Backward Quadruped Jump < »50.aC0 Reach Top Right
€ 1000 — = € 100 € 1000 < [UUPYR PRI BTN WP
E E E l d Saof Y
Q 800 @ 800 Q 800 Q
g g 3 (,\m/"v‘W"'YWY“' | @
el
T 600 T 600 T 6004 @ 150
N N N N
© 400 © 400 © 400 @ 100
£ £ € £
S 200 S 200 S 200 S 50
c c c c
= = j=y c
o) 0) o) 0+) 0
k 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps
Walker Stand Cheetah Walk Quadruped Stand < »50J2co Reach Bottom Left
€ 1000 o € 10007 AT — c 1000‘ =) £ AP Or g
E E A E) RIS % o0 P v
800 800 800+
& & & o
el
T 600 B 6004 T 600 @ 150
N N N N
© 400 © 400 © 400 © 100+
£ £ € £
IS £ £ IS
o 200 O 200 o 200 o 50
c c j= c
=y C f= =
S o =} ! S of =)
Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps
Walker Walk Cheetah Walk Backward Quadruped Walk < »50@c0 Reach Bottom Right
< 1000 ——— — < 100t ———— = < 1000 = > U RSPy PN P
5 5 1 5 e N BN e A A S
2
@ 800 @ 800 @ 800 /" 'v Jv V v 9 200
o o o
el
T 600 B 600 ? eoo}ﬂ @ 150
N N N X
‘© 400 ® 400 © 400 © 100
€ £ € €
B 200 5 200 \6 200 \6 50
=4 c c c
C C C c
S o =} ! S of =)
Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k 0Ok 200k 400k 600k 800k 1000k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps

Figure 7: Learning curves during online RL fine-tuning (8 seeds). A single pre-trained model from U20
can be fine-tuned to solve multiple downstream tasks. Across the embodiments and tasks, our U20 RL matches
or outperforms standard offline-to-online RL and off-policy online RL with offline data even though U20 RL
uses a single task-agnostic pre-trained model.

A.2 CAN U20 RL BE COMBINED WITH OTHER OFFLINE UNSUPERVISED RL METHODS?

U20 (Lap; Ours) 020 U20 (GC-IQL; Ours) 020
AntMaze-ultra-div Kitchen-partial

£ 100 Walker Run < 1000 Quadruped Run 100 erse _100 P

3 =1 £ £

g 800 G 800 2 80 2 80

o 4 o] o}

° - -4 o

@ 600 @ 600 5 60 5 60

N N (7] Q

T 400 © 400 N N

£ € © ©

5 S € €

2 200 2 200 £ 20 £ 2

£ < S <)

5 5 z =

0k 200k 400k 600k 800k 1000k COI(200k 400k 600k 800k 1000k ODK 200k 400k 600k 800k 1000k 0 k 100k 200k 300k 400k 500k

Environment Steps Environment Steps Environment Steps Environment Steps

Figure 8: U20 RL with Laplacian-based successor Figure 9: U20 RL with goal-conditioned IQL (8
feature learning (8 seeds). seeds).

While we employ HILP (Park et al., 2024c) as an offline unsupervised skill learning method in
U20 RL in our main experiments, our recipe can be combined with other offline unsupervised skill

16

Under review as a conference paper at ICLR 2025

learning methods as well. To show this, we replace HILP with a graph Laplacian-based successor
feature method (Touati et al., 2022; Wu et al., 2019b) or goal-conditioned IQL (GC-IQL) (Kostrikov
et al., 2022; Park et al., 2024b), and report the results in Figures 8 and 9, respectively. The results
demonstrate that U20 RL with different unsupervised RL methods also improves performance over
standard offline-to-online RL.

Additionally, we show that other unsupervised U20 (Lap; Ours) 020

skill learning methods also lead to better value . ;o000 Walker Run Quadruped Run
representations. We measure the same fea-
ture dot product metric in Section 5 with the
graph Laplacian-based successor feature learn-
ing method and report the results in Figure 10.
The results suggest that this unsupervised RL %ic 200k _adolc 0ok e0ak 1000k 200k 400K 600K 800K 1000k
method also prevents feature co-adaptation, lead- Pre-training teps Pre-training steps

ing to better features.

15000 15000

10000 10000

5000 5000

Feature Dot Product
Feature Dot Product

Figure 10: Feature dot product analysis with
Laplacian-based successor feature learning (8 seeds).

A.3 DO WE NEED TO USE UNSUPERVISED RL FOR PRE-TRAINING REPRESENTATIONS?
In Sections 4.4 and 5, we hypothesized and em- Table 2: Comparison between U20 RL and pure

pirically showed that U20 RL is often better ~representation learning algorithms (4 seeds).
than O20 RL because it learns better represen-

tations. This leads to the followlng natural ques- Task antmaze-large-diverse
tion: do we need to use offline unsupervised

. ! U20 (HILP, Q Ours) 94.50 + 3.16
reinforcement learning, as opposed to general 020 (HILP, £) 550 & 1.01
representation learning? To answer this ques- Temporal contrastive learning 37.50 + 15.00

tion, we consider two pure representation learn-

ing algorithms as alternatives to unsupervised RL: temporal contrastive learning (Eysenbach et al.,
2022) and Hilbert (metric) representation learning (Park et al., 2024c), where the latter is equivalent
to directly taking & in the HILP framework (Equation 4) (note that the original U20 RL takes the Q
function of HILP, not the Hilbert representation ¢ itself, which is used to train the Q function). To
evaluate their fine-tuning performances, for the temporal contrastive representation, we fine-tune both
the Q function and policy with contrastive RL (Eysenbach et al., 2022); for the Hilbert representation,
we take the pre-trained representation, add one new layer, and use it as the initialization of the
Q function. Table 2 shows the results on antmaze-large-diverse. Somewhat intriguingly, the
results suggest that it is important to use the full unsupervised RL procedure, and pure representation
learning methods result in much worse performance in this case. This becomes more evident if we
compare U20 RL (HILP Q, ours) and U20 RL (HILP &), given that they are rooted in the same
Hilbert representation. We believe this is because, if we simply use an off-the-shelf representation
learning, there exists a discrepancy in training objectives between pre-training (e.g., metric learning)
and fine-tuning (Q-learning). On the other hand, in U20 RL, we pre-train a representation with
unsupervised Q-learning (though with a different reward function), and thus the discrepancy between
pre-training and fine-tuning becomes less severe.

A.4 CAN WE DO “BRIDGING” WITHOUT ANY REWARD-LABELED DATA?

In the bridging phase of U20 RL (Section 4.2), Walker Run 1000 Quadruped Run
we assume a (small) reward-labeled dataset
Drevara. In our experiments, we sample a small
number of transitions (e.g., 0.2% in the case of
DMC) from the offline dataset and label them

Wlth the ground_truth reward funCtlon’ as ln prlor % k 200k jlz](;k 600k 800k 1000k 0k 200k (:;[(;k 600k 800k 1000k
works (Touati et al., 2022; Park et al., 2024c). Environment Steps Environment Steps
However, these samples do not necessarily have

to come from the offline dataset. To show this, Figure 11: U20 RL without using reward-labeling
we conduct an additional experiment where we in the offline dataset (8 seeds).

do not assume access to any of the existing re-

ward samples or the ground-truth reward function in the bridging phase. Specifically, we collect 10K

=
o
S
S

®
S
S
®
S
]

@
S
)
@
S
3

IS
S
S
»
S
S

u20
U20 (w/o offline samples) U20 (wjo offline samples)

| u20
200+

Unnormalized Return
o
S
S

Unnormalized Return

o

17

Under review as a conference paper at ICLR 2025

online samples with random skills and perform the linear regression in Equation 6 only using the
collected online transitions. We report the performances of U20 (without offline samples) and 020
in Figure 11. The results show that U20 still works and outperforms the supervised offline-to-online
RL baseline.

A.5 HOW DO DIFFERENT STRATEGIES OF SKILL IDENTIFICATION AFFECT PERFORMANCE?

To understand how skill identification strategies ¢ 1000 Walker Run 1000 Cheetah Run

c =3
affect online RL performance, we compare our ;.3; 20 (andom ftent g 800
strategy in Section 4.2 with an alternative strat- 5 #° 2 600
egy that simply selects a random latent vector % o 5 a0
z from the skill space. Figure 12 shows that g g w0(/ | e tunin
the Sklll ldentlﬁcatlon Wlth a randomly SeleCted S 4OCOk 200k 400k 600k 800k 1000k g 0O‘k 200k 400k’76§::’75£;]t0k 1000k

latent vector performs worse than our strategy. Environment Steps Environment Steps
This is likely because modulating the policy with

the best latent vector helps boost task-relevant Figure 12: Ablation Figure 13: Comparison
exploration and information. study of skill identifica- with PEX and zero-shot
tion (4 seeds). RL (4 seeds).

A.6 ADDITIONAL EXPERIMENTS ON FINE-TUNING STRATEGIES

AntMaze-ultra-diverse
U20

80 020 + DR3

020

We additionally provide experimental results of fine-tuning strategies on
a different task (i.e., Cheetah Run). Figure 13 shows that our fine-tuning
strategy outperforms previous strategies, such as zero-shot RL and PEX.
This result further supports the effectiveness of fine-tuning.

Normalized Return

o,k 200k 400k 600k 800k 1000k
Environment Steps

Figure 14: Comparison

with 020 RL + DR3 (4
A.7 How DOES U20 PERFORM COMPARED TO 020 seeds).

COMBINED WITH METHODS FOR MITIGATING FEATURE COLLAPSE?

To further understand the effectiveness of U20 RL, we compare the performance of U20 RL with
that of O20 RL combined with DR3 (Kumar et al., 2022), a regularizer that regularizes feature dot
products to prevent the feature collapse issue. The result in Figure 14 shows that simply adding the
DR3 regularizer is not as effective as U20 RL. We believe this is likely because the full unsupervised
RL procedure can lead to much richer representations than simply adding a regularizer.

A.8 HOW DOES EACH COMPONENT IN U20 RL AFFECT PERFORMANCE?

U20 (w/ reward scale match) B no transfer transfer policy
U20 (w/o reward scale match) transfer value transfer value & policy

Walker Run Cheetah Run 1000 Walker Run 100 AntMaze-large-diverse

@
<3
S

800

600 /_/_,_,_’—

400 /’

\[/

k 50k 100k 150k 2 S0k 100k 150k 200k Ok 50k 100k 150k 200k Ok 200k 400k 600k 800k 1000k
Environment Steps Environment Steps Environment Steps Environment Steps

@
S
S

80 -~
~—
60

40

N}
=3
S

200

Unnormalized Return
5
8
Unnormalized Return
3
3
Unnormalized Return
Normalized Return

S
=
°
~

Figure 15: Ablation study of reward scale matching Figure 16: Ablation study of value transfer and
(4 seeds). policy transfer (4 seeds).

Reward scale matching. In Section 4.2, we propose a simple reward scale matching technique that
bridges the gap between intrinsic rewards and downstream task rewards. We ablate this component,
and report the results in Figure 15. The results suggest that our reward scale matching technique
effectively prevents a performance drop at the beginning of the online fine-tuning stage, leading to
substantially better final performance on dense-reward tasks (e.g., Walker Run and Cheetah Run).

18

Under review as a conference paper at ICLR 2025

Value transfer vs. policy transfer. In U20 RL, we transfer both the value function and policy from
unsupervised pre-training to supervised fine-tuning. To dissect the importance of each component, we
conduct an ablation study, in which we compare four settings: (1) without any transfer, (2) value-only
transfer, (3) policy-only transfer, and (4) full transfer. Figure 16 demonstrates the ablation results
on Walker and AntMaze. The results suggest that both value transfer and policy transfer matter in
general, but value transfer is more important than policy transfer. This aligns with our findings in
Q4 of Section 5 as well as Kumar et al. (2022), which says that the quality of value features often
correlates with the performance of TD-based RL algorithms.

B ALGORITHM TABLE

Algorithm 1 U20 RL: Unsupervised-to-Online Reinforcement Learning

Require: offline dataset D,¢¢, reward-labeled dataset Dyeyarq, empty replay buffer Doy, offline
pre-training steps Npr, online fine-tuning steps Ngr, skill latent space Z
Initialize the parameters of policy 7y and action-value function Q4
fort=0,1,2,... Npr — 1 do

Sample transitions (s, a, s’) from Doss

Sample latent vector z € Z and compute intrinsic rewards 7

Update policy mg(a | s, z) and Q4(s, a, z) using normalized intrinsic rewards 7-***
end for
Compute the best latent vector z* with Equation 6 using samples (s, a, s’,7) from Dyeyara
fort =0,1,2,... N,y — 1 do

Collect transition (s, a, s,) via environment interaction with 7y and add to replay buffer D,

Sample transitions (s, a, s,) from Dyss U Dgy

Update policy mp(a | s,2*) and Q4(s, a, z*) using normalized task rewards 7
end for

int

C EXPERIMENTAL DETAILS

For offline RL pre-training, we use 1M training steps for ExXORL, AntMaze, and Adroit and 500K
steps for Kitchen, following Park et al. (2024c). For online fine-tuning, we use 1M additional
environment steps for ExORL, AntMaze, and Adroit and 500K steps for Kitchen with an update-to-
data ratio of 1. We implement U20 RL based on the official implementation of HILP (Park et al.,
2024c). We evaluate the normalized return with 50 episodes every 10k online steps for ExORL tasks,
and every 100k online steps for AntMaze, Kitchen, and Adroit tasks. We run our experiments on
A5000 or RTX 3090 GPUs. Each run takes at most 40 hours (e.g. Visual Kitchen). We provide our
implementation in the supplementary material.

C.1 ENVIRONMENTS AND DATASETS

ExORL (Yarats et al., 2022). In the ExXORL benchmark, we consider four embodiments, Walker,
Cheetah, Quadruped, and Jaco. Each embodiment has four tasks: Walker has {Run, Flip, Stand,
Walk}, Cheetah has {Run, Run Backward, Walk, Walk Backward}, Quadruped has {Run, Jump,
Stand, Walk}, and Jaco has {Reach Top Left, Reach Top Right, Reach Bottom Left, Reach Bottom
Right}. For all the tasks in Walker, Cheetah, and Quadruped, the maximum return is 1000, and Jaco
has 250. Each embodiment has an offline dataset, which is collected by running exploratory agents
such as RND (Burda et al., 2019), and then annotated with task reward function. We use the first 5M
transitions of the offline dataset following the prior work (Touati et al., 2022; Park et al., 2024c). The
maximum episode length is 250 (Jaco) or 1000 (others).

AntMaze (Fu et al., 2020; Jiang et al., 2023). In AntMaze, a quadruped agent aims at reaching the
(pre-defined) target position in a maze and gets a positive reward when the agent arrives at a pre-
defined neighborhood of the target position. We consider two types of Maze: antmaze-large (Fu
et al., 2020) and antmaze-ultra (Jiang et al., 2023), where the latter has twice the size of the
former. Each maze has two types of offline datasets: play and diverse. The dataset consists
of 999 trajectories with an episode length of 1000. In each trajectory, an agent is initialized at a

19

Under review as a conference paper at ICLR 2025

random location in the maze and is directed to an arbitrary location, which may not be the same
as the target goal. At the evaluation, antmaze-large has a maximum episode length of 1000, and
antmaze-ultra has 2000. We report normalized scores by multiplying the returns by 100.

Kitchen (Gupta et al., 2020; Fu et al., 2020). In the Kitchen environment, a Franka robot should
achieve four sub-tasks, microwave, slide cabinet, 1ight switch, and kettle. Each task has
a success criterion determined by an object configuration. Whenever the agent achieves a sub-task,
a task reward of 1 is given, where the maximum return is 4. We consider two types of offline
datasets: mixed and partial. We report normalized scores by multiplying the returns by 100. For
Visual-Kitchen, we follow the same camera configuration as Mendonca et al. (2021), Park et al.
(2024d), and Park et al. (2024c¢), to render 64 x 64 RGB observations, which are used instead of
low-dimensional states. We report normalized scores by multiplying the returns by 25.

Adroit (Fu et al., 2020). In Adroit, a 24-DoF Shadow Hand robot should be controlled to achieve a
desired task. We consider two tasks: pen-binary and door-binary, following prior works (Ball
et al., 2023; Li et al., 2023). The maximum episode lengths of pen-binary and door-binary are
100 and 200. respectively. We report normalized scores by multiplying the returns by 100.

OGBench-Cube (Park et al., 2024a). In the OGBench-Cube, a 6-DoF UR5e robot arm should be
controlled to arrange multiple cubes into the desired configuration. The maximum episode lengths
for cube-single and cube-double are 200 and 500, respectively. To make the originally goal-
conditioned tasks compatible with regular (single-task) offline-to-online RL, we fix the task_id to
2, and define the task reward as the negative of the number of the unmatched cubes. We report binary
success rates multiplied by 100.

C.2 HYPERPARAMETERS

Table 3: Hyperparameters of unsupervised RL pre-training in ExORL.

Value
0.0005 (feature), 0.0001 (others)

Hyperparameter

Learning rate

Optimizer

Adam (Kingma & Ba, 2015)

Minibatch size 1024
Feature MLP dimensions (512,512)
Value MLP dimensions (1024, 1024,1024)
Policy MLP dimensions (1024, 1024,1024)
TD3 target smoothing coefficient 0.01

TD3 discount factor ~y 0.98

Latent dimension 50

State samples for latent vector inference 10000
Successor feature loss Q loss
Hilbert representation discount factor 0.96 (Walker), 0.98 (others)
Hilbert representation expectile 0.5

Hilbert representation target smoothing coefficient 0.005

20

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters of unsupervised RL pre-training in AntMaze, Kitchen, and Adroit.

Hyperparameter Value

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015)
Minibatch size 256 (Adroit), 512 (others)

Value MLP dimensions (256, 256, 256) (Adroit), (512,512, 512) (others)
Policy MLP dimensions (256,256, 256) (Adroit), (512,512, 512) (others)

Target smoothing coefficient
Discount factor

Latent dimension

Hilbert representation discount factor
Hilbert representation expectile

Hilbert representation target smoothing coefficient

HILP IQL expectile
HILP AWR temperature

0.005
0.99
32
0.99
0.95
0.005
0.9 (AntMaze), 0.7 (others)
0.5 (Kitchen) 3 (Adroit-door), 10 (others)

21

	Introduction
	Related work
	Preliminaries
	Unsupervised-to-online RL (U2O RL)
	Unsupervised offline policy pre-training
	Bridging offline unsupervised RL and online supervised RL
	Online fine-tuning
	Why is U2O RL potentially better than offline-to-online RL?

	Experiments
	Conclusion
	Additional Experiments
	Full ExORL experiments
	Can U2O RL be combined with other offline unsupervised RL methods?
	Do we need to use unsupervised RL for pre-training representations?
	Can we do ``bridging'' without any reward-labeled data?
	How do different strategies of skill identification affect performance?
	Additional experiments on fine-tuning strategies
	How does U2O perform compared to O2O combined with methods for mitigating feature collapse?
	How does each component in U2O RL affect performance?

	Algorithm Table
	Experimental Details
	Environments and Datasets
	Hyperparameters

