
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ABSTRACT WORLD MODELS WITH A
GROUP-STRUCTURED LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning meaningful abstract models of Markov Decision Processes (MDPs) is
crucial for improving generalization from limited data. In this work, we show how
geometric priors can be imposed on the low-dimensional representation manifold
of a learned transition model. We incorporate known symmetric structures via
appropriate choices of the latent space and the associated group actions, which
encode prior knowledge about invariances in the environment. In addition, our
framework allows the embedding of additional unstructured information alongside
these symmetries. We show experimentally that this leads to better predictions of
the latent transition model than fully unstructured approaches, as well as better
learning on downstream RL tasks, in environments with rotational and translational
features, including in first-person views of 3D environments. Additionally, our
experiments show that this leads to simpler and more disentangled representations.

1 INTRODUCTION

st

st+1

a1

S

a2

Figure 1: Illustration of an
MDP dynamics with some
symmetries that we want to
use as a prior knowledge in the
abstract space geometry.

In recent years, abstract world models have emerged as an impor-
tant foundation for tackling complex reinforcement learning (RL)
problems. World model learning can capture meaningful represen-
tations by embedding complex, high-dimensional data into lower-
dimensional abstract spaces (Ha and Schmidhuber, 2018; Francois-
Lavet et al., 2019; Hafner et al., 2019; Schrittwieser et al., 2020;
Kipf et al., 2019; van der Pol et al., 2020a). While the goal of world
model learning is improved sample efficiency, state-of-the-art meth-
ods (Ye et al., 2021; Hafner et al., 2023) still demand a large number
of training samples to achieve superhuman performance.

The agent’s performance depends on how the representation space
models the environment’s underlying dynamics. The representation
should be minimal yet sufficient to ensure generalization to unseen
scenarios. Prior knowledge can also be leveraged. For instance, it is possible to enforce equivariances
to improve generalization in RL (van der Pol et al., 2020b; Wang et al., 2022c; Park et al., 2022).

In decision-making settings, geometric priors allow agents to represent states and actions in a way
that respects the underlying symmetry of the dynamics—for instance, an agent that rotates in place
eventually returns to its original state. Such priors can enable faster learning and better generalization
when the environment exhibits known geometric structure. Consider the simple MDP shown in
Figure 1, which contains both symmetric and non-symmetric features. Repeated applications of
action a1 bring the agent back to the same state. We propose encoding such symmetries by choosing a
latent space and corresponding group action that naturally reflect this structure and the rest is learned
(e.g. how much an agent rotates with a given action as well as unstructured features). Our approach
employs a coordinate system tailored to the symmetry group, and performs a change of coordinates
to recover a Euclidean representation, as illustrated in Figure 2.

The paper is organized as follows: Section 2 provides the background and introduces notations.
Section 3 provides the methodology for integrating prior knowledge in the learning of abstract
representations. Section 4 reports experiments on different settings including first-person view games
in 3D environments. The experiments show the superior performance when generalizing to unseen

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 0.5 1.5 2

0

0.5

1.5

2
Abstract state space Z

Go right Go down

5
0

5 5
0

5

0.5

0.0

0.5

Homeomorphism from Z to 3

Go right Go down

Figure 2: Illustration of the approach. (Left) A grid-world with periodic boundary condition where the
agent will appear on the opposite side when it attempts to move outside the grid. (Middle) The abstract
state space Z is modeled as a product space R/2πZ×R/2πZ. (Right) Elements of Z can be mapped
to R3 using a homeomorphism (x, y) 7→ ((α + β cos(x)) cos(y), (α + β cos(y)) cos(x), β sin(y))
for α, β ∈ R+ specifying the major and minor radius of a torus.

scenarios and in the low-data regime. Section 5 provides further discussion on the related work.
Section 6 provides a conclusion that highlights and discusses the main contributions.

2 BACKGROUND

2.1 GROUP THEORY

This section introduces several essential definitions from group theory and abstract spaces.

Groups A group G is defined by a pair (G, ∗), consisting of a set G and a binary operator ∗ :
G × G → G, such that: (i) there is an identity element e ∈ G satisfying e ∗ g = g ∗ e = g for any
g ∈ G, (ii) the operator ∗ is associative, i.e., (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for any g1, g2, g3 ∈ G,
and (iii) every element has an inverse, meaning that for any g ∈ G, there exists h ∈ G such that
g ∗ h = h ∗ g = e. An example of a group is the cyclic group (Z/nZ,+), where each element is an
integer in {0, . . . , n− 1}, and for every u, v ∈ Z/nZ, we have u+ v := (u+ v) mod n.

Group actions. Groups can also be used to define transformations on another set. In the context
of reinforcement learning, applying an action moves the agent from the current state st ∈ S to the
next state st+1 ∈ S. In this setting, the transition dynamics T defines a group action acting on the
state space S , which we use as prior knowledge. Formally, a group action · : G× S → S is a binary
operation that satisfies two axioms: e · s = s and (g ∗ g) · s = g · (g · s) for any g ∈ G and s ∈ S.

An orbit of a state s ∈ S under the group action is a set of all states reachable from s via elements of
G, i.e., Orb(s) := {g · s | g ∈ G}. For example, given a state s, all the 90-degree rotations of that
state form an orbit of s under the group of 90-degree rotations. The group action G can partition the
state space S into multiple orbits. In Figure 1, the action a1 consistently generates an orbit of 4 states,
a pattern that remains predictable across different initial states.

For a toy MDP with a single orbit generated by a single action (illustrated by a single directed cycle
in Figure 1), we may represent the state space as S := {z | z ∈ C, |z| = 1}, a set of unit complex
numbers. The group action on S is defined as g · s = exp

(
2πi
n

)
× s, where g is the nth root of unity.

Composing multiple actions generates the set of nth roots of unity, which forms Z/nZ under complex
multiplication. Alternatively, when S is a vector space Rn, the group action on S is performed via
invertible matrices from SO(n) (Quessard et al., 2020).

Equivalence classes and Quotient spaces. An equivalence relation groups together elements
of a set that share a property. If two elements are considered equivalent under the relation, they
belong to the same equivalence class. An equivalence relation ∼ must satisfy three simple rules:
(i) Reflexivity: every element is equivalent to itself, s ∼ s, (ii) Symmetry: if sx ∼ sy, then sy ∼ sx,
and (iii) Transitivity: if sx ∼ sy and sy ∼ sz , then sx ∼ sz .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A quotient space arises naturally when we identify equivalent elements within a set. For example,
consider the real numbers R with an equivalence relation defined by translation by multiples of a
constant k ∈ R. In this case, two real numbers x and y are equivalent if their difference is a multiple
of k, i.e., x ∼ y if and only if x− y ∈ kZ. The quotient space R/kZ then consists of equivalence
classes of real numbers, where each class contains all real numbers that differ by a multiple of k.
Intuitively, this quotient space “wraps" the real line R into a circle of circumference k, since adding
multiples of k to any point on the line brings you back to an equivalent point on the circle.

2.2 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP)M is defined by a (S,A,R,T, γ)-tuple, which includes: (i) a
state space S ⊆ Rn that can be either discrete or continuous, (ii) an action space A that can be
either discrete or continuous, (iii) a reward function R : S ×A → R, which assigns scalar rewards
to the agent’s actions at any state, (iv) a transition dynamics T : S × A → S, which captures the
transition dynamics of the MDP, and (v) a discount factor γ, which determines the importance of
future rewards. In most cases, the agent does not have access to the reward structure R and the
transition dynamics T and must rely on interactions with the MDP to approximate solutions.

2.3 WORLD MODELS

The main focus of this work is on world models, a framework that aims to approximate an MDP’s
underlying reward function R and transition dynamics T through interaction. In contrast to existing
algorithms that learn world models through pixel reconstruction (Ha and Schmidhuber, 2018; Hafner
et al., 2023), our approach is based on a self-supervised representation learning method (Francois-
Lavet et al., 2019; Gelada et al., 2019; Kipf et al., 2019; van der Pol et al., 2020a; Hansen et al., 2024)
that operates in an abstract representation space Z .

Self-Supervised World Models Self-Supervised World Models usually consist of (i) a learnable
encoding φ : S → Z , (ii) a learnable transition function τ : Z ×A → Z and (iii) a learnable reward
function r : Z × A → R. φ projects states into a low-dimensional abstract state space Z ⊆ Rd,
with d ≪ n. τ models the transition dynamics T in the abstract state space. r approximates the
reward function R. These mappings are parameterized by deep neural networks, with the parameters
collectively denoted as θ := (θenc, θtrans, θrew). In our approach, θ are learned jointly by optimizing
for a contrastive representation learning objective.

Assuming a fixed exploration policy πexplore, an agent interacts with the MDP according to πexplore
and collects experience tuples (st, at, rt, st+1) into a replay buffer D.

The states in the sampled tuple (st, at, rt, st+1) are mapped into abstract latent states:

zt := φ(st; θenc); zt+1 := φ(st+1; θenc) (1)

The next latent state zt+1 is modeled as a translation from the current state zt given the action at:

ẑt+1 := τ(zt, at; θtrans) (2)

The exact functional form of the transition model τ(zt, at) plays a crucial role in this work as we
will show later in Section 3. The agent aims to learn a model with sufficient predictive power of the
future, meaning that zt+1 ≈ ẑt+1. This objective is expressed as a predictive loss that encourages
alignment between the model’s prediction and the ground truth:

Ltrans(θenc, θtrans) := E [d(ẑt+1, zt+1)] , (3)

where d : Z × Z → R+ is a measure of similarity in the abstract state space, which can be the ℓ1 or
ℓ2 distance for simplicity.

Optimizing solely for the predictive loss Ltrans would lead to latent collapse, where the learned
encoder φ maps all states to a single point in Z . One approach to prevent collapse is to optimize an
entropy loss (Francois-Lavet et al., 2019; Wang and Isola, 2022) that encourages the encoder φ to
preserve information in the abstract state space Z:

Lentropy(θenc, θtrans) := E [exp (−C · d(zx, zy))] , (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where zx ̸= zy are random abstract states sampled from Z . The hyperparameter C controls the
regularization strength.

The combination of the losses in Equations 3 and 4 is functionally similar to the InfoNCE loss
(van den Oord et al., 2019):

LInfoNCE(θenc, θtrans) := E

[
− log

exp (−d(ẑt+1, zt+1)/t)

exp (−d(ẑt+1, zt+1)/t) +
∑

z−
t+1

exp
(
−d(ẑt+1, z

−
t+1)/t

)] ,

(5)

where the expectation is taken over random transitions in the replay buffer D, t is the temperature
parameter, and z−t+1 denotes the negative ground-truth for the latent prediction (Eq. 2) of a given
transition (zt, at, zt+1). Here, the numerator enforced the fitting of the internal transition function and
the denominator ensures sufficient entropy. The InfoNCE was developed in the context of contrastive
learning methods. It has also been used in the context of world models (Wang et al., 2022d).

The reward function fits the conditional expectation E[R | zt, at] with the L2 loss:

Lrew(θrew) := E
[
∥r(zt, at)− rt∥22

]
(6)

3 GEOMETRIC PRIORS IN ABSTRACT WORLD MODELS

3.1 WORLD MODELING

We use a standard approach to world modeling described in Section 2. Additionally, we regularize
the volume of the abstract state space Z to be small using a hinge loss:

Lvol(θenc, θtrans) := E [max (∥zt+1 − zt∥2 − w, 0)] , (7)

where w is a threshold hyperparameter. This regularization prevents the vector norm ∥zt∥ from
growing large, which facilitates the visualization and interpretability of the abstract state space Z .

Putting everything together, the world model algorithm used in this work jointly optimizes

Labstract(θ) := LInfoNCE(θenc, θtrans) + Lrew(θrew) + Lvol(θenc, θtrans) (8)

which is minimized using any stochastic gradient descent algorithms.

Overall, the learnable mappings φ, τ and r together define an abstract MDP M̃ which is a
(Z,A, τ, r, γ)-tuple. When optimizing the loss in Equation 8, we recover an abstract dynamics that is
meaningful. Given the current state st ∈ S , an action at ∈ A, and the next state st+1 = T(st, at) as
defined byM, the following relation holds:

τ(φ(st), at) = φ(st+1). (9)

In addition, the rewards are accurately approximated by r(zt, at).

3.2 GEOMETRIC PRIORS IN MDP REPRESENTATIONS

Let us consider again the toy MDP introduced in Figure 1. The group action G acting on S is assumed
to be a cyclic group Z/nZ. As a first form of geometric priors, we propose to model the abstract state
space Z as the quotient space R/kZ. In this case, the learnable encoder φ : S → Z maps the states
of the original MDPM to elements of equivalence classes [z] ∈ Z , where [z] := {z + k · t | t ∈ Z}.
Geometric Priors for Transition Models. In our framework, the transition model τ : Z ×A → Z
maps to the same abstract space Z . The group action G acting on S is modeled as an additive group
action on Z , denoted by ⊕. Concretely, for a given abstract state zt ∈ Z and action a ∈ A, we define
the interaction with the learned group action ∆(zt, a) to predict the next abstract state zt+1 as:

ẑt+1 = τ(zt, a; θtrans) := zt ⊕∆(zt, a; θtrans). (10)

The exact form of ⊕ depends on the algebraic structure of Z . When Z is the canonical vector space
Rd, the operator ⊕ corresponds to standard vector addition, representing a translational group action.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In contrast, when Z is the quotient space R/kZ, the operator can be implemented via modular
arithmetic: for x, y ∈ Z , we define x⊕ y := (x+ y) mod k.

This additive group action serves as a geometric prior and enables models to learn simpler representa-
tions of the underlying dynamics. For a one-step transition, the next abstract state zt+1 is assumed
to be close to zt. With this assumption, small, incremental changes in the state space are reflected
smoothly in the abstract space, ensuring local continuity of the data manifold.

These geometric priors enhance our world model by structuring the abstract state space Z to reflect
the symmetries and regularities of the environment. These improvements come without altering the
training objectives or network architectures, making the approach both effective and efficient. In
earlier work geometric priors are built directly into equivariant network architectures through weight-
tying (e.g. van der Pol et al. (2020b), Park et al. (2022), Wang et al. (2022a)), enhancing sample
efficiency. However, the use of equivariant networks comes with additional computational overhead
(Satorras et al., 2021; Kaba et al., 2023; Luo et al., 2024). In contrast, we capture symmetries in the
MDP through an abstract representation space with additional structure.

3.3 JOINT SYMMETRIC AND NON-SYMMETRIC REPRESENTATIONS

Learning a representation that combines both symmetric and non-symmetric features can be challeng-
ing. When these features are entangled in the abstract state space, it becomes difficult to correctly
apply geometric priors and group actions to the appropriate set of features, while simultaneously
identifying which features should remain unaffected by these actions.

To address this challenge, we promote disentanglement (Higgins et al., 2018) within the abstract
space Z by regularizing sparsity on the transition vector ∆(z, a; θtrans). Specifically, we constrain the
features of ∆(z, a; θtrans) that should remain invariant with respect to the action a to be zero. This
objective is achieved using the following loss function:

Ldisentanglement(θenc, θtrans) = |∆(z, a; θtrans)
σ(a)| (11)

Here, σ : A → I ⊆ P({1, . . . , d}) is a mapping that specifies the coordinates of the d-dimensional
abstract state space Z that remain unaffected by action a and ∆(·)σ(a) denotes a subspace whose
coordinates are given by σ(a). The mapping σ satisfies

⋂
a∈A σ(a) = ∅, ensuring that each action

affects only its respective latent subspace. Additionally, we modify LInfoNCE (Eq. 5) so that negative
samples z−t+1 are drawn from other transitions involving the same action at. In other words, we
compute LInfoNCE by averaging over conditional expectations with respect to actions a ∈ A.

4 EXPERIMENTS

We first consider a simple case: rotational symmetry alone. Next, we evaluate on the Torus MDP
that involves multiple symmetric group actions. We then evaluate on VizDoom to demonstrate that
our method scales to complex environments with high-dimensional inputs. In all experiments, our
approach (i) leads to an interpretable abstract representation, (ii) improves generalization to unseen
transitions within the MDP and (iii) improves performance on downstream RL tasks.

4.1 IMPLEMENTATION DETAILS

The abstract model learning follows the algorithm outlined in Section B.1. We collect a finite set of
tuples with a random policy πexplore that selects actions uniformly from A. For most experiments, the
encoder φ and the transition model τ are multi-layer perceptrons (MLPs). For the experiments on
Vizdoom (Section 4.3), a convolutional neural network (CNN) followed by MLPs are used.

4.2 ABSTRACT REPRESENTATIONS FOR ROTATIONAL SYMMETRY

Representing the SO(2) group The first experiment involves a simple MDP, named Passage,
with n = 7 states, where the agent can move either left or right, wrapping around to the opposite end
upon reaching a boundary. This MDP is represented by a directed n-cycle. The state space S is a
collection of one-hot vectors {0, 1}n representing the agent’s current position. In this experiment, a
single feature is sufficient to capture the abstract representation, as shown in Figure 3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 0.5 1.5 2

Abstract representations

Figure 3: Passage. (Top) In this MDP,
the agent repeatedly moves to the right
cell and reappears on the first empty cell
after moving off the grid. (Bottom) Ab-
stract state space Z := R/2π Z. From
the learned model, the next abstract state
equals to the previous one plus 2π/7.

The group action G in Passage is an n-order cyclic
group Z/nZ. In fact, any cyclic group is a finite subgroup
of the special orthogonal group SO(2), which is isomor-
phic to the quotient group R/kZ. Thus, SO(2) ≃ R/kZ
can be viewed as the limiting group of Z/nZ as n in-
creases. These geometric priors indicate that our method
can naturally extend to represent continuous group actions.

Combined symmetry groups As a natural extension,
we consider the Torus MDP (see Figure 2), where the
transition dynamics imply that the group action is a prod-
uct of two cyclic groups, G := Z/nZ×Z/nZ. Each state
s ∈ {0, 1}2n is a concatenate of two one-hot vectors, one
represents the agent’s current row and the other the current
column. In this MDP, the state space has the topology of
a torus. We incorporate this geometric prior by modeling
Z := R/kZ× R/kZ with k := 2π.

As shown in Figure 4, the learned abstract representations
accurately capture the transition dynamics T. Addition-
ally, these representations can be mapped to a standard vector space R3 via a homeomorphism,
demonstrating that our method can recover the MDP’s structure using a compact latent space of just
two dimensions. This result highlights the efficiency of our approach: it preserves the underlying
symmetries and significantly reduces the dimensionality of the representation, which is key for scaling
to more complex environments.

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

Abstract state space Z

Seen transition Unseen transition
0 0.5 1.5 2

0

0.5

1.5

2

Abstract state space Z

Seen transition Unseen transition

0 10000 20000 30000 40000 50000
Training Steps

0.2

0.4

0.6

0.8

1.0

M
M

R

Mean Reciprocal Rank (MMR)

Training Perf. (With Priors)
Training Perf. (No Priors)

Evaluation Perf. (With Priors)
Evaluation Perf. (No Priors)

Figure 4: Generalization on unseen transitions predicted by the model (in red) for the Torus MDP.
In this setting, 10% of the possible state-action pairs are disabled during training. (Left) Without
geometric priors, the abstract model fails to predict the unseen transitions. (Middle) With geometric
priors, the abstract model accurately predicts the unseen transitions. (Right) Quantitative comparison
between the two approaches, measured by the mean reciprocal rank.

4.3 COMBINING STRUCTURED AND UNSTRUCTURED FEATURES

In a first-person view, symmetry groups can provide succinct representations. We look at how group
transformations (rotations, translations, reflections, etc.) preserve certain structures in the observer’s
reference frame. The combination of translation (T 2 in 2D or T 3 in 3D) and rotation (SO(2) or
SO(3)) forms the Euclidean group E(2) or E(3), which represents the full set of rigid body motions
(moving and rotating) that preserve the observer’s perspective. In these experiments, we do not
enforce a particular structure on the translation symmetry group and treat it as an unstructured feature.

Top-down view The first environment that we consider is a top-down view in the MiniGrid
environments (Chevalier-Boisvert et al., 2024). The agent’s action space consists of a “move forward"
and a “turn right 90°" action, with a constraint that its position must be within an n× n-grid world.
The state space S is a collection of concatenated one-hot vectors {0, 1}2n+4 that jointly encodes the
agent’s current (x, y)-coordinate and orientation {North, East, South, West}. Figure 5 shows how
information about rotation and translation can be disentangled in different feature dimensions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

x
=

2
*

(N)(E)(S) (W)

Agent at position (1, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (1, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (1, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (2, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (3, 1)

x
=

2
*

(N)(E)(S) (W)

Agent at position (3, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (3, 3)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(2, 0)

(2, 1)

(2, 2)

1.000.750.500.250.000.250.500.751.00 1.0

0.5
0.0

0.5
1.0

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(0, 0)
(0, 1)

(0, 2)

(1, 0)
(1, 1)

(1, 2)

(2, 0)
(2, 1)

(2, 2)

Figure 5: MiniGrid (3 × 3). (Left) First latent variable z(1) ∈ R/2π Z that encodes the agent’s
orientation. (Center) The subspace (z(2), z(3)) ∈ R2 which encodes the agent’s position in the grid.
In this setting, the overall proposed abstract state space Z is modeled as a product space R/2π Z×R2.
(Right) Abstract state space Z ⊆ R3 when modeling without geometric priors.

First-person view from environments with high-dimension inputs In this section, we analyze
our method and the learned representations in a high-dimensional environment, VizDoom (Kempka
et al., 2016). Here, the state space S is a set of RGB frames ∈ [0, 255]64×64×3 capturing the first-
person perspectives. The first-person rotations in VizDoom can be assumed to be continuous or, at
the very least, represented by a cyclic group Z/nZ, where n is large. For instance, in VizDoom,
without any modifications, the agent needs to rotate approximately 100 times to complete a 360°
turn. In our setup, we fix the rotation angle to δ = 36. A custom map and scenario are used for this
experiment (cf. Appendix B.3). Our static dataset consists of 100,000 transitions, divided into a train
and validation set. The dataset was generated by a random policy uniformly sampling actions from
the set {“forward", “nothing", “turn left", “turn right"}. A variation of the InfoNCE loss is used in
the VizDoom experiments; see the experimental details in Appendix B.3.

x
=
2
*p

i

0

2

4

6

8

10

1 2 3

1

0

1

2

3

0

20

40

60

Figure 6: Visualization of the effect of geometric priors on high-dimensional input. The figure
shows the mapping of high-dimensional data into a low-dimensional space. (Left) Latent subspace
(z(2), z(3)) that encodes spatial information. (Right) Latent subspace z(1) that encodes orientation.

In Figure 6, the agent moves straight for 30 steps, then remains idle for 30 steps to stop its momentum,
and finally performs 10 “turn right" actions. The agent recovers the cyclic structure of the environment
in the rotation space. Additionally, the agent stacks all states at the same point in the spatial space
during its rotation, indicating that the action-conditioned regularization loss effectively shapes the
latent space as intended. Compared to abstract world models without geometric priors, we are able to
map high-dimensional input into a very low-dimensional space (only 3 dimensions for VizDoom).

4.4 QUANTITATIVE RESULTS ON GENERALIZATION

The model’s ability to learn from a finite set of training data can be assessed by its accuracy on
previously unseen data points drawn from the same underlying distribution. This evaluation quantifies
how well the learned features capture the environment’s structure without overfitting.

Two agents are compared: one with and one without a geometric prior by using Hits at k (H@k)
and Mean Reciprocal Rank (MRR), two metrics used in earlier work on world modeling Kipf et al.
(2019); Park et al. (2022). These metrics are provided in Appendix C. Various training set sizes are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tested to analyze performance in both low- and high-data regimes. Figure 4 shows that priors enable
the agent to accurately predict unseen transitions, whereas the agent without priors overfits on seen
transitions. Similarly, Table 1 shows that the agent with prior knowledge significantly outperforms
both the agent without it and the one with greater representation power (e.g., higher latent dimension)
across H@1, H@5, and MRR metrics, across all tested environments. We also compare against
the approach of Quessard et al. (2020). While it achieves competitive performance on Torus, its
performance degrades significantly on the VizDoom environments, suggesting that our method can
handle both structured and unstructured features. Figure 7 highlights that the prior reduces overfitting
for 3D first-person environments (similar figures for the Torus and Minigrid environments are in
Appendix D).

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

ci
pr

oc
al

 R
an

k

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
it

 @
 1

Training Perf. (With Priors) Training Perf. (No Priors) Evaluation Perf. (With Priors) Evalutation Perf. (No Priors)

Figure 7: Generalization performance on VizDoom using 10,000 transitions for the train set (10% of
the original dataset) and 20,000 transitions for the test set (20% of the original dataset). (Left) MRR
computed on the training and test sets. (Right) H@1 computed on the training and test sets.

Table 1: Ranking results on the validation set (10% of valid transitions for Torus and MiniGrid. 20%
for VizDoom). Each metric is multiplied by a factor of 100.

Environment Model H@1 (↑) H@5 (↑) MRR (↑)

MiniGrid 5× 5
AWM + Geometric Priors 85.55 (± 14.31) 97.77 (± 2.72) 91.05 (± 9.21)

AWM (same latent dimensionality) 13.33 (± 5.65) 70.00 (± 13.42) 37.65 (± 6.26)

PRAE (van der Pol et al., 2020a) 24.44 (± 10.88) 77.77 (± 7.85) 24.44 (± 10.88)

Rotation Matrix (Quessard et al., 2020) 83.33(± 0) 98.15(± 2.62) 90 (± 1.2)

Torus 5× 5
AWM + Geometric Priors 96.00 (± 8.00) 100.00 (± 0.00) 98.00 (± 4.00)

AWM (same latent dimensionality) 56.00 (± 8.00) 100.00 (± 0.00) 70.40 (± 6.69)

PRAE (van der Pol et al., 2020a) 12.00 (± 9.79) 100.00 (± 0.00) 42.53 (± 6.38)

Rotation Matrix (Quessard et al., 2020) 100 (± 0.00) 100 (± 0.00) 100 (± 0.00)

VizDoom AWM + Geometric Priors 81.04 (± 3.75) 93.72 (± 2.35) 86.77 (± 3.09)

AWM (same latent dimensionality) 59.26 (± 5.02) 79.09 (± 2.39) 68.56 (± 3.81)

PRAE (van der Pol et al., 2020a) 42.42 (± 20.72) 71.74 (± 12.47) 55.68 (± 18.71)

Rotation Matrix (Quessard et al., 2020) 17.58 (± 18.42) 27.17 (± 14.90) 23.67 (± 16.48)

4.5 EVALUATION ON DOWNSTREAM REINFORCEMENT LEARNING TASKS

We further evaluate the generalization capability of our approach by measuring how well a reinforce-
ment learning (RL) agent performs when trained with a limited amount of real-world interaction data.
In this setting, the agent gets a positive reward when reaching a designated goal in the environment.
At each time step, the agent receives a reward of −1, and the episode terminates once the goal is
reached. Details of the experimental setup are in Appendix F.

We compare three agents: (i) a baseline using Double Q-learning (DDQN) (van Hasselt et al., 2015)
alone, (ii) an agent combining DDQN with a learned abstract world model that incorporates a
geometric prior, and (iii) an agent combining DDQN with the abstract world model but without
the geometric prior. All three agents are trained on the same fixed dataset of transitions, collected
using a random policy. The abstract world models are frozen during the DDQN training phase. In
the model-based setting, the Q-function is trained on encodings of the raw states. Additionally, the
learned transition model is used to generate synthetic transitions to augment the training data. The
performance of the agents can be seen in Figure 8.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Training Steps

100

80

60

40

20

0

Ev
al

ua
ti

on
 C

um
ul

at
iv

e
Re

w
ar

d

Downstream RL Performance on Torus

DDQN (Vanilla)
DDQN + AWM (with priors)

DDQN + AWM (no priors)

0 2000 4000 6000 8000 10000
Training Steps

100

80

60

40

20

0

Ev
al

ua
ti

on
 C

um
ul

at
iv

e
Re

w
ar

d

Downstream RL Performance on MiniGrid

DDQN (Vanilla)
DDQN + AWM (with priors)

DDQN + AWM (no priors)

0 50000 100000 150000 200000 250000
Training Steps

2000

1800

1600

1400

1200

1000

800

Ev
al

ua
ti

on
 C

um
ul

at
iv

e
Re

w
ar

d

Downstream RL Performance on VizDoom

DDQN (Vanilla)
DDQN + AWM (with priors)

DDQN + AWM (no priors)

Figure 8: Cumulative rewards averaged over 5 seeds and the corresponding standard error. Each
curve shows a running average of the return computed over 100 training steps. The shaded areas
depict the standard errors.

5 RELATED WORK

Abstract World Models Abstract (or latent) world models aim to learn a simplified dynamics
of the world by ignoring irrelevant information. Most approaches achieve this by mapping high-
dimensional inputs (such as images) into a more compact representation space that should contain the
key features of the environment. Various methods have been proposed to construct this abstract space.
For instance, Ha and Schmidhuber (2018) and Hafner et al. (2024) introduce approaches based on
variational autoencoders (VAEs), where the latent space is learned through probabilistic inference.
Other approaches use contrastive learning techniques that bypass input reconstruction (Francois-Lavet
et al., 2019; Gelada et al., 2019; Kipf et al., 2019; van der Pol et al., 2020a; Hansen et al., 2024; Park
et al., 2022). Several works have enforced structure within the latent space, for instance van der Pol
et al. (2020a). Rezaei-Shoshtari et al. (2022) learn MDP homomorphisms in tandem with the policy.

Geometric Priors Earlier works have shown that equivariant RL algorithms can have better sample
efficiency (van der Pol et al., 2020b; Mondal et al., 2020; Simm et al., 2020; Wang et al., 2022b;
van der Pol et al., 2021; Wang et al., 2022a; Zhu et al., 2022; Chen and Zhang, 2023) . In these works,
the exact group structure of the MDP is assumed to be known. In contrast, our approach assumes only
a cyclic group structure without requiring the precise number of elements in the group. Quessard
et al. (2020) proposed a similar approach to ours. However, the key differences lie in how rotations
are represented and how disentanglement is achieved. In their method, rotations are represented
using rotational matrices rather than complex numbers on the unit circle, and disentanglement is
not learned through a contrastive objective. Other work enforces group structure in the latent MDP
by placing symmetry constraints on the latent transition model (Park et al., 2022). While Quessard
et al. (2020) and Park et al. (2022) enforce the use of fully symmetric features, our method allows
for the combination of both symmetric and non-symmetric features. This flexibility enables our
method to scale to more complex environments, such as first-person games like VizDoom. Finzi et al.
(2021) introduces “Residual Pathway Priors" as a mechanism to imbue models with soft inductive
biases. Wang et al. (2022c) have an equivariant input path for symmetric state features, and a non-
equivariant input path for non-symmetric state features. The non-equivariant path is used to generate
dynamic filters (Jia et al., 2016) that obey equivariance constraints. Since equivariant networks are
computationally more demanding than regular networks (Satorras et al., 2021; Kaba et al., 2023; Luo
et al., 2024), we enforce symmetry in latent space without the need to build equivariant paths.

6 CONCLUSION

This paper presents an approach for incorporating prior knowledge of symmetry groups into abstract
representations of MDPs. The method learns the weights of a state encoder and latent MDP dynamics
to shape the abstract representations in a in a way that reflects the dynamics of the original environment.
By enforcing geometric priors, the approach achieves better generalization compared to unstructured
baselines. We show improved generalization on environments characterized by different combinations
of symmetry groups and non-symmetry groups, including the high dimensional 3d first-person view
environment VizDoom.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chen, D. and Zhang, Q. (2023). E(3)-equivariant actor-critic methods for cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2308.11842.

Chevalier-Boisvert, M., Dai, B., Towers, M., Perez-Vicente, R., Willems, L., Lahlou, S., Pal, S.,
Castro, P. S., and Terry, J. (2024). Minigrid & miniworld: Modular & customizable reinforcement
learning environments for goal-oriented tasks. Advances in Neural Information Processing Systems,
36.

Eysenbach, B., Myers, V., Salakhutdinov, R., and Levine, S. (2024). Inference via interpolation:
Contrastive representations provably enable planning and inference. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems.

Finzi, M., Benton, G., and Wilson, A. G. (2021). Residual pathway priors for soft equivariance
constraints. Advances in Neural Information Processing Systems, 34:30037–30049.

Francois-Lavet, V., Bengio, Y., Precup, D., and Pineau, J. (2019). Combined reinforcement learning
via abstract representations. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):3582–3589.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare, M. G. (2019). Deepmdp: Learning
continuous latent space models for representation learning. arXiv preprint arXiv:1906.02736.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, volume 31.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019). Learning
latent dynamics for planning from pixels.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through world
models.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2024). Mastering diverse domains through world
models.

Hansen, N., Su, H., and Wang, X. (2024). TD-MPC2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and Lerchner, A. (2018).
Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230.

Jia, X., De Brabandere, B., Tuytelaars, T., and Gool, L. V. (2016). Dynamic filter networks. Advances
in neural information processing systems, 29.

Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and Ravanbakhsh, S. (2023). Equivariance with
learned canonicalization functions. In International Conference on Machine Learning, pages
15546–15566. PMLR.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Vizdoom: A doom-
based ai research platform for visual reinforcement learning.

Kipf, T., Van der Pol, E., and Welling, M. (2019). Contrastive learning of structured world models.
arXiv preprint arXiv:1911.12247.

Luo, S., Chen, T., and Krishnapriyan, A. S. (2024). Enabling efficient equivariant operations in the
fourier basis via gaunt tensor products. arXiv preprint arXiv:2401.10216.

Mondal, A. K., Nair, P., and Siddiqi, K. (2020). Group equivariant deep reinforcement learning.

Park, J. Y., Biza, O., Zhao, L., van de Meent, J. W., and Walters, R. (2022). Learning symmetric
embeddings for equivariant world models. arXiv preprint arXiv:2204.11371.

Quessard, R., Barrett, T. D., and Clements, W. R. (2020). Learning group structure and disentangled
representations of dynamical environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rezaei-Shoshtari, S., Zhao, R., Panangaden, P., Meger, D., and Precup, D. (2022). Continuous mdp
homomorphisms and homomorphic policy gradient. In Advances in Neural Information Processing
Systems.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E (n) equivariant graph neural networks. In
International conference on machine learning, pages 9323–9332. PMLR.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D. (2020). Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):604–609.

Simm, G. N., Pinsler, R., Csányi, G., and Hernández-Lobato, J. M. (2020). Symmetry-aware
actor-critic for 3d molecular design. arXiv preprint arXiv:2011.12747.

van den Oord, A., Li, Y., and Vinyals, O. (2019). Representation learning with contrastive predictive
coding.

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. (2020a). Plannable approximations to mdp
homomorphisms: Equivariance under actions.

van der Pol, E., van Hoof, H., Oliehoek, F. A., and Welling, M. (2021). Multi-agent mdp homomorphic
networks. arXiv preprint arXiv:2110.04495.

van der Pol, E., Worrall, D. E., van Hoof, H., Oliehoek, F. A., and Welling, M. (2020b). Mdp
homomorphic networks: Group symmetries in reinforcement learning.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with double q-learning.

Wang, D., Jia, M., Zhu, X., Walters, R., and Platt, R. (2022a). On-robot learning with equivariant
models. arXiv preprint arXiv:2203.04923.

Wang, D., Walters, R., and Platt, R. (2022b). SO(2)-equivariant reinforcement learning.

Wang, D., Walters, R., Zhu, X., and Platt, R. (2022c). Equivariant q learning in spatial action spaces.
In Conference on Robot Learning, pages 1713–1723. PMLR.

Wang, T. and Isola, P. (2022). Understanding contrastive representation learning through alignment
and uniformity on the hypersphere.

Wang, Z., Xiao, X., Xu, Z., Zhu, Y., and Stone, P. (2022d). Causal dynamics learning for task-
independent state abstraction. arXiv preprint arXiv:2206.13452.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. (2021). Mastering atari games with limited data.

Zhu, X., Wang, D., Biza, O., Su, G., Walters, R., and Platt, R. (2022). Sample efficient grasp learning
using equivariant models. arXiv preprint arXiv:2202.09468.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LIMITATIONS

This work focuses on two fundamental symmetry groups—translations and rotations—which are
prevalent in both representation learning and downstream reinforcement learning tasks. These choices
provide a principled and tractable setting to demonstrate the benefits of incorporating geometric
priors.

That said, our framework does not yet extend to more complex or task-specific symmetries (e.g.,
scaling, affine, or discrete groups). While technically feasible, such extensions would require
additional development in defining group actions and enforcing structure in latent spaces. We leave
this as a promising direction for future research.

B EXPERIMENTATION SET-UP

B.1 ABSTRACT WORLD MODEL LEARNING ALGORITHM

Learning world models with geometric priors

Algorithm parameters: A discrete-time deterministic MDP (S,A,T,R, γ).
Define the abstract state space Z and the group action operator ⊕.
Initialize an encoder φ : S → Z , a transition model τ : Z × A → Z , a learning rate η, a
replay buffer D, and an exploration policy πexplore.
Initialize the learnable parameters θ := (θenc, θtrans).
foreach episode do

Start at the initial state s0 ∼ µ0

// Phase 1: Collect empirical transitions from random
walking

for t← 0 to T − 1 do
Sample action at ∼ πexplore(st).
Observe the next state st+1 := T(st, at).
Append the tuple (st, at, rt, st+1) to replay buffer D.

end for
// Phase 2: World model learning
for i← 0 to N − 1 do

Sample a batch of M experience {(st, at, rt, st+1)i}Mi=1 uniformly from replay buffer
D.

Obtain the latent states {(zt, zt+1)}Mi=1 from the encoder:
z
(i)
t := φ(s

(i)
t); z

(i)
t+1 := φ(s

(i)
t+1)

Obtain next abstract state predictions {(ẑt+1)}Mi=1 given the current abstract state and
action:

ẑ
(i)
t+1 := τ(z

(i)
t , a

(i)
t) = z

(i)
t ⊕∆(z

(i)
t , a

(i)
t)

Compute the world model learning loss Labstract(θ).
Update the networks:
θenc ← θenc − η∇θencLabstract(θ)
θtrans ← θtrans − η∇θtransLabstract(θ)

end for
end foreach

Algorithm 1: (Learning world models with geometric priors) In practice, we learn the world
model from the empirical transitions induced by a fixed policy πexplore. Since world model
learning is inherently an off-policy algorithm, our approach consists of two phases. First, for
each episode, we collect experience tuples by interacting with the MDP. Then, we update the
network parameters θ := (θenc, θtrans) by jointly optimizing for the Labstract(θ) calculated from
the sampled mini-batches.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For most experiments, we parameterize the encoder φ and the transition model τ with multi-layer
perceptrons (MLPs) consisting of two hidden layers, each followed by Tanh activations. For the
experiments on Vizdoom (Section 4.3), we use a convolutional neural network (CNN) to parameterize
the encoder. We train both networks jointly for 50000 gradient updates using the RMSProp optimizer
with momentum. The batch size is fixed at 64 samples sampled uniformly from the replay buffer D,
and the learning rate is set between 10−5 and 10−4. We apply gradient clipping to stabilize training,
with the clipping parameter set to 0.5.

B.2 EXPERIMENTS DETAILS OF TORUS (SECTION 4.2) AND MINIGRID (SECTION 4.3)

In the Torus and MiniGrid environments, samples are collected using a random policy. No weighting
factors were applied to balance the loss functions. All experiments for these two environments
were conducted on a single Apple M3. Hyperparameters are listed in Table 2. The neural networks
parameterizing the encoder φ and the transition model τ are described in Table 3 and Table 4,
respectively.

Table 2: Hyperparameters for Torus and MiniGrid.

Parameter Torus MiniGrid

Learning rate 10−4 10−4

Batch size 32 64
Training steps 50, 000 50, 000
Gradient normalization 0.5 0.5
Number of valid transitions 50 184

Table 3: Encoder architecture

Layer Layer Configuration
1 Dense (32 neurons, activation = tanh)
2 Dense (32 neurons, activation = tanh)
3 Dense (2 neurons (Torus) / 3 neurons (MiniGrid))

Table 4: Transition model architecture

Layer Layer Configuration
1 Dense (32 neurons, activation = tanh)
2 Dense (2 neurons (Torus) / 3 neurons (MiniGrid))

B.3 EXPERIMENTAL DETAILS OF VIZDOOM (SECTION 4.3)

Our currently modification of VizDoom is based on the public implementation which can be found
at https://github.com/Farama-Foundation/ViZDoom. A custom map (see Figure 9)
was designed to evaluate our method in a high-dimensional setting. The map consists of a single
room with textured walls, enabling the agent to localize itself within the environment. At each time
step, the agent receives a reward of 0. For the experiment, images are downscaled to 64× 64. All
the experiments on VizDoom were conducted on a single Geforce RTX 3090. Hyperparameters are
listed in Table 5. Moreover, the symmetrized version of infoCNE (Eysenbach et al., 2024) is used on
the RL downstream task:

LInfoNCE(θenc, θtrans) :=
1

2
E

[
− log

exp (−d(ẑt+1, zt+1)/t)

exp (−d(ẑt+1, zt+1)/t) +
∑

z−
t+1

exp
(
−d(ẑt+1, z

−
t+1)/t

)]

+
1

2
E

[
− log

exp (−d(zt+1, ẑt+1)/t)

exp (−d(zt+1, ẑt+1)/t) +
∑

ẑ−
t+1

exp
(
−d(zt+1, ẑ

−
t+1)/t

)] .

13

https://github.com/Farama-Foundation/ViZDoom

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 9: Custom map used in VizDoom experiment.

This variation of infoCNE improves stability in high-dimensional environments. The architectures of
the encoder and transition model are detailed in Table 6 and Table 7, respectively.

Table 5: Hyperparameters for VizDoom.

Parameter VizDoom

Learning rate 10−4

Batch size 200
Training steps 50, 000
Gradient normalization 0.5
Dataset size 100, 000

Table 6: Encoder architecture

Layer Layer Configuration
1 Conv2D (32 channels, 4× 4 kernel, activation = tanh)
2 Conv2D (64 channels, 4× 4 kernel, activation = tanh)
3 Conv2D (128 channels, 4× 4 kernel, activation = tanh)
4 Conv2D (256 channels, 4× 4 kernel, activation = tanh)
5 Dense (128 neurons, activation = tanh)
6 Dense (64 neurons, activation = tanh)
7 Dense (32 neurons, activation = tanh)
8 Dense (3 neurons)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Transition model architecture

Step Layer Configuration
1 Dense (32 neurons, activation = tanh)
2 Dense (32 neurons, activation = tanh)
3 Dense (32 neurons, activation = tanh)
4 Dense (3 neurons)

C METRICS USED

The Mean Reciprocal Rank (MRR) metric is defined as:

MRR =
1

N

N∑
i=1

1

ranki

where:

• N is the total number of test instances (queries),
• ranki is the rank position of the correct data point in the ordered list of predictions for the i-th

instance.

The hit at k (H@k) metric is defined as:

H@k =
1

N

N∑
i=1

1(ranki ≤ k)

where:

• N is the total number of test instances (queries),
• ranki is the rank position of the correct data point for the i-th instance,
• 1(ranki ≤ k) is an indicator function that equals 1 if the correct data point is ranked within the top
k positions, and 0 otherwise.

D GENERALIZATION TO UNSEEN TRANSITIONS

D.1 MINIGRID

Figure 10 and Figure 11 illustrate the learned abstract representations of the world model with
and without geometric priors. Our method produces a structured, simple, and highly predictable
representation, leading to improved generalization across different data regimes (see Figure 12 and
Figure 13).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

x
=

2
*

(N)(E)(S)(W)

Agent at position (1, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (1, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (1, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (1, 4)

x
=

2
*

(N)(E)(S) (W)

Agent at position (1, 5)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 3)

x
=

2
*

(N)(E)(S)(W)

Agent at position (2, 4)

x
=

2
*

(N)(E)(S) (W)

Agent at position (2, 5)

x
=

2
*

(N)(E)(S)(W)

Agent at position (3, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (3, 2)

x
=

2
*

(N)(E)(S)(W)

Agent at position (3, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (3, 4)

x
=

2
*

(N)(E)(S) (W)

Agent at position (3, 5)

x
=

2
*

(N)(E)(S)(W)

Agent at position (4, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (4, 2)

x
=

2
*

(N)(E)(S) (W)

Agent at position (4, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (4, 4)

x
=

2
*

(N)(E)(S) (W)

Agent at position (4, 5)

x
=

2
*

(N)(E)(S)(W)

Agent at position (5, 1)

x
=

2
*

(N)(E)(S)(W)

Agent at position (5, 2)

x
=

2
*

(N)(E)(S) (W)

Agent at position (5, 3)

x
=

2
*

(N)(E)(S) (W)

Agent at position (5, 4)

x
=

2
*

(N)(E)(S) (W)

Agent at position (5, 5)

2 1 0 1 2

2

1

0

1

2

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Figure 10: Generalization to unseen transitions with geometric priors on MiniGrid 5× 5. The
red arrows denote the unseen transitions during training (10% of the total valid transitions). As
shown above, our method accurately predicts these transitions. (Left) Latent visualization of the first
latent subspace z(1) ∈ R/2πZ. (Right) Latent visualization of the second and third latent subspace
(z(2), z(3)) ∈ R2.

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0
1.5

1.0

0.5

0.0

0.5

1.0

(0, 0)
(0, 1)

(0, 2)

(0, 3)

(0, 4)

(1, 0)(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)
(3, 2)

(3, 3)

(3, 4)

(4, 0)(4, 1)(4, 2)

(4, 3)
(4, 4)

Figure 11: Abstract world model without geometric priors fails to generalize to unseen transitions in
MiniGrid.

0 10000 20000 30000 40000 50000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
M

R

Mean Reciprocal Rank (MMR)

0 10000 20000 30000 40000 50000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Generalization on MiniGrid with Priors vs. No Priors

Training Perf. (With Priors) Training Perf. (No Priors) Evaluation Perf. (With Priors) Evaluation Perf. (No Priors)

Figure 12: Generalization performance to unseen transitions (10% of the total valid transitions) on
MiniGrid.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

10 20 30 40 50 60 70
Percentage of Unseen Transitions

0.0

0.2

0.4

0.6

0.8

1.0
M

M
R

Mean Reciprocal Rank (MMR)

10 20 30 40 50 60 70
Percentage of Unseen Transitions

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Generalization on MiniGrid with Priors vs. No Priors

Training MMR (With Priors) Training MMR (No Priors) Evaluation MMR (With Priors) Evaluation MMR (No Priors)

Figure 13: Generalization performance on MiniGrid with varying percentages of unseen transitions
used as the validation set.

D.2 TORUS

Similar to MiniGrid, we present quantitative results on generalization capabilities across different
data regimes in Figure 14 and Figure 15.

0 10000 20000 30000 40000 50000
Training Steps

0.2

0.4

0.6

0.8

1.0

M
M

R

Mean Reciprocal Rank (MMR)

0 10000 20000 30000 40000 50000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Generalization on Torus with Priors vs. No Priors

Training Perf. (With Priors) Training Perf. (No Priors) Evaluation Perf. (With Priors) Evaluation Perf. (No Priors)

Figure 14: Generalization performance to unseen transitions (10% of the total valid transitions) on
Torus.

10 20 30 40 50 60 70
Percentage of Unseen Transitions

0.0

0.2

0.4

0.6

0.8

1.0

M
M

R

Mean Reciprocal Rank (MMR)

10 20 30 40 50 60 70
Percentage of Unseen Transitions

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Generalization on Torus with Priors vs. No Priors

Training MMR (With Priors) Training MMR (No Priors) Evaluation MMR (With Priors) Evaluation MMR (No Priors)

Figure 15: Generalization performance on Torus with varying percentages of unseen transitions used
as the validation set.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 VIZDOOM

On VizDoom, our method outperforms abstract world models without prior knowledge when trained
on 80% and 40% of the original dataset. Notably, the evaluation performance of the prior-informed
agent exceeds even the training performance of the agent without priors (see Figures 16 and 17).

0 10000 20000 30000 40000
Training Steps

0.2

0.4

0.6

0.8

1.0

M
RR

Mean Reciprocal Rank (MRR)

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Training Perf. (With Priors) Training Perf. (No Priors) Evaluation Perf. (With Priors) Evalutation Perf. (No Priors)

Figure 16: Vizdoom generalization with 80000 transitions (80% of the original dataset).

0 10000 20000 30000 40000
Training Steps

0.2

0.4

0.6

0.8

1.0

M
RR

Mean Reciprocal Rank (MRR)

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Training Perf. (With Priors) Training Perf. (No Priors) Evaluation Perf. (With Priors) Evalutation Perf. (No Priors)

Figure 17: Vizdoom generalization with 40000 transitions (40% of the original dataset).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E ABLATION STUDY: EFFECT OF THE DISENTANGLEMENT LOSS

To evaluate the role of the disentanglement loss 11, we removed it on the VizDoom task and analyzed
the impact on both performance and the structure of the abstract space. Surprisingly, performance on
MMR and H@1 remained unchanged, and the latent space preserved a well-structured geometry(see
Figure 18 and Figure 19). These findings suggest that the geometric constraints on the latent space
alone are sufficient to guide the model. This observation opens the door to tackling more complex
environments, where it is not known a priori which actions should influence which abstract features.

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
RR

Mean Reciprocal Rank (MRR)

0 10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

H
@

1

Hit @ 1 (H@1)

Training Perf. (With Priors) Evaluation Perf. (With Priors)

Figure 18: Vizdoom generalization with 10000 transitions (10% of the original dataset) without the
loss 11

Figure 19: Latent space for the VizDoom environment withtout the loss 11. (Left) Latent subspace
(z(2), z(3)) that encodes spatial information. (Right) Latent subspace z(1) that encodes orientation.

F DOWNSTREAM REINFORCEMENT LEARNING TASKS

F.1 EXPERIMENTATION SET-UP

The general task is for the agent to reach a designated location in the world. For every time step, it
receives −1 as a reward and terminates the game as it reaches the goal. We propose a lightweight
version of model-based augmentation by leveraging the learned abstract world model to generate
synthetic one-step transitions for all actions at the abstract state level. This approach is both simple to
implement and computationally efficient:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• No additional environment interaction is allowed—augmentation is performed solely on the
replay buffer φ.

• For each stored transition (s, a, r, s′) in the dataset D:
1. Encode the state s into its abstract representation z using the frozen encoder.
2. For all possible actions a′, use the learned transition model τ to predict the next abstract

state z′ and the reward model to predict the reward r′.
3. Add the synthetic tuple (z, a′, r′, z′) to the training batch D for Q-learning.

• It complements abstract-state Q-learning by densifying the data and improving generalization
in the abstract space.

• It helps alleviate the data sparsity problem in offline reinforcement learning by enabling
virtual exploration via the learned world model.

We evaluate three methods using a fixed offline dataset D = {(si, ai, ri, s′i)}Ni=1 collected from
environment interactions. All methods use Q-learning as the core algorithm for policy evaluation and
improvement. The experiments proceed as follows:

1. Pure Q-learning (Baseline)
• Sample mini-batches from D.
• Apply standard Q-learning updates using gradient descent to minimize the temporal-

difference error:

LQ := E(s,a,r,s′)∼D

[(
Q(s, a)−

[
r + γmax

a′
Q(s′, a′)

])2
]
.

2. Q-learning combined with an Abstract World Model
• Train a world model consisting of a state encoder φ(s) = z, a transition model
τ(z, a)→ z′, and a reward model r(z, a)→ r using dataset D.

• Freeze the world model and proceed as follows:
– For each s in a tuple (s, a, r, s′) ∈ D, encode s to z = φ(s).
– For all actions a′ ∈ A:

* Predict ẑ′ = τ(z, a′) and r̂ = r(z, a′).
* Form synthetic tuples (z, a′, r̂, ẑ′) and add to the training set.

– Apply Q-learning in the abstract space using both original and synthetic transitions.
Two cases are considered:

(2a) World-model without geometric priors: The abstract latent space is learned via a
combination of Ltrans and Lentropy.

(2b) World-model with geometric priors: The abstract latent space is equipped with
algebratic structures as proposed.

On Torus and MiniGrid, the training set D is 80% of the total valid transitions of the underlying
MDPs. The remaining 20% are not accessible during the Q-learning step by any means. On VizDoom,
a dataset of 150.000 transitions is collected from a random policy. We report the mean and standard
deviation of cumulative rewards over multiple training seeds for all the variants.

F.2 VIZDOOM NAVIGATION TASK

In Section 4.5, the agent’s goal is to reach a target position as quickly as possible (see Figure 20). At
each time step, the agent receives a reward of − ||agent position−target position||2

max distance . If the normalized distance
between the agent’s position and the target position falls below 0.1, the agent receives a reward of 10,
and the episode terminates. Moreover, the episode ends after a maximum of 2500 steps.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 20: Downstream RL task in VizDoom. The agent starts at the green dot and aims to reach the
red dot as quickly as possible.

21

	Introduction
	Background
	Group Theory
	Markov Decision Processes
	World Models

	Geometric Priors in Abstract World Models
	World Modeling
	Geometric Priors in MDP Representations
	Joint Symmetric and Non-symmetric Representations

	Experiments
	Implementation details
	Abstract representations for Rotational Symmetry
	Combining structured and unstructured features
	Quantitative results on generalization
	Evaluation on downstream reinforcement learning tasks

	Related Work
	Conclusion
	Limitations
	Experimentation set-up
	Abstract world model learning algorithm
	Experiments details of Torus (Section 4.2) and MiniGrid (Section 4.3)
	Experimental details of VizDoom (Section 4.3)

	Metrics used
	Generalization to Unseen Transitions
	MiniGrid
	Torus
	VizDoom

	Ablation Study: Effect of the Disentanglement Loss
	Downstream reinforcement learning tasks
	Experimentation set-up
	VizDoom Navigation Task

