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ABSTRACT

We study the problem of differentially private (DP) fine-tuning of large pre-trained
models – a recent privacy-preserving approach suitable for solving downstream
tasks with sensitive data. Existing work has demonstrated that high accuracy is
possible under strong privacy constraint, yet requires significant computational
overhead or modifications to the network architecture.
We propose differentially private bias-term fine-tuning (DP-BiTFiT), which
matches the state-of-the-art accuracy for DP algorithms and the efficiency of
the standard BiTFiT. DP-BiTFiT is model agnostic (not modifying the network
architecture), parameter efficient (only training about 0.1% of the parameters), and
computation efficient (almost removing the overhead caused by DP, in both the time
and space complexity). On a wide range of tasks, DP-BiTFiT is 2 ∼ 30× faster and
uses 2 ∼ 8× less memory than DP full fine-tuning, even faster than the standard
full fine-tuning. This amazing efficiency enables us to conduct DP fine-tuning on
language and vision tasks with long-sequence texts and high-resolution images,
which were computationally difficult using existing methods.

1 INTRODUCTION

Fine-tuning from large pre-trained neural networks is one of the most critical technique in deep learn-
ing, yielding strong performance in a variety of domains (Pan & Yang, 2009; Kenton & Toutanova,
2019; Goyal et al., 2017). Among different methods, full fine-tuning is the most prevalent one, which
trains all the model parameters on the downstream tasks and achieves high accuracy within a small
number of training epochs. However, full fine-tuning on large models, from hundreds of millions (He
et al., 2016; Chen et al., 2016) to billions of parameters (Brown et al., 2020), can be burdensome in
terms of the computation and the deployment, since a full copy of fine-tuned model parameters is
needed for each task.

To alleviate this issue, the parameter efficient fine-tuning only trains a substantially small portion
of the model parameters, in contrast to the full fine-tuning. At a high level, the parameter efficient
fine-tuning methods can be divided into two categories. ⟨1⟩ Model-aware methods, meaning a
relatively small number of parameters are introduced into the neural network architecture and only
the new parameters are optimized. Examples include LoRA (Hu et al., 2021), Adapter (Houlsby
et al., 2019), and Compacter (Mahabadi et al., 2021). ⟨2⟩ Model-agnostic methods, meaning that
only a subset of existing parameters are trainable. Examples include training only the output linear
layer (also known as the classification head), (Kornblith et al., 2019)), only the layer normalization
layer (Houlsby et al., 2019) and bias-term fine-tuning (BiTFiT) (Zaken et al., 2022). We illustrate the
differences in Equation (1): W0,b0 are the pre-trained weights and biases, ‘ ˆ ’ indicates trainable
parameters, and θ is the additional parameters.

f(x;W0,b0)︸ ︷︷ ︸
pre-trained model

−→ f(x;Ŵ, b̂)︸ ︷︷ ︸
full fine-tuning

or f(x;W0,b0, θ̂)︸ ︷︷ ︸
model-aware fine-tuning

or f(x;W0, b̂)︸ ︷︷ ︸
bias-term fine-tuning

(1)

Empirically, these parameter efficient fine-tuning methods have achieved high accuracy that is
comparable to the full fine-tuning in the standard non-private setting. For instance, last-layer training
(also known as linear probing) of ResNet (He et al., 2016) and Vision Transformer (ViT, (Dosovitskiy
et al., 2020)) achieves 80% accuracy on the ImageNet dataset (Sun et al., 2017; Kornblith et al.,
2019); LoRA and BiTFiT of RoBERTa (Liu et al., 2019) and BERT (Kenton & Toutanova, 2019)
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achieve about 94% on SST2, 87% on MNLI, and on average 85% across the General Language
Understanding Evaluation (GLUE) datasets (He et al., 2021; Hu et al., 2021). In addition, parameter
efficient methods are faster than full fine-tuning and save the communication cost significantly in the
distributed learning.

Parallel to these developments, the success of deep learning models relies on the availability of large
datasets, which may contain sensitive information to be protected rigorously. This privacy issue is
well-known for neural networks can be vulnerable to privacy attacks: membership information can
be leaked from the purchase records via Google and Amazon online services (Shokri et al., 2017);
sensitive texts can be reconstructed by specifically designed prefix on GPT2 (Carlini et al., 2021) and
so can images in CIFAR10 and MNIST (Haim et al., 2022). To protect against such privacy risks, the
standard technique is differential privacy (DP, formally stated in Definition 2.1), which randomizes
the standard optimizers by updating with the private gradient in Equation (2).

A recent line of work has extensively studied the DP fine-tuning in both computer vision and language
tasks, often achieving less than 3% accuracy drop across different settings via full fine-tuning (De
et al., 2022; Li et al., 2021; Bu et al., 2022b;a), last-layer (Mehta et al., 2022), LoRA, Adapter, or
Compacter (Yu et al., 2021a). In fact, fine-tuning or pre-training from large dataset is considered
necessary in the DP deep learning literature. As a matter of fact, full fine-tuning DP-GPT2 only
achieves 24.2 BLEU score (ϵ = 8) on E2E dataset if randomly initialized (Li et al., 2021), in starking
contrast to 63.2 BLEU if pre-trained; similarly, state-of-the-art (SOTA) DP accuracy on ImageNet is
48% (ϵ = 10) without pre-training (Kurakin et al., 2022) but 86.7% accuracy if pre-trained (De et al.,
2022). Specifically, parameter efficient DP fine-tuning has empirically demonstrated strong accuracy
(see our Table 3) with 3 ∼ 4× memory saving and 2 ∼ 3× speedup compared to DP full fine-tuning
by Opacus (c.f. Figure 3 and Yu et al., 2021a, Table 3). Although previous works have shed light on
various DP fine-tuning methods, we are the first to study DP-BiTFiT specifically and to show two
distinctive advantages of it.
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Figure 1: Performance of different fine-tuning methods on MNLI dataset with RoBERTa-large. Note
that DP-BiTFiT has a dominating advantage on memory-saving (requiring less than half the memory
of other methods), and is on par with the fastest and the most accurate DP fine-tuning method.

Firstly, DP-BiTFiT is model-agnostic and remains its parameter efficiency around 0.1% across models
by Table 1. While last-layer training is also model-agnostic, it performs poorly on transformers (Li
et al., 2021) and could be parameter inefficient on multi-class tasks (e.g. last-layer needs to train 8%
parameters of ResNet50 on ImageNet with 1000 classes). Similarly, LoRA, Adapter and Compacter
are architecture-dependent (e.g. mostly restricted to transformers but not applicable to ResNet), and
possibly parameter inefficient (e.g. LoRA and Adapter may need to train more than 12% parameters
of BART-large (Lewis et al., 2020) to achieve high accuracy by (He et al., 2021, Figure 1& 4)). These
characteristics make them difficult to directly apply on general network architectures.

Secondly, DP-BiTFiT is computationally efficient, almost as much as the standard BiTFiT
and significantly more efficient than DP full fine-tuning, particularly with large models and
high-dimensional input data. For examples of DP full fine-tuning, (Li et al., 2021) have reported
2 ∼ 4× slowdown on large language models for four advanced private codebases and up to 5×
memory overhead, compared to the standard fine-tuning; even on small networks, 11 codebases
across Tensorflow, JAX, and Pytorch have demonstrated 0.2 ∼ 5× slowdown and 3 ∼ 100×
reduction in maximum batch size in (Subramani et al., 2021). See more discussion in Section 3.3.

Contributions. In this work, we develop DP-BiTFiT, a fine-tuning method that is model-
agnostic, accurate, privacy-preserving, parameter efficient, and computationally efficient.
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1. Algorithmically, we propose the Differentially Private Bias-Term Fine-Tuning (DP-BiTFiT) in
Algorithm 1 that is highly accurate under DP constraint, on par with SOTA in Section 4 and even
outperforming fully fine-tuned GPT2-large.

2. DP-BiTFiT is model-agnostic and only optimizes 0.1% of the model parameters on BERT,
RoBERTa, GPT2, ViT, ResNet, and so on (see Table 1). Thus DP-BiTFiT is one of the most
parameter efficient fine-tuning methods among DP LoRA, Adapter, last-layer, etc.

3. We design a computationally efficient implementation of DP-BiTFiT, whose time and space
complexity is almost the same as the standard non-DP BiTFiT, while being faster than non-DP
full fine-tuning and other DP fine-tuning (see Figure 1). This advantage is analyzed in Table 2,
and demonstrated via the substantial speedup and memory-saving in Figure 3 and Figure 4.

4. DP-BiTFiT is a unique algorithm in that the computation overhead is independent of the feature
dimension T 1. This is due to the activation-free forward pass that only happens in the no-weight
training2 unlike LoRA. In Figure 1, although DP-BiTFiT optimizes a similar number of parameters
to DP LoRA or Compacter, its memory efficiency is dominating. Therefore, DP-BiTFiT enjoys a
special advantage when applied on long-sequence texts and high-resolution images (see Figure 3).

Novelty. At a glance, our results may appear to be incremental as we are merely adding differential
privacy to an existing method (BiTFiT) through a standard mechanism (DP-SGD). This is not true!
Computationally, our implementation of DP-BiTFiT involves substantial algorithmic innovation
(orthogonal to GhostClip (Goodfellow, 2015; Li et al., 2021) which only works on the weights, not
the biases) that exploits the special structures in the forward and backward passes, hence removing
the computational and memory overhead in DP-SGD, which can be unavoidable in other methods.

Algorithm 1 Bias-Term Fine-Tuning (BiTFiT) v.s. DP-BiTFiT
Parameters: l-th layer’s bias bl, subsampling probability p, number of iterations T , number of
layers L, noise scale σ, clipping threshold R.

1: for iteration t = 1, · · · , T do
2: Subsample a batch Bt ⊆ {1, . . . , n} from training set with probability p
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient ∂L

∂sl

5: Compute per-example gradient and its norm: ∂Li

∂bl
= ∂L

∂sl,i

⊤
1 =⇒ ∥∂Li

∂bl
∥2F

6: Aggregate gradient norms across all layers: ∥∂Li

∂b ∥
2
F =

∑
l ∥

∂Li

∂bl
∥2F

7: Compute clipping factor: Ci = C(∥∂Li

∂b ∥F ;R)

8: Compute sum of clipped gradients G =
∑

i Ci
∂Li

∂b (note Ci = 1 if in standard BiTFiT)
9: Add Gaussian noise G = G+ σR · N (0, I)

10: Descend on bias terms with the gradient G by SGD/Adam/...

2 PRELIMINARIES

Fine-tuning methods. Fine-tuning, i.e. training a model on a large dataset for a sufficiently long
time, and then continuing to train (or transferring) onto the downstream datasets, is the standard
paradigm to achieve high accuracy in both the standard and the DP regimes. In DP deep learning, the
pre-training takes place on a public dataset using regular optimizers like SGD, and the fine-tuning
takes place on a private dataset which requires privacy protection, using DP optimizers like DP-SGD
in Section 2.

In a long line of research, various fine-tuning methods have been proposed. One of the most popular
method is the full fine-tuning, which simply runs gradient descents on all trainable weights and

1As summarized in Table 2 and Table 7, the computation overhead to get the per-sample weight gradient
norm is linear (by instantiating per-sample gradints) or quadratic in T (if using the ghost norm trick (Goodfellow,
2015; Li et al., 2021)), for DP full and parameter efficient fine-tuning.

2We distinguish the weight training and bias training in Section 2 using the chain rules. Note that activation-
free means memory-saving, which is not leveraged by DP full, LoRA, Adapter, Compacter, etc.
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biases, thus can be inefficient when the model is large. To improve the efficiency, (Li & Liang, 2021)
proposes the prefix tuning that only optimizes the prompts or the input layer activation (Lester et al.,
2021; Liu et al., 2021). However, as pointed out in (Hu et al., 2021) and (Li et al., 2021), the prefix
tuning can be difficult to optimize and thus sub-optimal on large models. Another approach is to
reduce the number of trainable parameters. For example, LoRA (Hu et al., 2021), Adapter (Houlsby
et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2021; Rücklé et al., 2021; Lin et al., 2020) and
Compacter (Mahabadi et al., 2021) insert small ‘adapter’ layers (usually 1-10% of total parameters)
between existing layers, and only the newly added adapters are optimized. We describe the forms of
LoRA and Adapter in Appendix C and analyze their complexity.

In addition to the aforementioned methods, BiTFiT is a special parameter-efficient method that rivals
the full fine-tuning (Zaken et al., 2022; Cai et al., 2020; He et al., 2021). Firstly, BiTFiT optimizes
a subset of original parameters – the bias terms, which usually constitute less than 1/1000 of all
parameters as demonstrated in Table 1. Therefore, BiTFiT can be readily deployed to any network in
a model-agnostic manner. Secondly, BiTFiT is fundamentally different to other parameter efficient
methods such as LoRA, since the bias gradients are computed differently than the weight gradients
on the computation graph. We will elaborate on this in Equation (4).

Deep learning with differential privacy. We recall the classic (ϵ, δ)-DP, under which we train deep
neural networks with provably privacy guarantees.
Definition 2.1 ((Dwork et al., 2006)). A randomized algorithm M is (ε, δ)-differentially private if,
for any two neighboring datasets S, S′ that differ by one datapoint and for any event E, we have
P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ.

In deep learning, DP can be achieved through applying an off-the-shelf optimizer (SGD or Adam)
with a privately released stochastic gradient in place of the regular

∑
i gi. The private stochastic

gradient is computed by first getting a minibatch I via Poisson sampling, then compute

Private gradient
∑

i∈I
gi · C(∥gi∥;R) + σR · N (0, I), (2)

where C is any function3 R+ → R subject to C(x) ≤ R/x, gi is the i-th per-sample gradient, R
is the clipping threshold, and σ is the noise multiplier. The private gradient is guaranteed to be DP
through the sampled-Gaussian mechanism and the associated tight privacy accounting to compose
over the iterations (see, e.g., Abadi et al., 2016; Wang et al., 2019; Mironov et al., 2019; Koskela
et al., 2020; Bu et al., 2020; Gopi et al., 2021, and the references therein.).

Backward propagation. We briefly introduce the back-propagation, which reveals a simple yet
important difference between the gradients of weights and those of biases. We consider a linear layer,
indexed as the l-th layer, with weight Wl ∈ Rd×p and bias as bl ∈ Rp. We leave the derivation of
other layers such as normalization and convolution in Appendix A.1. We denote the mini-batched
input of this layer as al ∈ RB×T×d and the immediate output as sl ∈ RB×T×p, where B is the batch
size and T is the feature dimension4: al+1 = ϕ(sl), sl = alWl + bl. Here ϕ is any non-parametric
inter-layer operation, e.g. the non-linear activation (like ReLU), pooling, padding, and so on.

We write L =
∑n

i=1 Li as the total loss (n being total sample size) and Li as the per-sample loss of
the i-th sample. During a standard back-propagation of L layers, the chain rule keeps track of the
output gradient at each layer in a just-in-time fashion:

∂L
∂sl

=
∂L
∂aL

◦ ∂aL

∂sL−1
· ∂sL−1

∂aL−1
◦ · · · ∂al+1

∂sl
=

∂L
∂sl+1

Wl+1 ◦ ϕ′(sl). (3)

This output gradient ∂L
∂sl

is used to compute per-sample gradient of weights and biases,

∂Li

∂Wl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂Wl

=
∂L
∂sl,i

⊤
al,i,

∂Li

∂bl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂bl

=
∂L
∂sl,i

⊤
1. (4)

Notably, the weight gradient needs the activation tensor al to compute an expensive O(BTpd) tensor
multiplication. Memory-wise, {al}l across all layers is very costly to store (see Footnote 5). In

3Examples of gradient clipping include but not limited to Abadi’s clipping min(R/∥gi∥, 1) (Abadi et al.,
2016) and automatic clipping (AUTO-S) R/(∥gi∥+ 0.01) (Bu et al., 2022b; Yang et al., 2022).

4In sequential data such as text, T is the sequence length; in vision data, T is the product of input dimensions
(e.g. for images, T is the product of height and width). We refer to a high-dimensional input when T is large.
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sharp contrast, the computation of bias gradient does not need al, and the multiplication with 1 in
Equation (4) is actually a cheap O(BTp) summation on ∂L

∂sl
: B × T × p→ B × p.

Forward propagation. During the forward propagation, all codebases for DP algorithms such as
Opacus, Private Transformers and others (Yu et al., 2021a; Bu et al., 2022a) need to compute the
activation tensors {al}l for all layers inside the computation graph, to be used in equation 4 at high
memory cost5. Especially for huge models like GPT3 (Brown et al., 2020) with 175B parameters,
the memory burden incurred by the activation grows extremely large: the activation tensors al

consume more than 3600GB of memory while the parameters and the gradients only consume 300GB
(Rajbhandari et al., 2020). On one hand, this issue can be alleviated by the activation recomputation or
checkpointing technique (Chen et al., 2016; Jain et al., 2020), whose memory cost reduces from O(L)

to O(
√
L) with an unfortunate 33% slowdown. Alternatively, we note that the activation tensors are

not necessary in the forward propagation, if we only optimize the bias terms.

3 DIFFERENTIALLY PRIVATE BIAS-TERM FINE-TUNING

We propose DP-BiTFiT, to privately train only the bias terms in a neural network by combining
Equation (4) and Equation (2). We use shaded lines to represent the additional DP operations in
Algorithm 1, and add DP-related variables and operations in red in the computation graph by Figure 2.

Figure 2: Back-propagation for DP (red&black) and non-DP (black) algorithms. Left: full fine-tuning
with GhostClip (ghost clipping; (Goodfellow, 2015; Li et al., 2021; Bu et al., 2022a)). Upper right:
full fine-tuning with Opacus (Yousefpour et al., 2021). Lower right: BiTFiT.

Implementation-wise, DP-BiTFiT is different from all existing DP algorithms (including full, LoRA,
Adapter, etc.) that optimize weights, since it does not apply a Pytorch forward hook to store the
activation al for all layers. We provide the implementation details of DP-BiTFiT in Appendix B.
To give a concrete example, we apply DP-BiTFiT to the RoBERTa-large model on QQP dataset,
following the same setting as (Li et al., 2021) and using one 40GB A100 GPU. This is the most
time-consuming text classification task in our work, taking 119 minutes per epoch for a training
batch size 20 using the fastest DP full fine-tuning implementation – GhostClip (Li et al., 2021). To
conduct a simple ablation study, setting all weights to not require gradients (but forward hooks are
still operating) reduces the training time by 50% to to 80 minutes; removing the forward hooks further
reduces the training time by 30% to 63 minutes; finally, using the maximum batch size allowed by
the memory-saving DP-BiTFiT reduces to 43 minutes.

5Across different models including VGG, ResNet, DenseNet, and RoBERTa, the activation tensors can take
more than 95% memory of the entire training (see (Jain et al., 2020, Figure 3)).
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3.1 PARAMETER EFFICIENCY

DP-BiTFiT enjoys exactly the same parameter efficiency as the standard BiTFiT, training merely
about 0.1% of the total parameters in large models. We demonstrate that DP-BiTFiT is one of the
most parameter-efficient fine-tuning through a list of models in Table 1, extended in Table 11.

Table 1: Parameter efficiency of (DP) BiTFiT.

Dataset Model # of params % of params

ImageNet

VGG16 138M 0.009
ResNet18 11.7M 0.043
ResNet50 25.6M 0.113

ViT-small-patch16 21.7M 0.238
ViT-base-patch16 85.8M 0.120
ViT-large-patch16 303M 0.090

E2E
GPT2-small 124M 0.082

GPT2-medium 355M 0.076
GPT2-large 774M 0.066

GLUE RoBERTa-base 125M 0.083
RoBERTa-large 355M 0.077

An advantage of this parameter efficiency is re-
flected in the computation efficiency, given that
most parameters do not require gradients to be
computed: we show in Table 2 and Section 3.3
that DP-BiTFiT is much more efficient than full
fine-tuning (DP and even non-DP). Additionally,
the parameter efficiency also translates to the com-
munication efficiency in the distributed learning.
For example, the 64-bit communication cost of DP
full fine-tuning is 64MD where M is number of
worker and D is total number of parameters, which
can be improved to 0.064MD by DP-BiTFiT.

3.2 COMPLEXITY OF WEIGHT AND BIAS
TRAINING

We present in Table 2 the complexity of DP training on weights and biases, for one layer mapping
B × Tl × dl to B × Tl × pl. To elaborate on Footnote 4, for text data, Tl is the sequence length, dl is
input dimension, and pl is output dimension; for image data and specially in a convolution layer, Tl

is height times width, dl is the input channels times kernel sizes, pl is the output channels (c.f. Bu
et al., 2022a, Section 2.3). Notice that the total complexity of training a network is summed across all
layers, e.g. the time complexity of standard full training is 6B

∑
l Tlpldl, DP full fine-tuning is over

8B
∑

l Tlpldl, and DP-BiTFiT is about 4B
∑

l Tlpldl. Therefore, our complexity analysis indicates
that DP-BiTFiT is 6/4 = 1.5× faster than non-private full fine-tuning and over 8/4 = 2× faster than
DP full fine-tuning.

Table 2: Per-layer time and space complexity of training on weights (full fine-tuning) and biases. ‘+’
means additional overhead to non-DP training, and ‘⟨⟩’ means between two values.

forward weight training bias training
&output grad non-DP Opacus GhostClip MixGhostClip non-DP DP (ours)

Time
complexity 4BTpd 2BTpd

+2BTpd +2BTpd +2BTpd
BTp +3Bp

+2BT 2(p+ d) +⟨2BT 2(p+ d), 2BTpd⟩
Space

complexity
pd+

BT (p+ d)
BT (p+ d) +Bpd +2BT 2 +min{2BT 2, 2Bpd} p +Bp

# back-prop 1 1 2 2 1 1
forward hook ✗ ✓ ✓ ✓ ✗ ✗

Here, the DP weight training (full fine-tuning) uses three efficient implementations that are equivalent
mathematically but have different complexity: Opacus (Yousefpour et al., 2021), GhostClip (Good-
fellow, 2015; Li et al., 2021), and MixGhostClip (Bu et al., 2022a). The first two implementations
are illustrated in Figure 2, of which MixGhostClip is a hybridization that reduces to GhostClip when
T is small. These implementations have been thoroughly analyzed in (Bu et al., 2022a, Appendix
C), and we take the complexity result from (Bu et al., 2022a, Table 1). For the complexity of bias
training in Table 2, it suffices to analyze Line 5 of Algorithm 1. We refer the interested readers to
Table 7 for details, where we also apply the complexity analysis of weight training on other methods
beyond full fine-tuning, including DP LoRA and DP Adapter.

3.3 SCALABILITY OF DP ALGORITHMS

From the complexity analysis in Table 2, we observe that DP training on weights can be memory
costly, especially when the models are large and the data is high-dimensional. As an example of the
large modelling issue, (Li et al., 2021) shows that Opacus cannot fit even a single datapoint into a
16GB GPU using GPT2-large (Radford et al.) with 774M parameters, due to its O(B

∑
l pldl) space

complexity where the number of parameters is
∑

l pldl; for high-dimensional data, GhostClip cannot
fit a single 400× 400 image into the same GPU using ResNet18 with 11.7M parameters, due to its
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O(B
∑

l T
2
l ) space complexity. Although MixGhostClip (Bu et al., 2022a) significantly alleviates

the memory issue in both cases, it does so at a cost of roughly 2× slowdown than the standard full
fine-tuning (c.f. Bu et al., 2022a, Figure 4). In sharp contrast, DP-BiTFiT is amazingly scalable since
its computational overhead is negligible and independent of T (though the total complexity, mainly
due to forward and output gradient, is still linear in T ).

Efficiency of DP training v.s. feature dimension To empirically evaluate the computation effi-
ciency of DP fine-tuning methods, we measure the time and GPU memory for a fixed batch size.
We depict the high-dimensional data issue in Figure 3, in which the memory saving and speedup by
DP-BiTFiT is substantial. We expect to observe greater efficiency advantage of DP-BiTFiT on higher
dimensional data, e.g. in LLAMA2 (Touvron et al., 2023) and GPT4 (OpenAI, 2023) with T = 4096,
in document-level language tasks with T ≈ 20000 by (Beltagy et al., 2020), and in high-resolution
image tasks, such as 1024 × 1024 CelebA-HQ (Karras et al., 2018) and Flickr-Faces-HQ (Karras
et al., 2019) where T can be of order 105 in the convolution layers.
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Figure 3: Memory and speed by different fine-tuning methods. Left two: SST2 dataset (sequence
length T ; MixGhostClip is equivalent to GhostClip for this small T ) with RoBERTa-base and batch
size 20. Right two: 50000 images of

√
T ×
√
T pixels with ResNet50 and batch size 200.

Efficiency of DP training v.s. model size To stress-test the computation efficiency of DP-BiTFiT
with large models, we apply the maximum batch size with respect to each fine-tuning method, instead
of using a fixed one across different methods. Therefore, DP-BiTFiT can further leverage its memory
efficiency to achieve the best throughput. Here we consider a setting of high-dimensional data
(T = 5122) but small ResNet (11.7 ∼ 58.2M parameters) and the other setting of low-dimensional
data (T = 100) but large GPT2 (125 ∼ 774M parameters).
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Figure 4: Maximum throughput and batch size by different fine-tuning methods. Left two: E2E
dataset with GPT2-small/medium/large (MixGhostClip is equivalent to GhostClip for this small T ).
Right two: 50000 images of 512× 512 pixels with ResNet 50/101/152.

4 EXPERIMENTS

We now test the accuracy of DP-BiTFiT on natural language and computer vision tasks, with the
settings in Appendix D. For DP full fine-tuning algorithms, we use GhostClip (Li et al., 2021) on
texts, and MixedGhostClip (Bu et al., 2022a) on images, which achieve SOTA efficiency and accuracy
on these datasets respectively. We compute ϵ using a conversion from RDP though tighter privacy
accountants in Section 2 are feasible. We illustrate in Table 17 that tuning the learning rate for BiTFiT
is not difficult. And we observe in all experiments that, with or without DP, the optimal learning rate
for BiTFiT is larger than that for full fine-tuning.

4.1 TEXT CLASSIFICATION

We experiment on MNLI-m(mismatch) (Williams et al., 2018), QQP (Iyer et al., 2017), QNLI
(Rajpurkar et al., 2016), and SST2 datasets (Socher et al., 2013). Competitive algorithms include
reparameterized gradient perturbation (RGP, (Yu et al., 2021c)), LoRA, Adapter and Compacter (Yu
et al., 2021a). We use the same setup as (Li et al., 2021) on RoBERTa models, only increasing the
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learning rate for DP-BiTFiT. Additional results with different clipping functions and under a stronger
privacy guarantee ϵ = 3 can be found in Table 12.
Table 3: Accuracy of fine-tuning methods with RoBERTa, under ϵ = 8. More non-private fine-tuning
results (similar to here) can be found in (Yu et al., 2021a; Hu et al., 2021; Zaken et al., 2022). Note
that last-layer training of RoBERTa-base only gets 87.2% on SST2 and 77.3% on QNLI.

Full RGP Adapter LoRA BiTFiT Compacter
(Li et al., 2021) (Yu et al., 2021a) (Yu et al., 2021a) (Yu et al., 2021a) Ours (Yu et al., 2021a)

Additional params to networks ✗ ✗ ✓ ✓ ✗ ✓
Forward caching activations ✓ ✓ ✓ ✓ ✗ ✓

RoBERTa-base (125M)
% of trainable params 100% 100% 1.4% 0.94% 0.083% 0.055%

standard DP DP DP standard DP standard DP DP
Accuracy SST2 94.5 92.1 91.6 92.5 95.1 92.2 93.5 92.4 92.3
Accuracy QNLI 91.4 87.9 87.2 87.5 93.3 87.3 87.3 86.5 85.1
Accuracy QQP 87.3 86.1 85.5 85.6 90.8 85.7 86.1 83.4 84.7

Accuracy MNLI-m 85.9 83.2 80.1 83.4 87.5 83.5 83.4 82.6 82.6
RoBERTa-large (355M)

% of trainable params 100% 100% 1.4% 0.94% 0.077% 0.053%
standard DP DP DP standard DP standard DP DP

Accuracy SST2 96.2 93.8 93.0 93.9 96.2 95.3 95.5 94.5 94.2
Accuracy QNLI 93.6 91.1 90.0 90.7 94.9 90.8 92.2 91.0 90.2
Accuracy QQP 87.9 87.5 86.7 86.3 91.6 87.4 87.9 86.5 86.2

Accuracy MNLI-m 90.3 87.0 86.1 87.7 90.6 87.8 89.3 87.6 87.5

In Table 3, DP-BiTFiT is highly parameter efficiency and on-par with other DP fine-tuning in terms
of accuracy. As indicated by Figure 1 and Figure 3, over 2× speedup and over 3× memory saving is
observed, when switching from DP full fine-tuning to DP-BiTFiT across datasets.
Remark 4.1. It is encouraging to observe that the gap between the full fine-tuning and BiTFiT, with
or without DP, tends to decrease as the model size increases. For instance on QNLI, this gap without
privacy reduces from 4.1% to 1.4%, and with privacy reduces from 1.4% to 0.1%. This scaling
pattern is consistently observed on different tasks, e.g. in Table 4 and Table 5.

4.2 NATURAL LANGUAGE GENERATION

We compare DP-BiTFiT with DP LoRA, full fine-tuning, and prefix tuning (Li & Liang, 2021) on
E2E dataset (Dusek et al., 2020), in order to train GPT2 that generates texts to evaluate a restaurant.
The performance measures are BLEU (Papineni et al., 2002), ROGUE-L (Lin, 2004), NIST (Sadjadi
et al., 2018), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al., 2015) and perplexity. We
use the same setup as (Bu et al., 2022b) with automatic clipping, only increasing the learning rate for
DP-BiTFiT. More results under a stronger privacy guarantee ϵ = 3 can be found in Table 13.
Table 4: Performance of fine-tuning methods with GPT2, under ϵ = 8. LoRA and prefix results are
documented in (Li et al., 2021). Best performance in each model is in bold text.

Model Fine-tuning % of params Privacy↓ Perplexity↓ BLEU↑ ROGUE-L↑ NIST↑ METEOR↑ CIDEr↑

GPT2-small
(124M)

full 100% standard 2.91 69.46 71.36 8.78 0.46 2.42
DP (ϵ = 8) 2.33 63.60 67.07 7.71 0.40 1.94

LoRA — standard — 69.68 71.71 8.82 0.46 2.49
DP (ϵ = 8) — 63.39 67.53 7.45 0.41 1.95

prefix — standard — 68.85 70.81 8.72 0.45 2.35
DP (ϵ = 8) — 49.26 60.73 5.53 0.36 1.57

BiTFiT 0.082% standard 3.19 64.46 63.67 4.25 0.36 1.36
DP (ϵ = 8) 2.89 60.13 64.96 6.14 0.37 1.62

GPT2-medium
(355M)

full 100% standard 2.08 68.50 71.46 8.63 0.45 2.14
DP (ϵ = 8) 2.25 64.22 67.53 8.17 0.42 2.08

BiTFiT 0.076% standard 2.85 64.48 67.81 8.50 0.43 2.11
DP (ϵ = 8) 2.67 61.02 66.13 7.18 0.39 1.80

GPT2-large
(774M)

full 100% standard 1.79 66.84 70.38 8.73 0.46 2.36
DP (ϵ = 8) 2.26 64.64 68.97 8.30 0.42 2.16

BiTFiT 0.066% standard 2.79 65.79 67.61 8.55 0.43 2.21
DP (ϵ = 8) 2.59 65.21 67.88 8.43 0.42 2.15

In Table 4, DP-BiTFiT has shown strong performance, even outperforming DP full fine-tuning on
GPT2-large, as well as both the computation and parameter efficiency (see Figure 4). Similar to
Remark 4.1, the gap of BLEU score between DP-BiTFiT and DP full fine-tuning reduces from
-3.06/-3.20 (GPT2-small/medium) to +0.57 (GPT2-large), as the model size increases. We refer to
Table 13 for a more significant pattern when ϵ = 3.
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4.3 IMAGE CLASSIFICATION

We further experiment on CIFAR10/CIFAR100 (32× 32 pixels, resized to 224× 224) and CelebA
(218 × 178 pixels, not resized) after pre-training on ImageNet (224 × 224 pixels). For these
downstream datasets (e.g. CIFAR10 has only 10 classes), the number of classes is different than
that in ImageNet, which has 1000 classes. Consequently, the classification head of the pretrained
model is re-placed by random initialization. Therefore, our DP-BiTFiT is applied on top of the
last-layer training, but the number of trainable parameter remains ≈ 0.1% of the model parameters.
For instance, ViT-large has 303M parameters, of which 282k are biases and the weight of last layer
contains ≈ 100k, depending on the number of classes in the downstram task.

We observe that DP-BiTFiT enjoys 1.5× speedup for transformers and ResNet in Table 16, and that
DP-BiTFiT performs on par with full fine-tuning in Table 5,Table 14 and Table 15, e.g. achieving
state-of-the-art 99.0% accuracy on CIFAR10 and 91.2% on CIFAR100 at ϵ = 2. Our observation
holds across various models (especially on transformers), privacy budgets, and datasets. However, DP-
BiTFiT needs extra attention for convolutional neural networks (CNN) as we elaborate in Remark 4.2.
Remark 4.2. DP-BiTFiT may be less performant if the convolution layers do not contain biases, e.g.
in many popular models including ResNet (He et al., 2016). This issue can be mitigated by enabling
the biases in the model (not affecting non-DP performance) or warming up with full fine-tuning at
early iterations. Leveraging these solutions empirically improves the DP accuracy of ResNet18 on
CelebA [Smiling] classification from 88% to 92% (c.f. Appendix A.2 for detailed discussion).

Table 5: Accuracy of DP fine-tuning methods on CIFAR10
and CelebA. More results under different ϵ and network
architectures can be found in Appendix E.3.

Dataset Model Fine-tuning Accuracy

CIFAR10
(ϵ = 2, δ =1e-5)

(Yu et al., 2021b) ResNet152 (GEP) last-layer 94.8
(Tramer & Boneh, 2020) SIMCLRv2 last-layer 92.7

(De et al., 2022) Wide-ResNet28 last-layer 93.6
Wide-ResNet28 full 95.4

(Bu et al., 2022a)
crossvit-base-240 full 96.1
vit-base-patch16 full 97.4
vit-large-patch16 full 98.9

Ours
crossvit-base-240 BiTFiT 95.7
vit-base-patch16 BiTFiT 97.7
vit-large-patch16 BiTFiT 99.0

CelebA [Smiling]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 91.08

Ours
ResNet18 full 91.02
ResNet18 BiTFiT 88.17
ResNet18 last-layer 66.15

CelebA [Male]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 95.70

Ours
ResNet18 full 95.15
ResNet18 BiTFiT 92.29
ResNet18 last-layer 78.70

CelebA [Multi-label]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 87.58

Ours
ResNet18 full 88.38
ResNet18 BiTFiT 86.87
ResNet18 last-layer 83.67

Table 6: Accuracy of DP ViT-large on
CIFAR10/100, 3 epochs, various ϵ.

CIFAR10 DP last-layer DP-BiTFiT DP full
ϵ = 1 98.4 98.9 98.9
ϵ = 2 98.6 99.0 98.9
ϵ = 4 98.6 99.0 99.0
ϵ = 8 98.7 99.0 99.0

CIFAR100 DP last-layer DP-BiTFiT DP full
ϵ = 1 86.2 90.2 87.7
ϵ = 2 87.3 91.2 90.1
ϵ = 4 88.1 91.8 91.0
ϵ = 8 88.8 92.3 91.3
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Figure 5: Accuracy of DP ViT-large
on CIFAR100.

5 DISCUSSION

In this work, we study DP-BiTFiT to privately train the bias terms of neural networks. The highlight
of DP-BiTFiT is the accuracy, the parameter efficiency and the computation efficiency, which is
realized by not forward caching the activation tensors, and not back-propagating the gradient of
weights. This consequently allows DP-BiTFiT to be as fast and memory-saving as its non-private
counterpart, and thus particularly suitable for large models and high-dimension data, compared to
full fine-tuning or other parameter-efficient methods.

For future directions, DP-BiTFiT can be readily combined with prefix-based tuning and weights-based
fine-tuning, e.g. DP Adapter+BiTFiT and DP LoRA+BiTFiT, via f(x;W0, b̂, θ̂) using the notation
in Equation (1). For instance, we can optimize only the embedding layer (which has no bias terms)
and all bias terms in other layers. We expect this interpolating approach between full fine-tuning and
BiTFiT to produce even better performance at greater efficiency.
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A DETAILED ANALYSIS

A.1 BACK-PROPAGATION

We rigorously analyze the neural network represented in Section 2: for sample index i ∈ [B],

al+1,i︸ ︷︷ ︸
RT×d′

= ϕ( sl,i︸︷︷︸
RT×p

), sl,i = al,i︸︷︷︸
RT×d

Wl︸︷︷︸
Rd×p

+ 1︸︷︷︸
RT×1

· bl︸︷︷︸
R1×p

, (5)

Then the per-sample weight gradient is given by the chain rule as

∂Li

∂Wl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂Wl

=
∂Li

∂sl,i

⊤ ∂sl,i
∂Wl

=
∂Li

∂sl,i

⊤
al,i =

∂L
∂sl,i

⊤
al,i

in which the second equality holds when there is no parameter sharing (so that each per-sample loss
only depends on i-th input and output). The last equality holds for the same reason.

Similarly, we have the per-sample bias gradient as

∂Li

∂bl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂bl

=
∂Li

∂sl,i

⊤ ∂sl,i
∂bl

=
∂Li

∂sl,i

⊤
1 =

∂L
∂sl,i

⊤
1.

We additionally demonstrate that bias gradient is independent of the input al, on the convolution
(1d/2d/3d) and the normalization layers. For the convolution, sl is the inversely folded output and
al is the unfolded input, then the forward pass is the same as that of linear layer in Equation (5).
Notice that T is the product of hidden feature dimension (c.f. Bu et al. (2022a)), which depends on
the padding, kernel sizes, strides, etc. For the batch, layer, group, and instance normalization, the
forward pass is

sl,i =
al,i − E(al)√

Var(al) + 0.00001
·Wl + 1 · bl

which can be analyzed similarly to that of Equation (5).

A.2 MAKING BITFIT WORK WITH CONVOLUTIONAL NEURAL NETWORKS

Most (non-transformer) vision models use convolution layers and batch normalization during their
standard non-DP training, which is problematic for DP training in general, especially for DP-BiTFiT.
We take ResNet (He et al., 2016) as a concrete example.

Firstly, it is well-known that DP training does not support batch normalization, because the mean and
standard deviation are computed based on samples (c.f. https://opacus.ai/tutorials/
guide_to_module_validator). Therefore, in DP training, ResNet-BN (with batch normal-
ization) is modified to a different achitecture ResNet-GN (replaced by group normalization, e.g.
Abadi et al. (2016)). Put differently, ResNet is different in DP and non-DP training and sometimes
the comparison may be unfair. This makes vision transformers favorable because they use layer
normalization so that the architecures do not require modification when switching to DP regime.

Secondly, the convolution layers usually do not contain bias terms when followed by batch normaliza-
tion. This is the case in packages like tensorflow.keras, torchvision, timm, and in models like ResNet,
ResNext, DenseNet, etc. The reason of not having bias terms is that the batch normalization performs
mean subtraction, which make the biases ineffective (see https://discuss.pytorch.org/
t/no-bias-in-the-pretrianed-state-dictionary-of-resnet18/153263/
2). In words, ResNet-BN(with bias)=ResNet-BN(no bias), but ResNet-GN(with bias) ̸=ResNet-
GN(no bias).

Consequences Consider two networks, ResNet(no bias) with bias-less convolution and ResNet(with
bias). In full fine-tuning, we are training all 100 layers of both ResNets and they are equivalent under
batch normalization; but in DP-BiTFiT, we are essentially not training ResNet(no bias), maybe except
the classification head.
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A.2.1 WALK-AROUND 1

We can manually re-write the convolution layers in CNNs, which is technically troublesome and has
to be done in a case-by-case manner. For example, in Bu et al. (2022b), ResNet9 was implemented
with bias in the convolution layers. This walk-around can improve the performance of DP-BiTFiT
significantly (because all layers are trainable now) without sacrificing the training efficiency.

A.2.2 WALK-AROUND 2

Alternatively, we can leverage a two-phase training to interpolate between full fine-tuning and BiTFiT.
We introduce the two-phase training, denoted as X+BiTFiT, which firstly applies DP full fine-tuning
for X epochs then DP-BiTFiT for the rest of training. Hence, X+BiTFiT becomes DP full fine-
tuning when X equals total epochs, and reduces to DP-BiTFiT when X = 0. Empirically speaking,
it suffices to use X ≤ 2 to achieve comparable accuracy to full fine-tuning, while still enjoying
some speedup. The effectiveness of two-phase training is verified in Appendix E.3. 1+BiTFiT
outperforms previous SOTA by DP full fine-tuning Bu et al. (2022a) that used BEiT-large: CIFAR10
97.1%→ 98.8%; CIFAR100 86.2%→ 88.7%, under ϵ = 2. 2+BiTFiT is comparable to previous
SOTA, 87.05/87.58%→ 86.54/86.71% on CelebA in Table 16, under ϵ = 3/8 respectively.

B IMPLEMENTATION OF DP-BITFIT

In this section we describe the implementation of DP-BiTFiT, which only uses Pytorch backward
hook but not the forward hook, and thus is different from existing packages such as FastGradClip
Lee & Kifer (2020), Opacus Yousefpour et al. (2021), Private Transformers Li et al. (2021), Private
CNN Bu et al. (2022a). Notice that in these packages, the forward hook is used to store the activation
tensor al for all layers, which incurs huge memory burden as discussed in Section 2.

The Pytorch backward hook is a function, to be registered on a torch Module (or a layer in the neural
network), that will be executed in the backward propagation. The backward hook automatically
extracts the input gradient ∂L

∂al
and the output gradient ∂L

∂sl
of the layer.

In DP-BiTFiT, we call register_backward_hook to register a backward hook for Line 5 of
Algorithm 1. An example for a linear layer: RB×T×d → RB×T×p looks like

def hook(linear_layer, grad_input, grad_output):
linear_layer.bias.grad_sample = grad_output.sum(dim=1)
linear_layer.bias.norm_sample = linear_layer.bias.grad_sample.norm(2,dim=1)

Here the attribute norm_sample stores the per-sample gradient norm
∥∥∥∂Li

∂bl

∥∥∥
F

, and the attribute

grad_sample stores the RB×p per-sample gradient of bias.

Then the implementation of DP-BiTFiT for one iteration looks like

output=model(input)
loss=F.cross_entropy()(output,label)
torch.autograd.grad(loss,biases)
all_layer_norm_sample = torch.stack([param.norm_sample for param in biases],dim=0).norm(2, dim=0)
clipping_factor=1/(all_layer_norm_sample+0.01)
for layer in model.modules():

layer.bias.grad=torch.einsum("i,i...->...", clipping_factor,layer.bias.grad_sample)
optimizer.step()
optimizer.zero_grad()

where biases is the collection of all bias terms in all layers.

C COMPLEXITY ANALYSIS

We provide more details on analyzing the time and space complexity. The analysis for full fine-tuning
has been presented in Appendix C of Bu et al. (2022a) and is adapted here for the parameter efficient
fine-tuning: for example, Adapter Houlsby et al. (2019) uses two matrices Wdown ∈ Rp×r,Wup ∈
Rr×p that constitute

x←− x+ GeLU(x ·Wdown)Wup
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Hence the complexity, in comparison to full-finetuning, changes by replacing d→ 2r.

LoRA Hu et al. (2021) also uses two matrices Wdown ∈ Rd×r,Wup ∈ Rr×p that constitute

x←− x ·W + x ·WdownWup

Hence the complexity, in comparison to full-finetuning, changes by replacing pd→ r(p+ d).

Table 7: Per-layer time and space complexity of training on weights (full and parameter efficient
fine-tuning) and biases. ‘+’ means additional overhead to non-DP training.

forward weight training bias training
&output grad non-DP DP full (Opacus) DP LoRA DP Adapter non-DP DP (ours)

Time
complexity 4BTpd 2BTpd +2BTpd +2BT (pr + dr) +4BTpr BTp +3Bp

Space
complexity pd+BTd BT (p+ d) +Bpd +B(pr + dr) +2Bpr p +Bp

# back-prop 1 1 1 1 1 1
forward hook ✗ ✓ ✓ ✓ ✗ ✗

For per-sample bias gradient clipping, we need ∂Li

∂bl

⊤
= ∂L

∂sl,i

⊤
1 in Equation (4), which consists of

the per-sample gradient instantiation (i.e. summation along the feature dimension, from RTp → Rp,
∂L
∂sl,i

→ ∂Li

∂bl
), and computing the per-sample gradient norm (i.e. taking the square at each index and

summing all indices). Here each operation in italic takes Bp time complexity, meaning the total time
complexity is 3Bp, but the space complexity is Bp if operated in-place.

D EXPERIMENT DETAILS

D.1 LANGUAGE TASKS

Throughout this work, the text datasets are processed and loaded from Huggingface Lhoest et al.
(2021). We follow the same setup as Li et al. (2021); Bu et al. (2022b), such as δ = 0.5/sample size.
The full fine-tuning is implemented by Private Transformers codebase, version 0.2.0 (i.e. GhostClip
algorithm Li et al. (2021)).

For text classification, we experiment on four datasets: MNLI(m), the matched splits from Multi-
Genre Natural Language Inference Corpus; QQP, the Quora Question Pairs2 dataset; QNLI The
Stanford Question Answering dataset; SST2 The Stanford Sentiment Treebank dataset.

To give a fair comparison, we use the same optimizer as in Li et al. (2021), i.e. DP-Adam with
Abadi’s clipping.

Table 8: Hyperparameters of text classification in Table 3 and Table 12, using RoBERTa (base/large).

Dataset MNLI QQP QNLI SST2
epoch 18 18 6 3

batch size 6000 6000 2000 1000
clipping threshold R 0.1

DP learning rate full 5e-4 / BiTFiT 5e-3
non-DP learning rate full 5e-5 / BiTFiT 1e-3
max sequence length 256

For E2E generation task, we experiment GPT2 models using the same optimizer as in Bu et al.
(2022b), using DP-AdamW with automatic clipping.

D.2 IMAGE TASKS

We give the experiments settings for image classification. For CIFAR10 and CIFAR100, we use the
same setting as Bu et al. (2022a), e.g. 5 epochs for CrossViT, 3 epochs for ViT and BEiT-large. For
CelebA, we use the same setting as Bu et al. (2022b), e.g. 10 epochs.
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Table 9: Hyperparameters of E2E generation task in Table 4 and Table 13, using GPT2.

Model GPT2-small GPT2-medium GPT2-large
epoch 10

batch size 1024
DP learning rate (full) 2e-3 2e-3 2e-3

non-DP learning rate (full) 2e-4 1e-4 1e-4
DP learning rate (BiTFiT) 1e-2

non-DP learning rate (BiTFiT) 2e-3
learning rate decay No

max sequence length 100

We use DP-Adam with Abadi’s clipping. We do not apply tricks such as random data augmentation,
weight standardization Qiao et al. (2019), or parameter averaging Polyak & Juditsky (1992). Our
experiments are heavily based on Private CNN (i.e. MixGhostClip algorithm Bu et al. (2022a)) and
TIMM codebases.

Table 10: Hyperparameters of image classification task in Section 4.3,Table 14,Table 15,Table 16.

Dataset CIFAR10 CIFAR10 CIFAR100 CelebA
Model CrossViT ViT-large ViT-large ResNet18
epoch 5 3 3 10

batch size 1000 1000 1000 500
clipping threshold 0.1

DP learning rate (full) 1e-3 5e-4 5e-4 1e-3
DP learning rate (BiTFiT) 5e-3 5e-3 5e-3 8e-3

learning rate decay No
normalizing data Yes Yes Yes No
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E ADDITIONAL TABLES AND FIGURES

E.1 PARAMETER EFFICIENCY OF DP-BITFIT

Table 11: Parameter efficiency of (DP) BiTFiT on various models.

Model Number of params % of params
VGG11 133M 0.009
VGG16 138M 0.009
VGG19 144M 0.010

ResNet18 11.7M 0.043
ResNet34 21.8M 0.044
ResNet50 25.6M 0.113
ResNet101 44.5M 0.121
ResNet152 60.2M 0.127

wide_resnet50_2 68.9M 0.051
wide_resnet101_2 126.9M 0.055

convnext_base 88.6M 0.148
convnext_large 197.8M 0.099

ViT-small-patch16 22.0M 0.238
ViT-base-patch16 86.6M 0.120
ViT-large-patch16 304M 0.090

beit_base_patch16_224 86.5M 0.088
deit_base_patch16_224 86.4M 0.120

GPT2-small 124M 0.082
GPT2-medium 355M 0.076

GPT2-large 774M 0.066
RoBERTa-base 125M 0.083
RoBERTa-large 355M 0.077

BERT-base-uncased 109M 0.094
BERT-large-uncased 335M 0.081

BART-large 406M 0.082
longformer-base-4096 149M 0.088
longformer-large-4096 435M 0.080

E.2 MORE RESULTS ON DP-BITFIT AND LANGUAGE TASKS

Table 12: Accuracy of full fine-tuning and BiTFiT with RoBERTa, under different per-sample
clipping functions (indicated as subscript, Abadi Abadi et al. (2016) and AUTO-S Bu et al. (2022b)).
Same setting as Appendix D.

full (Li et al., 2021; Bu et al., 2022b) BiTFiT (ours)
RoBERTa-base

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 94.5 92.1 92.4 91.9 92.3 93.5 92.4 92.4 92.0 92.0
Accuracy QNLI 91.4 87.9 87.9 87.4 86.9 87.3 86.5 86.7 86.4 86.1
Accuracy QQP 87.3 86.1 86.6 85.6 85.8 86.1 83.4 84.0 83.0 83.8

Accuracy MNLI-m 85.9 83.2 83.8 82.5 83.2 83.4 82.6 82.6 81.5 82.0
RoBERTa-large

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 96.2 93.8 94.6 93.0 93.9 95.5 94.5 94.7 94.5 94.6
Accuracy QNLI 93.6 91.1 91.5 90.8 91.0 92.2 91.0 91.1 90.3 90.8
Accuracy QQP 87.9 86.9 87.5 86.6 86.8 87.9 86.5 87.1 86.3 86.5

Accuracy MNLI-m 90.3 87.0 87.1 86.4 86.3 89.3 87.6 87.7 87.2 87.2
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Table 13: Accuracy of fine-tuning with GPT2 on E2E dataset. LoRA and prefix results are taken
from Li et al. (2021). Same setting as Appendix D.

Model Fine-tuning % of params Privacy↓ Perplexity↓ BLEU↑ ROGUE-L↑ NIST↑ METEOR↑ CIDEr↑

GPT2-small
(124M)

full 100% standard 2.91 69.46 71.36 8.78 0.46 2.42
DP (ϵ = 8) 2.33 63.60 67.07 7.71 0.40 1.94
DP (ϵ = 3) 2.36 61.34 65.87 7.07 0.39 1.80

LoRA — standard — 69.68 71.71 8.82 0.46 2.49
DP (ϵ = 8) — 63.39 67.53 7.45 0.41 1.95
DP (ϵ = 3) — 58.15 65.77 5.46 0.37 1.58

prefix — standard — 68.85 70.81 8.72 0.45 2.35
DP (ϵ = 8) — 49.26 60.73 5.53 0.36 1.57
DP (ϵ = 3) — 47.77 58.96 5.25 0.36 1.51

BiTFiT 0.082% standard 3.19 64.46 63.67 4.25 0.36 1.36
DP (ϵ = 8) 2.89 60.13 64.96 6.14 0.37 1.62
DP (ϵ = 3) 3.00 54.78 63.55 4.78 0.34 1.31

GPT2-medium
(355M)

full 100% standard 2.08 68.50 71.46 8.63 0.45 2.14
DP (ϵ = 8) 2.25 64.22 67.53 8.17 0.42 2.08
DP (ϵ = 3) 2.62 63.85 67.07 7.11 0.39 1.75

BiTFiT 0.076% standard 2.85 64.48 67.81 8.50 0.43 2.11
DP (ϵ = 8) 2.67 61.02 66.13 7.18 0.39 1.80
DP (ϵ = 3) 2.67 57.11 66.16 5.07 0.37 1.47

GPT2-large
(774M)

full 100% standard 1.79 66.84 70.38 8.73 0.46 2.36
DP (ϵ = 8) 2.26 64.64 68.97 8.30 0.42 2.16
DP (ϵ = 3) 2.65 64.18 67.86 7.94 0.40 2.01

BiTFiT 0.066% standard 2.79 65.79 67.61 8.55 0.43 2.21
DP (ϵ = 8) 2.59 65.21 67.88 8.43 0.42 2.15
DP (ϵ = 3) 2.61 65.18 67.90 8.34 0.42 2.12

E.3 MORE RESULTS ON TWO-PHASE TRAINING

Here X+BiTFiT does not train last layer, i.e. the classification head is randomized before full
fine-tuning happens.

Table 14: Accuracy of two-phase fine-tuning on CIFAR10. Same setting as Appendix D.2. BEiT-
large uses DP full fine-tuning learning rate 5e-4, DP-BiTFiT learning rate 5e-3. Others use DP full
fine-tuning learning rate 1e-3, DP-BiTFiT learning rate 5e-3.

CIFAR10
Model Privacy 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit_large_patch16_224 ϵ = 1 11.7 98.2 97.9 97.2
ϵ = 2 10.0 98.3 98.0 97.3
ϵ = 4 13.8 98.2 98.0 97.5
ϵ = 8 10.1 98.5 98.0 97.8

beit_base_patch16_224 ϵ = 1 10.0 96.6 96.0 95.4
ϵ = 2 10.7 97.1 96.4 96.0
ϵ = 4 14.0 97.2 96.6 96.2
ϵ = 8 10.0 97.2 96.5 96.3

deit_base_patch16_224 ϵ = 1 78.2 94.4 95.2 95.4
ϵ = 2 75.0 95.4 95.2 95.6
ϵ = 4 72.9 95.8 95.9 96.0
ϵ = 8 71.2 96.1 96.0 96.3

crossvit_base_240 ϵ = 1 74.3 92.4 94.3 95.2
ϵ = 2 80.4 93.6 95.0 95.3
ϵ = 4 81.0 94.9 95.8 95.7
ϵ = 8 78.2 94.8 95.8 96.2

vit_large_patch16_224 ϵ = 1 89.7 98.9 98.7 98.9
ϵ = 2 90.6 98.8 98.9 98.9
ϵ = 4 93.2 98.9 98.8 99.0
ϵ = 8 93.9 99.0 98.9 99.0

vit_base_patch16_224 ϵ = 1 86.7 95.2 97.0 96.8
ϵ = 2 89.3 97.7 97.1 97.1
ϵ = 4 88.3 97.7 97.2 97.2
ϵ = 8 88.7 97.6 97.2 97.4
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Table 15: Accuracy of two-phase fine-tuning on CIFAR100. Same setting as Appendix D.2. BEiT-
large uses DP full fine-tuning learning rate 5e-4, DP-BiTFiT learning rate 5e-3. Others use DP full
fine-tuning learning rate 1e-3, DP-BiTFiT learning rate 5e-3.

CIFAR100
Model Privacy 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit_large_patch16_224 ϵ = 1 1.0 86.9 87.8 87.0
ϵ = 2 1.0 88.7 89.3 88.7
ϵ = 4 1.0 89.7 89.7 89.6
ϵ = 8 1.0 90.3 90.7 90.0

beit_base_patch16_224 ϵ = 1 1.0 81.4 82.2 80.9
ϵ = 2 1.0 83.4 83.4 83.1
ϵ = 4 1.0 84.6 85.1 84.8
ϵ = 8 1.0 84.9 85.6 85.2

deit_base_patch16_224 ϵ = 1 10.9 49.1 65.9 69.1
ϵ = 2 13.6 58.1 71.5 74.3
ϵ = 4 15.7 64.5 73.9 77.1
ϵ = 8 16.6 69.7 75.7 77.9

crossvit_base_240 ϵ = 1 12.2 49.2 61.7 67.6
ϵ = 2 12.3 56.8 65.3 71.6
ϵ = 4 17.2 61.6 70.4 73.1
ϵ = 8 20.9 63.4 72.8 74.2

vit_large_patch16_224 ϵ = 1 14.0 73.5 86.0 87.7
ϵ = 2 19.4 82.4 89.0 90.1
ϵ = 4 24.3 87.5 89.9 91.0
ϵ = 8 23.9 89.0 90.7 91.3

vit_base_patch16_224 ϵ = 1 16.0 64.3 79.5 83.9
ϵ = 2 22.9 77.0 83.8 85.5
ϵ = 4 21.2 83.0 85.2 87.2
ϵ = 8 26.2 83.8 86.5 87.1
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Table 16: Accuracy on CelebA dataset with settings in Appendix D.2 from one run. DP full fine-
tuning is implemented with the most efficient MixGhostClip algorithm Bu et al. (2022a). We observe
that linear probing (LP) only gives 83.67% at ϵ = 8. *Note the accuracy is based on timm<=0.6.5
and may change for a different version.

Attributes 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full DP-BiTFiT(LP) 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full DP-BiTFiT(LP)
ϵ = 3 ϵ = 8

5 o Clock Shadow 90.01 90.01 90.14 91.32 90.35 90.01 90.01 90.51 91.64 90.97
Arched Eyebrows 71.56 73.12 76.01 77.33 75.41 71.56 73.74 75.49 78.82 76.49

Attractive 68.71 73.98 75.99 79.22 74.96 69.70 73.61 76.20 78.08 7523
Bags Under Eyes 79.74 79.76 81.27 81.73 81.14 79.74 79.74 80.69 82.62 8172

Bald 97.88 97.88 97.88 97.93 97.93 97.88 97.88 97.88 97.91 9790
Bangs 84.43 84.43 84.80 94.06 90.85 84.43 84.44 86.51 94.22 92.34

Big Lips 67.30 67.30 67.30 67.78 67.42 67.30 67.30 67.29 68.34 67.65
Big Nose 78.80 78.95 80.08 81.19 79.96 78.80 78.92 79.23 81.86 80.28

Black Hair 72.84 74.86 82.37 85.84 81.48 73.02 78.71 83.33 86.47 82.38
Blond Hair 89.54 93.00 93.28 94.17 93.03 89.13 92.62 93.88 94.34 93.51

Blurry 94.94 94.94 94.94 95.05 95.21 94.94 94.94 94.96 95.10 95.34
Brown Hair 82.03 82.02 82.87 85.44 82.68 82.03 82.37 83.49 85.04 82.88

Bushy Eyebrows 87.05 87.05 87.21 88.26 87.11 87.05 87.05 87.15 89.02 87.22
Chubby 94.70 94.70 94.70 94.84 94.57 94.70 94.70 94.70 94.78 94.47

Double Chin 95.43 95.43 95.43 95.49 95.34 95.43 95.43 95.43 95.39 95.26
Eyeglasses 93.54 93.54 93.54 94.30 94.77 93.54 93.54 93.54 95.85 96.32

Goatee 95.42 95.42 95.42 95.96 95.41 95.42 95.42 95.42 95.89 95.55
Gray Hair 96.81 96.81 96.85 97.44 96.78 96.81 96.81 97.12 97.45 96.59

Heavy Makeup 76.51 82.76 85.71 88.48 83.73 77.22 83.03 85.86 89.05 84.70
High Cheekbones 62.13 68.20 81.63 83.77 76.91 61.43 67.27 81.33 84.20 79.42

Male 80.37 88.47 91.52 94.73 89.92 82.04 88.52 92.14 95.19 90.69
Mouth Slightly Open 54.03 59.32 77.61 86.75 74.20 55.26 60.70 79.42 90.24 77.53

Mustache 96.13 96.13 96.13 96.10 96.06 96.13 96.13 96.13 96.12 95.98
Narrow Eyes 85.13 85.13 85.13 85.14 85.15 85.13 85.13 85.13 85.16 85.13

No Beard 85.37 85.87 87.56 92.94 88.33 85.37 85.88 88.59 93.59 89.81
Oval Face 70.44 70.94 71.50 73.11 71.51 70.44 71.48 71.92 71.77 71.25
Pale Skin 95.79 95.79 95.79 95.79 95.76 95.79 95.79 95.79 95.79 95.73

Pointy Nose 71.43 71.51 71.63 71.89 71.40 71.43 71.47 71.77 72.87 72.11
Receding Hairline 91.51 91.51 91.51 91.59 91.40 91.51 91.51 91.51 91.61 91.39

Rosy Cheeks 92.83 92.83 92.86 93.07 92.75 92.87 92.83 92.86 93.33 92.99
Sideburns 95.36 95.36 95.36 96.44 95.55 95.36 95.36 95.36 96.63 95.79
Smiling 60.07 66.32 85.85 89.34 79.99 58.92 65.97 85.55 89.11 82.82

Straight Hair 79.01 79.01 79.02 79.65 79.22 79.01 79.01 79.13 78.60 79.47
Wavy Hair 71.24 73.09 76.22 77.35 77.98 70.86 73.62 77.11 72.73 78.90

Wearing Earrings 79.34 79.34 80.37 83.24 81.54 79.34 79.34 80.71 84.36 82.65
Wearing Hat 95.80 95.80 95.80 96.01 95.95 95.80 95.80 95.80 97.02 96.63

Wearing Lipstick 80.61 87.90 89.81 91.59 87.54 80.35 87.20 89.56 91.94 88.16
Wearing Necklace 86.21 86.21 86.21 86.21 86.16 86.21 86.21 86.21 86.21 86.12
Wearing Necktie 92.99 92.99 93.03 93.58 93.61 92.99 92.99 93.11 93.57 94.13

Young 75.71 79.33 81.23 83.69 80.57 75.71 78.52 80.66 83.11 80.93
Average 82.97 84.42 86.54 88.20 86.25 83.01 84.52 86.71 88.38 86.87

Total time 10:30 12:02 13:34 25:50 10:30 10:30 12:02 13:34 25:50 10:30

Table 17: Test accuracy on SST2 under ϵ = 8, using DP-Adam with AUTO-S clipping.

DP-BiTFiT DP full non-DP full
learning rate 5e-4 1e-3 2e-3 5e-3 1e-2 1e-4 2e-4 5e-4 1e-3 1e-5 2e-5 5e-5 1e-4

RoBERTa-base 90.94 91.28 91.74 92.43 90.94 91.51 91.97 92.43 91.28 93.92 94.38 94.49 93.35
RoBERTa-large 94.38 95.07 94.38 94.50 94.04 94.84 94.72 94.61 92.66 95.76 96.21 96.21 95.99

22


	Introduction
	Preliminaries
	Differentially private Bias-Term Fine-Tuning
	Parameter efficiency
	Complexity of weight and bias training
	Scalability of DP algorithms

	Experiments
	Text classification
	Natural Language Generation
	Image classification

	Discussion
	Detailed analysis
	Back-propagation
	Making BiTFiT work with convolutional neural networks
	Walk-around 1
	Walk-around 2


	Implementation of DP-BiTFiT
	Complexity analysis
	Experiment details
	Language tasks
	Image tasks

	Additional tables and figures
	Parameter efficiency of DP-BiTFiT
	More results on DP-BiTFiT and language tasks
	More results on two-phase training

	Extra

