
Under review as a conference paper at ICLR 2024

MODEL-BASED REINFORCEMENT LEARNING FOR PA-
RAMETERIZED ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel model-based reinforcement learning algorithm—Dynamics
Learning and predictive control with Parameterized Actions (DLPA)—for Pa-
rameterized Action Markov Decision Processes (PAMDPs). The agent learns
a parameterized-action-conditioned dynamics model and plans with a modified
Model Predictive Path Integral control. We theoretically quantify the difference be-
tween the generated trajectory and the optimal trajectory during planning in terms
of the value they achieved through the lens of Lipschitz Continuity. Our empirical
results on several standard benchmarks show that our algorithm achieves supe-
rior sample efficiency and asymptotic performance than state-of-the-art PAMDP
methods.

1 INTRODUCTION

Reinforcement learning (RL) has gained significant traction in recent years due to its proven capa-
bilities in solving a wide range of decision-making problems across various domains, from game
playing [27] to robot control [37; 24]. One of the complexities inherent to some RL problems is a
discrete-continuous hybrid action space. For instance, in a robot soccer game, at each time step the
agent must choose a discrete action (move, dribble or shoot) as well as the continuous parameters
corresponding to that chosen discrete action, e.g. the location (x,y) to move/dribble to. In this
setting, Parameterized Action Markov Decision Processes (PAMDPs) [26], each discrete action is
parameterized by some continuous parameters, and the agent must choose them together at every
timestep. PAMDPs model many real world scenarios like RTS Games [42] or Robot Soccer [19].

Compared to just discrete or continuous action space, Reinforcement Learning with Parameterized
action space is able to let the agent perform more structural exploration and solve more complex tasks
with the semantically more meaningful action space [19]. Recent papers provide various approaches
for RL in the PAMDP setting [3; 8; 7; 23]. However, to the best of our knowledge, all previous
methods are model-free. By contrast, in continuous/discrete-only action spaces, deep model-based
reinforcement learning has shown better performance than model-free approaches in many complex
domains [14; 15; 16; 17], in terms of both sample efficiency and asymptotic performance We therefore
seek to leverage the high sample efficiency of model-based RL in PAMDPs.

We propose a model-based RL framework tailored for PAMDPs—Dynamics Learning and predictive
control with Parameterized Actions (DLPA). Our approach first learns a parameterized-action-
conditioned dynamics model. It then performs Model Predictive Control [34] by modifying the
Cross-Entropy Method (CEM) to harness the inherent structure of parameterized action spaces while
mitigating their complexities. We also provide theoretical analysis regarding DLPA’s performance
guarantee and sample complexity. Our empirical results on 8 different PAMDP benchmarks show
that DLPA achieves better or comparable asymptotic performance with significantly better sample
efficiency than all the state-of-the-art PAMDP algorithms. We also find that DLPA succeeds in
tasks with extremely large parameterized action spaces where prior methods cannot succeed without
learning a complex action embedding space, and converges much faster. The proposed method is
even better than the method that has a customized action space compression algorithm as the original
parameterized action space becomes larger. To the best of our knowledge, our work is the first method
that successfully applies model-based RL to PAMDPs.

1

Under review as a conference paper at ICLR 2024

2 BACKGROUND

2.1 PARAMETERIZED ACTION MARKOV DECISION PROCESSES

Markov Decision Processes (MDPs) form the foundational framework for many reinforcement
learning problems, where an agent interacts with an environment to maximize some cumulative
reward. Traditional MDPs are characterized by a tuple {S,A, T,R, γ}, where S is a set of states, A
is a set of actions, T denotes the state transition probability function, R denotes the reward function,
and γ denotes the discount factor. Parameterized Action Markov Decision Processes (PAMDPs) [26]
extend the traditional MDP framework by introducing the parameterized actions, denoted as a tuple
{S,M, T,R, γ}, where M , differs from traditional MDPs, is the parameterized action space that
can be defined as M = {(k, zk)|zk ∈ Zk for all k ∈ {1, · · · ,K}}, where each discrete action k is
parameterized by a continuous parameter zk, and Zk is the space of continuous parameter for discrete
action k and K is the total number of different discrete actions. Thus, we have the dynamic transition
function T (s′|s, k, zk) and the reward function R(r|s, k, zk).

2.2 MODEL PREDICTIVE CONTROL

In Deep Reinforcement Learning, Model-free methods usually learn a policy parameterized by
neural networks that learns to maximize the cumulative returns Eτ [

∑
t γ

tR(s, a)]. In the model-
based domain, since we assume we have access to the learned dynamics model, we can use Model
Predictive Control [10] to plan and select the action at every time step instead of explicitly learn to
approximate a policy function. Specifically, at time step t, the agent will first sample a set of action
sequences with the length of horizon H for states st : st+H . Then it will use the learned dynamics
model to take in actions as well as the initial states and get the predicted reward for each time step.
Then the cumulative reward for each action sequence will be computed and the action sequence
with the highest estimated return will be selected to execute in the real environment. Cross-Entropy
Method (CEM) [35] is often used together with this planning procedure, which works by iteratively
fitting the parameters of the sampling distributions over the actions.

3 RELATED WORK

Several model-free RL methods have been proposed in the context of deep reinforcement learning
for PAMDPs. PADDPG [19] builds upon DDPG [24] by letting the actor output a concatenation
of the discrete action and the continuous parameters for each discrete action. Similar ideas are
proposed in HPPO [7], which is based on the framework of PPO [38]. P-DQN [42; 3] is another
framework based on the actor-critic structure that maintains a policy network that outputs continuous
parameters for each discrete action. This structure has the problem of computational efficiency since
it computes continuous parameters for each discrete action at every timestep. Hybrid MPO [29] is
based on MPO [1] and it considers a special case where the discrete part and the continuous part of
the action space are independent, while in this paper we assume the two parts have strong correlations.
HyAR [23] proposes to construct a latent embedding space to model the dependency between discrete
actions and continuous parameters, achieving the best empirical performance among these methods.
However, introducing another latent embedding space can be computationally expensive and the error
in compressing the original actions may be significant in complex tasks. While all these methods
have been shown to be effective in some PAMDP problems, to the best of our knowledge, no work
has successfully applied model-based RL to PAMDPs, even though model-based approaches have
achieved high performance and excellent sample efficiency in MDPs.

Most of existing (Deep) Model-based Reinforcement Learning methods can be classified into two
categories in terms of how the learned model is used. The first category of methods learns the
dynamics model and plans for credit assignment [6; 44; 20; 13; 25; 21; 4; 43; 36; 30]. A large
number of algorithms in this category involves planning with random shooting [28] or Cross-Entropy
Method [35; 5]. The other way is to use the learned model to generate more data and explicitly train
a policy based on that [32; 12; 14; 39; 16], which is also known as Dyna [40]-based methods. There
are also algorithms combining model-free and model-based methods [17]. But none of these methods
are in the parameterized action (PAMDP) settings.

2

Under review as a conference paper at ICLR 2024

4 DYNAMICS LEARNING AND PREDICTIVE CONTROL WITH PARAMETERIZED
ACTIONS

We propose DLPA, a framework that learns a dynamic transition model for parameterized action space
and further use the model to plan and interact with the environment. Our algorithm is summarized in
Figure 1 and Algorithm 1.

st

Dynamics Model

rt dt
at

Env
Planning

⋯
st0

kt0
zkt0

Move (x, y)
kt0+1 zkt0+1

Dribble (x, y)

kt0+H zkt0+H

Shoot (x)

̂st0+1 ̂st0+2 ̂st0+H ̂st0+H+1

̂rt0
̂dt0

̂rt0+1 ̂dt0+1 ̂rt0+H
̂dt0+H

⋯
⋯

⋯

Training

Figure 1: Dynamics Learning and predictive control with parameterized actions (DLPA). Left:
Inference of dynamics during training. Variables colored with default black are those we feed
as input to the dynamics model. Variables colored with grey are those generated from the
dynamics model. Right: Planning and interacting with the environment. At each time step we
execute only the first action from the sampled trajectory. White lines are example rollout trajectories
from DLPA.The black line denotes the final selected rollout trajectory for one planning step.

4.1 DYNAMICS MODEL WITH PARAMETERIZED ACTIONS

To perform Model Predictive Control with Parameterized Actions, DLPA requires learning the
following list of model components:

Transition predictor: ŝt+1 ∼ Tϕ(ŝt+1|st, kt, zkt),

Continue predictor: ĉt ∼ pϕ(ĉt|st+1),

Reward predictor: r̂t ∼ Rϕ(r̂t|st, kt, zkt
),

where we use ct to denote the episode continuation flag. Given a state st observed at time step t, a
discrete action kt and the corresponding continuous parameter zkt , the transition predictor and the
reward predictor Tϕ and Rϕ predict the next state ŝt+1 and reward r̂t+1 respectively. The Continue
predictor outputs a prediction ĉt for whether the trajectory continues at time step t+ 1 given the state
st+1.

All the above components are implemented in the form of neural networks and we use ϕ to denote
the combined network parameters. Specifically, the first three components are implemented with
networks with stochastic outputs. i.e., we model the output distribution as a Gaussian and the outputs
of the networks are mean and standard deviation of the distribution. We leverage reparameterization
trick [22] to allow computing gradients for the sampled ŝ, r̂, ĉ’s.

We train these components through minimizing the loss below:

Ljoint = E{st,kt,zkt ,rt,st+1,ct}t0:t0+H

t0+H∑
t0

βt−t0
{
λ1∥Tϕ(ŝt+1|ŝt, kt, zkt

)− st+1∥22

+ λ2∥Rϕ(r̂t+1|ŝt, kt, zkt
)− rt+1∥22 + λ3∥pϕ(ĉt|ŝt+1)− ct∥22

}
,

(1)

where ŝt0 = st0 . We use H to denote the planning horizon and t0 to denote the start time step. β
denotes the hyperparameter we use to control the weight of the loss term. The weight of the sum
of the loss will be lower if t is closer to the end time step t0 + H . λ denotes the weight of each
prediction loss term.

3

Under review as a conference paper at ICLR 2024

Specifically, at each training step, we first sample a batch of trajectories
{st, kt, zkt

, rt, st+1, ct}t0:t0+H from a replay buffer. Then we do the inference procedures
as shown in Figure 1 Left. We give the dynamics model the sampled st0 , kt0 , zkt0

at first, and we
get the predictions of next state ŝt0+1, reward r̂t0 and continuation flag ĉt0 for the first time step.
Then, we iteratively let our dynamics model predict the transitions with the sampled parameterized
actions and the predicted state from last time step. At the end we take the weighted sum of all the
prediction losses for state, reward and termination and update the model as described in Equation 1.
And the gradients from the loss term for the last time step t0 +H will be backpropagated all the
way to the first inference at time step t0. That is to say, what we give our model as input during
training is {st0 , kt0 , zkt0

, kt0+1, zkt0+1 , · · · , kt0+H , zkt0+H
} which contains only the start state st0

without the other ground truth states in the trajectory. And we use this information to infer all the
other information contained in the sampled trajectory and calculate the loss. In contrast, most prior
model-based RL algorithms compute the prediction loss for each individual transition by giving
the model the ground truth state as input at every time step (functions of ground-truth states v.s.
fucntions of intermediate predictions). Intuitively, as we will plan into the future with the exact same
length H during planning, our choice allows gradients to flow back through time and assign credit
more effectively than the alternative. That is to say, it will help the agent focus on H-step prediction
for the cumulative return, which is more important for the planning afterwards. As we show in the
experiment section, we empirically find out that, by learning to infer several steps into the future
instead of just the next step, the downstream planning tends to get better performance and thus
benefits the whole training process.

Algorithm 1 DLPA
Require: Initialize Dynamics models Tϕ(ŝt+1|st, kt, zkt

), Rϕ(r̂t|st, kt, zkt
), pϕ(ĉt|st+1), planning

horizon H , a set of parameters C0
for Time t = 0 to TaskHorizon do

for Iteration j=1 to E do
Sample N action sequences with horizon H from Cj
Forward the dynamics model Tϕ(ŝt+1|st, kt, zkt

) to time step t+H with input st and the
sampled action sequences and get N trajectories {τi}1:N

Compute the cumulative return for each trajectory Jτ with Rϕ(r̂t|st, kt, zkt
), pϕ(ĉt|st+1)

Select the trajectories with top-n cumulative returns
Update Cj with Equation 5, 6, 7

end for
Execute the first action, {k̂t0 , ẑk̂t0

}, in the sampled optimal trajectory
Receive transitions from the environment and add to replay buffer B
Sample trajectories {st, kt, zkt

, rt, st+1, ct}t0:t0+H with from the replay buffer B
Initialize Ljoint=0
for t = t0 : t0 +H do

ŝt+1 ∼ Tϕ(ŝt+1|ŝt, kt, zkt)
ĉt ∼ pϕ(ĉt|ŝt+1)
r̂t ∼ Rϕ(r̂t|ŝt, kt, zkt)
Ljoint ← Ljoint + β[λ1∥Tϕ(ŝt+1|ŝt, kt, zkt

) − st+1∥22 + λ2∥Rϕ(r̂t+1|ŝt, kt, zkt
) −

rt+1∥22 + λ3∥pϕ(ĉt|ŝt+1)− ct∥22]
end for
ϕ← ϕ− 1

H η∇ϕLjoint

end for

4.2 MODEL PREDICTIVE CONTROL WITH PARAMETERIZED ACTIONS

Now we introduce the planning part for the proposed algorithm. The planning algorithm is based on
Model Predictive Path Integral [41], adapted for the PAMDP setting.

We model the discrete action k follows a multinomial distribution:

k ∼Mult(θ01, θ
0
2, · · · , θ0K),

K∑
k=1

θ0k = 1, θ0k ≥ 0, (2)

4

Under review as a conference paper at ICLR 2024

where the probability for choosing each discrete action k is given by θ0k. For the continuous parameter
zk corresponding to each discrete action k, we model it as a multivariate Gaussian:

zk ∼ N (µ0
k, (σ

0
k)

2I), µ0
k, σ

0
k ∼ R|zk|. (3)

At the beginning of planning, we initialize a set of independent parameters C0 =
{θ01, θ02, · · · , θ0K , µ0

1, σ
0
1 , µ

0
2, σ

0
2 , · · · , µ0

K , σ0
K}t:t+H for each discrete action and continuous parame-

ter over a horizon with length H . Recall that K is the total number of discrete actions. Note that next
we will update these distribution parameters for E iterations, so for each iteration j, we will have
Cj = {θj1, θ

j
2, · · · , θ

j
K , µj

1, σ
j
1, µ

j
2, σ

j
2, · · · , µ

j
K , σj

K}t0:t0+H .

Then, for each iteration j, we independently sample N trajectories by independently sampling
from the action distributions at every time step t and forwarding to get the trajectory with length
H using the dynamics models Tϕ, Rϕ, pϕ as introduced in the last section. For a sampled tra-
jectory τ = {st0 , k̂t0 , ẑkt0

, ŝt0+1, r̂t0 , ĉt0 , · · · , ŝt0+H , k̂t0+H , ẑkt0+H
, ŝt0+1+H , r̂t0+H , ĉt0+H}, we

can calculate the cumulative return Jτ with:

Jτ = Eτ [

t0+H∑
t=t0

γtctRϕ(ŝt, k̂t, ẑkt
)],where ŝt0 = st0 . (4)

Let Γk,τ = {k̂t}t=t0:t0+H denote the discrete action sequences and Γz,τ = {ẑkt}t=t0:t0+H denote
the continuous parameter sequences within each trajectory τ . Then based on the cumulative return
of each trajectory, we select the trajectories with top-n cumulative returns and update the set of
distribution parameters Cj via:

θjk = (1− α)

∑n
i=1 e

ξJτiΓk,τi∑n
i=1 e

ξJτi

+ αθj−1
k , (5)

µj
k = (1− α)

∑n
i=1 e

ξJτiΓz,τi1{Γk,τi == k}∑n
i=1 e

ξJτi

+ αµj−1
k , (6)

σj
k = (1− α)

√∑n
i=1 e

ξJτi (Γz,τi − µj
k)

21{Γk,τi == k}∑n
i=1 e

ξJτi

+ ασj−1
k . (7)

We use ξ to denote the temperature that controls the trajectory-return weight. Intuitively, for each
iteration j, we update our sampling distribution over the discrete and continuous actions weighted by
the expected return as the returns come from these actions by forwarding our learned dynamics model.
The discrete actions and continuous parameters that achieve higher cumulative return will be more
likely to be chosen again during the next iteration. For updating the continuous parameters, we add a
indicator function as we only want to update the corresponding distributions for those continuous
parameters corresponding to the selected k. The updated distribution parameters at each iteration is
calculated in the form of a weighted sum of the new value derived from the returns and the old value
used at the last time step. We use a hyperparameter α to control the weights.

Note that one major modification we make in the MPPI planning process is that we keep a separate
distribution over the continuous parameters for each discrete action and update them at each iteration
instead of keeping just one independent distribution for the discrete actions and one independent
distribution for the continuous parameters. In other words, we let the distribution of the continuous
parameters condition on the chosen discrete action during the sampling process. This is an important
change to make when using MPPI for PAMDPs as we don’t want to throw away the established
dependency between the continuous parameter and corresponding the discrete action in PAMDPs.

After E iterations of updating the distribution parameters, we sample a final trajectory from the
updated distribution and execute only the first parameterized action, which is also known as receding-
horizon MPC similar to previous work [17]. Then we move on to the next time step and do all the
planning procedures again. Note that, for the initialization distribution over the parameters, we just
copy the one we get at the last time step as a “warm start”.

The overall algorithm is described in Algorithm 1. At each environment time step, the agent executes
E steps of forward planning while updating the distribution parameters over discrete actions and
continuous parameters. Then it uses the first action sampled from the final updated distribution to
interact with the environment and add the new transitions into the replay buffer B. Then if it is
in training phase, the agent samples a batch of trajectories from the replay buffer, using the steps
introduced in Section 4.1 to compute the loss and update the dynamics models.

5

Under review as a conference paper at ICLR 2024

5 ANALYSIS

In this section, we provide some theoretical performance guarantees for DLPA. We quantify the
estimation error between the cumulative return of the trajectory generated from DLPA and the optimal
trajectory through the lens of Lipschitz continuity. All the proofs can be found in the appendix.

Definition 5.1. A PAMDP is (LS
R, L

K
R , LZ

R, L
S
T , L

K
T , LZ

T)-Lipschitz continuous if, for all s ∈ S,
k ∈ {1, · · · ,K}, and z ∈ Z where z ∼ ω(·|k)1:

|R(s1, k, ω))−R(s2, k, ω))| ≤ LS
RdS(s1, s2),W (T (·|s1, k, ω)), T (·|s2, k, ω))) ≤ LS

T dS(s1, s2)

|R(s, k1, ω))−R(s, k2, ω))| ≤ LK
R dK(k1, k2),W (T (·|s, k1, ω)), T (·|s, k2, ω))) ≤ LK

T dK(k1, k2)

|R(s, k, ω1)−R(s, k, ω2)| ≤ LZ
RdZ(ω1, ω2), W (T (·|s, k, ω1), T (·|s, k, ω2)) ≤ LZ

T dZ(ω1, ω2)

,where W denotes the Wasserstein Metric and ω denotes the distribution over the continuous param-
eters given a discrete action type k. dS , dK , dZ are the distance metrics defined on space S,K,Z.
Note that as k1, k2, · · · are discrete variables, we use Kronecker delta function as the distance metric:
dK(kj , ki) = 1,∀i ̸= j. The definition can be seen as a simple extension of the Lipschitz continuity
assumption for regular MDP [33; 31; 2; 11] to PAMDP. Furthermore, in this paper, we follow the
Lipschitz model class assumption [2].

Assuming the error of the learned transition model T̂ and reward model R̂ are bounded by ϵT and
ϵR respectively: W (T (s, k, ω), T̂ (s, k, ω)) ≤ ϵT , |R(s, k, ω)− R̂(s, k, ω)| ≤ ϵR, for all s, k, ω. We
can derive the following theorem:

Theorem 5.2. For a (LS
R, L

K
R , LZ

R, L
S
T , L

K
T , LZ

T)-Lipschitz PAMDP and the learned DLPA ϵT -
accurate transition model T̂ and ϵR-accurate reward model T̂ , let LS

T̄
= min{LS

T , L
S
T̂
}, LK

T̄
=

min{LK
T , LK

T̂
}, LZ

T̄
= min{LZ

T , L
Z
T̂
} and similarly define LS

R̄
, LK

R̄
, LZ

R̄
. If LS

T̄
< 1, then the regret

of the rollout trajectory τ̂ = {ŝ1, k̂1, ω̂1(·|k̂1), ŝ2, k̂2, ω̂2(·|k̂2), · · · } from DLPA is bounded by:

|Jτ∗ − Jτ̂ | :=
H∑
t=1

γt−1|R(st, kt, ωt(·|kt))− R̂(ŝt, k̂t, ω̂t(·|k̂t))|

≤ O
(
(LK

R̄ + LS
R̄L

K
T̄)m+H(ϵR + LS

R̄ϵT + (LZ
R̄ + LS

R̄L
Z
T̄)(

m

H
∆k,k̂ +∆ω,ω̂))

)
,

(8)

where m =
∑H

t=1 1(kt ̸= k̂t),∆ω,ω̂ = W (ω(·|k), ω̂(·|k)), ∆k,k̂ = W (ω(·|k), ω(·|k̂)), N denotes
the number of samples and H is the planning horizon.

Theorem 5.2 quantifies how the following categories of estimation error will affect the cumulative
return difference between the rollout trajectories of DLPA and the optimal trajectories: 1. The
estimation error m for the discrete action k. 2. The estimation error ∆k,k̂ +∆ω,ω̂ for the distribution
ω over the continuous parameters. 3. The transition and reward model estimation error ϵT , ϵR. It
also shows how the smoothness of the transition function and reward function will affect DLPA’s
performance. We also provide a bound for the multi-step prediction error (compounding error) of
DLPA in Appendix Theorem 8.1.

The following lemma further shows how the estimation error m
H∆k,k̂ + ∆ω,ω̂ for the continuous

parameters changes with respect to the number of samples and the dimentionality of the space of
continuous parameters.

Lemma 5.3. Let |Z| denote the cardinality of the continuous parameters space and N be the number
of samples. Then, with probability at least 1− δ:

m

H
∆k,k̂ +∆ω,ω̂ ≤

2m

H

√
|Z|+ 2

N
ln

2|Z|
δ

(9)

1We define the distribution over z given k and use it in all the following theoretical analysis to be consistent
with the proposed method described in Section 4.2: for each k, we keep a distribution over z and sample from it
to roll out the trajectory.

6

Under review as a conference paper at ICLR 2024

6 EXPERIMENTS

We evaluated the performance of DLPA on eight standard PAMDP benchmarks, including Platform
and Goal [26], Catch Point [7], Hard Goal and four versions of Hard Move. Note that these 8
benchmarks are exactly the same environments tested in Li et al. [23], which introduced the
algorithm (HyAR) that reaches state-of-the-art performance in these environments. We have provided
a short description for each environment in appendix 8.2.

Implementation details. We parameterize all models using MLPs with stochastic out-
puts. The planning Horizon for all tasks is chosen between {5, 8, 10}. During plan-
ning, we select the trajectories with top-{100, 400} cumulative returns, and we run 6
planning iterations. We provide more details about the hyperparameters in the appendix.

Platform Goal

Catch Point Hard Move

Figure 2: Visualization of the tested en-
vironments.

Baselines. We evaluate DLPA against 5 different standard
PAMDP algorithms across all the 8 tasks. HyAR [23]
and P-DQN [42; 3] are state-of-the-art RL algorithms for
PAMDPs. HyAR learns an embedding of the parameter-
ized action space which has been shown to be especially
helpful when the dimensionality of the parameterized ac-
tion space is large. P-DQN learns an actor network for
every discrete action type. PADDPG [19] and HPPO [7]
share similar ideas that an actor is learned to output the
concatenation of discrete action and continuous parameter
together. Following Li et al. [23], we replace DDPG with
TD3 [9] in PADDPG and PDQN to make the comparison
fair and rename PADDPG as PATD3.

Platform Goal Hard Goal Catch Point

Hard Move (n=4) Hard Move (n=6) Hard Move (n=8) Hard Move (n=10)

Figure 3: Comparison of different algorithms across the 8 PAMDP benchmarks. Our algorithm
DLPA significantly outperforms state-of-the-art PAMDP algorithms in terms of sample efficiency.
See Appendix for a full timescale version of this plot. Note that HyAR has an additional 20000
environment steps pretraining for the action encoder which we do not include in the plot.

6.1 RESULTS

We show the evaluation results in Figure 3 and Table 1
(for asymptotic performance). We find that DLPA achieves significantly higher sample efficiency
with better or comparable asymptotic performance across all the 8 different tasks. Among all the
model-free RL algorithms, HyAR achieves the overall best performance among all the other baselines,
which is consistent with the results shown in their original paper. DLPA on average achieves 30×
higher sample efficiency compared to the best model-free RL method in each scenario. In all the 8
scenarios except Platform and Goal, DLPA reaches a better asymptotic performance, while in those

7

Under review as a conference paper at ICLR 2024

two domains, the final performance is still close to HyAR. In Hard Move (n= 6, 8, 10), it has been
shown in HyAR’s orignal paper that, no regular PAMDP algorithms can learn a meaningful policy
without learning a latent action embedding space. This happens because the action space is too large
(i.e., 2n). However, we find that our algorithm DLPA without learning such embedding space
can achieve even better performance just by sampling from the original large action space. We
can see from the table that, as the action space becomes larger (from 4 to 10), the gap between DLPA
and HyAR also becomes larger. HyAR’s learned action embeddings are indeed useful in these cases,
but it also sacrifices computational efficiency by making the algorithm much more sophisticated. By
leveraging the proposed sampling procedures during planning, DLPA as a model-based RL algorithm
is able to quickly narrow down the range of candidate parameterized actions and identify the optimal
ones even when the action space is extremely large.

DLPA HyAR HPPO PDQN PATD3

Platform 0.92 ± 0.05 0.98 ± 0.08 0.82 ± 0.02 0.91 ± 0.07 0.92 ± 0.09
Goal 28.75 ± 6.91 34.23 ± 3.71 −6.17 ± 0.06 33.13 ± 5.68 −2.25 ± 8.11

Hard Goal 28.38 ± 2.88 26.41 ± 3.59 −6.16 ± 0.06 1.04 ± 10.82 2.60 ± 11.12
Catch Point 7.56 ± 4.86 5.20 ± 4.18 4.44 ± 3.25 6.64 ± 2.52 0.56 ± 10.40

Hard Move (4) 6.29 ± 5.74 6.09 ± 1.67 −31.20 ± 5.58 4.29 ± 4.86 −10.67 ± 3.57
Hard Move (6) 8.48 ± 5.45 6.33 ± 2.12 −32.21 ± 6.54 −15.62 ± 8.65 −35.50 ± 25.43
Hard Move (8) 7.80 ± 6.27 −0.88 ± 3.83 −37.11 ± 10.10 −37.90 ± 4.07 −30.56 ± 12.21
Hard Move (10) 6.35 ± 9.97 −7.05 ± 3.74 −39.18 ± 8.76 −39.68 ± 5.93 −43.17 ± 15.98

Table 1: Comparison of different algorithms on all the eight benchmarks at the end of training
(asymptotic performance). We report the mean and standard deviation of the last ten steps before the
end of training over 3 runs. Value in bold indicates the best result for each task.

6.2 VISUALIZATION OF PLANNING ITERATIONS.

As we mentioned before, for each planning step we run our prediction and sampling algorithm for
6 iterations and then pick the parameterized action. We show in Figure 4 the visualization of the
imagined trajectories with top-30 returns for each iteration at a random time step when we evaluate
DLPA in the Catch Point environment. Recall that we first sample the action sequences given a set
of distribution parameters and then generate the trajectories and compute cumulative returns using
the learned dynamics models. We can see that at the first iteration, the generated actions are quite
random and cover a large part of the space. Then as we keep updating the distribution parameters
with the cumulative returns inferred by the learned models, the imagined trajectories become more
and more concentrated and finally narrow down to a relatively small-entropy distribution centering at
the optimal actions. This indicates that the proposed planning method (described in Section 4.2) is
able to help the agent find the greedy action to execute given the learned dynamics model while also
keep a mind for exploration.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Figure 4: Visualization of DLPA’s Planning iterations on the Catch Point tasks. Different color
represents different imagined trajectories. The black point represents the agent’s current position and
the red point represents the target point. The grey trajectory is the actual trajectory taken by the agent.

6.3 ABLATION STUDY

In this section, we investigate the importance of some major components in DLPA: the planning
algorithm, the trajectory-wise prediction for the dynamics model learning and the parameterized-
action-specialized sampling distribution. We show the experimental results on Platform and Goal.

8

Under review as a conference paper at ICLR 2024

Platform

Goal

Platform

Goal

Platform

Goal

(a) (b) (c)

Figure 5: Ablation study on (a) the planning algorithm, (b) the trajectory-wise prediction, (c) MPPI
sampling distribution.

We first investigate how the category of the planning algorithm will affect the performance of Model-
based RL in PAMDP. We compare DLPA with a Dyna-like non-MPC model-based RL baseline,
where we explicitly train a policy using the data generated from the learned model. As shown in
Figure 5 first column, this non-MPC baseline generally performs better than the model-free baselines
but is not as good as DLPA.

As we mentioned in Section 4, an important difference between our method and many prior model-
based RL algorithms is that, when updating the dynamics model, we only give the model the start
state and the action sequences sampled from the replay buffer as input and let it predict the whole
trajectory. In contrast, a common way to do the inference during the training of dynamics model
is just give the model every ground-truth states and actions, then let it predict the next state and
reward and compute the loss. We show an empirical performance comparison for these two ways of
updating the dynamics models in Figure 5 second column. DLPA achieves significantly higher sample
efficiency by predicting into several steps into the future with a length of horizon H . Presumably
this is because during planning we will plan into the future with the exact same length H thus the
proposed updating process will help the agent to focus on predicting the parts of state more accurately
which will affect the future more and help the agent achieve better cumulative return.

Finally, the other major modification we make in the CEM planning process is that we keep a separate
distribution over the continuous parameters for each discrete action and update them at each iteration
instead of keeping just one independent distribution for the discrete actions and one independent
distribution for the continuous parameters. We investigate the influence of this change by comparing
to just a version of DLPA that just uses one independent distiribution for all the continuous parameters.
The results are shown in Figure 5 third column,without this technique it is quite hard for DLPA to do
proper planning.

7 CONCLUSION

We have introduced DLPA, the first model-based Reinforcement Learning algorithm for parameterized
action spaces (also known as discrete-continuous hybrid action spaces). DLPA first learns a dynamics
model that is conditioned on the parameterized actions with a weighted trajectory-level prediction loss.
Then we propose a novel planning method for parameterized actions by keep updating and sampling
from the distribution over the discrete actions and continuous parameters. DLPA outperforms the
state-of-the-art PAMDP algorithms on 8 standard PAMDP benckmarks. We further empirically
demonstrate the effectiveness of the different components of the proposed algorithm.

9

Under review as a conference paper at ICLR 2024

REFERENCES

[1] Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess,
and Martin A. Riedmiller. Maximum a posteriori policy optimisation. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[2] Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz continuity in model-based
reinforcement learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 264–273. PMLR, 2018.

[3] Craig J. Bester, Steven James, and George Dimitri Konidaris. Multi-pass q-networks for deep
reinforcement learning with parameterised action spaces. ArXiv, abs/1905.04388, 2019.

[4] Mohak Bhardwaj, Ankur Handa, Dieter Fox, and Byron Boots. Information theoretic model
predictive q-learning. In L4DC, volume 120 of Proceedings of Machine Learning Research, pp.
840–850. PMLR, 2020.

[5] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
4759–4770, 2018.

[6] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex X. Lee, and Sergey Levine.
Visual foresight: Model-based deep reinforcement learning for vision-based robotic control.
CoRR, abs/1812.00568, 2018.

[7] Zhou Fan, Ruilong Su, Weinan Zhang, and Yong Yu. Hybrid actor-critic reinforcement learning
in parameterized action space. In IJCAI, 2019.

[8] Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie Fan. Deep
multi-agent reinforcement learning with discrete-continuous hybrid action spaces. In IJCAI,
2019.

[9] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.
1582–1591. PMLR, 2018.

[10] Carlos E. Garcia, David M. Prett, and Manfred Morari. Model predictive control: Theory and
practice - a survey. Autom., 25:335–348, 1989.

[11] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deep-
mdp: Learning continuous latent space models for representation learning. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, volume 97 of Proceedings of Machine Learning Research,
pp. 2170–2179. PMLR, 2019.

[12] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
NeurIPS, pp. 2455–2467, 2018.

[13] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In ICML, volume 97 of
Proceedings of Machine Learning Research, pp. 2555–2565. PMLR, 2019.

[14] Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In ICLR. OpenReview.net, 2020.

[15] Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In ICLR. OpenReview.net, 2021.

10

Under review as a conference paper at ICLR 2024

[16] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse
domains through world models. CoRR, abs/2301.04104, 2023.

[17] Nicklas Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and
Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,
pp. 8387–8406. PMLR, 2022.

[18] Matthew Hausknecht and Peter Stone. Half field offense: An environment for multiagent
learning and ad hoc teamwork. 2016. URL https://api.semanticscholar.org/
CorpusID:501883.

[19] Matthew J. Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action
space. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[20] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In NeurIPS, pp. 12498–12509, 2019.

[21] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning
for atari. In ICLR. OpenReview.net, 2020.

[22] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[23] Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and
Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action
representation. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[25] Kendall Lowrey, Aravind Rajeswaran, Sham M. Kakade, Emanuel Todorov, and Igor Mordatch.
Plan online, learn offline: Efficient learning and exploration via model-based control. In ICLR
(Poster). OpenReview.net, 2019.

[26] Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with
parameterized actions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nat., 518(7540):529–533, 2015.

[28] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In ICRA,
pp. 7559–7566. IEEE, 2018.

[29] Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Sprin-
genberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Manfred Otto Heess, and
Martin A. Riedmiller. Continuous-discrete reinforcement learning for hybrid control in robotics.
ArXiv, abs/2001.00449, 2019.

11

https://api.semanticscholar.org/CorpusID:501883
https://api.semanticscholar.org/CorpusID:501883

Under review as a conference paper at ICLR 2024

[30] Tung D. Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive
coding for model-based planning in latent space. In ICML, volume 139 of Proceedings of
Machine Learning Research, pp. 8130–8139. PMLR, 2021.

[31] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov
decision processes. Mach. Learn., 100(2-3):255–283, 2015.

[32] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models:
Model-free deep RL for model-based control. In ICLR (Poster). OpenReview.net, 2018.

[33] Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination
in sequential decision making. In International Symposium on Artificial Intelligence and
Mathematics, ISAIM 2010, 2010, 2010.

[34] J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications
to industrial processes. Autom., 14(5):413–428, 1978.

[35] Reuven Y. Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99:89–112, 1997.

[36] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P.
Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning with a learned
model. Nat., 588(7839):604–609, 2020.

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 1889–1897. JMLR.org, 2015.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[39] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In ICML, volume 119 of
Proceedings of Machine Learning Research, pp. 8583–8592. PMLR, 2020.

[40] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Bruce W. Porter and Raymond J. Mooney (eds.),
Machine Learning, Proceedings of the Seventh International Conference on Machine Learning,
Austin, Texas, USA, June 21-23, 1990, pp. 216–224. Morgan Kaufmann, 1990.

[41] Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral
control using covariance variable importance sampling. CoRR, abs/1509.01149, 2015.

[42] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng, Haobo Fu,
T. Zhang, Ji Liu, and Han Liu. Parametrized deep q-networks learning: Reinforcement learning
with discrete-continuous hybrid action space. ArXiv, abs/1810.06394, 2018.

[43] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: model-based offline policy optimization. In NeurIPS, 2020.

[44] Marvin Zhang, Sharad Vikram, Laura M. Smith, Pieter Abbeel, Matthew J. Johnson, and Sergey
Levine. SOLAR: deep structured latent representations for model-based reinforcement learning.
CoRR, abs/1808.09105, 2018.

12

Under review as a conference paper at ICLR 2024

8 APPENDIX

8.1 MORE THEORETICAL RESULTS AND PROOFS

Theorem 8.1. For a (LS
R, L

K
R , LZ

R, L
S
T , L

K
T , LZ

T)-Lipschitz PAMDP and the learned DLPA ϵT -
accurate transition model T̂ and ϵR-accurate reward model T̂ , let q(s) be the initial state distribution,
LS
T̄

= min{LS
T , L

S
T̂
}, LK

T̄
= min{LK

T , LK
T̂
}, LZ

T̄
= min{LZ

T , L
Z
T̂
} and similarly define LS

R̄
, LK

R̄
,

LZ
R̄

. Then ∀n > 1, starting from the same initial distribution q(s), the n-step prediction error is
bounded by:

∆(n) :=W
(
Tn(q(s), k, ω(·|k)), T̂n(q(s), k̂, ω̂(·|k̂))

)
≤ (ϵT)

n + (LZ
T̄∆ω,ω̂ + LZ

T̄∆k,k̂)

n−1∑
i=0

(LS
T̄)

i + LK
T̄

n−1∑
i=0

(LS
T̄)

i
1(kn−i ̸= ˆkn−i)

(10)

Proof. Firstly, for one-step prediction given the initial distribution q(s) and the same k as well as ω:

∆(1) :=W
(
T (q(s), k, ω(·|k)), T̂ (q(s), k, ω(·|k))

)
=sup

f

∫ ∫
(T̂ (s′|s, k, ω)− T (s′|s, k, ω))f(s′)q(s)dsds′ Duality for Wasserstein Metric

≤
∫

sup
f

∫
(T̂ (s′|s, k, ω)− T (s′|s, k, ω))f(s′)ds′q(s)ds Jensen’s inequality

=

∫
W (T̂ (s′|s, k, ω), T (s′|s, k, ω))q(s)ds ≤

∫
ϵT q(s)ds = ϵT

(11)
Then for the n-step prediction error with different discrete action and continuous parameter distribu-
tions:

∆(n) :=W
(
Tn(q(s), k, ω(·|k)), T̂n(q(s), k̂, ω̂(·|k̂))

)
≤ W

(
Tn(q(s), k, ω(·|k)), Tn(q(s), k̂, ω̂(·|k̂))

)
+W

(
Tn(q(s), k̂, ω̂(·|k̂)), T̂n(q(s), k̂, ω̂(·|k̂))

)
Triangle inequality

(12)
For the second term in 12:

W
(
Tn(q(s), k̂, ω̂(·|k̂)),T̂n(q(s), k̂, ω̂(·|k̂))

)
= W

(
T (Tn−1(q(s), k̂, ω̂(·|k̂)), k̂n, ω̂n), T̂ (T̂n−1(q(s), k̂, ω̂(·|k̂)), k̂n, ω̂n)

)
≤ϵTW

(
Tn−1(q(s), k̂, ω̂(·|k̂)), T̂n−1(q(s), k̂, ω̂(·|k̂))

)
Composition Lemma [2]

· · ·
≤(ϵT)n

(13)
For the first term in 12

W
(
Tn(q(s), k, ω(·|k)), Tn(q(s), k̂, ω̂(·|k̂))

)
≤

W
(
Tn(q(s), k, ω(·|k)), Tn(q(s), k, ω̂(·|k̂))

)
+W

(
Tn(q(s), k, ω̂(·|k̂)), Tn(q(s), k̂, ω̂(·|k̂))

) (14)

13

Under review as a conference paper at ICLR 2024

For the second term in 14:

W
(
Tn(q(s), k, ω̂(·|k̂)), Tn(q(s), k̂, ω̂(·|k̂))

)
= W

(
T (Tn−1(q(s), k, ω̂(·|k̂)), kn, ω̂n), T (Tn−1(q(s), k̂, ω̂(·|k̂)), k̂n, ω̂n)

)
≤ LK

T d(kn, k̂n) + LS
TW

(
Tn−1(q(s), k, ω̂(·|k̂)), Tn−1(q(s), k̂, ω̂(·|k̂))

)
= LK

T 1(kn ̸= k̂n) + LS
TW

(
Tn−1(q(s), k, ω̂(·|k̂)), Tn−1(q(s), k̂, ω̂(·|k̂))

)
≤ LK

T 1(kn ̸= k̂n) + LS
TL

K
T 1(kn−1 ̸= ˆkn−1) + (LS

T)
2W

(
Tn−2(q(s), k, ω̂(·|k̂)), Tn−2(q(s), k̂, ω̂(·|k̂))

)
· · ·

≤ LK
T

n−1∑
i=0

(LS
T)

i
1(kn−i ̸= ˆkn−i)

(15)
For the first term in 14:

W
(
Tn(q(s), k, ω(·|k)), Tn(q(s), k, ω̂(·|k̂))

)
≤

W
(
Tn(q(s), k, ω(·|k)), Tn(q(s), k, ω̂(·|k))

)
+W

(
Tn(q(s), k, ω̂(·|k)), Tn(q(s), k, ω̂(·|k̂))

) (16)

For the first term in 16:

W
(
Tn(q(s), k, ω(·|k)), Tn(q(s), k, ω̂(·|k))

)
= W

(
T (Tn−1(q(s), k, ω(·|k)), kn, ωn), T (Tn−1(q(s), k, ω̂(·|k)), kn, ω̂n)

)
≤ LZ

T∆ω,ω̂ + LS
TW

(
Tn−1(q(s), k, ω(·|k)), Tn−1(q(s), k, ω̂(·|k))

)
≤ LZ

T∆ω,ω̂ + LS
TL

Z
T∆ω,ω̂ + (LS

T)
2W

(
Tn−2(q(s), k, ω(·|k)), Tn−2(q(s), k, ω̂(·|k))

)
· · ·

≤ LZ
T∆ω,ω̂

n−1∑
i=0

(LS
T)

i

(17)

Similarly, for the second term in 16:

W
(
Tn(q(s), k, ω̂(·|k)), Tn(q(s), k, ω̂(·|k̂))

)
≤ LZ

T∆k,k̂

n−1∑
i=0

(LS
T)

i
1(kn−i ̸= ˆkn−i)

(18)

Combining all the results above and continue 12, we have:

∆(n) ≤(ϵT)n + LK
T

n−1∑
i=0

(LS
T)

i + LZ
T∆ω,ω̂

n−1∑
i=0

(LS
T)

i + LZ
T∆k,k̂

n−1∑
i=0

(LS
T)

i

= (ϵT)
n +

n−1∑
i=0

(LS
T)

i(LZ
T∆ω,ω̂ + LZ

T∆k,k̂1(kn−i ̸= ˆkn−i)) + LK
T

n−1∑
i=0

(LS
T)

i
1(kn−i ̸= ˆkn−i)

(19)
Now if replace Tn(q(s), k̂, ω̂(·|k̂)) with T̂n(q(s), k, ω(·|k)) in the triangle inequality 12 and do all
the derivation again, we have:

∆(n) ≤(ϵT)n +

n−1∑
i=0

(LS
T̂
)i(LZ

T̂
∆ω,ω̂ + (LZ

T̂
∆k,k̂ + LK

T̂
)1(kn−i ̸= ˆkn−i)) (20)

Combining 19 and 20 concludes the proof.

14

Under review as a conference paper at ICLR 2024

Theorem 5.2. For a (LS
R, L

K
R , LZ

R, L
S
T , L

K
T , LZ

T)-Lipschitz PAMDP and the learned DLPA ϵT -
accurate transition model T̂ and ϵR-accurate reward model T̂ , let LS

T̄
= min{LS

T , L
S
T̂
}, LK

T̄
=

min{LK
T , LK

T̂
}, LZ

T̄
= min{LZ

T , L
Z
T̂
} and similarly define LS

R̄
, LK

R̄
, LZ

R̄
. If LS

T̄
< 1, then the regret

of the rollout trajectory τ̂ = {ŝ1, k̂1, ω̂1(·|k̂1), ŝ2, k̂2, ω̂2(·|k̂2), · · · } from DLPA is bounded by:

|Jτ∗ − Jτ̂ | :=
H∑
t=1

γt−1|R(st, kt, ωt(·|kt))− R̂(ŝt, k̂t, ω̂t(·|k̂t))|

≤ O
(
(LK

R̄ + LS
R̄L

K
T̄)m+H(ϵR + LS

R̄ϵT + (LZ
R̄ + LS

R̄L
Z
T̄)(

m

H
∆k,k̂ +∆ω,ω̂))

)
,

(21)

where m =
∑H

t=1 1(kt ̸= k̂t),∆ω,ω̂ = W (ω(·|k), ω̂(·|k)), ∆k,k̂ = W (ω(·|k), ω(·|k̂)), N denotes
the number of samples and H is the planning horizon.

Proof. At timestep t:

|R(st, kt, ωt(·|kt))− R̂(ŝt, k̂t, ω̂t(·|k̂t))| ≤
|R(st, kt, ωt(·|kt))− R̂(ŝt, kt, ω̂t(·|k̂t))|+ |R̂(ŝt, kt, ω̂t(·|k̂t))− R̂(ŝt, k̂t, ω̂t(·|k̂t))|

(22)

For the second term in 22:

|R̂(ŝt, kt, ω̂t(·|k̂t))− R̂(ŝt, k̂t, ω̂t(·|k̂t))| ≤ LK
R̂
d(k, k̂) = LK

R̂
1(kt ̸= k̂t) (23)

For the first term in 22:

|R(st, kt, ωt(·|kt))− R̂(ŝt, kt, ω̂t(·|k̂t))| ≤
|R(st, kt, ωt(·|kt))− R̂(ŝt, kt, ωt(·|kt))|+ |R̂(ŝt, kt, ωt(·|kt))− R̂(ŝt, kt, ω̂t(·|k̂t))|
≤ ϵR + LS

R̂
∆(t− 1) + |R̂(ŝt, kt, ωt(·|kt))− R̂(ŝt, kt, ω̂t(·|k̂t))| By the definition of ∆(n) and Composition Lemma

≤ ϵR + LS
R̂
∆(t− 1) + |R̂(ŝt, kt, ωt(·|kt))− R̂(ŝt, kt, ωt(·|k̂t))|+ |R̂(ŝt, kt, ωt(·|k̂t))− R̂(ŝt, kt, ω̂t(·|k̂t))|

≤ ϵR + LS
R̂
∆(t− 1) + LZ

R̂
∆k,k′ + |R̂(ŝt, kt, ωt(·|k̂t))− R̂(ŝt, kt, ω̂t(·|k̂t))|

≤ ϵR + LS
R̂
∆(t− 1) + LZ

R̂
(∆k,k̂ +∆ω,ω̂)

≤ ϵR + LS
R̂
(ϵT)

t−1 + LS
R̂

t−2∑
i=0

(LS
T̂
)i(LZ

T̂
∆ω,ω̂ + (LZ

T̂
∆k,k̂ + LK

T̂
)1(kt−1−i ̸= ˆkt−1−i))

+ LZ
R̂
(∆k,k̂ +∆ω,ω̂) According to Theorem 8.1

(24)
Now we go back to 22:

|R(st, kt, ωt(·|kt))− R̂(ŝt, k̂t, ω̂t(·|k̂t))| ≤
|R(st, kt, ωt(·|kt))− R̂(ŝt, kt, ω̂t(·|k̂t))|+ |R̂(ŝt, kt, ω̂t(·|k̂t))− R̂(ŝt, k̂t, ω̂t(·|k̂t))|

≤ ϵR + LK
R̂
1(kt ̸= k̂t) + LS

R̂
(ϵT)

t−1 + LS
R̂

t−2∑
i=0

(LS
T̂
)i(LZ

T̂
∆ω,ω̂ + (LZ

T̂
∆k,k̂ + LK

T̂
)1(kt−1−i ̸= ˆkt−1−i))

+ LZ
R̂
(∆k,k̂ +∆ω,ω̂)

(25)

15

Under review as a conference paper at ICLR 2024

Then we can compute the regret:

|Jτ∗ − Jτ̂ | :=
H∑
t=1

γt−1|R(st, kt, ωt(·|kt))− R̂(ŝt, k̂t, ω̂t(·|k̂t))|

≤
H∑
t=1

γt−1[ϵR + LK
R̂
1(kt ̸= k̂t) + LS

R̂
(ϵT)

t−1+

LS
R̂

t−2∑
i=0

(LS
T̂
)i(LZ

T̂
∆ω,ω̂ + (LZ

T̂
∆k,k̂ + LK

T̂
)1(kt−1−i ̸= ˆkt−1−i)) + LZ

R̂
(∆k,k̂ +∆ω,ω̂)]

≤ O
(
(LK

R̄ + LS
R̂
LK
T̄)m+H(ϵR + LS

R̂
ϵT + (LZ

R̂
+ LS

R̂
LZ
T̄)(

m

H
∆k,k̂ +∆ω,ω̂))

)
Assuming γ = 1

(26)
Similar to the proof of theorem 8.1, if we change the middle term in the triangle inequalities we will
have:

|Jτ∗ − Jτ̂ | ≤ O
(
(LK

R̄ + LS
R̄L

K
T̄)m+H(ϵR + LS

R̄ϵT + (LZ
R̄ + LS

R̄L
Z
T̄)(

m

H
∆k,k̂ +∆ω,ω̂))

)
(27)

Combine 26 and 27 concludes the proof.

Lemma 8.2. Let |Z| denote the cardinality of the continuous parameters space and N be the number
of samples. Then, with probability at least 1− δ:

m

H
∆k,k̂ +∆ω,ω̂ ≤

2m

H

√
|Z|+ 2

N
ln

2|Z|
δ

(28)

Proof. By definition:
∆k,k̂ := W (ω(·|k), ω(·|k̂)) (29)

Recall that in our algorithm, we assume ω(·|k) is a Gaussian distribution N (µk,Σk) and z ∼ ω(·)
takes value in the range [−1, 1].
Now we use the definition of 2nd Wasserstein distance W2 between multivariate Gaussian distribu-
tions:

W2(ω(·|k), ω(·|k̂)) = ∥µk − µk̂∥
2
2 + Tr(Σ + Σ̂− 2(Σ1/2Σ̂Σ1/2)1/2) (30)

Ignore the covariance term, we have:

W (ω(·|k), ω(·|k̂)) ≤ 2
√
|Z| (31)

By definition:
∆ω,ω̂ := W (ω(·|k), ω̂(·|k)) (32)

Similarly, we have:

W2(ω(·|k), ω̂(·|k)) = ∥µk − µ̂k∥22 + Tr(Σ + Σ̂− 2(Σ1/2Σ̂Σ1/2)1/2) (33)

Ignore the covariance term, by Hoeffding’s inequality, with probability 1 − δ we have for each
dimension i of Z:

∥µk,i − ˆµk,i∥22 ≤
(zmax

i − zmin
i)2

2N
ln

2

δ
(34)

By the union bound and the range of z:

∥µk − µ̂k∥22 ≤
2

N
ln

2|Z|
δ

(35)

Combining the results, we have:

m

H
Deltak,k̂ +∆ω,ω̂ =

m

H
W2(ω(·|k), ω(·|k̂)) +W2(ω(·|k), ω̂(·|k)) ≤

2m

H

√
|Z|+ 2

N
ln

2|Z|
δ
(36)

16

Under review as a conference paper at ICLR 2024

8.2 ENVIRONMENT DESCRIPTION

• Platform: The agent is expected to reach the final goal while avoiding an enemy, or leaping
over a gap. There are three parameterized actions (run, hop and leap) and each discrete
action has one continuous parameter.

• Goal: The agent needs to find a way to avoid the goal keeper and shoot the ball into the gate.
There are three parameterized actions: kick-to(x,y), shoot-goal-left(h), shoot-goal-right(h).

• Hard Goal: A more challenging version of the Goal environment where there are ten
parameterized actions.

• Catch Point: The agent is expected to catch a goal point within limited trials. There are two
parameterized actions: Move(d), catch(d).

• Hard Move (n= 4, 6, 8, 10): This is a set of environments where the agent needs to control n
actuators to reach a goal point. The number of parameterized actions is 2n.

8.3 NETWORK STRUCTURE

We use the official code provided by HyAR2 to implement all the baselines on the 8 benchmarks.
The dynamics models in our proposed DLPA consists of three components: transition predictor Tϕ,
continue predictor pϕ and reward predictor Rϕ, whose structures are shown in Table 8.3 and the
hyperparameters are shown in Table 3.

Layer Transition Predictor Continue Predictor Reward Predictor

Fully Connected (inp dim, 64) (inp dim, 64) (inp dim, 64)
Activation ReLU ReLU ReLU

Fully Connected (64, 64) (64, 64) (64, 64)
Activation ReLU ReLU ReLU

Fully Connected (64, state dim) (64, 2) (64, 1)
Fully Connected (64, state dim) (64, 2) (64, 1)

Table 2: Network structures for all three predictors, inp dim is the size of state space, discrete action
space and continuous parameter space. Instead of outputting a deterministic value, our networks
output parameters of a Gaussian distribution, which are mean and log standard deviation.

Hyperparameter Value

Discount factor(γ) 0.99
Horizon 10, 8, 8, 5, 5, 5, 5, 5

Replay buffer size 106

Population size 1000
Elite size 400

CEM iteration 6
Temperature 0.5
Learning rate 3e-4

Transition loss coefficient 1
Reward loss coefficient 0.5

Termination loss coefficient 1
Batch size 128

Steps per update 1

Table 3: DLPA hyperparameters. We list the most important hyperparameters during both training
and evaluating. If there’s only one value in the list, it means all environments use the same value,
otherwise, it’s in the order of Platform, Goal, Hard Goal, Catch Point, Hard Move (4), Hard Move
(6), Hard Move (8), and Hard Move (10).

It is worth noting that we train two reward predictors each time in Hard Move and Catch Point
environments. Conditioned on whether the prediction for termination is True or False, we train one

2https://github.com/TJU-DRL-LAB/self-supervised-rl/tree/main/RL_with_
Action_Representation/HyAR

17

https://github.com/TJU-DRL-LAB/self-supervised-rl/tree/main/RL_with_Action_Representation/HyAR
https://github.com/TJU-DRL-LAB/self-supervised-rl/tree/main/RL_with_Action_Representation/HyAR

Under review as a conference paper at ICLR 2024

reward prediction network to only predict the reward when the trajectory has not terminated, and one
network for the case when the prediction from the continue predictor is True.

8.4 COMPLETE LEARNING CURVES

We provide the full timescale plot of the training performance comparison on the 8 PAMDP bench-
marks in Fig. 6. In general, the proposed method DLPA achieves significantly better sample efficiency
and asymptotic performance than all the state-of-the-art PAMDP algorithms in most scenarios.

Platform Goal Hard Goal Catch Point

Hard Move (n=4) Hard Move (n=6) Hard Move (n=8) Hard Move (n=10)

Figure 6: Comparison of different algorithms across the 8 PAMDP benchmarks, when the model-free
methods converges. Our algorithm DLPA stops early in the experiments because it already converges.

8.5 ADDITIONAL ABLATION STUDY

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Time Steps (1e4)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ep
iso

de
 R

ew
ar

ds

DLPA
Random Shooting

Figure 7: Ablation study on the plan-
ning algorithm (Platform).

Next we conduct an ablation study on the planning algo-
rithm. In Section 4.2, we design a special sampling and
updating algorithm for parameterized action spaces, here we
compare it with a method that just randomly samples from
a fixed distribution and picks the best action at every time
step (also known as “random shooting”). The results are
shown in Figure 8.5. The proposed method DLPA signif-
icantly outperforms the version of the algorithm that uses
random shooting to do sampling and get the optimal ac-
tions. Parameterized action space in general is a much larger
sampling space, comparing to just discrete or continuous
action space. This is because each time the agent need to
first sample the discrete actions and each discrete action has
a independent continuous parameter space. The problem
becomes more severe when the number of discrete actions
is extremely large. Thus it is hard for a random-shooting
method to consistently find the optimal action distributions
while also augment exploration.

8.6 COMPUTATIONAL COMPLEXITY

We also compare the clock time of planning and number of timesteps needed to converge as the
action space expands. We tested this on the Hard Move domain, where the number of discrete actions
changes from 24 to 210 (one continuous parameter for each of them). As shown in table 8.6, while
the number of samples increases as the action space expands, it’s still within an acceptable range
even when it’s extremely large. The results are also consistent with our theoretical analysis.

18

Under review as a conference paper at ICLR 2024

Discrete actions Planning clock time /s Training clock time /s # Timesteps to converge

24 1.71e-1 6.99e-3 6,000
26 3.05e-1 7.18e-3 8,500
28 8.12e-1 7.53e-3 15,000
210 2.85 7.81e-3 23,000

Table 4: Computational complexity study. We evaluate the number of timesteps needed to converge
as the action space expands on the Hard Move domain.

8.7 ADDITIONAL EXPERIMENTS ON HFO

We further test our method on a much more complex domain—Half-Field-Offense (HFO) [18], where
both the state space and action space are much larger than the 8 benchmarks. Besides, the task
horizon is 10× longer and there is more randomness existing in the environment. HFO is originally a
subtask in RoboCup simulated soccer3. As shown in Figure 8, DLPA is still able to reach a better
performance than all the model-free PAMDP RL baselines in this higher dimensional domain.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Episodes (1e4)

0

2

4

6

8

Av
er

ag
e

Ep
iso

de
 R

et
ur

ns

DLPA
MPDQN
PDQN
PADDPG

Figure 8: Additional experimental results on HFO

3https://www.robocup.org/leagues/24

19

https://www.robocup.org/leagues/24

	Introduction
	Background
	Parameterized Action Markov Decision Processes
	Model Predictive Control

	Related Work
	Dynamics Learning and predictive control with Parameterized Actions
	Dynamics Model with Parameterized Actions
	Model Predictive Control with Parameterized Actions

	Analysis
	Experiments
	Results
	Visualization of Planning iterations.
	Ablation Study

	Conclusion
	Appendix
	More theoretical results and proofs
	Environment description
	Network Structure
	Complete Learning Curves
	Additional ablation study
	Computational complexity
	Additional Experiments on HFO

