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Abstract

Reinforcement Learning (RL) optimizes Traffic
Signal Control (TSC) to reduce congestion and
emissions, but real-world TSC systems face chal-
lenges like adversarial attacks and missing data,
leading to incorrect signal decisions and increased
congestion. Existing methods, limited to offline
data predictions, address only one issue and fail
to meet TSC’s dynamic, real-time needs. We
propose RobustLight, a novel framework with
an enhanced, plug-and-play diffusion model to
improve TSC robustness against noise, missing
data, and complex patterns by restoring attacked
data. RobustLight integrates two algorithms to re-
cover original data states without altering existing
TSC platforms. Using a dynamic state infilling
algorithm, it trains the diffusion model online.
Experiments on real-world datasets show Robust-
Light improves recovery performance by up to
50.43% compared to baseline scenarios. It ef-
fectively counters diverse adversarial attacks and
missing data. The relevant datasets and code are
available at GitHub.

1. Introduction
1.1. Motivation

Improving traffic efficiency through Traffic Signal Control
(TSC) has been established as an effective strategy (Wei
et al., 2019b). Traditional TSC systems depend heavily
on static, predefined expert system controls, lacking the
flexibility of dynamically responding to fluctuating traf-
fic conditions (Lowrie, 1990; Hunt et al., 1982; Webster,
1958). Recently, by integrating the methods of Reinforce-
ment Learning (RL), TSC has demonstrated its superiority
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to conventional expert systems in improving vehicular traf-
fic flow (Wei et al., 2018). Deploying TSC algorithms in
real-world settings typically involves using sensors, such as
cameras and radar, to monitor traffic states, including vehi-
cle counts and speeds. Sensors exposed in public areas are
susceptible to noise attacked (Chen et al., 2018; Chowdhury
et al., 2023b), leading to potential adversarial attacks. More-
over, in extremely adverse weather conditions, these sensors
are prone to physical damage (Laszka et al., 2016b; Lee &
Park, 2012). This study delves into these sensor security
challenges in real-world TSC systems.

Adversarial attacks on the sensors can range from Gaussian
noise and uniformly distributed random noise (U-rand) to
more sophisticated strategies, including maximum action-
difference attack (MAD) and minimum Q-value attack
(MinQ) (Tang et al., 2016). When testing a TSC algo-
rithm, its performance can significantly decline (Gershen-
son, 2004; Chen et al., 2020; Zhang et al., 2022b) within
the CityFlow (Zhang et al., 2019) simulation environment
under various attacks. Such attacks compromise sensors,
leading to inaccurate state observations and consequent mal-
functions in TSC systems. When the sensors are intruded on
or compromised, traffic disruptions could potentially occur,
even leading to traffic safety accidents and substantial eco-
nomic losses. To this end, it is crucial to develop innovative
defense algorithms to mitigate the impact of sensor-related
anomalies for TSC.

1.2. Challenges

Various solutions have been proposed in the context of on-
line applications to address security issues faced by sen-
sors (Sun et al., 2021). However, these methods typically
only address a single type of attack. For instance, Zhang
et al.(Zhang et al., 2021) proposed a method to address
an adversarial attack, and it significantly decreases perfor-
mance as noise levels increase, especially in complex, high-
dimensional state environments (Yang et al., 2022). Lin et
al. (Lin et al., 2017) employed model-based methods, e.g.,
a Multi-Layer Perceptron (MLP) for data prediction to ad-
dress a data loss problem. Similarly, Mei et al. (Mei et al.,
2023) advocated for interpolation techniques during training
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to solve a missing data problem. Yang et al. (Yang et al.,
2023) proposed an offline method to solve the security prob-
lem of robotics. However, in a TSC system that requires
real-time decision based on traffic volume, the above meth-
ods need to collect a large amount of data offline, which
cannot meet the demand of real-time dynamic change of
TSC data. The challenges faced by the existing TSC systems
can be summarized as follows:

* Recent TSC algorithms demonstrate significant per-
formance degradation when undergoing adversarial
attacks or sensor damage, often resulting in traffic con-
gestion, indicating a lack of security resilience.

» Existing defense methods address only one or two
types of attacks and lack a comprehensive framework
to address multiple security issues holistically.

* Current offline methods typically rely on the collection
of large datasets to train static models, which struggle
to make accurate decisions when faced with untrained
real-time data.

1.3. Contributions

Diffusion models have recently achieved great results in
image generation and RL control (Janner et al., 2022; Wang
et al., 2022; Yang et al., 2023). The training of a diffu-
sion model consists of the noise addition and denoising
processes. The denoising process has the potential to evade
noise attacks undergone by TSC systems. Moreover, the
diffusion models have a strong data generation ability that
has the potential to solve the missing data problem in TSC
systems. Our contributions in addressing these challenges
can be summarized as follows:

* We propose RobustLight, a framework to enhance the
robustness of online TSC systems, consisting of a TSC
agent and a dynamic state filling (DSI) agent. The
DSI agent uses a model-free RL algorithm with an
enhanced diffusion model to recover TSC data in real-
time, ensuring optimal strategies without altering the
original TSC algorithms. This architecture prevents
data missing without changing the TSC algorithms.

* The RobustLight framework adopts two algorithms, de-
noise and repaint, which leverage the trained diffusion
model of DSI to defend against adversarial attacks and
handle missing data in TSC systems.

* Experiments show that RobustLight improves the aver-
age travel time of existing TSC algorithms by 50.43%
under various adversarial attacks and missing data sce-
narios, with state recovery closely matching pre-attack
distributions, demonstrating its enhanced robustness.
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Figure 1. Definition of the TSC.

2. Preliminary
2.1. Definitions of TSC

We use a four-way intersection, as shown in Figure 1, to
illustrate the concepts and summarize the definition of TSC.

Intersection. Each road network consists of multiple in-
tersections, each with multiple, e.g., N, road segments,
denoted by (Intery, ..., Intery).

Traffic perception. Each intersection has four directional
sensors (e.g., cameras, radars) monitoring vehicles in three
lanes, with different security states indicated by colors: or-
ange for noise attacks, red for sensor damage, and green for
normal operation, as shown in Figure 1(b).

Traffic movement. The vehicle passes through the inter-
section from entering the lane (lane;,) to leaving the lane
(laneyqt). This traffic movement is represented as T'M =
(lane;y, laneyyt), as shown in Figure 1(c).

Traffic signal phase. Two movements i.e.,
(T'M;, TM;,i # j) form a phase, represented as p.,
= (T'M;, T Mj), as depicted in Figure 1(d).

2.2. Adversarial Attack and Physical Sensor Damage

We introduce the concepts of four classic adversarial attacks
and the definition of TSC sensor attacks.

Gaussian noise attack. The Gaussian noise attack adds
Gaussian random noise N within the scale or intensity & to
the state s, represented as 3; = s; + k - N(p, 02)

U-rand attack. The uniform random noise (U-rand) attack
adds U-rand noise U/ within the intensity k to the state s, i.e.,
S5t =s:+k-U(Z,T), where I is the identity matrix.

MAD attack. The maximum action-difference (MAD)
attack selects noise within a given range k to maxi-
mize the difference between two policies m4(-|s) and
7(+|5) in the policy space, denoted as §; = s; +
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arg maxzen, (s k) D(mg(-|s) || m4(-|5)), where By(s, k) is
the /. ball centered at state s with radius k.

MinQ attack. The Minimum Q-value (adversarial) attack
selects the minimum @Q-value within a certain range k£ and
adds it as noise to the original state s, denoted as s; =
St + arg mingep,, (5,k) Q(5¢, mg(+[3)).

Physical sensor damage. For each intersection, sensor dam-
age due to weather or human factors causes state dimensions
to be unobserved, represented as 5; = Mask - s;.

2.3. Diffusion Process and Guided Diffusion

The diffusion model (Ho et al., 2020b) is a probabilistic deep
learning model that generates samples through diffusion and
inverse diffusion processes.

Forward process. In this process, the data is deformed
by introducing random noise, which makes the data gradu-
ally lose structured information and eventually turn into
random noise. The forward diffusion chain gradually
adds noise to the data x( (sampled from the distribution
q(xo)) over T steps using a pre-defined variance schedule

B {6: € (0, 1)},?:1, as given by

q(x¢ | x0) =N (x5 Vauxo, (1 —a)I), (1)

where oy = 1 — 3; and &y = Hle «;. Equation (1) al-
lows for the use of reparametrization (Gu et al., 2022) to
directly obtain the noisy data z; corresponding to a spe-
cific timestep ¢ from the initial data without the need for
multi-step iteration.

Reverse process. This process is assumed to follow a Gaus-
sian distribution probability, as given by

Po (X1 | x¢) =N (xe—15 g (X4, 1) , g (x4, 1)), (2)

where g (x¢,1) represents the mean of the Gaussian dis-
tribution that needs to be predicted by the neural network,
and Xy (x4, 1) is the pre-defined variance. After training,
the neural network predicts the noise term. We sample
data from an isotropic Gaussian noise and run the reverse
diffusion process from ¢ = T to t = 0.

Guided Diffusion (Kim & Oh, 2022) extends diffusion by

introducing external guidance during the reverse process. It

controls the generation of specific content. Classifier-free

guidance (Ho & Salimans, 2022) is a widely considered

type of guided diffusion, which adds condition c to the ug

network in the diffusion reverse process, as given by

uided

iu’z (Ita t7 C) = H’H(Ita t) +W(/L9(It, t7 C) - H’G(zta t))v
3

where w is a weighting coefficient that controls the trade-off

between conditional and unconditional generations.

3. RobustLight

In this section, we elaborate on the proposed RobustLight
framework, which integrates a new dynamic state infilling
(DSI) algorithm, and two new processes, namely, the no-
attack training process and the attacked testing process, into
any type of the existing TSC algorithms to protect from data
false injection and missing data. Specifically, we propose
DSI to train an improved diffusion model. The denoise and
repaint algorithms use the trained diffusion model of DSI
to solve adversarial attacks and missing data problems. The
integration of these algorithms improve the robustness of
TSC in unreliable real-time traffic environments.

3.1. TSC Algorithm

A TSC algorithm implements the basic functions of signal
control, serving as a TSC agent to interact with the traffic
environment. This allows for the use of various TSC algo-
rithms, including both traditional and RL-based algorithms.

In what follows, we elaborate on the TSC algorithms
(namely, MaxPressure (Cools et al., 2013), Advanced-
Maxpressure (Zhang et al., 2022b), Colight (Wei et al.,
2019a), Advanced-Colight (Zhang et al., 2022b), Mp-
light (Chen et al., 2020), and Advanced-Mplight (Zhang
et al., 2022b)). The specific definitions of state, action, and
reward are given by

e State: The Efficient Pressure (EP) (Wu et al., 2021) and
Running Vehicle (RV) are the input state s.

* Action: The traffic signal phase is action a.
* Reward: The negative of the queue length is the reward r.

We represent the TSC state trajectory 7 as a sequence, as
given by
Tts = {817827”'7815717815}7 (4)

where ¢ indicates the RL timestep. We can update the RL-
based TSC agent according to the Bellman function. Then,
the Q-value in the RL-based TSC evolves as

Q(S7 a) A Q(s7a)—|—a T+ ’VIaI/lgz(QI(S/, 0,/) - Q(s,a) ’
®

where « represents the learning rate, -y is the discount factor,
and Q'(s’, a’) denotes the target Q-value for the next state-
action pair. For the TSC algorithms based on RL, a replay
buffer is used to store tuples (s, a, 7, s').

3.2. Dynamic State Infilling (DSI) Algorithm

We design a DSI algorithm using an improved diffusion
model as the policy to reduce noise in online model-free RL.
The TSC agent’s replay buffer is used to update the policy
and adapt to real-time environments. The state, action, and
reward of the DSI agent are defined as follows:
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Figure 2. RobustLight uses a two-process framework with four algorithms: the TSC and DSI algorithms train on normal data to enhance
efficiency and robustness, while the Denoise and Repaint algorithms mitigate noise and infer missing data during attack testing.

e State. We represent the DSI agent’s state as S; =
(at—1,77_1), where a;_1 is the previous TSC action and
78 1 ={$1,...,8t—1} is the TSC state trajectory.

* Action. The DSI denoises the noisy or missing state S; to
the recovered state §;. Hence, the action at time ¢ can be
represented as A; = ;.

* Reward. The reward is the negative of the queue length.
The DSI agent consists of an actor and a critic network.
Critic network. In the critic network parameterized by ¢,
a U-Net architecture (Ronneberger et al., 2015) identical to
that of the actor network is employed. The final layer of
the critic network produces the ) value. The network is
updated using the Bellman error, as given by

Ly =74+ AQu(St41,Ar41) — Qu(Se, Ay), (6)

where A is the discount factor.

Actor network. For the actor network, we use action gradi-
ent ascent to update the control policy (Yang et al., 2023)

A=A+ nvAng(Stv At)7 @)

where 7 is the learning rate of the action gradient ascent. We
employ an improved diffusion model to denoise and predict
the original state A; = §, through the reverse process:

k
At ~ pe(ﬁ?:’“lSt) = fk(/lt) Hpe(/ﬁ_lm,i, St-1), (8)

=1

where fk(flt) = JarpA;, and Hle pg([lifﬂfli, Si—1)
can be modeled as Gaussian distribution, as follows:

N(Ai = (At,St i ) =, (At,St i )) 9)

According to (Ho et al., 2020b), the denoising process for
each step in the diffusion is expressed as

A1 -

At B Atvsta ) Bie'

\/O7 VA& 1 - 051
(10)

To handle denoising tasks with improved diffusion, we
use the beta schedule (Zhihe & Xu) 5; = 1 — a; =
e‘ﬁ,dk = Hle a;, and B; = 1;6‘;_.131' to address
small to medium-scale noises, where ¢y is the noise network.
Unlike other beta (Xiao et al., 2021a; Nichol & Dhariwal,
2021a; Ho et al., 2020a) schedules that generate data from
pure noise, our approach employs the U-Net architecture
and a conditional generative diffusion model for noise pre-
diction.

Lemma 3.1. The lemma basis of diffusion for denoising is
to minimize the sum entropy of the denoised data:

T

Lo =Y Eqa,[—logps(A7|Si-1)], (11)
t=1

which can be optimized using the variational lower bound
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Algorithm 1 The training process of RobustLight

Algorithm 2 Repaint algorithm of RobustLight

Initialize: DSI algorithm @, critic network, (s ac-
tor network, Replay buffer R and target network
Qap* ) QG* .

1: forj =1to Edo

2 Get init state so from Cityflow

3: fort=1to7 do

4: Execute TSC algorithms, including Colight,

Advanced-Colight, Maxpressure,..., etc.

5: Training the TSC agent by Equation 5.
6: Sample batch S = (7%, a) and A = s from R.
7: Update critic network ), by Equation 6.
8: forn =1to N do
9: Execute gradient ascend by Equation 7.
10: end for
11: Update actor network Q9 by Equation 12.
12: Update target critic network by:
13: - =np+(1—n)p”
14: Update target actor network by
15: 0= =n0+(1—n)0~
16:  end for
17: end for

18: Return Actor network Qg

(VLB). For the detailed derivation process, please refer to
(Zhihe & Xu, Ho et al., 2020a).

Expanding Ly, we obtain the following Non-Markov loss
to update the actor network:

Ly = ]EiNZ/{K1EtNN(O»I)1(At—N,»---,At+M—1)€Du

M—-1

Heg(zﬁﬁ,St_l,i) - ei

m=t
(12)
where S, _1 = (@m_1,77,_,), and 75, is the predicted
state trajectory. This loss function Ly balances the trade-off
between the current RL timestep and future RL timesteps,
aiming to minimize the accumulated error over time. De-
tailed training algorithm is summarized in Algorithm 1.

3.3. Denoise Algorithm

In the testing phase, we may unintentionally expose the sen-
sors within the TSC algorithm to various attacks, including
Gaussian, MAD, U-rand, and MinQ attacks.

In the denoise algorithm, we use the trained actor diffusion
model from the DSI algorithm to recover the original TSC
state /1,5 = 5;. We use the diffusion reverse process to de-
noise. As described in Equation (10), we input (S, /L/)
and the diffusion time step ¢ into the actor diffusion net-
work. In each diffusion timestep, the data currently under a
noise attack is denoised to obtain the data for the next diffu-

t+
2"' Z HGO(A?maS’m—lai)_G:n 5

1: Input Ai,St_l,m

2: fori=1to K do

3: foru=1toU do
e~N(0,1)ifi > 1,elsee =0
Get ALl by Equation (13)
2~ N(0,1)ifi>1,else z=0
Get AL, . by Equation (14)
Get recovered flifl by Equation (15)
ifu <Uandi>1then

10: A; N./\/'(\/l —61'_1Ai_l,ﬁi_1[)
11: end if

12:  end for

13: end for

14: Return 4; = AY

D A A

sion timestep. We perform the denoising process in each 7
timesteps to predict the original state 39 using Equation (8).

3.4. Repaint Algorithm

The concept of utilizing diffusion for image repaint is in-
spired by (Lugmayr et al., 2022). The core idea is to use
the known sensor data to infer the unknown sensor data. We
adapt and refine the image repaint process to the TSC and
introduce the repaint algorithm to interpolate the damaged
or missing TSC state, as illustrated in Figure 2.

We use a well-trained conditional denoising diffusion prob-
abilistic model, based on DSI (distinct from (Zhihe & Xu)),
to effectively restore the original state A = 3, where the
unknown part is represented by m ©® A= with m being
the mask matrix, and the known part is (1 — m) ® A*~1
stands for unmask matrix. We note that the reverse pro-
cess of diffusion from A? to A*~! depends solely on A?, as
long as we maintain the correctness properties of the corre-
sponding distribution. Therefore, we update the known state
(1 —m) ® A=, According to Equation (1), we sample the
known state at any diffusion timestep ¢, and use Equation (2)
for the unknown state. We use the following expression for
one reverse step:

Ai,_k:}nawn =V @ilet,known + V1 — e, (13)

Ai,_uzknown = \/]-OTZ‘Ai,unknown - og(flw
(A}, Sp—1,1) +\/Biz, (14)
AT =m oA L (L=m)@ A (15)
Thus, fl&iwn is sar~npled using the known state in the given
state m © A%, and A"} is sampled from the condition

model given the previous iteration A’. These are then com-
bined into the new sample A*~!. The repaint algorithm is
summarized in Algorithm 2.
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Table 1. Performance of ATT in JiNan, HangZhou. “-”’ implies that traditional algorithms are not adapted to MinQ and MAD
attacks. Our RobustLight recovers the state of traditional and RL-based TSC algorithms to evaluate the performance.

Dataset Noise Type  Noise Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight
base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight
Gaussian 35 301.9742.14  296.01£2.18 285.43+1.82 = 283.48+1.22 356.86%19.78 = 302.16+2.86 287.76%1.52 282.35+1.96 320.57+2.82 294.57£2.02
4.0 305.88+2.92  298.95£2.69 290.28+2.17 | 289.71£1.59  377.91£38.59 = 311.59+4.69  314.93+28.28 | 288.07+2.27  338.93%15.32 = 298.235.16
U-rand 35 325.0942.65  319.01£2.17 312.27£2.92 & 306.12£1.79 538.66+132.69 = 349.89+22.56 407.41+24.57 | 312.27+4.07  449.13+21.14 = 358.22%7.02
JiNany 4.0 428.11£0.00 331.58+3.57  322.93+2.67 319.18+291 311.32£1.97 549.41£120.08 = 364.39+28.71  352.63%7.85 320.48+3.29  460.46£22.41 = 360.82+4.79
MAD 35 - 321.24+14.89 = 280.45£2.99  487.69+50.75 = 277.37£1.16 479.63+8.82 283.13+1.56
4.0 - - 338.14+24.71 = 287.04£2.69  555.71x64.93 = 279.15%1.22 520.0947.12 288.07+2.27
MinQ 35 - - - 313.73x11.87 | 291.5848.12  683.38+94.91 | 277.93£3.47  394.39+50.27 | 323.25+20.54
4.0 - - - 321.55+12.64 | 295.12£6.06  716.58%134.92 | 281.13£1.96 = 394.63+47.37 | 331.52+10.64
Gaussian 35 275.32+1.24  270.16£1.70 267.76+0.93 = 263.81£0.94 383.41+58.34 = 272.12+2.25  289.03£10.62 | 258.33+2.06 410.96+132.05 = 288.87+3.59
4.0 279.69+£1.92  274.18£1.25 272.17£1.26 = 271.87£2.03 550.13+188.98 = 279.86+2.31 293.55+1.86 261.63+1.66  461.57+126.58 = 294.84+5.45
U-rand 35 299.3442.22  288.71£2.56 293.46+1.22 = 289.66+2.09 454.32+138.56 = 307.59+20.82 407.89£50.61 | 300.36+7.67  987.04+42.62 = 561.02+62.23
JiNans 4.0 383.0140.00 306.0242.36  292.13£2.65 298.58+2.19 = 294.64+2.42 500.65x122.68 & 313.02+17.33  554.51+80.09 | 306.03+6.59 1015.29+41.75 = 596.24+67.48
MAD 35 - - 498.88+208.66 = 259.84+1.52  534.43+87.67 | 263.73£2.57  431.77+17.35 | 260.78+1.42
4.0 - - - 594.48+218.45 = 264.52+1.38  550.26£93.93 | 267.03£2.09  474.16+17.21 = 260.78+1.42
MinQ 35 - - - 652.05+230.01 | 283.01£34.19  726.85+282.56 = 267.34+3.65 515.34+167.83 = 309.65+9.99
4.0 - - - 733.624233.21 | 295.12+£57.76  744.21£274.72 | 273.13+4.52  516.23+167.39 = 329.81+14.76
Gaussian 35 332.03+2.01 = 322.45%1.25 327.37£1.94 324.84£1.79 564.65£103.29 = 351.68+40.82  356.33+6.38 322.62+5.96  480.38+22.93 = 327.98+2.45
4.0 335974249  326.58+1.36 331.93+1.57 = 329.25£1.21 490.72+93.84 | 366.62+50.39  371.97+12.44 | 337.58+5.68  510.38+25.17 = 331.21+3.65
U-rand 35 356.53+3.72  338.42%1.74 354.91£331  297.34£1.39 373.88+£34.05 = 328.18+3.17  647.64+54.89 | 435.33+20.02 717.12+70.08 = 473.85+32.68
HangZhou 4.0 495.570.00 361.58+4.37 = 341.16£2.21 359.61+3.34 = 350.86+3.12 384.75%42.24 = 330.47x3.11  475.49+29.78  441.33x17.05 738.51+63.18 = 487.74+31.44
MAD 35 - - - 803.38+92.02 = 325.49+28.86 402.67+17.42 | 324.55£6.63  463.64+33.44 = 309.24+0.94
4.0 - - - 782.23+121.05 | 320.91+2.73  419.07+18.26 = 331.47+8.62  491.64+39.78 = 352.58+3.71
MinQ 35 - - 778.04+78.91 | 420.46+87.75 466.14+70.37 = 317.36+3.96 449.5448.22 406.32+6.41
4.0 - 764.88+78.52 | 435.53+£69.87 460.29+62.45 = 331.93+3.91 482.98+7.29 430.53+8.49

4. Experiments

We conduct experiments with real-world datasets to evaluate
RobustLight’s generalization and efficiency on NVIDIA
P100 hardware, using the hyperparameters in Table 10.

4.1. Datasets

We use real-world traffic flow and road topology datasets for
our experiments, with Cityflow (Zhang et al., 2019) as the
simulator to evaluate Average Travel Time (ATT) and exit
points with a simulation time of 60 minutes for all vehicles.
The datasets include vehicle start and end points, following
a fixed motion model. Seven traffic datasets from three
cities JiNan and HangZhou (China) and New York (Zheng
et al., 2019) (USA) are used.

JiNan Datasets: The JiNan road network consists of 12
intersections (in a 3 x 4 grid). It includes three traffic flow
datasets: JiNany, JilNano, and JiNans.

HangZhou Datasets: The HangZhou network encompasses
16 intersections (in a 4 x 4 grid) and features two datasets:
HangZhou, and HangZhous.

New York Datasets: The New York network features a
more complex structure with 192 intersections (28 x 7 grid)
and includes two datasets: Newyork, and Newyorks.

4.2. Compared Methods

Traditional Methods: These methods include Fixed-
Time (Webster, 1958), which uses a fixed green phase time;

Advanced-Maxpressure (Zhang et al., 2022a), which uses
running and waiting vehicles to choose the phase; and Max-
pressure (Gershenson, 2004), which uses waiting vehicles
to choose the phase.

RL-based Methods: For RL benchmarks, we consider Co-
Light (Wei et al., 2019a), which uses waiting and neigh-
boring vehicles to select the signal phase; Advanced-
CoLight (Zhang et al., 2022a), which employs waiting and
running vehicles with a graph attention neural network; and
Advanced-Mplight (Zhang et al., 2022a), which uses the
FRAP (Zheng et al., 2019) model for signal phase selection.

RobustLight Method: RobustLight integrates the base
methods of traditional and RL-based TSC algorithms to
recover data in real-time, and then evaluates the ATT under
different sensor noise attacks and sensor damage. Results
are presented as the average of ten independent runs.

4.3. Results

This subsection presents the results of our experiments, eval-
uating RobustLight’s performance under various conditions,
including resilience to noise attacks and sensor damage,
using ATT on real-world traffic datasets.

4.3.1. NOISE ATTACK ON STATE RESULTS

Table 15 summarizes our experimental results for the
JiNan and HangZhou datasets based on the ATT met-
ric. The noise scale range is based on the value of k for
state noise attacks, as described in Section 2.2. The re-
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Table 2. ATT in JiNan and HangZhou: 25% refers to missing data in sensorw , and 50% refers to sensory and sensorg.

. FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight
Dataset Mask Scale
base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight
JiNanl 25% 428.11£0.00 386.74+0.00 | 324.31+22.74  353.04+0.00 302.84+9.43 398.27486.93 337.63+50.23  400.93+19.66 372.93+7.43 326.14£16.52 ~ 298.35+16.32
50% 798.90+0.00 | 613.23+108.81  1061.92+0.00 | 548.84+152.33 1052.83+102.63 = 642.62+111.28  849.61+£77.93 = 766.91+81.83  732.37+52.93 = 680.37+97.32
JiNan2 25% 368.7620.00 272.51£0.00 = 273.78+3.61 323.13+0.00 274.84:4.74 701.85+200.84 259.36£6.43  637.94+285.96 | 308.56+22.59  290.86+24.79 259.56+7.59
50% 836.81+0.00 | 748.23£132.12  1209.97+0.00 = 751.53£268.33  985.42+64.04 = 665.92£148.31  880.23+52.93 | 754.23+173.95  725.57+57.89  639.94£100.49
JiNan3 25% 383.0120.00 289.81+0.00 | 288.74+9.83 340.81£0.00 | 286.54+10.85  824.35+228.64 | 368.62+104.37  367.94+9.36 315.43+9.67 363.84+£54.43  301.63+38.26.
50% 823.48+0.00 | 574.97+69.0  1109.57+0.00 = 592.56£222.45 947.84+150.34 = 567.37£75.16 = 816.73+56.68 = 382.39+37.83 756.37+162.69 = 407.68+78.39
25% 369.77+0.00 | 350.8+£20.22 513.15£0.00 | 371.64+28.35 510.37+£92.75 372.12+21.49  490.36+13.84 = 424.36+13.22  401.87+48.31 = 328.26x12.67
HangZhoul 495.57+0.00
50% 722.43+0.00 | 714.32+76.93  1186.56+0.00 | 752.84+399.84  1170.97+71.83 | 515.77+180.92  786.32+40.86 = 542.91£108.24 842.29+235.36 | 541.56+122.96
25% 372.124#0.00 | 353.85+3.66  405.27+0.00 356.64+4.64 362.93£15.36  350.26£10.62  397.88+20.68 = 390.43x10,37  378.86+26.86 = 375.64+£22.32
HangZhou2 406.65+0.00
50% 533.81£0.00 = 447.91£70.34  781.57+0.00 | 542.37x161.07 639.52+127.45 | 522.92%157.32 663.72+80.82 = 470.91£34.82  508.93+30.27 = 444.37+61.24

sults reveal that the incorporation of Robustlight leads to
improved performance across all methods, demonstrating
its effectiveness in mitigating various types of noise attacks.

4.3.2. SENSOR DAMAGE ON STATE RESULTS

We compare traditional and RL-based TSC algorithms,
focusing on deliberate sensor attacks on sensorys and
sensorg, with data from these directions masked to simu-
late damage. We use the Repaint algorithm within Robust-
Light for data completion, allowing us to evaluate the TSC
algorithm’s performance before and after this process, as
shown in Table 2. Our findings lead to several key conclu-
sions. Under noisy conditions, MaxPressure outperforms
Advanced-MaxPressure with an 11.6% average improve-
ment across all datasets. Advanced-CoLight surpasses Co-
Light with an 18.4% improvement. The RobustLight al-
gorithm enhances performance in nearly all methods, with
Advanced-CoLight showing a 10.3% improvement. Follow-
ing sensor damage in sensory, and sensorg, all methods
perform worse than FixedTime, but our algorithms effec-
tively recover missing data and still outperform FixedTime
with damage in one direction, highlighting the importance of
addressing sensor damage in real-world TSC deployments.

Table 3. Performance comparison with other benchmarks.

Advanced-CoLight

Dataset  Noise Type  Noise Scale s
base RobustLight Diffusion LSTM
Linear-Beta
) 35 320574282 | 294578202 324.04%3.04 892042137
Gaussian
JiNan 40 33893:15.32 | 298.23#5.16 32683656  914.18%215.7
JiNany
Sensor 25% 326.14£16.52 2983581632 350961732  1035.39£156.69
Damage 50% 7323752.93 | 680.37497.32  689.1398.43  1088.772160.11
) 35 480.38+22.93 | 327.9882.45 480533355  1123.4%341.28
Gaussian
40 51038425.17 | 33121#3.65 5101652234  1140.26+325.02
HangZhouy
Sensor 25% 401874831 | 32826£12.67  386.1329.28  1581.35+73.21
Damage 50% 842.29£235.36 | 541.56£122.96  551.44:40.16  1638.32x14.1

4.3.3. OTHER METHODS COMPARISON EXPERIMENTS

We compare the native Diffusion model with three Beta
schedule methods (Xiao et al., 2021b; Ho et al., 2020b;
Nichol & Dhariwal, 2021b) and LSTM model (Sun et al.,
2021) on real-world datasets. As shown in Table 3, our
RobustLight outperforms the native Diffusion model in all
noise attack scenarios, demonstrating its effectiveness.

Table 4. Performance Comparison with DiffLight

Dataset Noise/Mask Method RobustLight PSNR MAE  ATT
JiNan) ~ U7rand Noise DiffLight No 671 626 31092
3.5) Advanced-MaxPressure Yes 7.20 542 304.34

HaneZhoul U-rand Noise DiffLight No 6.85 7.93  361.31
angchon (3.5) Advanced-MaxPressure Yes 771 512 29734
JiNanl Sensor Damage DiffLight No 7.66 1.05  366.05
(25%) Advanced-Colight Yes 9.34 0.89 30413
HaneZhoul Sensor Damage DiffLight No 18.05 1.84 37253
s (25%) Advanced-Colight Yes 2296 117 306.56
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Figure 3. Ablation of RobustLight based on Advanced-Colight
in JiNan, and HangZhou; under Gaussian noise (scale 3.5).

To validate our approach with DiffLight (Chen et al., 2024),
we setup involved randomly masking data from Kriging
Missing (12.5%, single-intersection-sensor failure) and Ran-
dom Missing (12.5%, full-intersection failure). As demon-
strated in Table 4, our method effectively addresses data
missing scenarios (Kriging and random missing) while also
exhibiting robust performance under noisy data conditions.

4.3.4. ABLATION EXPERIMENTS

We conduct ablation experiments on RobustLight to assess
the impact of each component. “w/o linear beta” refers to the
experiment without the linear beta schedule, “w/o markov-
loss” excludes the Markov loss, “w/o ori-dif-markov-loss”
omits the original diffusion model with Markov loss, and
“w/o ori-dif-non-markov-loss” excludes the original diffu-
sion model with non-Markov loss. Showing the effective-
ness of RobustLight.

4.3.5. ROBUSTNESS RECOVERY ANALYSIS

We analyze RobustLight’s effectiveness in recovering the
original data using t-SNE (Van der Maaten & Hinton, 2008)
plots. In the plots, yellow represents the original state distri-
bution, blue represents the recovered states, and red shows



RobustLight: Improving Robustness via Diffusion Reinforcement Learning for Traffic Signal Control

Original state distribution ® Recover state distribution @ Noise state distribution

JiNan

HangZhou

Figure 4. State visulization of RobustLight based on Advanced-
Colight in HangZhou: and JiNan;.

JiNan1

"o

Normal Abnormal

HangZhoul

Recovery Normal Abnormal Recovery

Figure 5. Violin figure of normal, noise and recovery data.

the distribution with Gaussian noise (scale 3.5). Figure 4
shows that the blue distribution is closer to the original,
demonstrating RobustLight’s strong robustness. Addition-
ally, violin plots in Figure 5 show that the recovered data
distribution closely matches the normal data.

To directly evaluate the recovery effect, we define the metric
Edenoise = 7 Z1T |§ — s|. Where N is the number of
intersections, 7" is the running count, § is the recovered
state, and s represents the original state. is the original
state. This metric measures the ability to restore data by the
absolute difference between the original and reconstructed
states. As shown in Table 5, RobustLight exhibits strong
recovery performance.

4.3.6. MODEL GENERALIZATION

To assess generalization, we train a diffusion model based
on the Advanced-Maxpressure algorithm using the JiNanq

Table 5. Egenoise the smaller the value, the better.

Noise Scale CoLight Advanced-CoLight

Dataset Noise Type

base RobustLight base RobustLight

399.15+20.31 = 284.46£21.26  808.76+16.84 | 484.15+13.26
899.85+15.23 | 628.36+13.82 1814.56+31.36 = 1186.43+24.31
399.15+21.35 | 284.30£16.37 1077.09+25.82 = 320.57+13.82
1198.21+13.37 | 535.67£16.31 2417.44+19.96 = 1202.61+38.74

Gaussian 35
U-rand 35

JiNany

Gaussian 35
U-rand 3.5

HangZhouy

Newyork1 Newyork2

Average Wait Time(s)

e Sensor damage(25%)

Figure 6. Performance of RobustLight based on Advanced-
Maxpressure in Newyork transfer by JiNan,.

dataset and test it on the Newyork dataset. As shown in
Figure 6, transferring the model to Newyork effectively
mitigates noise attacks and demonstrates strong state restora-
tion in a different urban traffic environment.

5. Discussion

QL. Is there any challenge to apply the diffusion model?
We evaluate the time consumption of the DSI algorithm (Ta-
ble 17) to assess its computational costs and impact on TSC
algorithms. As the noise range increases, more diffusion
steps are needed, resulting in longer recovery times. A key
challenge in large-scale scenarios is slow inference, driven
by both the diffusion steps and the increasing number of
intersections. To address this, we plan to reduce diffusion
steps using DDIM and divide intersections into smaller sub-
regions, each with its own actor diffusion model, to speed
up inference. This discussion highlights the trade-off be-
tween accuracy and speed in diffusion models for real-time
TSC systems and suggests ways to improve efficiency in
large-scale deployments.

Q2. Is there any report about cyber attacks on traffic
control systems? Traffic sensor attacks (Chen et al., 2019;
Chowdhury et al., 2023a; Laszka et al., 2016a), demon-
strated at DEFCON 22 by Cesar Cerrudo, highlight vulnera-
bilities in traffic control systems, where hackers target street
magnetic sensors. Discussions on platforms like Quora
(“hack traffic lights”) further emphasize concerns about sen-
sor safety. As Al systems become more prominent, ensuring
their security is crucial, especially given the additional risks
from extreme weather interference.

Q3. How to detect noise and missing data? To detect
noise and missing data in our study, we use a combination of
attack detection models and statistical methods. We assume
that attacks, caused by factors such as weather conditions
and radio interference, have been pre-detected, with the at-
tack detection model identifying noisy or missing data based
on abnormal sensor readings. Noise is detected through out-
lier detection and variance analysis, while missing data is
identified by checking for null or NaN values and analyz-
ing missingness patterns across sensors. Once detected,
we handle noise using denoise algorithm and missing data
through repaint algorithm of RobustLight, ensuring data
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Table 6. Detection Rate and Throughput Comparison
Dataset Base | ATT Base = Throughput
JiNany 487 297 5812 6154

HangZhou; 463 = 326 2888 2938
JiNan, 487 328 5812 6131

HangZhou; 463 = 331 2888 2930

Detection Rate

80%

60%

integrity and robustness in the presence of environmental
disturbances.

Q4. If the RobustLight rely on the accuracy of detec-
tion? To evaluate its reliance on detection accuracy, we
integrated TP-FDS (Sarteshnizi et al., 2023), a method that
detects anomalies by comparing new data distributions with
historical data from the same period, achieving an AUC of
96% and an F1 score of 76%. TP-FDS identifies anomalies
through multi-sensor cross-referencing (e.g., cameras and
radar) or rule-based methods, such as detecting a queue
increase from 3 to 5 during a north-south green light. Minor
fluctuations, like queue changes from 3 to 5, minimally im-
pact system efficiency. To assess RobustLight’s dependence
on detection accuracy, we conducted experiments simulating
real-world scenarios with detection rates of 80% and 60%,
as shown in Table 6. The results show that RobustLight has
a robust performance in most detection rates.

Q5. What are the practical considerations and potential
barriers to real-world implementation? Our framework
supports both distributed and centralized deployments: the
distributed approach employs a federated learning architec-
ture with central training and edge-based parameter updates,
while the centralized solution addresses scalability through
high-performance servers and algorithmic optimizations
like DDIM (Song et al., 2020) acceleration. For comprehen-
sive coverage of intersection failures (Kriging) and sensor-
specific issues (Random missing), we recommend a hybrid
approach, implementing centralized data missing recovery
algorithms alongside edge-based noise reduction using cost-
effective hardware for accelerated denoising. This balanced
strategy ensures robustness, real-time performance, and at-
tack resilience across all deployment scenarios.

6. Related Works

TSC Algorithms. Since the introduction of static fixed-
time plans in 1958 (Webster, 1958), TSC systems have
evolved significantly. Systems like SCOOT (Hunt et al.,
1982) and SCATS (Lowrie, 1990) rely on expert-designed
plans with predefined thresholds, lacking dynamic adapt-
ability to changing traffic conditions. The advent of RL
methods has marked a paradigm shift, leveraging real-time
traffic data to optimize signal management through trial-
and-error, outperforming traditional approaches. RL models

in TSC vary from value-based (Abdulhai et al., 2003; Wei
et al., 2018), policy-based (Mousavi et al., 2017), to actor-
critic frameworks (Aslani et al., 2018; Wu et al., 2022), with
state and reward designs incorporating features like queue
length (Varaiya, 2013; Wu et al., 2021; Li et al., 2025), ve-
hicle counts (Wei et al., 2019a; Xu et al., 2021), or travel
time (Zheng et al., 2019). Advanced-Colight method (Zhang
et al., 2022a) stands out, achieving state-of-the-art results by
using running and waiting vehicles to model lane capacity
relationships.

Robust RL. In RL, disturbances cause errors, leading to
Robust RL for improved reliability, split into “training-
time” and “testing-time” robustness. “Training-time” adds
noise during training for adaptability (Zhang et al., 2022c;
Ye et al., 2023). “Testing-time” trains in clean settings
and tests under disruptions (Yang et al., 2022; Panaganti
et al., 2022). Our RobustLight focuses on “testing-time’
robustness for real-world attack resilience. “Testing-time’
robustness covers state, action, and transition/reward per-
turbations. State perturbation uses neural networks and
SA-MDP (Zhang et al., 2021; 2020) or conservative ac-
tions (Yang et al., 2022). Action perturbation employs ad-
versarial training (Tan et al., 2020) or optimal policies (Liu
et al., 2023). Transition/reward perturbations use Markov
games (Pinto et al., 2017; Gleave et al., 2019) or robust
Bellman operators (Panaganti et al., 2022). We prioritize
“testing-time” robustness for real-world attack resilience.
Diffusion Model. Diffusion models, first used for image
generation (Ho et al., 2020b), excel in RL control tasks.
Diffusion RL splits into online and offline settings. On-
line, Yang et al. (Yang et al., 2023) applied diffusion as a
policy with model-free control. Offline, Ajay et al. (Ajay
et al., 2022) generated trajectories for decisions, and Wang
et al. (Wang et al., 2022) introduced Diffusion-QL, merging
TD3+BC (Fujimoto & Gu, 2021) with behavior cloning.
Online TSC algorithms (Wei et al., 2019a; Chen et al., 2020;
Zhang et al., 2022a) falter under state attacks and missing
data, risking congestion. RobustLight, our proposed algo-
rithm, enhances online TSC resilience by recovering data
without altering existing systems, offering a novel solution
for research and industry.

>

>

7. Conclusion.

In this paper, we introduced RobustLight, designed to ad-
dress abnormal TSC tasks. By leveraging the denoising
properties of the diffusion model, RobustLight effectively
handles noise interference and incomplete state information
in real-world environments. Empirical results demonstrate
its robustness and effectiveness, significantly enhancing the
security of RL-based TSC strategies and strengthening tra-
ditional TSC algorithms, thereby improving the safety and
integrity of TSC systems.
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A. Appendix: Settings.
A.1. Unet Network Structure

The unet structure is shown in Tables 7, 8, and 9.

Table 7. TemporalUnet Structure

Layer Layer (input size, output size)
Linear(state_dim, hidden_size)
state_encoder Mish()

Linear(hidden_size, state_dim)
Linear(action_dim, hidden_size)
action_encoder Mish()

Linear(hidden_size, action_dim)
SinusoidalPosEmb(hidden_size,hidden _size)
Linear(hidden_size, hidden_size*2)

Mish()

Linear(hidden_size*2, hidden_size)

Residual TemporalBlock(hidden_size,hidden_size*2)
Residual TemporalBlock(hidden_size*2,hidden_size*2)
Identity()
Downsampleld(hidden_size*2,hidden_size*2)
ResidualTemporalBlock(hidden_size*2,hidden_size*4)
ResidualTemporalBlock(hidden_size*4,hidden _size*2)
Identity()

Identity()
ResidualTemporalBlock(hidden_size*8,hidden _size*2)
ResidualTemporalBlock(hidden _size*2,hidden _size*2)
Identity()
ConvTransposeld(hidden_size*2,hidden_size*2)
ResidualTemporalBlock(hidden_size*4,hidden_size*4)
ResidualTemporalBlock

mid_attn Identity()
mid_block2 ResidualTemporalBlock(hidden size*4,hidden _size*4)

Conv1dBlock(hidden_size*2,hidden_size*2)

Convl1d(hidden_size*2,hidden_size/4)
Linear(out_horizon*hidden_size/4+
(hidden_size*3)/2+hidden_size,hidden_size*2)
Mish()

mid_layer Linear(hidden _size*2, hidden_size*2)
Mish()

Linear(hidden_size*2, hidden_size*2)
Mish()

final layer Linear(hidden_size*2, hidden_size/2)

time_mlp

downs

ups

mid_block1

final_conv

13



RobustLight: Improving Robustness via Diffusion Reinforcement Learning for Traffic Signal Control

Table 8. ResidualTemporal Block Structure

Layer Details
Conv1dBlock(input_dim,output_dim)
Conv1dBlock(output_dim,output_dim)

Mish()
time_mlp Linear(output_dim, output_dim*2)
Rearrange("batch t - batch t 1°)
residual_conv Convld(input_dim, output_dim)

blocks

ResidualTemporalBlock

Table 9. Conv1dBlock Structure
Layer Details
Convld(input_dim,output_dim,Kernel Size, Stride, Padding)
Rearrange(’batch channels horizon” — ’batch channels 1 horizon’
ConvldBlock ’batch channels 1 horizon’ — ’batch channels horizon’)
GroupNorm(output_dim, Group, eps, Affine: True)
Mish()

A.2. Hyperparameter

By effectively tuning these hyperparameters, users can optimize RobustLight performance for their specific data recovery
tasks, achieving better accuracy and robustness in handling missing or corrupted data. The detailed settings are summarized
in Table 10.

Table 10. Hyperparameters

Hyperparameter type Diffusion policy Setting
Hyperparameter
embed_dim 64
hypegizneter sta}te,difn 12/24
action_dim 4
non_markovian_step 6
condition_length 4
beta schedule a,b,¢  2.1190,25.06,-2.5446
discount(vy) 0.99
re s . . target critic(7) 0.005
Dﬁ}f,fl;l;lg:r;rrizgg diffusion ti.mstep 100
batch size 64
buffer capacity 12000
optimizer Adam
learning rate 0.0003
epochs 50
action gradient steps 20
discount(vy) 0.8
target critic(7) 0.95
buffer capacity 12000
epochs 100
TSC RL agent batch_size 20
training hyperparameter learning_rate 0.001
target update time 5
normal factor 20
loss function MSE
optimizer Adam
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Table 11. Performance in terms of ATT. %25 means the sensory, %50 means the sensory, sensor g missing data.

Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight

JiNanl 25% 428.11£0.00 286.75+0.00  279.52+1.07  265.36+0.0 263.07x1.09  524.48+199.99  260.36+4.47 316.76+15.24 276.02+3.44  253.58+1.84 252.88+1.3
50% 308.17+0.0  299.56+2.88 277.53+0.0  275.13+1.83 278.37+2.47 270.445.09  312.07+#4.91  321.85+£5.63 313.69+12.85 304.13x11.42

JiNan2 25% 368.76:0.00 252.1240.00 283.78+10.61  253.71x0.0  250.77+0.85  268.98+34.52  242.73+0.47  267.43+2.42  260.0+3.18  237.03x1.09  243.49+1.86
50% U 276.93+0.0  272.67£3.52  269.6+0.0  266.67+1.58 258.02+1.38  242.01+25.74  279.01+4.46  271.44+2.54  267.85+6.47 282.31%7.6

JiNan3 25% 383.01£0.00 251.2240.00  250.09+0.83  248.68+0.0  245.66x0.74  259.62+40.43  238.43+3.43  267.17£3.04  253.9+1.16  242.36+1.77 239.41£1.7

- 50% T 273.32+0.0  270.64+4.39  265.72+0.0  263.77£1.53 255.55+1.54  343.01+52.36  288.54+5.05  273.83+2.21 304.03+26.17  268.88+9.01
HangZhoul 25% 495.57+0.00 306.21£0.00  307.8x1.58  397.12+0.0  301.53x4.38  505.87+94.27  305.12+7.49  376.22+19.3  320.05+6.62 303.94:+10.84  290.02+7.84
50% 392.9+0.0 524.5448.28  528.11+0.0 433.36£38.17 428.21+42.96  346.04+10.38  467.12+12.2  362.18+9.7  511.01+56.7  375.96+47.84

HaneZhou?2 25% 406.65+0.00 352.1720.00  349.81+1.19  378.940.0  330.82+3.91  382.15£10.52 349.4£2.56  383.97+15.87 362.1148.16 347.53%18.69  334.01+7.22
= 50% R 425.14+0.0  405.95+6.37  452.73+0.0 422.18+12.57 436.27+18.12  413.07x13.63  434.66+7.18 415.51+7.82 444.82+41.36 383.46x17.09

Table 12. Performance of in terms of ATT. %25 means the sensorg, %50 means the sensorg, sensors missing data.

Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight
base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight
JiNanl 25% 428.11£0.00 308.68+0.0  292.73x4.19  288.06£0.0  276.14+2.23  535.51%110.15  360.76+74.58 353.3+4.7 328.99+2.28 291.08+4.77 298.17+8.72
50% B 704.67+0.0  877.64+81.64 1138.54+0.0 837.9+100.32  1168.06+45.85  838.9+76.63 967.5+21.19 955.55+1.28 635.65+21.05  615.93+31.48
JiNan2 25% 368.7620.00 265.9240.0  259.68+6.4 273.48+0.0 257.17£1.6 817.224231.93  275.46+46.36  356.79+4.03 281.06+2.07 264.35+5.53 254.08+4.13
50% o ) 758.94+0.0  641.38+38.7  1106.91+0.0 959.47+69.72 1178.75+106.23  809.77+64.74 1125.51+37.74 1044.55+16.55  659.29+39.5  650.12+39.04
JiNan3 25% 383.01£0.00 261.3240.0  260.4+1.35 264.86+0.0  252.11x1.38  545.89+179.58  325.41x44.77  305.41+7.81 271.38+3.22 260.69+2.7 253.03+4.76
) 50% o 668.3120.0 701.76+53.94 1254.97+0.0  727.59+91.6  1114.57+64.26  761.78+143.2 1022.03+23.29  801.03+88.64 643.5+45.69  596.76+42.72
HangZhou! 25% 495.57+0.00 365.3£0.0  426.3£51.56  450.99£0.0  300.44£2.19  619.52+133.36  410.38+60.16  432.58+6.51 335.26+10.09 381.1£62.66  340.48+22.93
50% 636.5120.0  754.16+£33.52  1005.01£0.0  781.38+69.53 825.5+49.93 424.8+55.41 9122744376 462.48+37.71  602.16+109.41 516.18+19.13
HangZhou2 25% 406.65+0.00 381.5120.0 371.48+6.28  414.65+0.0  351.19+4.67 396.42+23.46 353.43+2.89 426.9+2.24 379.94+7.1 377.86+2822  352.87+10.5
50% R 554.0240.0 5522442382 718.93+0.0  534.73+38.6 687.16£62.93  447.47£17.12  693.78+£34.59  471.14£12.57  501.53+48.97  446.97+11.96

Table 13. Performance in terms of ATT. %25 means the sensors, %50 means the sensorw, sensors missing data.

Dataset Mask Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight

) i base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight
JiNanl 25% 428.1120.00 307.99£0.02  318.5149.13  294.96+0.0  272.62+1.45 314.89+29.39 456.42+158.17  563.6£108.06  347.75+13.07 277.76+4.93  297.89+6.94
50% T 422.76+0.0  537.52+16.47 320.54+0.0  319.24%5.6 326.1546.18 327.8745.09  783.84+298.76 377.02+25.84  379.57+13.3  431.91£25.96

JiNan2 25% 368.76+0.00 263.82£0.0  258.16£2.01 268.66+0.0 256.44+1.63  266.23+20.64  249.71+1.88 286.31+£5.87 266.66+2.43 258.474£2.06  257.17+3.87
50% T 306.72+0.0 407.5£7.79  294.71+0.0  288.55+4.1 293.4+18.01 304.9+£2.08 342.81+,36.26  295.67+6.86  307.66x14.51 377.25+28.18

JiNan3 25% 383.01£0.00 270.41+0.0  275.75£7.51  262.33+0.0  254.85+1.56 453.95+92.19  250.51+1.99 315.87£7.89 273.27+5.88 277.3+28.08 261.9+5.56
3 50% T 323.21+0.0  459.55+9.48  306.58+0.0  286.77+4.06  330.86+22.73 337.5+44.54 320.0+2.34 331.79+18.83  341.43+9.31  365.48+16.22
HangZhou! 25% 495.57£0.00 313.71£0.0  319.24#21.11  445.59+0.0 364.62+14.37 4162842238 391.16+£55.98  434.97+1.84  396.72+25.87 408.48+21.16 345.09+11.53
50% T 430.5240.0  569.06+£7.55  632.61+0.0 484.92+19.65 460.54+12.55 388.82+11.75  577.86+20.19  511.12+23.68 656.46+29.04 514.43+46.55

HangZhou2 25% 406.65£0.00 361.69,0.0 364.5+2.2 394.35£0.0  369.94+4.28  398.64+5.08  379.31+8.41 406.21+4.92  396.05+8.35  393.66+12.79  361.81+7.71
50% - 387.58+£0.0  461.11+4.51 446.4+0.0  411.78+£3.03  458.86+16.85 467.39+0.68 437.73+£16.48  411.47+13.55 462.53+17.42  419.92+9.52

Table 14. Performance of ATT comparison between the native diffusion model, LSTM model and our improved diffusion model.

Dataset - Noise Type - Noise Scale S b Difusion S Diffusion
base Robustlight 14 i Beta  Cosine-Beta vp-Beta LSTM base Robustlight 1 i carBeta  Cosine-Beta vp-Beta LST™

o 33 TGRS 2B2I5EI06 287085223 ISGSOELIT  ISSGElG0 1210536700 | 3057I282  DASTEE0E A 0I04 3365830 | 3232666 SI2082157

40 3149322828 288076227 294764135  1289.13:0.58 206626238  1225.65:5928  33893:1532  298.23:5.16 1230284659 342474847  914.182215.7
Verand 35 4074122457 31227+4.07 4073862023 4243941473 4052242374 110277613488 4491322114 358.2247.02 950003 43724£1243  445.6842208 78675415339

40 32634785 3204843.29 449544718 4268242603 113431411932 4604642241 360826479  45695:6.03 453611891  4S8.6042152 79428415255

JiNam MAD 35 4876925075 277.3741.16 63083£37.37 743385103 1302956119  479.634882  28313:L56 37004950 356214530  360.5826.34 :
40 5557146493 279156122 778.0+14.04 1303056117 5200047.12 288074227 38312328  36646:634 372448532
MinQ 35 6833820401 277.934347 48579418 87 12967241626 3943965027 3232542054  S08.66+2135 514243003 5233341734

40 71658413492 28L13:1.96 5205443245 12967241626 3946364737  33LE2410.64 5327761230 5101821403 ST6NI«IS04 109169415839
Sensor 25%  40093+19.66  372.9347.43 1203775593 S38.01418396 1290.526110.71 3261451652 2983561632  35096:1732 1291532383 4028743358  1035.39156.69
Damage 50%  849.61+77.93 766918183 1205.1423 31 789.674132.54  1297.65¢112.3 7323745293 680.37497.32  689.13+98.43 1295743486  760.2436.66  1088.77+160.11
Ganscian 33 356332638 322622596 36260536 3638%092 374125071 4350710500  480.38422035 327984245 405333355 482460415 5042023048 1234534138
40 3719751244 33582568 37845552 1121715274 4087651896 44103412233 51038£25.17 331215365  510.16:2234 1115676363  546.12627.14  1140.262325.02
Verand 35 6476485480  43SIIE2002  G60.63526 6435324633  654.66:49.97 62822412408  TI7.1267008  ATISSEIL6S  72043:68.66 7240326708 720346162 99197431259
40 4754922078 4ALIBLITOS  T046IM9 6747544763  GU0.65:52.65 65645412092  TISIE6IIS  ASTI4EILAA 74276437 7SL1Is6234 756386560 102541432438

HangZhow,  MAD 35 4026761742 324552663 414884363  SI083:1364 522006634 72426430781 4636423344 309242094  470.13210.60  499.48+1.03 477332091 9344556437
: 40 4190761826 33147:8.62 429545931 57098463  529.69:031 78248429296  491.64£30.78 352585371  SI0.51%625 51884432 515243363 11244543227
MinQ 35 4661487037 31736396  538.684403 402274336 76259426759 449542822 406326641 488901695 49504834 487394993 7834642832
40 4602926245 331934391 570334534 407.0746.04 6368627387 482984729 430534849  SI786+1274 524973014 535201171 92832412332

Sensor 25% 4903641384  424.36+1322  49001£154 1123984106  434.5642788  60242:11157 401874831  328.26+12.67 3861342928 112275318 400.5744943 15813567321

Damage 50% 786.32+440.86 54291610824 776.83:2533 1121731275 56045413135 7345147043  §4229423536 54156:122.96 5514464016 1123494303 61157412167 1638324141
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Table 15. Performance of ATT in JiNan, HangZhou. “-’ implies that traditional algorithms are not adapted to MinQ and MAD
attacks. Our RobustLight recovers the state of traditional and RL-based TSC algorithms to evaluate the performance.

Dataset Noise Type  Noise Scale FixedTime MaxPressure Advanced-MaxPressure Advanced-MpLight CoLight Advanced-CoLight
P base base RobustLight base RobustLight base RobustLight base RobustLight base RobustLight
Gausi 335 379.05£1.56  276.14x1.49 275952122 274.67:1.58 3834125834 276022172  29587%17.16  265.2122.02  326.04£10.78  289.84%4.68
aussian 4.0 282994122 279.89:1.41 279.63%1.15 27656174 455.56+110.18 281.88+2.91  336.38461.85 27165157  340.84+17.41  298.63:5.04
Uorand 35 301.51£2.82  290.84:2.46 299.75:1.16 297.34%1.39  548.04%98.46  323.93x11.34  653.03%150.29 380.63£68.09 717.76+169.73 361.72+28.89
JiN ran 40 268762000 306294309 294394325 304755109 30297191 5140111627 327.93+1135 359.26+1255 3540245363 T4L76:I81.97 361.66£30.15
Juvanz MAD 35 208760/ - - - - 285.67+1123  26321£1.17  565.93+39.44  262.05:148 32587834  271.58+1.52
40 - - - - 297.97£18.32  268.94+1.13  588.27+47.11  26345:1.65 337424864  271.65:1.57
Ming 35 - - - - 2833743.09  264.48+1.83 516.49£102.73 261.41:134  323.07+7.45  300.31:5.44
mn 4.0 - - - - 28943378  270.98+1.83 5411711248 268.174229 346513385  314.29+3.67
Gausi 35 360565245 358.5721.71 345272123 342.52%1.23 56465210320 362.2723.85  349.7525.13  344.63x2.01 396612050  368.79%6.27
aussian 40 363.6442.77 359.93:2.02 348.40+1.11 346.66£1.02 418.41£1243  37L71#3.65 352252443 351582375  410.64£10.02  371.54£6.94
Uorand 35 371214344  365.23:2.07 362.11%2.13 504.63£9.71  437.93:14.49 442072652  353.6743.26 472112071  379.27+11.97
HanoZ ran 40 106652000 37380300 366525214 366.6943.53 513.8321121 445.99+1153 383272941  356.79+4.07  487.33+19.17  384.2413.31
angzhouy MAD 35 O3 - - - - 3457442973 344.5244.49  47825£1539  349.3722.54  40537£12.33  359.03:9.23
40 - - - - 349.48£26.63  348.6145.77  490.25:18.66 35653433  406.75:501  359.06£9.23
Ming 35 - - - - 347.04£24.07  343.38%9.54  47348£11.07  347.73:3.85  399.8715.12  372.84+4.84
mn 4.0 - - - - 350.1542427  347.44%9.43 4845241288  352.13:2.72 40828871  385.43:8.06
Table 16. Performance Compared with DiffLight.
Dataset Noise Type Noise Scale DiffLight Advanced-Colight-RobustLight
Gaussian 35 289.45+3.37 294.57+2.02
U-rand 35 311.53+4.17 358.22+7.02
JiNany MAD 3.5 384.71£13.25 283.13+1.56
MinQ 35 321.98+6.37 323.25+20.54
Mask
.. 25% 353.45+34.31 320.31+3.21
(Kriging and Random)
Gaussian 3.5 325.05+2.58 327.98+2.45
U-rand 35 365.05+20.67 473.85+32.68
HangZhouy MAD 3.5 366.14+5.34 309.24+0.94
MinQ 35 426.14+10.56 406.32+6.41
Mask
.. 25% 346.05+41.27 296.69+4.67
(Kriging and Random)

B. Appendix: Other Experiments

Table 17. Recover time comparison.

. . Diffusion Advgnced Advanced
Dataset Noise type  Noise scale Colight ~ Maxpressure
step
Recover Recover
time(ms) time(ms)
Gaussian 1.0 20 376.16 343.06
0.5 20 202.98 178.95
U-rand 1.0 16 262.89 233.45
0.5 8 142.05 124.33
. 1.0 240 3792.56 -
JiNam MAD 0.5 120 1959.03 -
. 1.0 240 3779.34 -
MinQ 0.5 120 1976.44 -
Sensor 25% 200 2987.34 2765.36
damage 50% 200 2997.61 2768.24
Gaussian 1.0 40 417.26 447.84
0.5 20 221.38 233.92
Usrand 1.0 16 281.60 302.86
0.5 8 156.32 160.16
1.0 240 5220.45 -
HangZhous | MAD 0.5 120 3581.67 -
. 1.0 240 5348.28 -
MinQ 0.5 120 2889.14 -
Sensor 25% 200 3232.13 3552.44
damage 50% 200 3223.55 3559.41
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C. Appendix: Model Generalization Analysis

In this section, we analyze the model’s generalization ability. We transfer the algorithm trained on the J¢Nan; dataset to

other datasets to observe whether our RobustLight can effectively recover the data under various attacks.
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D. Appendix: Robustness Analysis

In this section, we provide detailed visualizations of the state t-SNE distributions and violin plots after dimensionality
reduction under Gaussian noise attacks for different algorithms. As observed, for different algorithms, our RobustLight
shows a significantly better recovery of the state distribution in most datasets, making it more closely resemble the original
state distribution compared to the attacked state distribution.

Original state distribution @ Recover state distribution @ Noise state distribution
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Figure 12. State t-SNE visulization of RobustLight based on Maxpressure in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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Figure 13. State violin visulization of RobustLight based on Maxpressure in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.

RobustLight has the ability of state recovery.
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Figure 14. State t-SNE visulization of RobustLight based on AdvancedMaxpressure in HangZhou and JiNan. Compared to
the state distribution after the noise attack, the state distribution is much closer to the original state distribution after using our

algorithm. RobustLight has the ability of state recovery.
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Figure 15. State violin visulization of RobustLight based on AdvancedMaxpressure in HangZhou and JiNan. Compared to the
state distribution after the noise attack, the state distribution is much closer to the original state distribution after using our
algorithm. RobustLight has the ability of state recovery.

Jinanl Jinan2 Jinan3

Hangzhoul Hangzhou2

Figure 16. State t-SNE visulization of RobustLight based on Colight in HangZhou and Ji N an. Compared to the state distribution
after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm. RobustLight
has the ability of state recovery.
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Figure 17. State violin visulization of RobustLight based on Colight in HangZhou and JiNan. Compared to the state distribution
after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm. RobustLight

has the ability of state recovery.
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Figure 18. State t-SNE visulization of RobustLight based on AdvancedColight in HangZhou and JiNan. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.

RobustLight has the ability of state recovery.
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Figure 19. State violin visulization of RobustLight based on AdvancedColight in HangZhou and JiN an. Compared to the state
distribution after the noise attack, the state distribution is much closer to the original state distribution after using our algorithm.
RobustLight has the ability of state recovery.
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