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ABSTRACT

Inverse design aims to compute physical structures that exhibit desired proper-
ties. A prominent application in Photonics is the inverse design of metamaterials,
which are artificial composite structures created by stacking layers of different ma-
terials to achieve targeted optical responses. In addition to achieving the desired
optical properties, designers often aim to ensure that the resulting metamaterials
comply with specific layout constraints. Although many Deep Learning (DL) ap-
proaches have recently been proposed for inverse design, they generally fail to
incorporate such constraints into the design process. In this paper, we propose a
neuro-symbolic approach that combines DL-based inverse design methods with
Semantic Loss to inject layout requirements into the inverse design process. Our
experiments demonstrate that the proposed approach enables state-of-the-art in-
verse design techniques to comply with a variety of constraints inspired by the
Photonics literature.

1 INTRODUCTION

Deep Learning (DL)-based approaches to inverse design allow for data-driven synthesis of physical
systems. Ranging from molecules Yoo et al. (2023) and photonic devices to structures in automo-
tive and aerospace applications Kim et al. (2022); Sun et al. (2015); Sekar et al. (2019), enabling
designers and engineers to generate materials, tools, and molecules based on the properties they
should exhibit. A particularly interesting example of inverse design arises in the domain of Photon-
ics, where it has gained significant attention within the research community Kang et al. (2024); Jiang
et al. (2020); Wiecha et al. (2021). In this field, a prominent application is the design of thin-layer
metamaterials, which aims at devising artificial composite structures by stacking layers of different
materials (see Figure 1) that feature some desired spectral responses.

In this context, the forward problem amounts to computing the optical response of a predefined
structure. This task can be readily addressed by using established physics-based photonic simulators.
On the other hand, the inverse problem amounts to devising novel structures’ layouts that produce
a specific desired response. Hence, in this latter case, one wants to estimate the thickness and the
material to employ in each layer of the metamaterial to build. In general, the inverse problem remains
fundamentally an ill-posed problem due to the non-uniqueness of the solution and the instability
inherent in mapping responses back to structural parameters, which means that very different layouts
in the design space can produce identical spectral outputs Zhang et al. (2018).

Recent literature widely acknowledges deep learning and generative methods as promising strate-
gies to approach inverse design problems Park et al. (2024); Ren et al. (2020); Wiecha et al. (2021).
Indeed, in the case where a dataset of couples design-response is available, such methods can learn
complex, high-dimensional mappings that enable efficient exploration of the design space Park et al.
(2024); Ren et al. (2020); Wiecha et al. (2021). Nonetheless, few approaches in the literature ad-
dress the problem of constrained inverse design Piggott et al. (2017); Schubert et al. (2022). In this
variant, the goal is not only to produce metamaterials that match a desired response, but also to
ensure that they are physically realizable. This final requirement involves complying with domain-
specific structural constraints, which requires integrating some expert knowledge into the design
process. These constraints can serve multiple purposes, such as simplifying physical fabrication,
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Figure 1: The forward and inverse problems.
Generative methods produce valid or invalid
metamaterials w.r.t. some structural layout con-
straints.

Figure 2: An example of a 5-layer metamaterial
xxx = (M,ttt).

reducing costs, aligning with material availability in laboratory settings, incorporating domain ex-
pertise, and enforcing specific structural patterns For example, in the context of metamaterials design
for biosensing, a common layout constraint might involve selecting gold (aurum) instead of silver
for the outermost layer to prevent oxidation, while still achieving a desired optical response Joy
et al. (2024). Another example concerns hyperbolic metamaterials Li & Gu (2024), where designers
aim to produce artificial metamaterials by stacking thin-layers of different materials according to an
ad-hoc defined repeated pattern Sreekanth et al. (2016). Such kinds of metamaterials and responses
can be obtained by forcing periodical assignment to the layer. For instance, suppose we want to
obtain a nine-layer metamaterial from a set of three materials {a, b, c} of which one material is as-
signed to each layer. The design of a periodic (hyperbolic) metamaterial would produce a structure
with the following layout: (bac)(bac)(bac). Such structure might be required because it exhibits
rare optical properties not found in natural materials, such as bending light in unconventional ways
or letting it travel in directions that would normally be blocked Sreekanth et al. (2016). Currently
available inverse design approaches do not support the incorporation of layout constraints of this
kind, thus they limit the possibilities of designers and often lead to designs that are unfeasible or
of limited practical relevance. In this work, we extend state-of-the-art inverse design approaches by
incorporating domain knowledge into the design process, with the aim of producing feasible and
domain-aware solutions for the inverse design of metamaterials. To this end, we propose the use of
the neuro-symbolic Semantic Loss (SL) Xu et al. (2018) approach to introduce, into the DL-based
inverse design models, a differentiable loss term that captures how likely a propositional theory
(modeling domain constraints) is satisfied. In particular, we introduce SL into state-of-the-art in-
verse design processes and evaluate its effectiveness across a diverse set of layout constraints, such
as those required to generate periodic metamaterials. Our experimental results show that:

i. SL effectively enforces layout constraints on thin-layer metamaterials, leading to designs
of practical and physical relevance.

ii. Notably, we obtained the generation of valid metamaterials that are either underrepresented
or entirely absent in the training data. Our models, hence, enforce constraints at inference
time without requiring re-training or fine-tuning on datasets that explicitly include valid
constrained examples.

iii. The use of SL leads to designs that better align with desired properties, with respect to
baseline approaches.

Our approach opens avenues to a new paradigm in inverse design, where designers can declaratively
inject domain knowledge and layout constraints desiderata into the design process.

2 RELATED WORK

Deep learning-based inverse design architectures typically involve two main phases: a training phase
of the different architectures’ components (e.g. training NF on D) and an inverse computation phase
(e.g., prediction of the structure or its optimization). In Adornetto & Greco (2023), the authors
propose a classification of DL-based inverse design approaches, distinguishing between output-
independent methods which generate x̄xx with simple inferences, and output-dependent methods,
which use the desired output ȳyy to explore the design space during inverse computation.
A key challenge in inverse design is ensuring that generated structures satisfy constraints. We dis-
tinguish between fabrication-geometric and physical feasibility constraints. The former arise from
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manufacturing limitations, such as minimum feature sizes or permissible layer thicknesses, typ-
ically addressed by introducing penalty terms or filters and thresholding Vercruysse et al. (2019);
Schubert et al. (2022); Vercruysse et al. (2019); Ma et al. (2024). In contrast, physical feasibility con-
straints require that designs obey the laws of physics and satisfy application-specific requirements.
While physics laws (e.g., Maxwell’s equations in optics) are typically enforced via surrogate mod-
els, additional constraints—such as symmetry, periodicity, or categorical representations—may also
be necessary. Although well-known in photonics, these constraints are rarely addressed in inverse
design frameworks, and typically implemented through penalty terms Adornetto & Greco (2023);
Bastek et al. (2022); Jang et al. (2016); Ren et al. (2020) or introduced as hard constraints within
constrained optimization solvers Lu et al. (2021).
This work focuses on feasibility constraints that enforce layouts in metamaterial design, where
domain-specific structural rules can guide the design space exploration towards valid configura-
tions. To the best of our knowledge, this paper proposes the first AI-based approach that leverages
on neurosymbolic techniques to obtain an effective method for constrained inverse design of meta-
materials.

3 PRELIMINARIES ON INVERSE DESIGN

3.1 METAMATERIALS

A layered metamaterial Lininger et al. (2021), in our context, refers to a structure composed of mul-
tiple metallic layers stacked vertically to achieve specific electromagnetic properties (see Figure 1).

More formally, let M = {m1,m1, . . . ,mq} be a finite set of materials, ℓ a positive integer rep-
resenting the number of layers in a metamaterial. An ℓ-layer metamaterial over M is a tuple
xxx = (M,ttt) where M is a binary matrix of size ℓ× q, and the vector ttt = (t1, . . . , tℓ) where ti ∈ R+

is the thickness of the i-th layer of xxx. We denote M as the material matrix encoding the layout of the
metamaterial, and ttt as the thickness vector. In this setting, the i-th row of M is the one-hot encoding
of a material such that Mi,j = 1 if and only if the material mj ∈ M is assigned to the i-th layer of
the metamaterial. Figure 2 provides a graphical representation of a metamaterial.

3.2 INVERSE DESIGN

In this work we consider inverse design problems with the availability of a dataset D =
{(xxxi, yyyi)}i∈{1,...,n} of (structure-response) pairs such that, for each i ∈ {1, ..., n}, xxxi is a metama-
terial and yyyi ∈ Rm is a spectral-response vector. Typically, yyyi represents a set of the metamaterial’s
optical properties (e.g., transmittance and reflectance) obtained through a real physical simulator
F such that yyyi = F(xxxi) holds. The inverse design problem consists of computing, given a desired
target response ȳyy, the input vector x̄xx such that F(x̄xx) = ȳyy. Informally, we are interested in learning
the inverse function of F, that is the function F−1 such that F−1(y) = x; however, it is often the case
that F is not invertible, as different metamaterials can produce the same physical response. Hence,
we can understand inverse design as the learning of a function I such that F(I(ȳyy)) ≈ ȳyy. Figure 1
depicts the classic inverse design framework.

Furthermore, it is often the case that physical simulators consist of iterative, non-differentiable al-
gorithms. Thus, DL-based inverse design approaches rely on so called surrogate models, that is
differentiable approximations of physical simulators, e.g., neural networks that approximate a sim-
ulator. Given a simulator F, we use the notation NF to denote its surrogate. In this setting, where
neural networks are not inherently suited to produce one-hot encodings, we represent the generated
design as x̄xx = (M̄, ttt) ∈ Rℓ×(q+1), where M̄ is a real-valued approximation of the binary mate-
rial matrix M . The goal of the network is to guide M̄ toward a one-hot (categorical) representation
that aligns with the structure of valid metamaterials. This representation is required to ensure com-
patibility with the surrogate model NF, which is trained on datasets composed of well-represented
metamaterial designs.

3.3 BENCHMARK MODELS

In this work, we focus on output-dependent methods, as they are better suited for integration with
semantic loss during optimization and design space exploration. Accordingly, we selected the best-
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Figure 3: NA, VAE-ID and GIDNET frameworks for the metamaterial design.

performing state-of-the-art output-dependent architectures—proven to achieve superior results in
the design of thin-layer metamaterials Adornetto & Greco (2023); Yang et al. (2023).

Neural Adjoint (NA) It is part of a family of gradient-based inverse design methods Zaabab et al.
(1995); Peurifoy et al. (2018); Asano & Noda (2018). They use the pre-trained network NF (as a
surrogate simulator), which is frozen during inverse computation phase. In such a phase, the net-
work takes as input an initial randomly sampled guess x̄xx0 of trainable weights. The loss function is
meant to minimize the distance between ȳyy and NF(x̄xx0), and it is optimized via backpropagation by
directly updating the weights of x̄xx0 (keeping NF frozen). Eventually, the resulting design x̄xx (such that
F(x̄xx) ≈ ȳyy) is given by the values of the weights in x̄xx0 after their optimization. A known limitation
of this approach is that the search space defined by x̄xx0 is often narrow, leading to suboptimal solu-
tions Jiang et al. (2020) and hence, making NA particularly sensitive to the initialization of x̄xx0. To
mitigate this, Ren et al. (2020) proposes a resampling strategy where, for a given target response ȳyy,
NA repeats T times the optimization of x̄xx0, starting from different random initializations of weights.
In our experiments, we instantiate NA to work with a one-hot encoding loss Loh, specifically de-
signed for metamaterial design as proposed in Adornetto & Greco (2023). This loss encourages valid
material assignments by enforcing one-hot encodings across the rows of the real-valued M̄ . Figure 3
illustrates how we adapt the general NA framework to the metamaterial inverse design.

VAE-ID Originally proposed for molecule inverse design in Gómez-Bombarelli et al. (2018), this
architecture jointly trains a variational autoencoder Kingma & Welling (2013) and a variant NF′ of
a surrogate model to guide optimization in a latent design space during the inverse computation.
During training VAE-ID jointly optimizes a variational autoencoder and NF

′ on both reconstruction
and property prediction—making the latent design space a continuous representation of inputs con-
ditioned by the responses Kingma & Welling (2013). During inverse computation phase VAE-ID
initially samples a random point (or T points in the case of resampling strategy) from the latent de-
sign space. Such starting point is then provided in input to the decoder of the variational autoencoder
DVAE to generate a candidate design x̄xx. The loss function is meant to minimize the distance between ȳyy
and NF

′(x̄xx′). To this aim, both DVAE and NF
′ are frozen and the design is optimized by directly moving

x̄xx′ into the latent space. Eventually the final latent design is decoded. Interestingly, no constraints
are enforced during the exploration process, and the final design is validated ex-post.

GIDNET It is a recently proposed approach to inverse design proposed in Adornetto & Greco
(2023). During training phase, GIDNET constructs a latent space design with an autoencoder. The
encoder E maps an input xxx to its latent representation xxx′ ∈ Rh, while the decoder D attempts to
reconstruct the original input. When required, the decoder is further trained to enforce categorical
structure in the reconstructed design, by using a custom loss function Loh, which penalizes con-
tinuous outputs that deviate from a one-hot encoding. In the inverse phase, GIDNET ’s Selection
Layer Nsl first picks the k-nearest designs to the target response ȳyy in the training set, then forms
a trainable weighted combination of their latent representations, by identifying a suitable starting
point. A generator NG takes as input random noise and generates movements of the starting point in
multiple directions within the latent space to produce a diverse set of candidates. These latent points
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are decoded by D back into designs and evaluated with the surrogate NF. The loss function aims to
minimize the distance between the predicted response NF(D(x̄xx′)) and the target response ȳyy, guiding
the exploration. During this process, D and NF are kept frozen, while the parameters of the generator
NG and the k weights in Nsl are updated to learn meaningful perturbations that improve design qual-
ity in the latent space. To ensure a fair comparison with other methods, such as NA and VAE-ID,
which permit resampling of initialization points, we adapt GIDNET by modifying its initialization
strategy. Specifically, instead of selecting the k nearest neighbors to the target response ȳyy, we uni-
formly sample k latent vectors within the bounds of the training set’s distribution in the latent space.
Such points are then combined to define a region of the latent space from which the exploration is
initialized, as shown in Figure 3 (for k = 3).

4 CONSTRAINED INVERSE DESIGN BY SEMANTIC LOSS

In this section, we apply Semantic Loss Xu et al. (2018) (SL) to the inverse design problem. We start
by recalling the definition of semantic loss:
Definition 1 (Semantic Loss Xu et al. (2018)). Let X = {x1, . . . , xn} be a set of propositional
variables, α a sentence over X. Let p be a vector of probabilities, pi being the probability associated
to variable xi. The semantic loss between α and p is:

Ls(α, p) = − log
∑
x|=α

∏
xi∈x

pi
∏
xi ̸∈x

1− pi

Intuitively, Ls(α,p) penalizes probability distributions p from which it is “difficult to sample models
of α”. This is formalised in Proposition 3 of Xu et al. (2018). Hence, semantic losses can be used as
a loss term to push neural networks’ outputs—in terms of p—towards aligning semantically to the
sentence α. We refer the reader to Xu et al. (2018) for a thorough and formal treatment of semantic
losses and their formal properties. In order to apply SL to the inverse design problem, we have
thus to (i) define an appropriate set of variables to express design constraints over metamaterials’
structures and (ii) interpret inverse design output as a probability distribution over such variables.

4.1 DEFINING DESIGN CONSTRAINTS

As the structure of a metamaterial xxx = (M,ttt) is described by its (binary) material matrix M ∈
{0, 1}ℓ×q , it is naturally mapped to a collection of propositional variables (i.e., its non-zero entries),
and M can be understood as an interpretation for sentences (propositional logic formulae) over such
variables. This makes propositional logic an adequate language to define (combinatorial) properties
of materials, to be enforced at inference time by means of a semantic loss.

More formally, let P = {xi
j : 1 < i ≤ ℓ, 1 < j ≤ q} be a set of propositional variables, with

xi
j’s truth value modeling that “the i-th layer of x is composed by material mj” (analogous to

the interpretation of Mi,j = 1). Given a material matrix M , we define the two sets of variables
V +(M) = {xi,j ∈ P : Mi,j = 1} and V −(M) = P \ V +(M).

Sentences over P , which we call design constraints, define structural properties for materials. Mod-
els of such formulae implicitly define a set of material matrices that satisfy it. We provide one
example:
Example 1. Assume we are interested in metamaterials where all adjacent layers use distinct ma-
terials. That is, whenever material mj appears in a layer i, we wish layer i+ 1 to not be composed
of material mj . This can be expressed as the following propositional formula:

ϕadj =
∧

j∈{1,...,q}

∧
i∈{1,...,ℓ−1}

xi
j → ¬xi+1

j

By following our notation, the metamaterial shown in Figure 2 corresponds to the interpretation
V +(M) = {x1

3, x
2
2, x

3
4, x

4
5, x

5
1}, which satisfies the formula ϕadj . On the other hand, substituting

the m3 with m2 in the first layer would yield the interpretation {x1
2, x

2
2, x

3
4, x

4
5, x

5
1}, that does not

satisfy ϕadj (layer 1 and layer 2 use both m2).
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Similarly, a model I ⊆ P of a design constraint ϕ can be mapped back onto a design matrix,
reshaping I into the matrix Mat(I) such that Mat(I)i,j = 1 if and only if xi,j ∈ I . Thus, with
a slight abuse of notation, we say an inverse design x̄xx = (M,ttt) satisfies the design constraint ϕ if
V +(M) is a model of ϕ, M |= ϕ in symbols. The constrained inverse design problem for the tuple
(yyy, ϕ) consists of computing x̄xx = (M,ttt) such that F(x̄xx) = yyy and M satisfies ϕ.

4.2 ASSIGNING PROBABILITIES TO DESIGN CONSTRAINTS

Typically, deep learning-based inverse design methods for a target response ȳyy are unable to directly
output a binary matrix, but rather output (ignoring the thickness vector) a matrix of probabilities
M̄ ∈ [0, 1]q×ℓ, where the value M̄i,j ∈ [0, 1] is to be interpreted as the probability of layer i being
composed of material mj ∈ M1.

Then, a material matrix M is obtained from M̄ by setting Mi,j = 1 if and only if mj is the most
probable material for layer i according to M̄ . This suggests a natural way to apply SL to the problem
of constrained inverse design. More in detail, for the constrained inverse design problem (ȳyy, ϕ) and a
candidate solution (obtained by output-dependent inverse design methods) x̄xx = (M̄, ttt), the semantic
loss Ls(ϕ, ·) is obtained by:

Ls(ϕ, M̄) = − log
∑
M|=ϕ

( ∏
xi
j∈V +(M)

M̄i,j

∏
xi
j∈V −(M)

1− M̄i,j

︸ ︷︷ ︸
w(M)

)

where the term w(M) describes the probability associated to a specific model M of the formula ϕ2.
Summing over all such M ’s, we get the overall probability of satisfying ϕ.

The approach herein proposed enables to declaratively write design constraints, expressed as propo-
sitional logic sentences, rather than devise ad-hoc loss terms as in available inverse design ap-
proaches. It also enables compositionality: two design constraints ϕ and φ can be combined—
searching for metamaterials that satisfy both—by considering their conjunction ϕ ∧ φ; or, asserting
that φ must hold if ϕ does can be encoded as ϕ → φ, and so on.

Our approach can be integrated with any output-dependent inverse design method to impose con-
straints on the final layout. This holds whether the method operates directly in the original design
space or within a latent representation. In both cases, the semantic loss guides the design—either
directly or via its latent encoding—towards solutions that satisfy the constraints when eventually
decoded back into the original space.

5 EXPERIMENTAL SETTING

5.1 DATASETS

In our experiments we use two state-of-the-art datasets for inverse design of metamaterials. Both the
datasets consist of metamaterial-response pairs where each metamaterial xxxi structure is associated
with an optical response yyyi, obtained via the transfer matrix method (TMM) Chilwell & Hodgkinson
(1984). However, they differ in the number of material layers, material choices, and the dimension-
ality of the optical response as shown in Table 13.
In our experiments on Dℓ=5 and Dℓ=10, we used 219500 and 44300 examples respectively, for pre-
training the components, and 500 and 100 examples as test-set for inverse computation.

5.2 LAYOUT CONSTRAINTS

Our experiments feature the following design constraints:(i) USEALL(UA), which forces the meta-
material to contain at least once each available material. (ii) NOADJACENTDUPLICATES(NAD), that
forbids a material to appear in adjacent layers; (iii) PALINDROME(PALi), that forces the design of

1This is easily achieved by means of a row-wise softmax(·).
2SL assumes all entries of p are independent. Thus, w(I) is the product of pi for xi∈I and 1−pi for xi ̸∈I .
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Table 1: Datasets characteristics.

ℓ |M| xxx yyy Source

Dℓ=5 5 5 {0, 1}5×5×R5 R2400 (Lininger 2021)

Dℓ=10 10 7 {0, 1}10×7×R10 R2001 (Yang 2023)

Table 2: Percentage of constraints satisfaction.

Constraint Dℓ=5 Dℓ=10

Train Test Train Test
UA 9.4% 9.3% 10.2% 13.0%

NAD 100% 100% 25.1% 17.0%
PAL2 6.2% 6.7% 2.1% 4.0%
PAL3 – – 0.2% 1.0%
PAL4 – – 0% 0%

P2 1.5% 2% 0% 0%
P3 4.7% 5.1% 0% 0%
P4 – – 0% 0%

metamaterials where layers i and L − i are composed of the same material; (iv) PERIODICAL(Pk)
that forces a structure where a metamaterial is present in a layer i iff it appears also in the layer i+k,
while not reappearing in every intermediate layer i+ 1, . . . , i+ k − 1. Furthermore, we always in-
clude a conjunction term in the semantic loss to avoid multiple materials being assigned to the same
layer. Table 2 provides summary statistics about the amount of metamaterials in the datasets that
comply with these constraints. Notice the constraints PAL3, PAL4, and P4 cannot be meaningfully
enforced over Dℓ=5, as there are not enough layers.

5.3 ARCHITECTURES INSTANTIATION

For our experiments, we instantiated three state-of-the-art output-dependent architectures: NA,
VAE-ID, and GIDNET. We evaluated them on the two metamaterial datasets, comparing the per-
formance of their original (baseline) implementations against their variant incorporating the Ls

term during inverse computation.

Surrogate Models & Autoencoders All inverse design methods rely on a surrogate simulator to
optimize candidate solutions during the inverse computation. We hence trained two surrogate, NF
and N′F, on each of the datasets Dℓ=5, Dℓ=10. The training objective was to minimize the mean
squared error (MSE) between the predicted and the ground-truth spectral responses. The VAE-ID
and GIDNET methods require a pretrained autoencoder (variational for VAE-ID) to reconstruct the
latent representations of metamaterials. We employ the same Encoder–Decoder architecture for each
method and experiment, by following the parametric configuration proposed in Adornetto & Greco
(2023). The dimensionality of the latent space (defined as ℓ × 3) results in h = 15 for Dℓ=5 and
h = 30 for Dℓ=10. Both the GIDNET autoencoder and VAE-ID variational autoencoder were trained
to minimize the reconstruction error, using a composite loss function consisting of column-wise cat-
egorical cross-entropy for the materials matrix M and MSE for the thickness vector ttt. In the case
of GIDNET, we additionally include the one-hot regularization term as originally proposed Ador-
netto & Greco (2023), while for VAE-ID, we incorporate the KL-divergence Kingma & Welling
(2013). For fair comparison, we use the same surrogate model and autoencoder architectures for
all the methods and experiments, while best hyperparameters configurations were selected through
hyperparameter search 3

Inverse Computation During the inverse computation phase, all methods adopt a resampling
strategy as in Ren et al. (2020). Specifically, for a given target ȳyy, we generate T = 128 initial
random points; each point is optimized to generate a candidate final solution. The optimal learning
rate for each of the three inverse design methods was determined by evaluating a randomly chosen
subset of 10 samples from the test set across lr ∈ {0.01, 0.05, 0.1, 0.5} and selecting the value
that yielded the best performance for the corresponding method and dataset. GIDNET uses two ad-
ditional components in inverse computation: a Selection Layer Nsl and a generator NG to explore
the latent space. Both components’ configurations were taken from the original work Adornetto &
Greco (2023). The dimensionality of Nsl is k = 30, hence each initialization point results from the
weighted linear combination of 30 normally distributed samples. During this inverse computation
phase, all relevant components—NF, NF′, DVAE, and D—were kept frozen.

3See Appendix B–C for Detailed descriptions on data, hyperparameters, performance and timing.
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Table 3: SRMSE (mean, variance) and percentage of valid designs for different constraints–
architecture pairs. Best in bold. We report n.d. if a method is unable to provide valid results for
the given constraint; We report a dash (-) if the constraint cannot be enforced over a specific dataset.

Dℓ=5 Dℓ=10

NA VAE-ID GIDNET NA VAE-ID GIDNET
baseline with Ls baseline with Ls baseline with Ls baseline with Ls baseline with Ls baseline with Ls

UA
SRMSE 0.039± (0.05) 0.019 ± (0.02) 0.228± (0.17) 0.221 ± (0.18) 0.022± (0.03) 0.019 ± (0.03) 0.088± (0.02) 0.073 ± (0.02) 0.179± (0.04) 0.175 ± (0.04) 0.080± (0.02) 0.068 ± (0.02)
one-hot 0.913± (0.12) 0.961 ± (0.08) 0.912± (0.07) 0.982 ± (0.03) 0.941± (0.05) 0.978 ± (0.05) 0.980± (0.03) 0.998 ± (0.00) 0.850± (0.05) 0.962 ± (0.02) 0.846± (0.06) 0.987 ± (0.02)

valid (%) 99.80% 100% 100% 100% 95.40% 100% 100% 100% 100% 100% 83% 100%

NA
SRMSE 0.021± (0.04) 0.016 ± (0.02) 0.240 ± (0.21) 0.279± (0.22) 0.011 ± (0.01) 0.011 ± (0.01) 0.081± (0.03) 0.075 ± (0.02) 0.177 ± (0.05) 0.180± (0.04) 0.072± (0.02) 0.064 ± (0.02)
one-hot 0.946± (0.08) 0.966 ± (0.08) 0.943± (0.06) 0.992 ± (0.02) 0.972± (0.04) 0.988 ± (0.03) 0.984± (0.01) 0.998 ± (0.00) 0.849± (0.06) 0.963 ± (0.02) 0.855± (0.05) 0.991 ± (0.02)

valid (%) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

PAL2
SRMSE 0.086± (0.14) 0.021 ± (0.02) 0.267 ± (0.23) 0.306± (0.25) 0.022± (0.02) 0.016 ± (0.02) 0.112± (0.03) 0.074 ± (0.02) 0.185± (0.04) 0.178 ± (0.04) 0.087± (0.02) 0.064 ± (0.02)
one-hot 0.867± (0.17) 0.947 ± (0.11) 0.926± (0.07) 0.980 ± (0.03) 0.952± (0.05) 0.986 ± (0.04) 0.950± (0.12) 0.997 ± (0.00) 0.845± (0.06) 0.955 ± (0.02) 0.851± (0.05) 0.990 ± (0.02)

valid (%) 98.00% 100% 100% 100% 97.20% 100% 95% 100% 91% 100% 86% 100%

PAL3
SRMSE 0.134± (0.04) 0.074 ± (0.02) 0.210± (0.06) 0.191 ± (0.06) 0.090± (0.02) 0.067 ± (0.02)
one-hot – – – – – – 0.825± (0.22) 0.997 ± (0.00) 0.833± (0.06) 0.953 ± (0.02) 0.841± (0.06) 0.987 ± (0.02)

valid (%) 28% 100% 33% 100% 23% 100%

PAL4
SRMSE 0.121± (0.04) 0.076 ± (0.02) 0.251± (0.04) 0.203 ± (0.06) 0.103± (0.03) 0.074 ± (0.02)
one-hot – – – – – – 0.782± (0.30) 0.996 ± (0.00) 0.819± (0.07) 0.943 ± (0.03) 0.840± (0.06) 0.986 ± (0.02)

valid (%) 5% 100% 7% 100% 3% 100%

P2
SRMSE 0.128± (0.16) 0.024 ± (0.03) 0.338± (0.25) 0.330 ± (0.26) 0.029 ± (0.03) 0.027± (0.04) n.d. 0.110 ± (0.02) n.d. 0.264 ± (0.07) n.d. 0.147 ± (0.06)
one-hot 0.738± (0.25) 0.908 ± (0.16) 0.913± (0.07) 0.969 ± (0.05) 0.936± (0.06) 0.978 ± (0.05) n.d. 0.953 ± (0.13) n.d. 0.880 ± (0.06) n.d. 0.933 ± (0.05)

valid (%) 50.20% 100% 82.00% 100% 61.20% 100% 0% 100% 0% 34% 0% 100%

P3
SRMSE 0.080± (0.12) 0.019 ± (0.02) 0.268 ± (0.22) 0.284± (0.23) 0.026± (0.03) 0.016 ± (0.02) n.d. 0.087 ± (0.02) n.d. 0.217 ± (0.06) n.d. 0.097 ± (0.03)
one-hot 0.854± (0.18) 0.949 ± (0.11) 0.918± (0.07) 0.978 ± (0.04) 0.948± (0.05) 0.988 ± (0.03) n.d. 0.989 ± (0.04) n.d. 0.897 ± (0.06) n.d. 0.962 ± (0.04)

valid (%) 91.80% 100% 98.60% 100% 84.00% 100% 0% 100% 0% 75% 0% 100%

P4
SRMSE n.d. 0.082 ± (0.02) n.d. 0.203 ± (0.05) n.d. 0.082 ± (0.03)
one-hot – – – – – – n.d. 0.995 ± (0.00) n.d. 0.917 ± (0.05) n.d. 0.976 ± (0.03)

valid (%) 0% 100% 0% 93% 0% 100%

6 RESULTS

Metrics Performances of the methods have been compared via the spectral root mean squared er-
ror (SRMSE) as defined in Lininger et al. (2021); Adornetto & Greco (2023) between the spectral
response associated with the metamaterial designed by the methods and the actual ones. The spectral
response of the designed metamaterial was computed by using the real simulator F, hence compar-
ing, for a generic inverse design method I, the responses F(I(ȳyyi)) and yyyi for each yyyi in the test set.
For all the methods we choose the best design over the optimization epochs—not necessarily taken
from the last epoch—in the inverse computation phase (the one associated to the lower SRMSE
between NF(I(ȳyyi)) and yyyi) out of the T = 128 optimized starting designs. Moreover, on the best
selected design, we evaluate the one-hot metric as defined in Adornetto & Greco (2023). Finally, we
use the valid (%) percentage to measure the satisfaction of constraints. In particular, for each sample
in the test set we attempt T times the inverse design according to a constraint ϕ. Let p be the fraction
of valid designs over T. We are interested in the average of p over all metamaterials in the test set.

The effect of SL Table 3 reports results of our experiments across all architectures (baselines and
semantic loss-augmented versions) and constraints of Section 4.3, for the two datasets Dℓ=5 and
Dℓ=10. For each configuration, we perform e = 200 inverse design iterations, from T = 128 dis-
tinct starting points for each material. Table cells report mean and variance of the best SRMSE found
(that is, over the e · T = 128 · 200 candidate solutions for each material), as well as the percentage
of materials satisfying the constraints. Usage of SL always improves wrt the baseline architectures.
This is observed both in terms of best SRMSE and percentage of materials satisfying the constraints.
In Table 3 this effect is more evident for Dℓ=10 dataset, where inverse designs complying with con-
straints PAL3, PAL4, P2, P3, P4 are found only by semantic loss-augmented architectures. On the
other hand, the constraints UA, NA, PAL2 can also be solved by baseline architectures, but the seman-
tic loss-augmented architectures achieve a lower SRMSE. Notably, the NA and GIDNET augmented
with SL are able to provide valid designs for all materials in the datasets, for all constraints. We re-
call that the 100% in table refer to the number of valid materials. Output-dependent inverse design
methods, like the ones we consider, typically optimize each material individually, so it’s expected
that outputs satisfy the design constraints when they are involved in the optimization. While a reader
might associate this with overfitting, this is not the case since the goal is precisely to find a valid
solution for each target. Generalization is not required for the inverse design process itself but may
be relevant for the surrogate models, whose performances are reported in the Appendix.

Comparing inverse designs across iterations We analyze how the materials generated
during the inverse design process differ between the baseline architecture and the version
augmented with semantic loss. We report our results for the PAL3 constraint Dℓ=10

4.
4Appendix D includes similar analyses for the other architecture–constraint pairs.
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Figure 4: Effect of increasing inverse design it-
erations T and using multiple starting points e
in the NA, VAE-ID, GIDNET architectures, over
the PAL3 layout constraint in Dℓ=10.

Figure 4 shows a scatterplot, where a point (x, y)
denotes that on a given material, a baseline
technique achieves a best SRMSE of x while
the semantic augmented version achieves a best
SRMSE of y across e attempts and T inverse
design steps. Thus, intuitively, points that lie
below the bisector in the scatterplot represent
materials where the augmented architecture im-
proves wrt the baseline SRMSE. Moreover, the
color provides information about which methods
were able to find inverse designs complying with
the constraints. Grey points represent materials
that both baseline and semantic loss-augmented
architectures can design by satisfying the con-
straint. Similarly, materials where inverse design
is not successful, with or without semantic loss,
are in black. Conversely, green points are ma-
terials that can be successfully inverse designed
solely by the semantic loss-augmented architec-
ture, and red points are materials successfully
designed solely by the baseline architecture.
First, we observe that all architectures are suc-
cessful in jointly optimizing SRMSE and seman-
tic loss, without drastically affecting SRMSE, as
most points achieve low SRMSE. Explicitly op-
timizing the semantic loss yields a greater per-
centage of valid designs wrt the baseline (that is,
green points). SL-augmented architectures were
able to find some valid designs with a single
optimization epoch, while baseline architectures
required higher T to find valid designs. In this
regard, the NA and GIDNet architectures are
more effective at T = 1. As T and e increase
baseline architectures “naturally stumble upon”
valid inverse designs (e.g., green points become
grey); however, all architectures benefit from se-
mantic loss achieving 100% of valid metamate-
rials (gray and green points) and overall lower
SRMSE than their baseline counterpart, as we
can observe from the mass of gray points below
the bisector.

7 CONCLUSION

In this paper, we propose the application of Semantic Loss to solve constrained inverse design prob-
lems. Currently available inverse design approaches do not support this use case, which is essential
to guarantee practical relevance of the proposed designs. We implement our approach on-top of
state-of-the-art output-dependent inverse design methods. Experiments show our approach is ef-
fective at enforcing layout constraints on metamaterial designs, increasing the percentage of valid
designs as well as lowering the error on the desired properties. Another advantage is that the ap-
proach does not require re-training, fine-tuning surrogate models (or other neural networks), nor
augmenting datasets with examples that show the desired properties. Semantic losses can be cho-
sen on a material-by-material basis, without affecting the overall architectures. As future works,
we plan to explore richer formalisms to express design constraints, such as DeepProblog Manhaeve
et al. (2021). This could allow to define constraints in a more natural fashion wrt SAT, relying on
the same technical means (e.g., knowledge compilation) to achieve differentiability.
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REPRODUCIBILITY STATEMENT

All experiments presented in this work are fully reproducible. To ensure this, we provide detailed
information on experimental settings in the Appendix, along with the complete source code as sup-
plementary material concerning the experimental environment, dataset generation procedures, and
all configuration parameters (including random seed values). These resources are designed to allow
for an exact replication of the experiments and results. Additionally, we include a user guide that
explains how to set up the environment and rerun the experiments step by step.
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APPENDIX

A BENCHMARK MODELS

A.1 NEURAL ADJOINT (NA)

It is part of a family of gradient-based inverse design methods Zaabab et al. (1995); Peurifoy et al.
(2018); Asano & Noda (2018). They use the pre-trained network NF (as a surrogate simulator),
which is frozen during the inverse computation phase. In such a phase, the network takes as input
an initial randomly sampled guess x̄xx0 of trainable weights. The loss function is meant to minimize
the distance between ȳyy and NF(x̄xx0), and it is optimized via backpropagation by directly updating the
weights of x̄xx0 (keeping NF frozen). Eventually, the resulting design x̄xx (such that F(x̄xx) ≈ ȳyy) is given
by the values of the weights in x̄xx0 after their optimization. A known limitation of this approach
is that the search space defined by x̄xx0 is often narrow, leading to convergence to suboptimal local
minima Jiang et al. (2020) and hence, making NA particularly sensitive to the initialization of x̄xx0.
To mitigate this, Ren et al. (2020) proposes an extension that resamples the x̄xx0 multiple times.
For a given target response ȳyy, NA repeats T times the optimization of x̄xx0, starting from different
random initializations of its weights. In addition, Ren et al. (2020) introduces a boundary loss Lbnd

to constrain the final design x̄xx to be a normally distributed variable. However, this constraint is
tailored for real-valued design spaces and does not directly suit metamaterials, where the design
involves a binary layout matrix M representing material assignments to layers. For this reason,
in our experiments, we replace Lbnd with a one-hot encoding loss Loh, specifically designed for
metamaterial design as proposed in Adornetto & Greco (2023). This loss encourages valid material
assignments by enforcing one-hot encodings across the rows of the real-valued M̄ . Figure 3 in the
main paper illustrates how we adapt the general NA framework to the metamaterial inverse design
in our experimental setting.

A.2 VAE-ID

Originally proposed for molecule inverse design in Gómez-Bombarelli et al. (2018), this architecture
jointly trains a variational autoencoder Kingma & Welling (2013) and a variant NF′ of a surrogate
model to guide optimization during the inverse computation. In particular, the variational autoen-
coder is an encoder–decoder pair (EVAE, DVAE). The encoder EVAE maps an input xxx to the parameters
of a multivariate Gaussian distribution, defining a continuous latent representation of dimension h.
A latent vectorxxx′ ∈ Rh is then sampled from this distribution, typically using the reparameterization
trick Kingma & Welling (2013). The decoder DVAE : Rh → Rℓ×(q+1) generates a candidate design
from xxx′. On the other hand, NF′ : Rh → Rm maps the latent representation of the input xxx′ to the
property yyy. During training VAE-ID aims to jointly optimize EVAE, DVAE, and NF

′ on reconstruction
and property prediction—to let the latent space be a continuous representation conditioned by the
properties.
By leveraging such representation, in the inverse computation phase VAE-ID initially samples a
random point (or T points in the case of resampling strategy) from the latent design space. Such
starting point is then provided in input to DVAE to generates a candidate design x̄xx. The loss function
is meant to minimize the distance between ȳyy and NF

′(x̄xx′). To this aim, both DVAE and NF
′ are frozen,

and the design is optimized by directly moving x̄xx′ to explore the latent space. At the end of this
optimization, the final latent design is eventually decoded. Interestingly, no constraints are enforced
during the exploration process; instead, the validity of the final designs is assessed only ex-post.
In the application to metamaterials design, no modification is needed to enforce onehot encoding
of the generated metamaterial. Indeed, while in the other architectures, this is done to let suitably
defined inputs to NF, in this case, NF′ is trained to work with continuous representations coming from
the latent design space.

A.3 GIDNET

It is a recently proposed approach to inverse design proposed in Adornetto & Greco (2023). Dur-
ing the training phase, GIDNET constructs a latent space using an autoencoder composed of an
encoder–decoder pair (E, D). The encoder E maps an input xxx to its latent representation xxx′ ∈ Rh,
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while the decoder D attempts to reconstruct the original input. When required, the decoder is further
trained to enforce categorical structure in the reconstructed design. To this end, the authors intro-
duce a custom loss function Loh, which penalizes continuous outputs that deviate from a one-hot
encoding.
During the inverse computation phase, GIDNET employs a dedicated mechanism known as Selec-
tion Layer to identify a suitable region of the latent space to explore. This is achieved by selecting
a set of k candidate designs—typically the k nearest neighbors to the target response ȳyy in the train-
ing dataset—and computing a linear combination of their latent representations. Each candidate is
weighted by a trainable parameter in the layer Nsl, allowing the model to flexibly explore the latent
space around a meaningful region. From this initialization point, normally distributed random noise
is added and passed through the generator NG, which perturbs the point in multiple directions within
the latent space to produce a diverse set of candidate solutions. These latent candidates are then
decoded via D into the original design space and subsequently evaluated by the surrogate model NF.
The loss function—designed to minimize the distance between the predicted response NF(x̄xx) and the
target response ȳyy, guiding the exploration. During this process, D and NF are kept frozen, while the
parameters of the generator NG and the k weights in Nsl are updated to learn meaningful perturba-
tions that improve design quality in the latent space.
To ensure a fair comparison with other methods, such as NA and VAE-ID, which permit resampling
of initialization points, we adapt GIDNET by modifying its initialization strategy. Specifically, in-
stead of selecting the k nearest neighbors to the target response ȳyy, we uniformly sample k latent
vectors within the bounds of the training set’s distribution in the latent space. Such points are then
combined to define a region of the latent space from which the exploration is initialized, as shown
(for k = 3) in Figure 3 of the main paper.
Notably, GIDNET has demonstrated superior performance in several real-valued inverse design
problems, as well as in the inverse design of metamaterials, making it the state-of-the-art archi-
tecture in this domain Adornetto & Greco (2023).

B EXPERIMENTAL SETTING

B.1 DATASETS

In our experiments, we use two state-of-the-art datasets for the inverse design of metamaterials. Both
datasets consist of metamaterial-response pairs where each metamaterial xxxi structure is associated
with an optical response yyyi, obtained via the transfer matrix method (TMM) Chilwell & Hodgkinson
(1984). However, they differ in the number of material layers, and the dimensionality of the optical
response:

- Dℓ=5 proposed in Lininger et al. (2021), in this dataset structures are made of 5 layers,
and the materials set of 5 choices is defined as M = {Ag,Al2O3, ITO,Ni, T iO2}. Each
layer thickness is defined in the range [1, 60]nm. The input space is therefore R5×(5+1).
Each structure is associated with reflectance and transmittance spectra, for different polar-
izations, incident angles for 200 equally spaced points over the range [450, 950]nm (with
values in [0, 1]). The output space is R2×2×3×200. In our experiments on this dataset, we
used 219500 examples as training-set and 500 examples as test-set.

- Dℓ=10: proposed in Yang et al. (2023), in this dataset structures are made
of 10 layers5, and the materials set of 7 choices6 is defined as M =
{ZnO,AlN,Al2O3,MgF2, SiO2, T iO2, SiC}. Each layer thickness is defined in the
range [0, 1]. The input space is therefore R10×(7+1). The response y is a 2001-dimensional
real-valued vector representing the average spectral reflectivity averaged over two polar-
izations, for different incident angles across 2001 equally-spaced wavelengths, in range
[0.3, 20]µm. In our experiments, we used 44300 examples of the dataset as training-set and
100 examples as test-set.

5Technically, these metamaterials consist of 11 layers, but the final layer is always Ag with a thickness of
0.1 µm and is not part of the design space.

6Ag appears exclusively in the final layer, hence it is excluded from the set of available materials.
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B.2 ARCHITECTURES INSTANTIATION

For our experiments, we instantiated three state-of-the-art output-dependent architectures: NA,
VAE-ID, and GIDNET. These architectures were evaluated on the two metamaterial datasets for
the inverse design task, comparing the performance of their original (baseline) implementations
against their variant incorporating the Ls term during the inverse computation phase. Architectures’
components instantiations follow.

Surrogate models All inverse design methods considered rely on a surrogate simulator model to
evaluate and optimize candidate solutions during the inverse computation phase. We hence trained
two surrogate, NF and N′F, on each of the datasets Dℓ=5, Dℓ=10. The training objective for all the sur-
rogates was to minimize the mean squared error loss function (MSE) between the predicted and the
ground-truth spectral responses. To ensure a fair comparison across methods, we use the same sur-
rogate model architecture—with the same number of network parameters—for all the experiments.
For Dℓ=5, we adopt the same NF architecture—matching the number and configuration of neural
network layers—used in Adornetto & Greco (2023). The only exception is for VAE-ID, which
operates in a latent space; in this case, the input layer of NF′ is adjusted to match the latent di-
mensionality h. Model selection for NF was performed on Dℓ=5 via grid search over the following
hyperparameter space: learning rate lr ∈ {0.001, 0.005, 0.01, 0.05}, number of training epochs
e ∈ {50, 100, 150, 200}, and batch size bs ∈ {256, 512, 1024}. The goal was to identify the config-
uration yielding the best predictive performance, measured in terms of MSE. The best-performing
configuration was lr = 0.005, e = 150, and bs = 1024. The hyperparameter search was therefore
aimed at identifying the configuration that achieved the lowest predictive MSE. The best-performing
configuration was lr = 0.005, e = 150, and bs = 1024. A learning rate scheduling strategy (Re-
duceLROnPlateau) with a patience of 10 epochs was applied in all training runs. The final NF models
trained on Dℓ=5 achieved an MSE of 0.0003 on the test set, with spectral responses yi normalized
to the range [0, 1].
For Dℓ=10 we configured NF as feed forward neural network of 3 fully connected subsequent lay-
ers of 80, 420, 640, 2001, 2001 neurons respectively. Again for VAE-ID, the input layer of NF′ is
adjusted to match the latent dimensionality h. Model selection for NF was performed on Dℓ=10 via
grid search over the same hyperparameter space (and ReduceLROnPlateau strategy) defined above
for ℓ = 5. The configuration yielding the best MSE was lr = 0.005, e = 200, bs = 256. The final
NF models trained on Dℓ=10 achieved an MSE of 0.0028 on the test set, with spectral responses yi
originally defined in the range [0, 1].

Autoencoders The VAE-ID and GIDNET methods require a pretrained autoencoder (variational
in the case of VAE-ID) to reconstruct the latent representations of metamaterials. To ensure a fair
comparison across methods, we employ the same Encoder–Decoder architecture—with an identi-
cal number of network parameters—for each experiment on dataset Dℓ=i, where i ∈ 5, 10. For
both datasets, the architecture follows the parametric configuration proposed in Adornetto & Greco
(2023). According to this configuration, the dimensionality of the latent space (defined as ℓ × 3)
results in h = 15 for Dℓ=5 and h = 30 for Dℓ=10. Since VAE-ID relies on a variational autoen-
coder, its architecture was modified to include two additional linear layers that map the Encoder’s
output to the mean and log-variance parameters of the latent Gaussian distribution, following the
original formulation of the variational autoencoder Kingma & Welling (2013). Both the GIDNET
autoencoder and VAE-ID variational autoencoder were trained to minimize the reconstruction error,
using a composite loss function consisting of column-wise categorical cross-entropy for the materi-
als matrix M and MSE for the thickness vector ttt. In the case of GIDNET, we additionally include
the one-hot regularization term introduced by the authors in Adornetto & Greco (2023), while for
VAE-ID, we incorporate the Kullback–Leibler divergence term as defined in the original variational
framework. For both datasets and methods, we performed grid-search on a hyperparameter space
defined by: lr ∈ {0.001, 0.005, 0.01, 0.05}, e ∈ {50, 100, 150}), and bs ∈ {128, 256, 512, 1024}.
For the autoencoder on Dℓ=5, the best-performing configuration was lr = 0.001, e = 150, and
bs = 1024, achieving a material assignment accuracy of 1.000 (i.e., the average proportion of cor-
rectly assigned materials per layer) and a thickness reconstruction MSE of 1.41 × 10−4 on the test
set. For the variational autoencoder on Dℓ=5, the optimal configuration was lr = 0.001, e = 150,
and bs = 256, with a reconstruction MSE of 0.035. On Dℓ=10, the best AE configuration remained
the same (lr = 0.001, e = 150, bs = 1024), achieving an accuracy of 1 and a reconstruction MSE
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Table 4: Execution times (in seconds) for the inverse computation of a single metamaterial, e = 200
and T = 1

Dℓ=5 Dℓ=10

NA VAE-ID GIDNET NA VAE-ID GIDNET
baseline with Ls baseline with Ls baseline with Ls baseline with Ls baseline with Ls baseline with Ls

UA 3.42 15.97 3.05 13.93 6.02 16.65 1.38 261.85 1.17 245.37 4.01 263.23
NA 3.68 14.28 3.98 14.47 6.03 14.06 1.15 45.42 1.23 44.04 3.63 46.40

PAL2 3.37 14.98 3.29 14.29 5.64 16.27 1.24 26.43 1.13 27.06 3.56 27.08
PAL3 – – – – – – 1.23 55.95 1.13 56.53 3.57 58.45
PAL4 – – – – – – 1.24 186.59 1.13 187.61 3.57 204.47

P2 3.44 13.53 3.38 13.67 5.63 12.72 1.24 34.34 1.14 35.35 3.61 35.83
P3 3.14 13.93 3.27 13.91 5.27 14.37 1.21 65.09 1.12 65.68 3.57 68.33
P4 – – – – – – 1.24 109.33 1.13 110.18 3.59 113.00

of 1.08× 10−3 on the test set. For the VAE on Dℓ=10, the best setup was lr = 0.001, e = 100, and
bs = 256, resulting in a reconstruction MSE of 4× 10−4 on the test set.

Other components GIDNET uses two additional components: a Selection Layer Nsl and a gener-
ator NG to explore the latent space. Both components’ configurations are taken from the best results
in the original work Adornetto & Greco (2023). NG is implemented for both datasets as a fully con-
nected neural network of 2 layers with 6 · ℓ and 3 · ℓ neurons. The dimensionality of Nsl is k = 30.

B.3 METRICS

For the evaluation of our approach we used three metrics, namely, spectral root mean squared error
(srmse) and one-hot as defined in Adornetto & Greco (2023), and valid percentage of materials.
With the latter metrics, we evaluate the percentage of valid materials over the set of T initialization
points. Let α be the number of samples in the test set. We recall that inverse design is performed T

times for each element in the test set. Let Vϕ
i be the set of valid materials generated for the i − th

element in the test set for a constraint ϕ.

For a given constraint ϕ:

validϕ(%) =
1

α

α∑
i

|Vϕ
i |
T

× 100

with α number of samples in the test set, and Vϕ
i set of valid materials satisfying ϕ, out of the T

initialization points for the i− th sample in the test set.

C HARDWARE AND TIMING

We conducted comparative experiments on the time requirement in the same Python environment on
Ubuntu 22.04.01, over four 12-core Intel(R) Xeon(R) Gold 5118 CPUs (2.30GHz), 504GB RAM,
and two NVIDIA Tesla V100 GPUs (16 GB each). The results are reported in Table 4. It is worth
noticing that, while VAE-ID and NA optimize multiple starting points in parallel, GIDNET opti-
mizes the same points sequentially. This causes the inverse design runtime of GIDNET to increment
linearly with the number of starting points.

The code was developed in Python 3.12.9 and relies on key libraries such as PyTorch (ver-
sion 2.6.0). A comprehensive list of all packages and their exact versions is provided in the
requirements.txt file. All the experiments are fully reproducible and random seeds have been
properly defined for this purposes in the code. Detailed instructions to reproduce the experiments
can be found in the README.md file within the code repository, which is included as supplementary
material and will be made publicly available upon acceptance.
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Figure 5: Results for the P4 layout constraint on Dℓ=10.
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Figure 6: Results for the UA layout constraint on Dℓ=5.
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D ADDITIONAL RESULTS

In the following, we show additional results considering a set of different constraints and different
datasets with respect to the ones reported in the main paper.
Figures 5 and 6 replicate the scatterplot layout introduced in the main paper, comparing the SRMSE
of materials found by the SL-aumented and baseline methods. The red diagonal marks equal
performance on the two approaches.
The former figure shows results for the P4 layout constraint on Dℓ=10. All solutions are obtained
via SL-augmented optimization at the price of higher SRMSE compared to the baseline, which,
nevertheless, produced invalid material. As materials satisfying the P4 layout constraint are absent
from Dℓ=10, this highlights the contribution of the Semantic Loss in scenarios where the constraint
is not represented in the training data.
Figure 6 shows results for the UA layout constraint on Dℓ=5. In all the methods, as T and e
increase, we can notice that both approaches lead to the discovery of valid materials. Indeed, such
valid materials are already well represented in the training set (see Table 2 in the main paper),
which contains a notable amount of material that satisfies the UA layout constraint. Thus, it is
also probable for baseline methods to produce valid metamaterials. However, the Semantic Loss
improves the exploration process, leading to materials with a lower SRMSE than their baseline
counterpart, as we can observe from the mass of gray points below the bisector.

Figure 7 presents a series of histograms for the layout constraints PAL2, PAL3 and PAL4 on Dℓ=10.
In each plot, the number of valid materials found with Semantic Loss optimization is shown in blue,
while the baseline (without Semantic Loss) appears in orange. Starting from the first constraint,
PAL2, we can observe that the data reflects the previously observed results, where SL-augmented
architectures are able to find valid materials in the early stages of exploration, whereas baseline
models need more search time and starting points. We also notice how, on average, the mean of
the distribution for the SL-augmented models is shifted to the left, towards lower SRMSE values
compared to the baseline. When transitioning to the intermediate constraint, PAL3, the difference
between the two approaches becomes more pronounced. The SL-augmented models still achieve
high numbers of valid materials (also early in the process), in contrast, the baseline performance
starts to drop as the design space narrows. The latter layout constraint, PAL4, is the one least repre-
sented in the original data (0% constraint satisfaction in both the training and test split of Dℓ=10).
Nonetheless, the SL-augmented architectures achieve excellent results while the baseline models
struggle to find valid solutions. From this disparity, we can draw two conclusions. First, Semantic
Loss drives the exploration process of the models towards regions of the design space that satisfy
the target layout even when no such examples exist in the training data. Second, the gap between
the number of valid materials found by the SL-augmented and baseline widens as the constraint
becomes more stringent.
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