
RobustLight: Improving Robustness via Diffusion Reinforcement Learning for
Traffic Signal Control

Mingyuan Li 1 Jiahao Wang 1 Guangsheng Yu 2 Xu Wang 2 Qianrun Chen 3 Wei Ni 2 Lixiang Li 1

Haipeng Peng 1

Abstract
Reinforcement Learning (RL) optimizes Traffic
Signal Control (TSC) to reduce congestion and
emissions, but real-world TSC systems face chal-
lenges like adversarial attacks and missing data,
leading to incorrect signal decisions and increased
congestion. Existing methods, limited to offline
data predictions, address only one issue and fail
to meet TSC’s dynamic, real-time needs. We
propose RobustLight, a novel framework with
an enhanced, plug-and-play diffusion model to
improve TSC robustness against noise, missing
data, and complex patterns by restoring attacked
data. RobustLight integrates two algorithms to re-
cover original data states without altering existing
TSC platforms. Using a dynamic state infilling
algorithm, it trains the diffusion model online.
Experiments on real-world datasets show Robust-
Light improves recovery performance by up to
50.43% compared to baseline scenarios. It ef-
fectively counters diverse adversarial attacks and
missing data. The relevant datasets and code are
available at GitHub.

1. Introduction
1.1. Motivation

Improving traffic efficiency through Traffic Signal Control
(TSC) has been established as an effective strategy (Wei
et al., 2019b). Traditional TSC systems depend heavily
on static, predefined expert system controls, lacking the
flexibility of dynamically responding to fluctuating traf-
fic conditions (Lowrie, 1990; Hunt et al., 1982; Webster,
1958). Recently, by integrating the methods of Reinforce-
ment Learning (RL), TSC has demonstrated its superiority
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to conventional expert systems in improving vehicular traf-
fic flow (Wei et al., 2018). Deploying TSC algorithms in
real-world settings typically involves using sensors, such as
cameras and radar, to monitor traffic states, including vehi-
cle counts and speeds. Sensors exposed in public areas are
susceptible to noise attacked (Chen et al., 2018; Chowdhury
et al., 2023b), leading to potential adversarial attacks. More-
over, in extremely adverse weather conditions, these sensors
are prone to physical damage (Laszka et al., 2016b; Lee &
Park, 2012). This study delves into these sensor security
challenges in real-world TSC systems.

Adversarial attacks on the sensors can range from Gaussian
noise and uniformly distributed random noise (U-rand) to
more sophisticated strategies, including maximum action-
difference attack (MAD) and minimum Q-value attack
(MinQ) (Tang et al., 2016). When testing a TSC algo-
rithm, its performance can significantly decline (Gershen-
son, 2004; Chen et al., 2020; Zhang et al., 2022b) within
the CityFlow (Zhang et al., 2019) simulation environment
under various attacks. Such attacks compromise sensors,
leading to inaccurate state observations and consequent mal-
functions in TSC systems. When the sensors are intruded on
or compromised, traffic disruptions could potentially occur,
even leading to traffic safety accidents and substantial eco-
nomic losses. To this end, it is crucial to develop innovative
defense algorithms to mitigate the impact of sensor-related
anomalies for TSC.

1.2. Challenges

Various solutions have been proposed in the context of on-
line applications to address security issues faced by sen-
sors (Sun et al., 2021). However, these methods typically
only address a single type of attack. For instance, Zhang
et al.(Zhang et al., 2021) proposed a method to address
an adversarial attack, and it significantly decreases perfor-
mance as noise levels increase, especially in complex, high-
dimensional state environments (Yang et al., 2022). Lin et
al. (Lin et al., 2017) employed model-based methods, e.g.,
a Multi-Layer Perceptron (MLP) for data prediction to ad-
dress a data loss problem. Similarly, Mei et al. (Mei et al.,
2023) advocated for interpolation techniques during training
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to solve a missing data problem. Yang et al. (Yang et al.,
2023) proposed an offline method to solve the security prob-
lem of robotics. However, in a TSC system that requires
real-time decision based on traffic volume, the above meth-
ods need to collect a large amount of data offline, which
cannot meet the demand of real-time dynamic change of
TSC data. The challenges faced by the existing TSC systems
can be summarized as follows:

• Recent TSC algorithms demonstrate significant per-
formance degradation when undergoing adversarial
attacks or sensor damage, often resulting in traffic con-
gestion, indicating a lack of security resilience.

• Existing defense methods address only one or two
types of attacks and lack a comprehensive framework
to address multiple security issues holistically.

• Current offline methods typically rely on the collection
of large datasets to train static models, which struggle
to make accurate decisions when faced with untrained
real-time data.

1.3. Contributions

Diffusion models have recently achieved great results in
image generation and RL control (Janner et al., 2022; Wang
et al., 2022; Yang et al., 2023). The training of a diffu-
sion model consists of the noise addition and denoising
processes. The denoising process has the potential to evade
noise attacks undergone by TSC systems. Moreover, the
diffusion models have a strong data generation ability that
has the potential to solve the missing data problem in TSC
systems. Our contributions in addressing these challenges
can be summarized as follows:

• We propose RobustLight, a framework to enhance the
robustness of online TSC systems, consisting of a TSC
agent and a dynamic state filling (DSI) agent. The
DSI agent uses a model-free RL algorithm with an
enhanced diffusion model to recover TSC data in real-
time, ensuring optimal strategies without altering the
original TSC algorithms. This architecture prevents
data missing without changing the TSC algorithms.

• The RobustLight framework adopts two algorithms, de-
noise and repaint, which leverage the trained diffusion
model of DSI to defend against adversarial attacks and
handle missing data in TSC systems.

• Experiments show that RobustLight improves the aver-
age travel time of existing TSC algorithms by 50.43%
under various adversarial attacks and missing data sce-
narios, with state recovery closely matching pre-attack
distributions, demonstrating its enhanced robustness.
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Figure 1. Definition of the TSC.

2. Preliminary
2.1. Definitions of TSC

We use a four-way intersection, as shown in Figure 1, to
illustrate the concepts and summarize the definition of TSC.

Intersection. Each road network consists of multiple in-
tersections, each with multiple, e.g., N , road segments,
denoted by (Inter1, ..., InterN ).

Traffic perception. Each intersection has four directional
sensors (e.g., cameras, radars) monitoring vehicles in three
lanes, with different security states indicated by colors: or-
ange for noise attacks, red for sensor damage, and green for
normal operation, as shown in Figure 1(b).

Traffic movement. The vehicle passes through the inter-
section from entering the lane (lanein) to leaving the lane
(laneout). This traffic movement is represented as TM =
(lanein, laneout), as shown in Figure 1(c).

Traffic signal phase. Two movements i.e.,
(TMi, TMj , i ̸= j) form a phase, represented as pw
= (TMi, TMj), as depicted in Figure 1(d).

2.2. Adversarial Attack and Physical Sensor Damage

We introduce the concepts of four classic adversarial attacks
and the definition of TSC sensor attacks.

Gaussian noise attack. The Gaussian noise attack adds
Gaussian random noise N within the scale or intensity k to
the state s, represented as s̃t = st + k · N (µ, σ2)

U-rand attack. The uniform random noise (U-rand) attack
adds U-rand noise U within the intensity k to the state s, i.e.,
s̃t = st + k · U(I, I), where I is the identity matrix.

MAD attack. The maximum action-difference (MAD)
attack selects noise within a given range k to maxi-
mize the difference between two policies πϕ(·|s) and
πϕ(·|s̃) in the policy space, denoted as s̃t = st +
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argmaxs̃∈Bd(s,k) D(πϕ(·|s) ∥ πϕ(·|s̃)), where Bd(s, k) is
the ℓ∞ ball centered at state s with radius k.

MinQ attack. The Minimum Q-value (adversarial) attack
selects the minimum Q-value within a certain range k and
adds it as noise to the original state s, denoted as s̃t =
st + argmins̃∈Bd(s̃,k) Q(s̃t, πϕ(·|s̃)).

Physical sensor damage. For each intersection, sensor dam-
age due to weather or human factors causes state dimensions
to be unobserved, represented as s̃t = Mask · st.

2.3. Diffusion Process and Guided Diffusion

The diffusion model (Ho et al., 2020b) is a probabilistic deep
learning model that generates samples through diffusion and
inverse diffusion processes.

Forward process. In this process, the data is deformed
by introducing random noise, which makes the data gradu-
ally lose structured information and eventually turn into
random noise. The forward diffusion chain gradually
adds noise to the data x0 (sampled from the distribution
q(x0)) over T steps using a pre-defined variance schedule
βt {βt ∈ (0, 1)}Tt=1, as given by

q (xt | x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
, (1)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Equation (1) al-
lows for the use of reparametrization (Gu et al., 2022) to
directly obtain the noisy data xt corresponding to a spe-
cific timestep t from the initial data without the need for
multi-step iteration.

Reverse process. This process is assumed to follow a Gaus-
sian distribution probability, as given by

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) , (2)

where µθ (xt, t) represents the mean of the Gaussian dis-
tribution that needs to be predicted by the neural network,
and Σθ (xt, t) is the pre-defined variance. After training,
the neural network predicts the noise term. We sample
data from an isotropic Gaussian noise and run the reverse
diffusion process from t = T to t = 0.

Guided Diffusion (Kim & Oh, 2022) extends diffusion by
introducing external guidance during the reverse process. It
controls the generation of specific content. Classifier-free
guidance (Ho & Salimans, 2022) is a widely considered
type of guided diffusion, which adds condition c to the µθ

network in the diffusion reverse process, as given by

µguided
θ (xt, t, c) = µθ(xt, t)+ω(µθ(xt, t, c)−µθ(xt, t)),

(3)
where ω is a weighting coefficient that controls the trade-off
between conditional and unconditional generations.

3. RobustLight
In this section, we elaborate on the proposed RobustLight
framework, which integrates a new dynamic state infilling
(DSI) algorithm, and two new processes, namely, the no-
attack training process and the attacked testing process, into
any type of the existing TSC algorithms to protect from data
false injection and missing data. Specifically, we propose
DSI to train an improved diffusion model. The denoise and
repaint algorithms use the trained diffusion model of DSI
to solve adversarial attacks and missing data problems. The
integration of these algorithms improve the robustness of
TSC in unreliable real-time traffic environments.

3.1. TSC Algorithm

A TSC algorithm implements the basic functions of signal
control, serving as a TSC agent to interact with the traffic
environment. This allows for the use of various TSC algo-
rithms, including both traditional and RL-based algorithms.

In what follows, we elaborate on the TSC algorithms
(namely, MaxPressure (Cools et al., 2013), Advanced-
Maxpressure (Zhang et al., 2022b), Colight (Wei et al.,
2019a), Advanced-Colight (Zhang et al., 2022b), Mp-
light (Chen et al., 2020), and Advanced-Mplight (Zhang
et al., 2022b)). The specific definitions of state, action, and
reward are given by

• State: The Efficient Pressure (EP) (Wu et al., 2021) and
Running Vehicle (RV) are the input state s.

• Action: The traffic signal phase is action a.

• Reward: The negative of the queue length is the reward r.

We represent the TSC state trajectory τ as a sequence, as
given by

τst = {s1, s2, ..., st−1, st}, (4)

where t indicates the RL timestep. We can update the RL-
based TSC agent according to the Bellman function. Then,
the Q-value in the RL-based TSC evolves as

Q(s, a)←− Q(s, a)+α

[
r + γmax

a′∈a
Q′(s′, a′)−Q(s, a)

]
,

(5)
where α represents the learning rate, γ is the discount factor,
and Q′(s′, a′) denotes the target Q-value for the next state-
action pair. For the TSC algorithms based on RL, a replay
buffer is used to store tuples (s, a, r, s′).

3.2. Dynamic State Infilling (DSI) Algorithm

We design a DSI algorithm using an improved diffusion
model as the policy to reduce noise in online model-free RL.
The TSC agent’s replay buffer is used to update the policy
and adapt to real-time environments. The state, action, and
reward of the DSI agent are defined as follows:
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Figure 2. RobustLight uses a two-process framework with four algorithms: the TSC and DSI algorithms train on normal data to enhance
efficiency and robustness, while the Denoise and Repaint algorithms mitigate noise and infer missing data during attack testing.

• State. We represent the DSI agent’s state as St =
(at−1, τ

s
t−1), where at−1 is the previous TSC action and

τst−1 = {s1, ..., st−1} is the TSC state trajectory.

• Action. The DSI denoises the noisy or missing state s̃t to
the recovered state ŝt. Hence, the action at time t can be
represented as Ât = ŝt.

• Reward. The reward is the negative of the queue length.
The DSI agent consists of an actor and a critic network.
Critic network. In the critic network parameterized by φ,
a U-Net architecture (Ronneberger et al., 2015) identical to
that of the actor network is employed. The final layer of
the critic network produces the Q value. The network is
updated using the Bellman error, as given by

Lφ = r + λQφ(St+1, At+1)−Qφ(St, At), (6)

where λ is the discount factor.

Actor network. For the actor network, we use action gradi-
ent ascent to update the control policy (Yang et al., 2023)

At = At + η∇AQφ(St, At), (7)

where η is the learning rate of the action gradient ascent. We
employ an improved diffusion model to denoise and predict
the original state Ât = ŝt through the reverse process:

Ât ∼ pθ(Ã
0:k
t |St) = fk(Ãt)

k∏
i=1

pθ(Ã
i−1
t |Ãi

t, St−1), (8)

where fk(Ãt) =
√
ᾱkÃt, and

∏k
i=1 pθ(Ã

i−1
t |Ãi

t, St−1)
can be modeled as Gaussian distribution, as follows:

N
(
Ã

i−1

t ;µθ

(
Ã

i

t,St−1, i
)
,Σθ

(
Ã

i

t,St−1, i
))

. (9)

According to (Ho et al., 2020b), the denoising process for
each step in the diffusion is expressed as

Ãi−1
t |Ãi

t =
Ãi

t√
αi
− βi√

αi(1− ᾱi)
ϵθ(Ã

i
t, St, i) +

√
β̃iϵ.

(10)
To handle denoising tasks with improved diffusion, we

use the beta schedule (Zhihe & Xu) βi = 1 − αi =

e−
b

i+a+c , ᾱk =
∏k

i=1 αi, and β̃i = 1−ᾱi−1

1−ᾱi
βi to address

small to medium-scale noises, where ϵθ is the noise network.
Unlike other beta (Xiao et al., 2021a; Nichol & Dhariwal,
2021a; Ho et al., 2020a) schedules that generate data from
pure noise, our approach employs the U-Net architecture
and a conditional generative diffusion model for noise pre-
diction.

Lemma 3.1. The lemma basis of diffusion for denoising is
to minimize the sum entropy of the denoised data:

Lθ =

T∑
t=1

Eq(At)[− log pθ(Ã
0
t |St−1)], (11)

which can be optimized using the variational lower bound
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Algorithm 1 The training process of RobustLight
Initialize: DSI algorithm Qφ critic network, Qθ ac-
tor network, Replay buffer R and target network
Qφ− , Qθ− .

1: for j = 1 to E do
2: Get init state s0 from Cityflow
3: for t = 1 to T do
4: Execute TSC algorithms, including Colight,

Advanced-Colight, Maxpressure,..., etc.
5: Training the TSC agent by Equation 5.
6: Sample batch S = (τs, a) and A = s fromR.
7: Update critic network Qφ by Equation 6.
8: for n = 1 to N do
9: Execute gradient ascend by Equation 7.

10: end for
11: Update actor network Qθ by Equation 12.
12: Update target critic network by:
13: φ− = ηφ+ (1− η)φ−

14: Update target actor network by
15: θ− = ηθ + (1− η)θ−

16: end for
17: end for
18: Return Actor network Qθ

(VLB). For the detailed derivation process, please refer to
(Zhihe & Xu; Ho et al., 2020a).

Expanding Lθ, we obtain the following Non-Markov loss
to update the actor network:

Lθ = Ei∼UK ,ϵt∼N (0,I),(At−N ,...,At+M−1)∈Dν∥∥∥ϵθ(Ãi
t, St−1, i)− ϵit

∥∥∥
2
+

t+M−1∑
m=t+1

∥∥∥ϵθ(Ãi
m, Ŝm−1, i)− ϵim

∥∥∥
2
,

(12)
where Ŝm−1 = (am−1, τ

ŝ
m−1), and τ ŝm−1 is the predicted

state trajectory. This loss function Lθ balances the trade-off
between the current RL timestep and future RL timesteps,
aiming to minimize the accumulated error over time. De-
tailed training algorithm is summarized in Algorithm 1.

3.3. Denoise Algorithm

In the testing phase, we may unintentionally expose the sen-
sors within the TSC algorithm to various attacks, including
Gaussian, MAD, U-rand, and MinQ attacks.

In the denoise algorithm, we use the trained actor diffusion
model from the DSI algorithm to recover the original TSC
state Ât = ŝt. We use the diffusion reverse process to de-
noise. As described in Equation (10), we input (St, Ãt)
and the diffusion time step i into the actor diffusion net-
work. In each diffusion timestep, the data currently under a
noise attack is denoised to obtain the data for the next diffu-

Algorithm 2 Repaint algorithm of RobustLight

1: Input Ãi
t, St−1,m

2: for i = 1 to K do
3: for u = 1 to U do
4: ϵ ∼ N (0, I) if i > 1, else ϵ = 0
5: Get Ãi−1

t,known by Equation (13)
6: z ∼ N (0, I) if i > 1, else z = 0
7: Get Ãi−1

t,unknown by Equation (14)
8: Get recovered Ãi−1

t by Equation (15)
9: if u < U and i > 1 then

10: Ãi
t ∼ N (

√
1− βi−1Ã

i−1
t , βi−1I)

11: end if
12: end for
13: end for
14: Return Ât = Ã0

t

sion timestep. We perform the denoising process in each i
timesteps to predict the original state ŝ0t using Equation (8).

3.4. Repaint Algorithm

The concept of utilizing diffusion for image repaint is in-
spired by (Lugmayr et al., 2022). The core idea is to use
the known sensor data to infer the unknown sensor data. We
adapt and refine the image repaint process to the TSC and
introduce the repaint algorithm to interpolate the damaged
or missing TSC state, as illustrated in Figure 2.

We use a well-trained conditional denoising diffusion prob-
abilistic model, based on DSI (distinct from (Zhihe & Xu)),
to effectively restore the original state Â = ŝ, where the
unknown part is represented by m ⊙ Ãi−1 with m being
the mask matrix, and the known part is (1 − m) ⊙ Ãi−1

stands for unmask matrix. We note that the reverse pro-
cess of diffusion from Ãi to Ãi−1 depends solely on Ãi, as
long as we maintain the correctness properties of the corre-
sponding distribution. Therefore, we update the known state
(1−m)⊙ Ãi−1. According to Equation (1), we sample the
known state at any diffusion timestep i, and use Equation (2)
for the unknown state. We use the following expression for
one reverse step:

Ãi−1
t,known =

√
ᾱiÃt,known +

√
1− ᾱiϵ, (13)

Ãi−1
t,unknown =

1
√
αi

Ãi
t,unknown −

βi√
αi(1− ᾱi)

ϵθ(Ã
i
t, St−1, i) +

√
βiz, (14)

Ãi−1
t = m⊙ Ãi−1

t,known + (1−m)⊙ Ãi−1
t,unknown. (15)

Thus, Ãi−1
known is sampled using the known state in the given

state m⊙A0, and Ãi−1
unknown is sampled from the condition

model given the previous iteration Ãi. These are then com-
bined into the new sample Ãi−1. The repaint algorithm is
summarized in Algorithm 2.
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Table 1. Performance of ATT in JiNan, HangZhou. “-” implies that traditional algorithms are not adapted to MinQ and MAD
attacks. Our RobustLight recovers the state of traditional and RL-based TSC algorithms to evaluate the performance.

Dataset Noise Type Noise Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan1

Gaussian 3.5

428.11±0.00

301.97±2.14 296.01±2.18 285.43±1.82 283.48±1.22 356.86±19.78 302.16±2.86 287.76±1.52 282.35±1.96 320.57±2.82 294.57±2.02

4.0 305.88±2.92 298.95±2.69 290.28±2.17 289.71±1.59 377.91±38.59 311.59±4.69 314.93±28.28 288.07±2.27 338.93±15.32 298.23±5.16

U-rand 3.5 325.09±2.65 319.01±2.17 312.27±2.92 306.12±1.79 538.66±132.69 349.89±22.56 407.41±24.57 312.27±4.07 449.13±21.14 358.22±7.02

4.0 331.58±3.57 322.93±2.67 319.18±2.91 311.32±1.97 549.41±120.08 364.39±28.71 352.63±7.85 320.48±3.29 460.46±22.41 360.82±4.79

MAD 3.5 - - - - 321.24±14.89 280.45±2.99 487.69±50.75 277.37±1.16 479.63±8.82 283.13±1.56

4.0 - - - - 338.14±24.71 287.04±2.69 555.71±64.93 279.15±1.22 520.09±7.12 288.07±2.27

MinQ 3.5 - - - - 313.73±11.87 291.58±8.12 683.38±94.91 277.93±3.47 394.39±50.27 323.25±20.54

4.0 - - - - 321.55±12.64 295.12±6.06 716.58±134.92 281.13±1.96 394.63±47.37 331.52±10.64

JiNan3

Gaussian 3.5

383.01±0.00

275.32±1.24 270.16±1.70 267.76±0.93 263.81±0.94 383.41±58.34 272.12±2.25 289.03±10.62 258.33±2.06 410.96±132.05 288.87±3.59

4.0 279.69±1.92 274.18±1.25 272.17±1.26 271.87±2.03 550.13±188.98 279.86±2.31 293.55±1.86 261.63±1.66 461.57±126.58 294.84±5.45

U-rand 3.5 299.34±2.22 288.71±2.56 293.46±1.22 289.66±2.09 454.32±138.56 307.59±20.82 407.89±50.61 300.36±7.67 987.04±42.62 561.02±62.23

4.0 306.02±2.36 292.13±2.65 298.58±2.19 294.64±2.42 500.65±122.68 313.02±17.33 554.51±80.09 306.03±6.59 1015.29±41.75 596.24±67.48

MAD 3.5 - - - - 498.88±208.66 259.84±1.52 534.43±87.67 263.73±2.57 431.77±17.35 260.78±1.42

4.0 - - - - 594.48±218.45 264.52±1.38 550.26±93.93 267.03±2.09 474.16±17.21 260.78±1.42

MinQ 3.5 - - - - 652.05±230.01 283.01±34.19 726.85±282.56 267.34±3.65 515.34±167.83 309.65±9.99

4.0 - - - - 733.62±233.21 295.12±57.76 744.21±274.72 273.13±4.52 516.23±167.39 329.81±14.76

HangZhou1

Gaussian 3.5

495.57±0.00

332.03±2.01 322.45±1.25 327.37±1.94 324.84±1.79 564.65±103.29 351.68±40.82 356.33±6.38 322.62±5.96 480.38±22.93 327.98±2.45

4.0 335.97±2.49 326.58±1.36 331.93±1.57 329.25±1.21 490.72±93.84 366.62±50.39 371.97±12.44 337.58±5.68 510.38±25.17 331.21±3.65

U-rand 3.5 356.53±3.72 338.42±1.74 354.91±3.31 297.34±1.39 373.88±34.05 328.18±3.17 647.64±54.89 435.33±20.02 717.12±70.08 473.85±32.68

4.0 361.58±4.37 341.16±2.21 359.61±3.34 350.86±3.12 384.75±42.24 330.47±3.11 475.49±29.78 441.33±17.05 738.51±63.18 487.74±31.44

MAD 3.5 - - - - 803.38±92.02 325.49±28.86 402.67±17.42 324.55±6.63 463.64±33.44 309.24±0.94

4.0 - - - - 782.23±121.05 320.91±2.73 419.07±18.26 331.47±8.62 491.64±39.78 352.58±3.71

MinQ 3.5 - - - - 778.04±78.91 420.46±87.75 466.14±70.37 317.36±3.96 449.54±8.22 406.32±6.41

4.0 - - - - 764.88±78.52 435.53±69.87 460.29±62.45 331.93±3.91 482.98±7.29 430.53±8.49

4. Experiments
We conduct experiments with real-world datasets to evaluate
RobustLight’s generalization and efficiency on NVIDIA
P100 hardware, using the hyperparameters in Table 10.

4.1. Datasets

We use real-world traffic flow and road topology datasets for
our experiments, with Cityflow (Zhang et al., 2019) as the
simulator to evaluate Average Travel Time (ATT) and exit
points with a simulation time of 60 minutes for all vehicles.
The datasets include vehicle start and end points, following
a fixed motion model. Seven traffic datasets from three
cities JiNan and HangZhou (China) and New York (Zheng
et al., 2019) (USA) are used.

JiNan Datasets: The JiNan road network consists of 12
intersections (in a 3× 4 grid). It includes three traffic flow
datasets: JiNan1, JiNan2, and JiNan3.

HangZhou Datasets: The HangZhou network encompasses
16 intersections (in a 4× 4 grid) and features two datasets:
HangZhou1 and HangZhou2.

New York Datasets: The New York network features a
more complex structure with 192 intersections (28× 7 grid)
and includes two datasets: Newyork1 and Newyork2.

4.2. Compared Methods

Traditional Methods: These methods include Fixed-
Time (Webster, 1958), which uses a fixed green phase time;

Advanced-Maxpressure (Zhang et al., 2022a), which uses
running and waiting vehicles to choose the phase; and Max-
pressure (Gershenson, 2004), which uses waiting vehicles
to choose the phase.

RL-based Methods: For RL benchmarks, we consider Co-
Light (Wei et al., 2019a), which uses waiting and neigh-
boring vehicles to select the signal phase; Advanced-
CoLight (Zhang et al., 2022a), which employs waiting and
running vehicles with a graph attention neural network; and
Advanced-Mplight (Zhang et al., 2022a), which uses the
FRAP (Zheng et al., 2019) model for signal phase selection.

RobustLight Method: RobustLight integrates the base
methods of traditional and RL-based TSC algorithms to
recover data in real-time, and then evaluates the ATT under
different sensor noise attacks and sensor damage. Results
are presented as the average of ten independent runs.

4.3. Results

This subsection presents the results of our experiments, eval-
uating RobustLight’s performance under various conditions,
including resilience to noise attacks and sensor damage,
using ATT on real-world traffic datasets.

4.3.1. NOISE ATTACK ON STATE RESULTS

Table 15 summarizes our experimental results for the
JiNan and HangZhou datasets based on the ATT met-
ric. The noise scale range is based on the value of k for
state noise attacks, as described in Section 2.2. The re-
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Table 2. ATT in JiNan and HangZhou: 25% refers to missing data in sensorW , and 50% refers to sensorW and sensorE .
Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan1 25% 428.11±0.00 386.74±0.00 324.31±22.74 353.04±0.00 302.84±9.43 398.27±86.93 337.63±50.23 400.93±19.66 372.93±7.43 326.14±16.52 298.35±16.32

50% 798.90±0.00 613.23±108.81 1061.92±0.00 548.84±152.33 1052.83±102.63 642.62±111.28 849.61±77.93 766.91±81.83 732.37±52.93 680.37±97.32

JiNan2 25% 368.76±0.00 272.51±0.00 273.78±3.61 323.13±0.00 274.84±4.74 701.85±200.84 259.36±6.43 637.94±285.96 308.56±22.59 290.86±24.79 259.56±7.59

50% 836.81±0.00 748.23±132.12 1209.97±0.00 751.53±268.33 985.42±64.04 665.92±148.31 880.23±52.93 754.23±173.95 725.57±57.89 639.94±100.49

JiNan3 25% 383.01±0.00 289.81±0.00 288.74±9.83 340.81±0.00 286.54±10.85 824.35±228.64 368.62±104.37 367.94±9.36 315.43±9.67 363.84±54.43 301.63±38.26

50% 823.48±0.00 574.97±69.0 1109.57±0.00 592.56±222.45 947.84±150.34 567.37±75.16 816.73±56.68 382.39±37.83 756.37±162.69 407.68±78.39

HangZhou1 25% 495.57±0.00 369.77±0.00 350.8±20.22 513.15±0.00 371.64±28.35 510.37±92.75 372.12±21.49 490.36±13.84 424.36±13.22 401.87±48.31 328.26±12.67

50% 722.43±0.00 714.32±76.93 1186.56±0.00 752.84±399.84 1170.97±71.83 515.77±180.92 786.32±40.86 542.91±108.24 842.29±235.36 541.56±122.96

HangZhou2 25% 406.65±0.00 372.12±0.00 353.85±3.66 405.27±0.00 356.64±4.64 362.93±15.36 350.26±10.62 397.88±20.68 390.43±10,37 378.86±26.86 375.64±22.32

50% 533.81±0.00 447.91±70.34 781.57±0.00 542.37±161.07 639.52±127.45 522.92±157.32 663.72±80.82 470.91±34.82 508.93±30.27 444.37±61.24

sults reveal that the incorporation of Robustlight leads to
improved performance across all methods, demonstrating
its effectiveness in mitigating various types of noise attacks.

4.3.2. SENSOR DAMAGE ON STATE RESULTS

We compare traditional and RL-based TSC algorithms,
focusing on deliberate sensor attacks on sensorW and
sensorE , with data from these directions masked to simu-
late damage. We use the Repaint algorithm within Robust-
Light for data completion, allowing us to evaluate the TSC
algorithm’s performance before and after this process, as
shown in Table 2. Our findings lead to several key conclu-
sions. Under noisy conditions, MaxPressure outperforms
Advanced-MaxPressure with an 11.6% average improve-
ment across all datasets. Advanced-CoLight surpasses Co-
Light with an 18.4% improvement. The RobustLight al-
gorithm enhances performance in nearly all methods, with
Advanced-CoLight showing a 10.3% improvement. Follow-
ing sensor damage in sensorW and sensorE , all methods
perform worse than FixedTime, but our algorithms effec-
tively recover missing data and still outperform FixedTime
with damage in one direction, highlighting the importance of
addressing sensor damage in real-world TSC deployments.

Table 3. Performance comparison with other benchmarks.
Dataset Noise Type Noise Scale Advanced-CoLight

base RobustLight
Diffusion

Linear-Beta
LSTM

JiNan1

Gaussian 3.5 320.57±2.82 294.57±2.02 324.04±3.04 892.0±213.7

4.0 338.93±15.32 298.23±5.16 326.83±6.56 914.18±215.7

Sensor

Damage

25% 326.14±16.52 298.35±16.32 350.96±17.32 1035.39±156.69

50% 732.37±52.93 680.37±97.32 689.13±98.43 1088.77±160.11

HangZhou1

Gaussian 3.5 480.38±22.93 327.98±2.45 480.53±33.55 1123.4±341.28

4.0 510.38±25.17 331.21±3.65 510.16±22.34 1140.26±325.02

Sensor

Damage

25% 401.87±48.31 328.26±12.67 386.13±29.28 1581.35±73.21

50% 842.29±235.36 541.56±122.96 551.44±40.16 1638.32±14.1

4.3.3. OTHER METHODS COMPARISON EXPERIMENTS

We compare the native Diffusion model with three Beta
schedule methods (Xiao et al., 2021b; Ho et al., 2020b;
Nichol & Dhariwal, 2021b) and LSTM model (Sun et al.,
2021) on real-world datasets. As shown in Table 3, our
RobustLight outperforms the native Diffusion model in all
noise attack scenarios, demonstrating its effectiveness.

Table 4. Performance Comparison with DiffLight
Dataset Noise/Mask Method RobustLight PSNR MAE ATT

JiNan1 U-rand Noise
(3.5)

DiffLight No 6.71 6.26 310.92
Advanced-MaxPressure Yes 7.20 5.42 304.34

HangZhou1 U-rand Noise
(3.5)

DiffLight No 6.85 7.93 361.31
Advanced-MaxPressure Yes 7.71 5.12 297.34

JiNan1 Sensor Damage
(25%)

DiffLight No 7.66 1.05 366.05
Advanced-Colight Yes 9.34 0.89 304.13

HangZhou1 Sensor Damage
(25%)

DiffLight No 18.05 1.84 372.53
Advanced-Colight Yes 22.96 1.17 306.56
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Figure 3. Ablation of RobustLight based on Advanced-Colight
in JiNan1 and HangZhou1 under Gaussian noise (scale 3.5).

To validate our approach with DiffLight (Chen et al., 2024),
we setup involved randomly masking data from Kriging
Missing (12.5%, single-intersection-sensor failure) and Ran-
dom Missing (12.5%, full-intersection failure). As demon-
strated in Table 4, our method effectively addresses data
missing scenarios (Kriging and random missing) while also
exhibiting robust performance under noisy data conditions.

4.3.4. ABLATION EXPERIMENTS

We conduct ablation experiments on RobustLight to assess
the impact of each component. “w/o linear beta” refers to the
experiment without the linear beta schedule, “w/o markov-
loss” excludes the Markov loss, “w/o ori-dif-markov-loss”
omits the original diffusion model with Markov loss, and
“w/o ori-dif-non-markov-loss” excludes the original diffu-
sion model with non-Markov loss. Showing the effective-
ness of RobustLight.
4.3.5. ROBUSTNESS RECOVERY ANALYSIS

We analyze RobustLight’s effectiveness in recovering the
original data using t-SNE (Van der Maaten & Hinton, 2008)
plots. In the plots, yellow represents the original state distri-
bution, blue represents the recovered states, and red shows
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Figure 4. State visulization of RobustLight based on Advanced-
Colight in HangZhou1 and JiNan1.

JiNan1 HangZhou1

Normal Abnormal Recovery Normal Abnormal Recovery
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Figure 5. Violin figure of normal, noise and recovery data.

the distribution with Gaussian noise (scale 3.5). Figure 4
shows that the blue distribution is closer to the original,
demonstrating RobustLight’s strong robustness. Addition-
ally, violin plots in Figure 5 show that the recovered data
distribution closely matches the normal data.

To directly evaluate the recovery effect, we define the metric
Edenoise = 1

N

∑T
1 |ŝ− s|. Where N is the number of

intersections, T is the running count, ŝ is the recovered
state, and s represents the original state. is the original
state. This metric measures the ability to restore data by the
absolute difference between the original and reconstructed
states. As shown in Table 5, RobustLight exhibits strong
recovery performance.

4.3.6. MODEL GENERALIZATION

To assess generalization, we train a diffusion model based
on the Advanced-Maxpressure algorithm using the JiNan1

Table 5. Edenoise the smaller the value, the better.
Dataset Noise Type Noise Scale CoLight Advanced-CoLight

base RobustLight base RobustLight

JiNan1
Gaussian 3.5 399.15±20.31 284.46±21.26 808.76±16.84 484.15±13.26

U-rand 3.5 899.85±15.23 628.36±13.82 1814.56±31.36 1186.43±24.31

HangZhou1
Gaussian 3.5 399.15±21.35 284.30±16.37 1077.09±25.82 320.57±13.82

U-rand 3.5 1198.21±13.37 535.67±16.31 2417.44±19.96 1202.61±38.74

2024/2/8 11:09 transfer.svg
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Figure 6. Performance of RobustLight based on Advanced-
Maxpressure in Newyork transfer by JiNan1.

dataset and test it on the Newyork dataset. As shown in
Figure 6, transferring the model to Newyork effectively
mitigates noise attacks and demonstrates strong state restora-
tion in a different urban traffic environment.

5. Discussion
Q1. Is there any challenge to apply the diffusion model?
We evaluate the time consumption of the DSI algorithm (Ta-
ble 17) to assess its computational costs and impact on TSC
algorithms. As the noise range increases, more diffusion
steps are needed, resulting in longer recovery times. A key
challenge in large-scale scenarios is slow inference, driven
by both the diffusion steps and the increasing number of
intersections. To address this, we plan to reduce diffusion
steps using DDIM and divide intersections into smaller sub-
regions, each with its own actor diffusion model, to speed
up inference. This discussion highlights the trade-off be-
tween accuracy and speed in diffusion models for real-time
TSC systems and suggests ways to improve efficiency in
large-scale deployments.

Q2. Is there any report about cyber attacks on traffic
control systems? Traffic sensor attacks (Chen et al., 2019;
Chowdhury et al., 2023a; Laszka et al., 2016a), demon-
strated at DEFCON 22 by Cesar Cerrudo, highlight vulnera-
bilities in traffic control systems, where hackers target street
magnetic sensors. Discussions on platforms like Quora
(“hack traffic lights”) further emphasize concerns about sen-
sor safety. As AI systems become more prominent, ensuring
their security is crucial, especially given the additional risks
from extreme weather interference.

Q3. How to detect noise and missing data? To detect
noise and missing data in our study, we use a combination of
attack detection models and statistical methods. We assume
that attacks, caused by factors such as weather conditions
and radio interference, have been pre-detected, with the at-
tack detection model identifying noisy or missing data based
on abnormal sensor readings. Noise is detected through out-
lier detection and variance analysis, while missing data is
identified by checking for null or NaN values and analyz-
ing missingness patterns across sensors. Once detected,
we handle noise using denoise algorithm and missing data
through repaint algorithm of RobustLight, ensuring data
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Table 6. Detection Rate and Throughput Comparison
Detection Rate Dataset Base ATT Base Throughput

80% JiNan1 487 297 5812 6154

HangZhou1 463 326 2888 2938

60% JiNan1 487 328 5812 6131

HangZhou1 463 331 2888 2930

integrity and robustness in the presence of environmental
disturbances.

Q4. If the RobustLight rely on the accuracy of detec-
tion? To evaluate its reliance on detection accuracy, we
integrated TP-FDS (Sarteshnizi et al., 2023), a method that
detects anomalies by comparing new data distributions with
historical data from the same period, achieving an AUC of
96% and an F1 score of 76%. TP-FDS identifies anomalies
through multi-sensor cross-referencing (e.g., cameras and
radar) or rule-based methods, such as detecting a queue
increase from 3 to 5 during a north-south green light. Minor
fluctuations, like queue changes from 3 to 5, minimally im-
pact system efficiency. To assess RobustLight’s dependence
on detection accuracy, we conducted experiments simulating
real-world scenarios with detection rates of 80% and 60%,
as shown in Table 6. The results show that RobustLight has
a robust performance in most detection rates.

Q5. What are the practical considerations and potential
barriers to real-world implementation? Our framework
supports both distributed and centralized deployments: the
distributed approach employs a federated learning architec-
ture with central training and edge-based parameter updates,
while the centralized solution addresses scalability through
high-performance servers and algorithmic optimizations
like DDIM (Song et al., 2020) acceleration. For comprehen-
sive coverage of intersection failures (Kriging) and sensor-
specific issues (Random missing), we recommend a hybrid
approach, implementing centralized data missing recovery
algorithms alongside edge-based noise reduction using cost-
effective hardware for accelerated denoising. This balanced
strategy ensures robustness, real-time performance, and at-
tack resilience across all deployment scenarios.

6. Related Works
TSC Algorithms. Since the introduction of static fixed-
time plans in 1958 (Webster, 1958), TSC systems have
evolved significantly. Systems like SCOOT (Hunt et al.,
1982) and SCATS (Lowrie, 1990) rely on expert-designed
plans with predefined thresholds, lacking dynamic adapt-
ability to changing traffic conditions. The advent of RL
methods has marked a paradigm shift, leveraging real-time
traffic data to optimize signal management through trial-
and-error, outperforming traditional approaches. RL models

in TSC vary from value-based (Abdulhai et al., 2003; Wei
et al., 2018), policy-based (Mousavi et al., 2017), to actor-
critic frameworks (Aslani et al., 2018; Wu et al., 2022), with
state and reward designs incorporating features like queue
length (Varaiya, 2013; Wu et al., 2021; Li et al., 2025), ve-
hicle counts (Wei et al., 2019a; Xu et al., 2021), or travel
time (Zheng et al., 2019). Advanced-Colight method (Zhang
et al., 2022a) stands out, achieving state-of-the-art results by
using running and waiting vehicles to model lane capacity
relationships.

Robust RL. In RL, disturbances cause errors, leading to
Robust RL for improved reliability, split into “training-
time” and “testing-time” robustness. “Training-time” adds
noise during training for adaptability (Zhang et al., 2022c;
Ye et al., 2023). “Testing-time” trains in clean settings
and tests under disruptions (Yang et al., 2022; Panaganti
et al., 2022). Our RobustLight focuses on “testing-time”
robustness for real-world attack resilience. “Testing-time”
robustness covers state, action, and transition/reward per-
turbations. State perturbation uses neural networks and
SA-MDP (Zhang et al., 2021; 2020) or conservative ac-
tions (Yang et al., 2022). Action perturbation employs ad-
versarial training (Tan et al., 2020) or optimal policies (Liu
et al., 2023). Transition/reward perturbations use Markov
games (Pinto et al., 2017; Gleave et al., 2019) or robust
Bellman operators (Panaganti et al., 2022). We prioritize
“testing-time” robustness for real-world attack resilience.
Diffusion Model. Diffusion models, first used for image
generation (Ho et al., 2020b), excel in RL control tasks.
Diffusion RL splits into online and offline settings. On-
line, Yang et al. (Yang et al., 2023) applied diffusion as a
policy with model-free control. Offline, Ajay et al. (Ajay
et al., 2022) generated trajectories for decisions, and Wang
et al. (Wang et al., 2022) introduced Diffusion-QL, merging
TD3+BC (Fujimoto & Gu, 2021) with behavior cloning.
Online TSC algorithms (Wei et al., 2019a; Chen et al., 2020;
Zhang et al., 2022a) falter under state attacks and missing
data, risking congestion. RobustLight, our proposed algo-
rithm, enhances online TSC resilience by recovering data
without altering existing systems, offering a novel solution
for research and industry.

7. Conclusion.
In this paper, we introduced RobustLight, designed to ad-
dress abnormal TSC tasks. By leveraging the denoising
properties of the diffusion model, RobustLight effectively
handles noise interference and incomplete state information
in real-world environments. Empirical results demonstrate
its robustness and effectiveness, significantly enhancing the
security of RL-based TSC strategies and strengthening tra-
ditional TSC algorithms, thereby improving the safety and
integrity of TSC systems.
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A. Appendix: Settings.
A.1. Unet Network Structure

The unet structure is shown in Tables 7, 8, and 9.

Table 7. TemporalUnet Structure
Layer Layer (input size, output size)

state encoder
Linear(state dim, hidden size)

Mish()
Linear(hidden size, state dim)

action encoder
Linear(action dim, hidden size)

Mish()
Linear(hidden size, action dim)

time mlp

SinusoidalPosEmb(hidden size,hidden size)
Linear(hidden size, hidden size*2)

Mish()
Linear(hidden size*2, hidden size)

downs

ResidualTemporalBlock(hidden size,hidden size*2)
ResidualTemporalBlock(hidden size*2,hidden size*2)

Identity()
Downsample1d(hidden size*2,hidden size*2)

ResidualTemporalBlock(hidden size*2,hidden size*4)
ResidualTemporalBlock(hidden size*4,hidden size*2)

Identity()
Identity()

ups

ResidualTemporalBlock(hidden size*8,hidden size*2)
ResidualTemporalBlock(hidden size*2,hidden size*2)

Identity()
ConvTranspose1d(hidden size*2,hidden size*2)

mid block1 ResidualTemporalBlock(hidden size*4,hidden size*4)
ResidualTemporalBlock

mid attn Identity()
mid block2 ResidualTemporalBlock(hidden size*4,hidden size*4)

final conv Conv1dBlock(hidden size*2,hidden size*2)
Conv1d(hidden size*2,hidden size/4)

mid layer

Linear(out horizon*hidden size/4+
(hidden size*3)/2+hidden size,hidden size*2)

Mish()
Linear(hidden size*2, hidden size*2)

Mish()
Linear(hidden size*2, hidden size*2)

Mish()
final layer Linear(hidden size*2, hidden size/2)
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Table 8. ResidualTemporal Block Structure
Layer Details

ResidualTemporalBlock

blocks Conv1dBlock(input dim,output dim)
Conv1dBlock(output dim,output dim)

time mlp
Mish()

Linear(output dim, output dim*2)
Rearrange(’batch t - batch t 1’)

residual conv Conv1d(input dim, output dim)

Table 9. Conv1dBlock Structure
Layer Details

Conv1dBlock

Conv1d(input dim,output dim,Kernel Size, Stride, Padding)
Rearrange(’batch channels horizon’→ ’batch channels 1 horizon’

’batch channels 1 horizon’→ ’batch channels horizon’)
GroupNorm(output dim, Group, eps, Affine: True)

Mish()

A.2. Hyperparameter

By effectively tuning these hyperparameters, users can optimize RobustLight performance for their specific data recovery
tasks, achieving better accuracy and robustness in handling missing or corrupted data. The detailed settings are summarized
in Table 10.

Table 10. Hyperparameters

Hyperparameter type
Diffusion policy
Hyperparameter Setting

UNet
hyperparameter

embed dim 64
state dim 12/24

action dim 4

Diffusion training
hyperparameter

non markovian step 6
condition length 4

beta schedule a, b, c 2.1190,25.06,-2.5446
discount(γ) 0.99

target critic(τ ) 0.005
diffusion timstep 100

batch size 64
buffer capacity 12000

optimizer Adam
learning rate 0.0003

epochs 50
action gradient steps 20

TSC RL agent
training hyperparameter

discount(γ) 0.8
target critic(τ ) 0.95
buffer capacity 12000

epochs 100
batch size 20

learning rate 0.001
target update time 5

normal factor 20
loss function MSE

optimizer Adam
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Table 11. Performance in terms of ATT. %25 means the sensorN , %50 means the sensorN , sensorE missing data.
Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan1 25% 428.11±0.00 286.75±0.00 279.52±1.07 265.36±0.0 263.07±1.09 524.48±199.99 260.36±4.47 316.76±15.24 276.02±3.44 253.58±1.84 252.88±1.3
50% 308.17±0.0 299.56±2.88 277.53±0.0 275.13±1.83 278.37±2.47 270.44±5.09 312.07±4.91 321.85±5.63 313.69±12.85 304.13±11.42

JiNan2 25% 368.76±0.00 252.12±0.00 283.78±10.61 253.71±0.0 250.77±0.85 268.98±34.52 242.73±0.47 267.43±2.42 260.0±3.18 237.03±1.09 243.49±1.86
50% 276.93±0.0 272.67±3.52 269.6±0.0 266.67±1.58 258.02±1.38 242.01±25.74 279.01±4.46 271.44±2.54 267.85±6.47 282.31±7.6

JiNan3 25% 383.01±0.00 251.22±0.00 250.09±0.83 248.68±0.0 245.66±0.74 259.62±40.43 238.43±3.43 267.17±3.04 253.9±1.16 242.36±1.77 239.41±1.7
50% 273.32±0.0 270.64±4.39 265.72±0.0 263.77±1.53 255.55±1.54 343.01±52.36 288.54±5.05 273.83±2.21 304.03±26.17 268.88±9.01

HangZhou1 25% 495.57±0.00 306.21±0.00 307.8±1.58 397.12±0.0 301.53±4.38 505.87±94.27 305.12±7.49 376.22±19.3 320.05±6.62 303.94±10.84 290.02±7.84
50% 392.9±0.0 524.5±48.28 528.11±0.0 433.36±38.17 428.21±42.96 346.04±10.38 467.12±12.2 362.18±9.7 511.01±56.7 375.96±47.84

HangZhou2 25% 406.65±0.00 352.17±0.00 349.81±1.19 378.94,0.0 330.82±3.91 382.15±10.52 349.4±2.56 383.97±15.87 362.11±8.16 347.53±18.69 334.01±7.22
50% 425.14±0.0 405.95±6.37 452.73±0.0 422.18±12.57 436.27±18.12 413.07±13.63 434.66±7.18 415.51±7.82 444.82±41.36 383.46±17.09

Table 12. Performance of in terms of ATT. %25 means the sensorE , %50 means the sensorE , sensorS missing data.
Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan1 25% 428.11±0.00 308.68±0.0 292.73±4.19 288.06±0.0 276.14±2.23 535.51±110.15 360.76±74.58 353.3±4.7 328.99±2.28 291.08±4.77 298.17±8.72
50% 704.67±0.0 877.64±81.64 1138.54±0.0 837.9±100.32 1168.06±45.85 838.9±76.63 967.5±21.19 955.55±1.28 635.65±21.05 615.93±31.48

JiNan2 25% 368.76±0.00 265.92±0.0 259.68±6.4 273.48±0.0 257.17±1.6 817.22±231.93 275.46±46.36 356.79±4.03 281.06±2.07 264.35±5.53 254.08±4.13
50% 758.94±0.0 641.38±38.7 1106.91±0.0 959.47±69.72 1178.75±106.23 809.77±64.74 1125.51±37.74 1044.55±16.55 659.29±39.5 650.12±39.04

JiNan3 25% 383.01±0.00 261.32±0.0 260.4±1.35 264.86±0.0 252.11±1.38 545.89±179.58 325.41±44.77 305.41±7.81 271.38±3.22 260.69±2.7 253.03±4.76
50% 668.31±0.0 701.76±53.94 1254.97±0.0 727.59±91.6 1114.57±64.26 761.78±143.2 1022.03±23.29 801.03±88.64 643.5±45.69 596.76±42.72

HangZhou1 25% 495.57±0.00 365.3±0.0 426.3±51.56 450.99±0.0 300.44±2.19 619.52±133.36 410.38±60.16 432.58±6.51 335.26±10.09 381.1±62.66 340.48±22.93
50% 636.51±0.0 754.16±33.52 1005.01±0.0 781.38±69.53 825.5±49.93 424.8±55.41 912.27±43.76 462.48±37.71 602.16±109.41 516.18±19.13

HangZhou2 25% 406.65±0.00 381.51±0.0 371.48±6.28 414.65±0.0 351.19±4.67 396.42±23.46 353.43±2.89 426.9±2.24 379.94±7.1 377.86±28.22 352.87±10.5
50% 554.02±0.0 552.24±23.82 718.93±0.0 534.73±38.6 687.16±62.93 447.47±17.12 693.78±34.59 471.14±12.57 501.53±48.97 446.97±11.96

Table 13. Performance in terms of ATT. %25 means the sensorS , %50 means the sensorW , sensorS missing data.
Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan1 25% 428.11±0.00 307.99±0.02 318.51±9.13 294.96±0.0 272.62±1.45 314.89±29.39 456.42±158.17 563.6±108.06 347.75±13.07 277.76±4.93 297.89±6.94
50% 422.76±0.0 537.52±16.47 320.54±0.0 319.24±5.6 326.15±6.18 327.87±5.09 783.84±298.76 377.02±25.84 379.57±13.3 431.91±25.96

JiNan2 25% 368.76±0.00 263.82±0.0 258.16±2.01 268.66±0.0 256.44±1.63 266.23±20.64 249.71±1.88 286.31±5.87 266.66±2.43 258.47±2.06 257.17±3.87
50% 306.72±0.0 407.5±7.79 294.71±0.0 288.55±4.1 293.4±18.01 304.9±2.08 342.81±,36.26 295.67±6.86 307.66±14.51 377.25±28.18

JiNan3 25% 383.01±0.00 270.41±0.0 275.75±7.51 262.33±0.0 254.85±1.56 453.95±92.19 250.51±1.99 315.87±7.89 273.27±5.88 277.3±28.08 261.9±5.56
50% 323.21±0.0 459.55±9.48 306.58±0.0 286.77±4.06 330.86±22.73 337.5±44.54 320.0±2.34 331.79±18.83 341.43±9.31 365.48±16.22

HangZhou1 25% 495.57±0.00 313.71±0.0 319.2±21.11 445.59±0.0 364.62±14.37 416.28±22.38 391.16±55.98 434.97±1.84 396.72±25.87 408.48±21.16 345.09±11.53
50% 430.52±0.0 569.06±7.55 632.61±0.0 484.92±19.65 460.54±12.55 388.82±11.75 577.86±20.19 511.12±23.68 656.46±29.04 514.43±46.55

HangZhou2 25% 406.65±0.00 361.69,0.0 364.5±2.2 394.35±0.0 369.94±4.28 398.64±5.08 379.31±8.41 406.21±4.92 396.05±8.35 393.66±12.79 361.81±7.71
50% 387.58±0.0 461.11±4.51 446.4±0.0 411.78±3.03 458.86±16.85 467.39±0.68 437.73±16.48 411.47±13.55 462.53±17.42 419.92±9.52

Table 14. Performance of ATT comparison between the native diffusion model, LSTM model and our improved diffusion model.
Dataset Noise Type Noise Scale CoLight Advanced-CoLight

base RobustLight
Diffusion

Linear-Beta
Diffusion

Cosine-Beta
Diffusion
vp-Beta LSTM base RobustLight

Diffusion
Linear-Beta

Diffusion
Cosine-Beta

Diffusion
vp-Beta LSTM

JiNan1

Gaussian 3.5 287.76±1.52 282.35±1.96 287.08±2.23 286.89±1.17 288.6±1.60 1219.5±67.02 320.57±2.82 294.57±2.02 324.04±3.04 323.65±8.30 324.3±6.66 892.0±213.7
4.0 314.93±28.28 288.07±2.27 294.76±1.35 1289.13±0.58 296.62±2.38 1225.65±59.28 338.93±15.32 298.23±5.16 326.83±6.56 1230.28±6.59 342.47±8.47 914.18±215.7

U-rand 3.5 407.41±24.57 312.27±4.07 407.38±22.23 424.39±14.73 405.22±23.74 1102.77±134.88 449.13±21.14 358.22±7.02 433.95±9.03 437.24±12.43 445.68±22.08 786.75±153.39
4.0 352.63±7.85 320.48±3.29 431.15±24.95 449.54±7.18 426.82±26.03 1134.31±119.32 460.46±22.41 360.82±4.79 456.95±6.03 453.61±18.91 458.69±21.52 794.28±152.55

MAD 3.5 487.69±50.75 277.37±1.16 471.97±33.31 630.83±37.37 743.38±1.03 1302.95±1.19 479.63±8.82 283.13±1.56 370.0±9.50 356.21±5.30 360.58±6.34 968.35±150.25
4.0 555.71±64.93 279.15±1.22 622.46±13.46 778.2±14.04 810.48±1.34 1303.05±1.17 520.09±7.12 288.07±2.27 383.12±3.28 366.46±6.34 372.44±5.32 983.57±167.12

MinQ 3.5 683.38±94.91 277.93±3.47 713.04±19.43 485.79±18.87 497.0±4.35 1296.72±16.26 394.39±50.27 323.25±20.54 508.66±21.35 514.2±30.03 523.33±17.34 1095.13±163.77
4.0 716.58±134.92 281.13±1.96 811.2±32.13 529.54±32.45 553.46±2.36 1296.72±16.26 394.63±47.37 331.52±10.64 532.77±12.30 570.18±14.03 576.11±15.04 1091.69±158.39

Sensor
Damage

25% 400.93±19.66 372.93±7.43 409.63±3.37 1293.77±5.93 538.01±183.96 1290.52±110.71 326.14±16.52 298.35±16.32 350.96±17.32 1291.53±23.83 402.87±33.58 1035.39±156.69
50% 849.61±77.93 766.91±81.83 771.24±22.29 1295.14±23.31 789.67±132.54 1297.65±112.3 732.37±52.93 680.37±97.32 689.13±98.43 1295.74±34.86 760.2±36.66 1088.77±160.11

HangZhou1

Gaussian 3.5 356.33±6.38 322.62±5.96 362.66±5.36 363.8±0.92 374.12±9.71 435.97±103.99 480.38±22.93 327.98±2.45 480.53±33.55 482.46±24.13 504.29±30.48 1123.4±341.28
4.0 371.97±12.44 337.58±5.68 378.45±5.2 1121.71±2.74 408.76±18.96 441.03±122.33 510.38±25.17 331.21±3.65 510.16±22.34 1115.67±3.63 546.12±27.14 1140.26±325.02

U-rand 3.5 647.64±54.89 435.33±20.02 660.63±52.6 643.53±46.33 654.66±49.97 628.22±124.08 717.12±70.08 473.85±32.68 720.43±68.66 724.03±67.08 720.34±61.62 991.97±312.59
4.0 475.49±29.78 441.33±17.05 704.63±44.9 674.75±47.63 690.65±52.65 656.45±129.92 738.51±63.18 487.74±31.44 742.7±64.37 751.11±62.34 756.38±65.69 1025.41±324.38

MAD 3.5 402.67±17.42 324.55±6.63 414.88±3.63 530.83±13.64 522.02±6.34 724.26±307.81 463.64±33.44 309.24±0.94 479.13±10.69 499.48±1.03 477.33±9.91 934.45±64.37
4.0 419.07±18.26 331.47±8.62 429.54±9.31 570.98±4.63 529.69±9.31 782.48±292.96 491.64±39.78 352.58±3.71 510.51±6.25 518.84±4.32 515.24±33.63 1124.45±32.27

MinQ 3.5 466.14±70.37 317.36±3.96 538.68±4.03 402.27±3.36 402.33±5.85 762.59±267.59 449.54±8.22 406.32±6.41 488.99±16.95 495.9±8.34 487.39±9.93 783.46±28.32
4.0 460.29±62.45 331.93±3.91 570.33±5.34 407.07±6.04 405.55±6.24 763.68±273.87 482.98±7.29 430.53±8.49 517.86±12.74 524.97±9.14 535.21±11.71 928.32±123.32

Sensor
Damage

25% 490.36±13.84 424.36±13.22 490.01±1.54 1123.98±10.6 434.56±27.88 602.42±111.57 401.87±48.31 328.26±12.67 386.13±29.28 1122.75±3.18 400.57±49.43 1581.35±73.21
50% 786.32±40.86 542.91±108.24 776.83±25.33 1121.73±12.75 560.45±131.35 734.51±70.43 842.29±235.36 541.56±122.96 551.44±40.16 1123.49±3.03 611.57±121.67 1638.32±14.1
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Table 15. Performance of ATT in JiNan, HangZhou. “-” implies that traditional algorithms are not adapted to MinQ and MAD
attacks. Our RobustLight recovers the state of traditional and RL-based TSC algorithms to evaluate the performance.

Dataset Noise Type Noise Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight
base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNan2

Gaussian 3.5

368.76±0.00

279.05±1.56 276.14±1.49 275.95±1.22 274.67±1.58 383.41±58.34 276.02±1.72 295.87±17.16 265.21±2.02 326.04±10.78 289.84±4.68
4.0 282.99±1.22 279.89±1.41 279.63±1.15 276.56±1.74 455.56±110.18 281.88±2.91 336.38±61.85 271.65±1.57 340.84±17.41 298.63±5.04

U-rand 3.5 301.51±2.82 290.84±2.46 299.75±1.16 297.34±1.39 548.04±98.46 323.93±11.34 653.03±150.29 380.63±68.09 717.76±169.73 361.72±28.89
4.0 306.29±3.09 294.39±3.25 304.75±1.09 302.97±1.91 514.01±116.27 327.93±11.35 359.26±12.55 354.02±53.63 741.76±181.97 361.66±30.15

MAD 3.5 - - - - 285.67±11.23 263.21±1.17 565.93±39.44 262.05±1.48 325.87±8.34 271.58±1.52
4.0 - - - - 297.97±18.32 268.94±1.13 588.27±47.11 263.45±1.65 337.42±8.64 271.65±1.57

MinQ 3.5 - - - - 283.37±3.09 264.48±1.83 516.49±102.73 261.41±1.34 323.07±7.45 300.31±5.44
4.0 - - - - 289.43±3.78 270.98±1.83 541.17±112.48 268.17±2.29 346.51±3.85 314.29±3.67

HangZhou2

Gaussian 3.5

406.65±0.00

360.56±2.45 358.57±1.71 345.27±1.23 342.52±1.23 564.65±103.29 362.27±3.85 349.75±5.13 344.63±2.01 396.61±9.59 368.79±6.27
4.0 363.64±2.77 359.93±2.02 348.40±1.11 346.66±1.02 418.41±12.43 371.71±3.65 352.25±4.43 351.58±3.75 410.64±10.02 371.54±6.94

U-rand 3.5 371.21±3.44 365.23±2.07 362.11±2.13 289.62±2.09 504.63±9.71 437.93±14.49 442.07±26.52 353.67±3.26 472.11±20.71 379.27±11.97
4.0 373.89±3.09 366.52±2.14 366.69±3.53 359.17±2.02 513.83±11.21 445.99±11.53 383.27±9.41 356.79±4.07 487.33±19.17 384.24±13.31

MAD 3.5 - - - - 345.74±29.73 344.52±4.49 478.25±15.39 349.37±2.54 405.37±12.33 359.03±9.23
4.0 - - - - 349.48±26.63 348.61±5.77 490.25±18.66 356.53±4.33 406.75±5.01 359.06±9.23

MinQ 3.5 - - - - 347.04±24.07 343.38±9.54 473.48±11.07 347.73±3.85 399.87±15.12 372.84±4.84
4.0 - - - - 350.15±24.27 347.44±9.43 484.52±12.88 352.13±2.72 408.28±8.71 385.43±8.06

Table 16. Performance Compared with DiffLight.

Dataset Noise Type Noise Scale DiffLight Advanced-Colight-RobustLight

JiNan1

Gaussian 3.5 289.45±3.37 294.57±2.02
U-rand 3.5 311.53±4.17 358.22±7.02
MAD 3.5 384.71±13.25 283.13±1.56
MinQ 3.5 321.98±6.37 323.25±20.54
Mask

(Kriging and Random) 25% 353.45±34.31 320.31±3.21

HangZhou1

Gaussian 3.5 325.05±2.58 327.98±2.45
U-rand 3.5 365.05±20.67 473.85±32.68
MAD 3.5 366.14±5.34 309.24±0.94
MinQ 3.5 426.14±10.56 406.32±6.41
Mask

(Kriging and Random) 25% 346.05±41.27 296.69±4.67

B. Appendix: Other Experiments

Table 17. Recover time comparison.

Dataset Noise type Noise scale Diffusion
step

Advanced
Colight

Advanced
Maxpressure

Recover
time(ms)

Recover
time(ms)

JiNan1

Gaussian 1.0 20 376.16 343.06
0.5 20 202.98 178.95

U-rand 1.0 16 262.89 233.45
0.5 8 142.05 124.33

MAD 1.0 240 3792.56 -
0.5 120 1959.03 -

MinQ 1.0 240 3779.34 -
0.5 120 1976.44 -

Sensor
damage

25% 200 2987.34 2765.36
50% 200 2997.61 2768.24

HangZhou2

Gaussian 1.0 40 417.26 447.84
0.5 20 221.38 233.92

U-rand 1.0 16 281.60 302.86
0.5 8 156.32 160.16

MAD 1.0 240 5220.45 -
0.5 120 3581.67 -

MinQ 1.0 240 5348.28 -
0.5 120 2889.14 -

Sensor
damage

25% 200 3232.13 3552.44
50% 200 3223.55 3559.41
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C. Appendix: Model Generalization Analysis
In this section, we analyze the model’s generalization ability. We transfer the algorithm trained on the JiNan1 dataset to
other datasets to observe whether our RobustLight can effectively recover the data under various attacks.
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Figure 7. Performance of RobustLight based on Maxpressure transfer by JiNan1.

Jinan2 Jinan3 Hangzhou1 Hangzhou2

Newyork1 Newyork2

2024/6/2 14:03 admp_transfer.svg

file:///C:/Users/MY1210/Desktop/RealTimeMising/图片/实验/robust/AdvancedMaxPressure_Repaint/admp_transfer.svg 1/1

Figure 8. Performance of RobustLight based on Advanced-Maxpressure transfer by JiNan1.
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Figure 9. Performance of RobustLight based on Advanced-Mplight transfer by JiNan1.
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Figure 10. Performance of RobustLight based on Colight transfer by JiNan1.

Jinan2 Jinan3 Hangzhou1 Hangzhou2

Newyork1 Newyork2

2024/6/2 14:04 advancedcolight_transfer.svg

file:///C:/Users/MY1210/Desktop/RealTimeMising/图片/实验/robust/Colight_DSI_Repaint/advancedcolight_transfer.svg 1/1

Figure 11. Performance of RobustLight based on Advanced-Colight transfer by JiNan1.
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D. Appendix: Robustness Analysis
In this section, we provide detailed visualizations of the state t-SNE distributions and violin plots after dimensionality
reduction under Gaussian noise attacks for different algorithms. As observed, for different algorithms, our RobustLight
shows a significantly better recovery of the state distribution in most datasets, making it more closely resemble the original
state distribution compared to the attacked state distribution.
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Figure 12. State t-SNE visulization of RobustLight based on Maxpressure in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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Figure 13. State violin visulization of RobustLight based on Maxpressure in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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Figure 14. State t-SNE visulization of RobustLight based on AdvancedMaxpressure in HangZhou and JiNan. Compared to
the state distribution after the noise attack, the state distribution is much closer to the original state distribution after using our
algorithm. RobustLight has the ability of state recovery.

20



RobustLight: Improving Robustness via Diffusion Reinforcement Learning for Traffic Signal Control

Jinan1 Jinan2 Jinan3

Hangzhou1 Hangzhou2

2024/5/26 17:35 advancedmaxpressure_violin.svg

file:///C:/Users/MY1210/Desktop/RealTimeMising/图片/实验/robust/AdvancedMaxPressure_Repaint/advancedmaxpressure_violin.svg 1/1

Figure 15. State violin visulization of RobustLight based on AdvancedMaxpressure in HangZhou and JiNan. Compared to the
state distribution after the noise attack, the state distribution is much closer to the original state distribution after using our
algorithm. RobustLight has the ability of state recovery.
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Figure 16. State t-SNE visulization of RobustLight based on Colight in HangZhou and JiNan. Compared to the state distribution
after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm. RobustLight
has the ability of state recovery.

21



RobustLight: Improving Robustness via Diffusion Reinforcement Learning for Traffic Signal Control

Jinan1 Jinan2 Jinan3

Hangzhou1 Hangzhou2

2024/5/26 17:37 colight_violin.svg

file:///C:/Users/MY1210/Desktop/RealTimeMising/图片/实验/robust/Colight_Repaint/colight_violin.svg 1/1

Figure 17. State violin visulization of RobustLight based on Colight in HangZhou and JiNan. Compared to the state distribution
after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm. RobustLight
has the ability of state recovery.
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Figure 18. State t-SNE visulization of RobustLight based on AdvancedColight in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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Figure 19. State violin visulization of RobustLight based on AdvancedColight in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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