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ABSTRACT

Large Reasoning Models (LRMs) have expanded the mathematical reasoning fron-
tier through Chain-of-Thought (CoT) techniques and Reinforcement Learning with
Verifiable Rewards (RLVR), capable of solving AIME-level problems. However,
the performance of LRMs is heavily dependent on the extended reasoning context
length. For solving ultra-hard problems like those in the International Mathematical
Olympiad (IMO), the required reasoning complexity surpasses the space that an
LRM can explore in a single round. Previous works attempt to extend the reasoning
context of LRMs but remain prompt-based and built upon proprietary models, lack-
ing systematic structures and training pipelines. Therefore, this paper introduces
Intern-S1-MO, a long-horizon math agent that conducts multi-round hierarchical
reasoning, composed of an LRM-based multi-agent system including reasoning,
summary, and verification. By maintaining a compact memory in the form of
lemmas, Intern-S1-MO can more freely explore the lemma-rich reasoning spaces
in multiple reasoning stages, thereby breaking through the context constraints for
IMO-level math problems. Furthermore, we propose OREAL-H, an RL frame-
work for training the LRM using the online explored trajectories to simultaneously
bootstrap the reasoning ability of LRM and elevate the overall performance of
Intern-S1-MO. Experiments show that Intern-S1-MO can obtain 26 out of 35 points
on the non-geometry problems of IMO2025, matching the performance of silver
medalists. Code and model will be released to benefit future research.

1 INTRODUCTION

Reasoning is a highly intellectual human activity that requires the integration of deductive logic,
pattern recognition, and creative problem decomposition to address complex challenges, which is
regarded as a significant milestone towards Artificial General Intelligence (AGI) (Sun et al., 2025).
In recent years, large reasoning models (LRMs) have made substantial progress in mathematical
reasoning, driven primarily by techniques such as Chain-of-Thought (CoT) (Zhang et al., 2022;
Wang et al., 2023) and Reinforcement Learning from Verifiable Rewards (RLVR) (Shao et al., 2024;
Yue et al., 2025; Zeng et al., 2025). Along with the increasing reasoning capabilities of LRMs, a
clear trend is that LRMs are being allocated more thinking budgets for more difficult problems to
support the exploration of larger solution spaces and the trial-and-error processes (Zhou et al., 2022;
Aggarwal & Welleck, 2025).

However, hardware and data limitations have made unlimited scaling of context length infeasible.
Currently, state-of-the-art (SOTA) reasoning models typically support a maximum context length of
only 64k or 128k tokens (Yang et al., 2025; Bai et al., 2025b; DeepMind, 2025a), insufficient for ultra-
challenging problems such as those in International Mathematical Olympiads (IMO) (Balunovi’c et al.,
2025). Figure 1(a) illustrates the logarithmic growth of the required context length with increasing
difficulty of the problem, highlighting the mismatch between the existing capacity limits and practical
demands. While resource investment can marginally raise this context ceiling, developing a cost-
effective paradigm to meet context requirements is more compelling (Li et al., 2025a; Ke et al.,
2025).

Some studies have explored multi-round interaction (Motwani et al., 2024) or parallel decoding
(Zhang et al., 2024a) to perform long logical deduction in mathematical reasoning. Furthermore,
Huang & Yang (2025) introduced self-reflective with prompt engineering, allowing models to identify
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Figure 1: As problem difficulty increases, both the average human thinking time and the model
token consumption per problem grow exponentially (a), already reaching concerning limits under
current development trends. Intern-S1-MO enables LRMs to use about 512K tokens to solve a single
problem, achieving state-of-the-art performance on challenging mathematical benchmarks (b).

flaws in intermediate reasoning steps and refine the outputs. Nevertheless, these approaches still
confine problem-solving to a single reasoning cycle (even with internal iterations) rather than building
cumulatively upon prior reasoning trajectories, which limits their capacity to leverage historical
explorations for further in-depth deduction (Wang et al., 2025). Alternatively, formal language–based
search (Ren et al., 2025; Chen et al., 2025; Zhou et al., 2025) shows some promise: by maintaining a
structured repository to store and reuse intermediate results, they reduce reliance on model context
length. However, the proof verification and state traversal demand extensive iterations, leading to
high computational and search overhead. Moreover, formal systems require translating informal
descriptions into formal logic, introducing additional costs and hindering the interaction between AI
and humans.

Proprietary LRMs (OpenAI, 2025; DeepMind, 2025b) have reported impressive results on the
International Mathematical Olympiad 2025 (IMO2025) problems, yet the research community lacks
access to their methodologies and models. In this work, we present Intern-S1-MO, an open-source
solution for building math reasoning agents unconstrained by context length, and solves complex
reasoning problems through hierarchical decomposition, a strategy that closely aligns with human
problem-solving patterns. Intern-S1-MO achieves unlimited exploration capability through lemma
memory management. Specifically, after each single-round reasoning, the agent compresses its
current reasoning history into concise sub-lemmas with a structured memory repository, which
enables the agent to recover historical exploration outcomes in subsequent steps. We furthermore
design process verification and revision mechanisms to certify the quality of the lemma repository.
Notably, Intern-S1-MO enables adaptive control of its reasoning budget: it initiates multi-round
exploration only for challenging tasks, ensuring efficient resource allocation.

To support the bootstrapping and online improvement of Intern-S1-MO, we additionally introduce
the OREAL-H framework, enabling the agent to enhance its performance on complex problems
with online reinforcement learning (RL). Starting from the basic formulation of Outcome Reward
Reinforcement Learning (OREAL) (Lyu et al., 2025), OREAL-H exploits the additional reward signal
produced by the outcome process verifier (OPV) that is continuous and accelerates training, and is
modified for the Hierarchical Markov Decision Process (MDP) formulation to suit the multi-agent
setting of Intern-S1-MO.

As a result, Intern-S1-MO establishes new state-of-the-art results across multiple mathematical
reasoning benchmarks. As shown in Figure 1(b), on AIME2025 and HMMT2025, it achieves a
96.6% and 95% average pass@1 score, respectively. On the 5 non-geometry problems of Interna-
tional Mathematical Olympiads 2025 (IMO2025), Intern-S1-MO could obtain 26 out of 35 scores,
surpassing the silver medalist-level performance (21) of humans. Additionally, we test Intern-S1-MO
on CNMO2025, a new benchmark comprising 14 high-school math competition problems (excluding
geometry problems) from the recently concluded China National Mathematics Olympiad 2025, on
which Intern-S1-MO scores 232.4 out of 260 points. To facilitate rapid reproduction of our agent
framework, we will open-source Intern-S1-mini-MO, a fine-tuned 8B model based on Intern-S1-
mini (Bai et al., 2025a), specifically optimised for the entire multi-agent system. When integrated
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Figure 2: The agentic framwork of Intern-S1-MO.

with Intern-S1-MO, Intern-S1-mini-MO outperforms models at greater parameter scales, achieving
a 90% pass@1 score on AIME2025 and completely solving 3 out of 5 non-geometric problems in
IMO2025. Overall, our contributions are as follows:

• We explore multi-round complex reasoning scenarios and propose a multi-agent system,
Intern-S1-MO, which effectively extends the reasoning depth of current LRMs by the
lemma-based memory management.

• We contribute a RL framework, termed OREAL-H, for optimizing the performance of
Intern-S1-MO on high-difficulty mathematical problems.

• The trained model, Intern-S1-mini-MO, and the multi-agent system will be open-sourced,
laying a foundation for reproducibility and further research in the field of mathematical
reasoning agents.

2 BUILDING HIERARCHICAL MATH AGENTS

To extend the exploration of reasoning, we designed a hierarchical mathematical reasoning agent
tailored for complex competition-level mathematical problems, as shown in Figure 2. By enabling
recursive subproblem solving, it specifically addresses the aforementioned reasoning limitations
constrained by context length.

Lemma Search via Sub-Problem Decomposition Decomposing complex problems into manage-
able sub-lemmas is a defining feature of human problem-solving for high-difficulty mathematics, as
it breaks long-chain logical reasoning into incremental steps. We first observe that state-of-the-art
models already exhibit a degree of reasonable decomposition capability for mathematical problems,
though this ability is often undermined by a premature conclusion bias: when reasoning budgets are
exhausted, models tend to rush toward incomplete or incorrect final answers instead of acknowledging
partial progress. To mitigate this, we refine the model via prompt engineering and targeted training,
explicitly enabling it to produce partial deductive progress in single-turn attempts (e.g., deriving
intermediate sub-lemmas without forcing a full problem solution). This adjustment aligns the model’s
behavior with human iterative reasoning and lays the groundwork for cumulative exploration, the
complete style requirements are presented in the Appendix A.
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Summarizing Effective Exploration with Memory Maintenance The model’s reasoning pro-
cesses for complex problems often include redundant exploratory efforts and trial-and-error content.
While this content aids in generating intermediate conclusions, it adds little value to subsequent
deductive steps. Such facts enable us to extract only the essential components that drive progress,
specifically, validated intermediate lemmas from each reasoning turn and store them in a structured
lemma library. This library encourages the agent to reuse historical conclusions during new ex-
ploration rounds, allowing for deeper deductions based on prior lemmas rather than reprocessing
redundant information. Notably, summarizing compelling exploration is as complex as the exploration
process itself, as it requires distilling and checking the logical validity independently. Therefore,
we allocate a dedicated reasoning turn after each exploration step to update the lemma library. This
computational cost is necessary to ensure the library remains useful for long-chain reasoning.

Theorem Verifier to Mitigate Error Propagation Advanced reasoning models can self-reflect,
but if they rely on erroneous historical premises, they will expend significant resources trying to
validate questionable results. Such problem is compounded by error propagation, that a flawed
intermediate conclusion can mislead subsequent deductive directions, leading to circular reasoning or
invalid proofs. Fortunately, the verification of lemmas is comparatively more tractable than that of
the complete problem. We address this by integrating a theorem verifier that uses parallel sampling to
compute confidence scores for each lemma.

Process Verification for Complete Proof Verifying the validity of final solutions is crucial for
obtaining reliable performance feedback, both in evaluation scenarios and reinforcement learning
loops. To achieve this, we train a specialized process verifier using synthetic cold start data with
outcome supervision. This process helps bootstrap verification capability and employs direct pref-
erence optimization (DPO) to align the verifier with the agent’s output distribution. Evaluations
demonstrate that this verifier achieves an F1-score greater than 85% on ProcessBench, surpassing the
performance of o1-mini. In practice, the verifier serves two main functions: (1) enhancing robustness
through test time scaling by aggregating verification results across multiple runs, and (2) providing
high-quality feedback signals for reinforcement learning training to further optimize the agent’s
reasoning precision.

3 RL TRAINING FOR EVOLUTION OF MATH AGENTS

3.1 PRELIMINARIES

We model the agentic mathematical reasoning process as a Hierarchical Markov Decision Process,
denotedM = ⟨S,U ,V, r, R, γ⟩, where S is the state space (problem context + reasoning trace +
verification feedback), U the high-level meta-action space (e.g., “extract lemmas”, “invoke verifi-
cation”, “commit answer”), and V the low-level token vocabulary. The agent alternates between
high-level decisions and low-level generation: at each round t, it executes a reasoning action ut with
token sequence vt = (vt,1, . . . , vt,Tt

) ∼ πL
θ (·|st) to produce a reasoning segment. This output is

summarized and verified by an external module, yielding natural language feedback which induces
an intermediate proxy reward rt ∈ R. Upon termination after several rounds, a sparse final reward R
indicates correctness of the solution. The training objective is to maximise expected final reward:

J(θ, ϕ) = EπH
ϕ ,πL

θ
[R] . (1)

Leveraging the conditional structure of the hierarchical policy, the per-round advantage can be
estimated via a high-level critic V (st), updated to satisfy:

V (st)← E [rt + γV (st+1)] , (2)

where st+1 is the state after applying ut. The advantage for round t is then At = rt + γV (st+1)−
V (st). On low-level, we can then perform an online policy gradient conditioned on this advantage,
aggregating token-level log-likelihoods within the round:
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∇θJ = E

[
K∑
t=1

At ·
Tt∑
τ=1

∇θ log π
L
θ (vt,τ | st, vt,<τ )

]
, (3)

Reward Function As mentioned in Section 2, we employ a Process Verifier (PV) to assess the
logical rigor of complex mathematical proofs. Specifically, the PV examines the agent’s final solution
and outputs natural language feedback identifying the indices of steps containing logical fallacies.
We estimate the PV’s confidence via a multi-round voting mechanism. In particular, for problems
amenable to outcome supervision, the final reward R is set to 0 if the final answer is incorrect. We
further discuss the role of these supervision signals for RL steps in Section 3.3.

3.2 CLONING SUCCESS TRAJECTORY FOR COLD START

To prime the agent’s adherence to structured reasoning formats and internalise the iterative agentic
workflow, we initialize policies via behavioural cloning on filtered trajectories — retaining only
rounds t where the output admits a well-formed lemma summary (e.g., syntactically valid, non-empty,
logically segmented). Let Dinit = {(st,vt)} denote such transitions. The token-level pretraining
objective is:

LRFT(θ) = −E(st,vt)∼Dinit

[
Tt∑
τ=1

log πL
θ (vt,τ | st, vt,<τ )

]
. (4)

Notably, we continuously augmentDinit with question-answer pairs that are filtered by outcome-based
scoring, without previous thinking. We observe that the model exhibits emergent generalization:
patterns learned from these simplified trajectories boost agentic solving of the same problems, thereby
improving the efficiency of positive trajectory discovery during online RL.

3.3 OREAL WITH CONJUGATE REWARD UNDER PROCESS JUDGEMENT

We adopt the reinforcement learning framework of Oreal for policy optimization, and introduce two
critical adaptations tailored to our Hierarchical MDP setting: (1) credit assignment across high-level
reasoning actions is non-trivial due to delayed rewards; (2) the Process Verifier (PV) introduces a
continuous, noisy reward signal that deviates from the binary outcome supervision assumed in RLVR
setting.

Progress-Conditioned Advantage for Hierarchical Credit Assignment In multiround agentic
reasoning, the naive estimation of trajectory-level advantage (e.g., Atraj = R − V (s0)) dispropor-
tionately amplifies gradients from multi-round trajectories. To align optimization with meaningful
reasoning progress, we anchor credit to rounds that yield verifiable advances: either extracting a
well-formed lemma or committing a final answer.

Let Ct ∈ {0, 1} denote whether round t produces such an advance (as determined by PV or syntactic
structure). We define the high-level reward at round t as:

rHt = Ct · γT−tR, (5)

where T is the termination round and γ ∈ (0, 1] is the discount factor (shared with Eq. (2)). This
assigns full credit R to the final round (t = T ), while earlier progress rounds receive exponentially
discounted credit — reflecting their indirect contribution to the solution.

The high-level advantage is then estimated using a dedicated critic V H(st), updated via:

AH
t = rHt + γV H(st+1)− V H(st). (6)

The total advantage driving policy updates is the sum over progress rounds:

AH
total =

T∑
t=1

AH
t . (7)
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This formulation ensures that only rounds contributing to reasoning progress influence the gradient
— effectively decoupling optimization intensity from trajectory length. For example, a 10-round
trajectory with 2 progress rounds receives comparable update magnitude to a 5-round trajectory with
2 progress rounds, mitigating bias toward verbosity.

Conjugate Reward Modeling for Noisy Process Verification Process Verification (PV) offers
valuable insight into the internal logical consistency of a generated solution by subjecting its inter-
mediate steps to multiple stochastic checks. However, unlike final-answer correctness—which is
deterministic—PV feedback is inherently noisy: a solution passing k out of n verification rounds
does not guarantee superior reasoning quality, as passes may arise from lucky sampling or superficial
plausibility rather than deep correctness. Directly using the empirical ratio k/n as a reward signal
risks amplifying this noise, leading to unstable or misguided policy updates that overfit to verification
artifacts rather than genuine mathematical rigor.

To address this, we adopt a Bayesian perspective and model the latent reasoning quality p ∈ [0, 1] as
a random variable. We place a uniform prior p ∼ Beta(1, 1), encoding no initial assumption about
solution validity. After observing k successful verifications in n independent PV trials, the conjugate
Beta-Bernoulli update yields the posterior:

p | (k, n) ∼ Beta(k + 1, n− k + 1). (8)

Instead of using point estimates (e.g., posterior mean), we define the reward as the probability that
this solution is strictly better than a canonical “completely invalid” baseline—one that fails all n
checks (k = 0). Let p1 ∼ Beta(k + 1, n− k + 1) represent the quality of the current solution and
p0 ∼ Beta(1, n+ 1) that of the baseline. The reward is then:

R(k, n) = P(p1 > p0) =

∫ 1

0

∫ 1

0

I(p1 > p0) · fBeta(k+1,n−k+1)(p1) · fBeta(1,n+1)(p0) dp1dp0. (9)

This formulation provides a principled, probabilistically calibrated reward that accounts for uncer-
tainty in the verification process. It naturally suppresses spurious signals from low-pass outcomes
while preserving strong gradients for high-confidence valid solutions.

In practice, we fix n = 4, balancing verification cost and signal fidelity. Under this setting, R(4, 4) ≈
5.5, corresponding to a 99.5% dominance probability over the R(0, 4) = 0 baseline, with smoothly
interpolated rewards for intermediate cases (k = 1, 2, 3). A complete reward mapping is provided in
Appendix 5. By grounding the reward in a relative, distributional comparison rather than raw counts,
our conjugate reward model effectively denoises PV feedback, ensuring that policy optimization
aligns with latent reasoning quality rather than stochastic verification artifacts. This enables stable
and meaningful reinforcement learning even in the presence of imperfect process-level supervision.

4 EXPERIMENT

Implementation. We constructed and trained an agent-based reasoning framework, Intern-S1-
MO, built upon the Intern-S1 architecture—a large-scale language model pre-trained on extensive
mathematical corpora and further aligned for formal and informal reasoning. To bootstrap the system,
we curated a diverse cold-start dataset spanning multiple difficulty tiers: it includes middle school-
level problem-solving exercises, undergraduate coursework problems (e.g., from calculus, linear
algebra, and discrete mathematics), and advanced competition questions drawn from national and
international olympiads. This dataset comprises both solution-based problems (requiring a final
numerical or symbolic answer) and proof-based problems (requiring structured logical arguments),
ensuring broad coverage of mathematical reasoning patterns. From this pool, we selectively sampled
the most challenging subset—particularly those involving multi-step deduction, non-trivial lemma
synthesis, or ambiguous problem interpretation—as the foundation for reinforcement learning (RL).
These RL samples were used to train the policy via our conjugate reward modeling mechanism
(Section 2), enabling the agent to iteratively refine its reasoning trajectories. Subsequently, through
knowledge distillation from the full Intern-S1-MO model, we derived a lightweight variant, Intern-S1-
mini-MO, based on the smaller Intern-S1-mini backbone. This lite version preserves core reasoning
capabilities while significantly reducing inference latency and memory footprint, making it suitable
for resource-constrained deployment scenarios.
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Table 1: Overall evaluation results for Intern-S1-MO and each baseline.

Model HMMT AIME2025 CNMO2025 IMO2025
Gemeni2.5-pro 82.5 83 157.5 14
o3-high 77.5 88.9 138.5 12.5
Grok4 92.5 91.7 84 4
GPT-OSS-120B 90 92.5 130 11
DeepSeek-R1-0528 76.67 87.5 113.5 6.5
Qwen3-235B-A22B 60.4 81.5 109 14

Intern-S1-mini-MO, 79.2 87.3 176.3 17
Intern-S1-MO 95 96.6 232.4 26

Evaluation. We evaluate our models on four representative mathematical benchmarks that collectively
span the spectrum from advanced high school contests to elite olympiad-level challenges: AIME2025,
HMMT (Harvard–MIT Mathematics Tournament), CNMO2025 (Chinese National Mathematical
Olympiad), and IMO2025 (International Mathematical Olympiad). Following standard practice in
mathematical AI evaluation, we exclude geometry problems from CNMO2025 and IMO2025 due
to their heavy reliance on diagram interpretation and spatial reasoning—capabilities not natively
supported in current text-only LLMs. To ensure fair and meaningful scoring, we adopt a point-aligned
evaluation protocol inspired by MathArena: each problem is scored according to its original contest
point value (e.g., 7 points per problem in IMO), rather than binary correctness. Full implementation
details, including scoring rubrics and problem filtering criteria, are provided in Appendix 1. For each
test instance, we perform 16 independent rollouts to account for stochasticity in generation. The
primary metric is average pass@1—i.e., the expected score from the best single attempt—except
for IMO2025, where we report pass@4 to better reflect the high-variance nature of olympiad
problem solving and align with community evaluation norms that allow multiple attempts in human
competitions.

Baseline. We compare against a comprehensive suite of state-of-the-art reasoning models, encom-
passing both proprietary and open-source systems. These include: Gemeni2.5-pro, o3-high, Grok4,
GPT-OSS-120B, DeepSeek-R1-0528, and Qwen3-235B-A22B. All baselines are evaluated under
identical conditions—same prompts, same rollout count, same scoring rules—to ensure a fair compar-
ison. This diverse set of baselines allows us to assess Intern-S1-MO’s performance not only against
general-purpose LRMs but also against models explicitly optimized for mathematical reasoning.

4.1 OVERALL RESULTS

Notably, even the lightweight variant Intern-S1-mini-MO demonstrates remarkably strong perfor-
mance—outperforming all baselines on CNMO2025 (176.3 vs. 157.5) and achieving a score of 17
on IMO2025, which exceeds the bronze-medal threshold. This suggests that the core architectural
innovations—particularly the multi-round verification loop and hierarchical reasoning decomposi-
tion—are highly effective even when deployed on a smaller backbone, offering a favorable trade-off
between capability and efficiency. The consistent outperformance of both Intern-S1-MO variants
across all benchmarks further validates the generalizability of our framework beyond specific model
scales.

The widening performance gap on more advanced benchmarks also reveals a qualitative shift in
problem-solving behavior. On HMMT and AIME2025, many strong baselines can often produce cor-
rect answers through pattern matching or memorization of solution templates. However, CNMO2025
and IMO2025 problems typically require constructing novel arguments, introducing auxiliary con-
structions, or applying deep theoretical insights—tasks where rote recall fails. Intern-S1-MO excels
precisely in these settings by maintaining a dynamic “reasoning memory” across rounds, allowing
it to accumulate and refine partial insights (e.g., conjecturing a useful inequality or identifying an
invariant) that would be lost in a single-pass generation.

To contextualize the IMO2025 result further: a score of 26 places the model within the top 10–15%
of human contestants in recent years, surpassing the average national team member in many countries.
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Table 2: Ablation study results.

Model HMMT AIME2025 CNMO2025
Single-tune with Agents 70.8 81.9 178.0

+ Multi-tune Reasoning 85.4 91.0 201.7
+ Lemma Verifier 86.3 93.3 203.0
+ Process Verifier 89.1 94.0 215.2
+ OReal-H 95.0 96.6 232.4

While it still falls short of gold-medal performance (More than 28 scores for non-geometric IMO2025),
this represents a leap from prior AI systems, which rarely exceeded 10 points on non-geometry IMO
problems. A preliminary error analysis shows that most failures occur on problems requiring highly
non-standard transformations (e.g., functional equations with pathological solutions) or those where
the key insight hinges on a single, elusive observation—a regime where even human experts often
struggle without hints.

Together, these results underscore that scaling alone is insufficient for olympiad-level reasoning;
instead, structured, verifiable, and iterative reasoning architectures are essential to bridge the gap
between narrow competence and broad mathematical intelligence.

4.2 ABLATION STUDY

To better understand the contribution of each key component in Intern-S1-MO, we conduct a system-
atic ablation study. The architecture of our method integrates several novel mechanisms—including
multi-tune reasoning, lemma verification, process validation, and the OReal-H training objective—that
collectively enable deep, iterative mathematical reasoning. However, it is crucial to disentangle their
individual impacts to validate design choices and assess whether performance gains stem from archi-
tectural sophistication or synergistic interactions among modules. Therefore, we incrementally build
up the full model from a simplified baseline (“Single-tune with Agents”) and measure performance on
HMMT, AIME2025, and CNMO2025—benchmarks that capture a gradient of reasoning complexity.

As shown in Table 2, the base configuration (Single-tune with Agents) already leverages agent-based
problem decomposition but lacks iterative refinement, achieving moderate scores (70.8 on HMMT,
81.9 on AIME2025, and 178.0 on CNMO2025). Introducing Multi-tune Reasoning—which allows
the model to revisit and refine intermediate steps across multiple reasoning rounds—yields substantial
improvements (+14.6 on HMMT, +9.1 on AIME2025, +23.7 on CNMO2025), highlighting the
importance of sustained exploration over one-shot inference. The addition of the Lemma Verifier,
which validates generated sub-results for logical consistency, provides further gains, particularly on
harder problems (e.g., +12.7 on CNMO2025), suggesting that error propagation is a critical bottleneck
in long-horizon reasoning.

More notably, incorporating the Process Verifier—which evaluates the coherence and validity of the
entire solution trajectory—leads to a pronounced jump on CNMO2025 (+12.2 points), indicating that
global reasoning structure matters as much as local correctness. Finally, the integration of OReal-H,
our hierarchical outcome-aligned reward mechanism that prioritizes both correctness and solution
elegance, pushes performance to the final reported levels (95.0, 96.6, and 232.4). This last step
not only refines answer accuracy but also encourages more human-like proof strategies, which is
especially vital for olympiad-level problems where multiple valid approaches exist but only some are
efficient or insightful.

Overall, the ablation study confirms that each component plays a non-redundant role, with the largest
marginal gains coming from mechanisms that enforce reasoning discipline (verification) and strategic
refinement (multi-tune + OReal-H). The cumulative effect demonstrates that high-level mathematical
reasoning cannot be achieved by scaling alone—it requires explicit architectural support for iterative
validation, hierarchical decomposition, and outcome-aware learning.
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5 RELATED WORK

5.1 MATHEMATICAL REASONING AGENTS

Recent advancements in large reasoning models have significantly enhanced their performance on
mathematical reasoning tasks; however, systematic exploration and reflection are still areas that
require further investigation. A notable approach involves the use of tree search methods—such
as Tree-of-Thoughts (Yao et al., 2023) and Monte Carlo Tree Search (Zhang et al., 2024a)—to
facilitate parallel search during inference. While these methods broaden the search landscape,
they often lack depth and struggle to effectively decompose complex problems(Sun et al., 2025;
Balunovi’c et al., 2025). Other research has focused on augmenting LLMs with external tools to
ground reasoning in computation or verified knowledge (Gou et al., 2023; Shao et al., 2024; ?).
Yet, these tools typically serve to enhance the existing reasoning process rather than fundamentally
restructure it. More recent efforts propose structured reasoning frameworks that integrate planning,
exploration, and reflection to iteratively refine solutions. These methods outperform standard chain-of-
thought prompting on challenging problems, but they usually rely on carefully designed prompts and
sometimes human-provided hints. Importantly, they shift reasoning from single-path generation to
structured problem solving. Yet, training math agents—where exploration and reflection are optimized
through learning signals—remains an emerging area. Recent initiatives have introduced structured
reasoning frameworks that integrate exploration and reflection to iteratively refine solutions. These
methods have been shown to outperform traditional methods on challenging problems. However,
they often depend on meticulously crafted prompts and, at times, hints provided by humans. These
nascent frameworks mark a shift from single-path generation in mathematical reasoning towards
more structured agent solutions, and await further exploration into how to design and optimise the
entire agent to enhance its performance.

5.2 REINFORCEMENT LEARNING FOR MATH AGENTS

Reinforcement learning (RL) for mathematical reasoning has primarily focused on outcome rewards,
where feedback is based solely on final answer correctness. Despite this sparse signal, methods like
ARTIST (Zhang et al., 2024b), ToRL (Li et al., 2025b), and rStar2-Agent (Shang et al., 2025) exhibit
emergent agentic behaviors—such as adaptive tool use, self-correction, and context-aware reasoning.
Scaling studies (e.g., ZeroTIR Mai et al. (2025)) further show that increased training effort leads to
more sophisticated tool-integrated strategies. Nevertheless, current math agents remain limited: their
decisions are mostly confined to choosing when to retry within a fixed reasoning template—rather
than engaging in strategic planning or deep exploration. Critically, they lack summarization and
cross-episode awareness. While approaches like TTRL (Zuo et al., 2025) and Satori (Shen et al., 2025)
introduce basic reflection or meta-actions, they operate within isolated reasoning episodes and do
not support cumulative knowledge transfer across inferences. Process-aware RL and verifier-guided
training (e.g., Prover-Verifier Games (Kirchner et al., 2024)) aim to provide intermediate supervision
with predefined rules or code execution, and are not well-suited for complex reasoning scenarios. In
this paper, we use a process verifier to judge the rigor of natural language proofs, which provides a
more flexible feedback signal.

6 CONCLUSION

This paper aims to address the critical bottleneck in large reasoning models (LRMs) for complex
mathematical reasoning: the inherent limitation of context length, which has hindered progress in
solving ultra-challenging tasks such as International Mathematical Olympiad (IMO) problems. To
this end, this paper introduces Intern-S1-MO, an LRM-driven multi-agent system that conducts
multi-round hierarchical reasoning, which conducts reasoning, summary, and verification at each
round. By maintaining a compact memory in the form of lemmas, Intern-S1-MO can more freely
explore the lemma-rich reasoning spaces in multiple reasoning rounds, which significantly extends
the 64K constraints of LRMs by about 8 times. We further propose OREAL-H, an RL framework
for training the LRM to simultaneously bootstrap the reasoning ability of the LRM and elevate the
overall performance of Intern-S1-MO. Intern-S1-MO can now solve problems that require humans to
think about 1.5 hours, which eventually obtains 26 out of 35 points on the non-geometry problems of
IMO2025, matching the performance of silver medalists.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely for language polishing. The scientific ideas, methodology, analyses, and
conclusions were entirely developed by the authors, while the LLMs assisted only in improving
clarity and readability of the text.

A SYSTEM PROMPTS FOR MATH AGENTS

A.1 LEMMA SEARCH

Listing 1: LEMMA SEARCH

**Objective:**
Your task is to provide a rigorous mathematical proof and solution for

↪→ the given problem. The problem is expected to be challenging. Your
↪→ primary goal is to demonstrate a deep and correct understanding of
↪→ the problem through logical, step-by-step reasoning.

**Guiding Principles:**

1. **Rigor is Paramount:**
* Every step in your proof must be logically sound and clearly
↪→ justified.
* The final answer is secondary to the correctness of the
↪→ derivation. A correct answer resulting from a flawed or incomplete
↪→ proof will be considered a failure.

2. **Embrace Partial Solutions:**
* It is understood that a complete solution may not be found in a
↪→ single attempt.
* If you cannot provide a complete solution, you must provide any
↪→ significant partial results that you can prove with full rigor.
* **Do not guess or provide solutions with logical gaps.** Instead,
↪→ focus on what you *can* prove.
* Examples of valuable partial results include:

* Proving a key lemma.
* Solving one or more cases of a proof by cases.
* Establishing a critical property of the mathematical objects

↪→ involved.
* For an optimization problem, proving an upper or lower bound.

* Clearly state which parts of the problem you have solved and
↪→ which remain open. Acknowledging the limits of your solution is a
↪→ critical part of the task.

3. **Mathematical Formatting:**
* All mathematical variables, expressions, equations, and relations
↪→ must be formatted using TeX. For example: ‘Let $G$ be a group and
↪→ let $H$ be a subgroup of $G$.‘

**Output Format:**
Your response MUST be structured into the following sections, in this

↪→ exact order.

---

**1. Summary**

**a. Verdict:**
* Begin by stating clearly whether you have found a complete or a

↪→ partial solution.
* **For a complete solution:** State the final answer. (e.g., "I have

↪→ found a complete solution. The answer is...")
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* **For a partial solution:** State the main rigorous conclusion(s) you
↪→ have proven. (e.g., "I have not found a complete solution, but I
↪→ have rigorously proven that...")

**b. Method Sketch:**
* Provide a high-level, conceptual outline of your logical argument.

↪→ This should be clear enough for an expert to grasp your approach
↪→ without reading the full proof.

* Include:
* A narrative of your overall strategy.
* The full and precise mathematical statements of any key lemmas or
↪→ major intermediate results you proved.
* A description of any key constructions or case splits that form
↪→ the backbone of your argument.

**2. Detailed Solution**

* Present the full, step-by-step mathematical proof of your results.
* This section should contain *only* the rigorous proof itself, free

↪→ from any commentary, reflections on your process, or alternative
↪→ approaches you considered.

* The level of detail must be sufficient for an expert to verify the
↪→ correctness of your reasoning without needing to fill in any gaps.

A.2 REASONER

Listing 2: Memory Management
You are a top-tier mathematical research assistant, proficient in the

↪→ logical analysis and argumentation of high-level competitive
↪→ mathematics.

Your core task is to conduct an in-depth analysis of a solution approach
↪→ generated by a large language model for problems at the
↪→ International Mathematical Olympiad (IMO) level, identifying and
↪→ extracting all key lemmas.

During this analysis, you must rigorously distinguish between
↪→ propositions **newly proposed** by the model and **universal lemmas
↪→ ** already provided by us. Your final output **shall only contain**
↪→ those lemmas appearing in the model’s solution approach but not
↪→ provided in the universal lemma repository.

**The input comprises three sections:**
1. ‘### Problem ###‘: The mathematical problem requiring resolution.
2. ‘### Provided Lemmas ###‘: A set of known, verified lemmas for

↪→ reference during problem-solving.
3. ‘### Model’s Thinking Process ###‘: The reasoning generated by the

↪→ large language model to solve the problem.

**Your output must adhere to the following principles and format:**

#### **A. Extraction Principles**

1. **Novelty**: Extract only lemmas that are first introduced or proven
↪→ within the ‘Model’s Thinking Process‘. If the model utilises a
↪→ lemma from the ‘Provided Lemmas‘, do not include it in your output.

2. **Classification**: Categorise extracted new lemmas into two types:
* **Proven Lemmas**: Propositions explicitly stated or implicitly
↪→ utilised within the ‘Model’s Problem-Solving Approach‘, accompanied
↪→ by complete or core proof steps.
* **Unproven Lemmas**: Propositions claimed, relied upon, or
↪→ treated as critical assumptions within the ‘Model Solution Approach
↪→ ‘, but for which **no valid proof is provided**.
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#### **B. Strict Formatting Requirements**

Your output must strictly adhere to the following Markdown and LaTeX
↪→ formatting.

1. **Format for Proven Lemmas:**
* All **proven lemmas** and their proofs must be contained entirely
↪→ within a single ‘\boxed{}‘ environment.
* Use ‘---‘ horizontal rules to separate distinct lemmas.
* Each lemma begins with ‘**Lemma X (Lemma X):**‘, where ‘X‘ is a
↪→ positive integer numbering.
* The statement of the lemma should use concise, formal
↪→ mathematical language, employing LaTeX where appropriate.
* This is immediately followed by the proof, beginning with ‘**
↪→ Proof X (Proof X):**‘.
* Each step of the proof begins with an unordered list ‘*‘ and is
↪→ prefixed with ‘**Step Y (Step Y):**‘.

2. **Format for Unproven Lemmas:**
* All **unproven lemmas** must be placed entirely within a separate
↪→ ‘\boxed{}‘ environment.
* Each lemma begins with ‘**Lemma X (Lemma X):**‘.
* If all critical steps of the model are already provided in the ‘
↪→ Historical Lemmas Repository‘ or sufficiently proven within its own
↪→ content (i.e., **no novel unproven lemmas are discovered**), place
↪→ ‘**Lemma -1 (Lemma -1)**‘ within that box.

---

### Problem ###
{Problem}

### Provided Lemmas ###
Lemma 1:
Proof 1:...

Lemma n:
Proof n:

### Model’s Thinking Process ###
{Thinking}

---

####‘DESIREDOUTPUT:
‘‘‘\boxed{
**lemma n+1**:{lemma n+1}
**proof n+1**:
*step 1:{step 1}
*step 2:{step 2}
*step 3:{step 3}
...

**lemma n+2**:{lemma N=2}
**proof2**:
*step 1:{step 1}
...}
\boxed{
**withoutproof**:
**lemma -1**}
‘‘‘

Translated with DeepL.com (free version)
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