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ABSTRACT

The hardness of combinatorial optimization (CO) problems hinders collecting
solutions for supervised learning. However, learning neural networks for CO
problems is notoriously difficult given the lack of labeled data as the training gets
trapped easily at local optima. We propose a simple but effective annealed training
framework for CO problems in this work. In particular, we transform CO problems
into unbiased energy-based models (EBMs). We carefully selected the penalties
terms to make the EBMs as smooth as possible. Then we train graph neural
networks to approximate the EBMs and we introduce an annealed loss function
to prevent the training from being stuck at local optima near the initialization. An
experimental evaluation demonstrates that our annealed training framework obtains
substantial improvements. In four types of CO problems, our method achieves
performance substantially better than other unsupervised neural methods on both
synthetic and real-world graphs.

1 INTRODUCTION

Combinatorial Optimization (CO) problems occur whenever there is a requirement to select the
best option from a finite set of alternatives. They arise in various application areas, like business,
medicine, and engineering (Paschos, 2013). Many CO problems are NP-complete (Karp, 1972; Garey
& Johnson, 1979). Thus, excluding the use of exact algorithms to find the optimal solution (Padberg
& Rinaldi, 1991; Wolsey & Nemhauser, 1999), different heuristic methods are employed to find
suitable solutions in a reasonable time (Nemhauser et al., 1978; Dorigo et al., 2006; Hopfield & Tank,
1985; Kirkpatrick et al., 1983).

Often, instances from the same combinatorial optimization problem family are solved repeatedly,
giving rise to the opportunity for learning to improve the heuristic (Bengio et al., 2020). Recently,
learning algorithms for CO problems has shown much promise, including supervised (Khalil et al.,
2016; Gasse et al., 2019; Li et al., 2018; Selsam et al., 2018; Nair et al., 2020), unsupervised (Karalias
& Loukas, 2020; Toenshoff et al., 2021), and reinforcement learning (Dai et al., 2017; Sun et al., 2020;
Yolcu & Póczos, 2019; Chen & Tian, 2019) The success of supervised learning relies on labeled
data. However, solving a hard problem could take several hours or even days and is computationally
prohibitive (Yehuda et al., 2020). Reinforcement learning, suffering from its larger state space and
lack of full differentiability, tends to be more challenging and time-consuming to train.

Unsupervised learning usually transforms a CO problem into an optimization problem with a dif-
ferentiable objective function f where the minima represent discrete solutions (Hopfield & Tank,
1985; Smith, 1999; Karalias & Loukas, 2020). Although this framework allows for efficient learning
on large, unlabeled datasets, it is not without challenges. The objective function is typically highly
non-convex (Mezard & Montanari, 2009). During learning, the model’s parameters can easily get
trapped near a local optimum close to the initialization, never reaching the optimal set of parameters.
This makes unsupervised learning for CO problems extremely hard.

To address this challenge, we propose an annealed training framework. In detail, given a CO problem,
we consider a tempered EBM Pτ ∝ e−f(x)/τ , where the energy function f unifies constrained or
unconstrained CO problems via the big-M method, that is to say, adding large penalties for violated
constraints. We derive the minimum values of the penalty coefficient in different CO problems that
give us the smoothest, unbiased energy-based models. We train a graph neural network (GNN) that
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predicts a variational distribution Qϕ to approximate the energy-based model Pτ . During training,
we set a high initial temperature τ and decrease it gradually during the training process. When τ is
large, Pτ is close to a uniform distribution and only has shallow local optima, such that the parameter
θ can traverse to distant regions. When τ decreases to values small enough, the unbiased model Pτ

will concentrate on the optimal solutions to the original CO problem.

The experiments are evaluated on four NP-hard graph CO problems: MIS, maximum clique, MDS,
and minimum cut. On both synthetic and real-world graphs, our annealed training framework
achieves excellent performance compared to other unsupervised neural methods (Toenshoff et al.,
2021; Karalias & Loukas, 2020), classical algorithms (Aarts et al., 2003; Bilbro et al., 1988), and
integer solvers (Gurobi Optimization). The ablation study demonstrates the importance of selecting
proper penalty coefficients and cooling schedules.

In summary, our work has the following contributions:

• We propose an annealed learning framework for generic unsupervised learning on combinatorial
optimization problems. It is simple to implement yet effective in improving unsupervised learning
across various problems on both synthetic and real graphs.

• We conducted ablation studies that show: 1) annealed training enables the parameters to escape
from local optima and traverse a longer distance, 2) selecting proper penalty coefficients is essential,
3) Using initial temperature large enough is critical.

2 ANNEALED TRAINING FOR COMBINATORIAL OPTIMIZATION

We want to learn a graph neural network Gθ to solve combinatorial optimization problems. Given
an instance I , the Gθ generates a feature ϕ = Gθ(I) that determines a variational distribution Qϕ,
from which we decode solutions. This section presents our annealed training framework for training
Gθ. We first represent CO problems via an energy-based model. Then, we define the annealed loss
function and explain how it helps in training. Finally, we give a toy example to help the understanding.

2.1 ENERGY BASED MODEL

We denote the set of combinatorial optimization (CO) problems as I. An instance I ∈ I is

I = (c(·), {ψi}mi=1) := argmin
x∈{0,1}n

c(x) s.t. ψi(x) = 0, i = 1, ...,m (1)

where c(·) is the objective function and ψi ∈ {0, 1} indicates if the i-th constraint is satisfied. We
rewrite the constrained problem into an equivalent unconstrained form via the big M method:

argmin
x∈{0,1}n

f (I)(x) := c(x) +

m∑
i=1

βiψi(x), βi ≥ 0 (2)

If f (I) has its smallest values on optimal solutions for equation 1, we refer it to unbiased. The
selection of penalty coefficient β plays an important role in the success of training, and we will
discuss our choice of β detailedly in section 3. Using unbiased f (I) as an energy to measure the
fitness of a solution x, solving CO problems is converted to finding low energy states. Accordingly,
we can define the unbiased energy-based models (EBMs):

P (I)
τ (x) ∝ e−f(I)(x)/τ (3)

where a state x is more likely being observed than another state x′ if it has a lower energy f (I)(x) <
f (I)(x′). The EBMs naturally introduce a temperature τ to control the smoothness of the distribution.
When f is unbiased, it has the following property:

Proposition 2.1. Assume f is unbiased, that’s to say, all minimizers of equation 2 are feasible
solutions for equation 1. When the temperature τ increases to infinity, the energy-based model Pτ

converges to a uniform distribution over the whole state space {0, 1}n. When the temperature τ
decreases to zero, the energy-based model Pτ converges to a uniform distribution over the optimal
solutions for equation 1.
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The proposition above shows that the temperature τ in unbiased EBMs provides an interpolation
between a flat uniform distribution and a sharp distribution concentrated on optimal solutions. This
idea is the key to the success of simulated annealing (Kirkpatrick et al., 1983) in inference tasks. We
will show that the temperature also helps in learning.

2.2 TEMPERED LOSS AND PARAMETERIZATION

We want to learn a graph neural networkGθ parameterized by θ. Given an instance I ∈ I ,Gθ(I) = ϕ
generates a vector ϕ that determines a variational distributionQϕ to approximate the target distribution
P

(I)
τ . We want to minimize the KL-divergence:

DKL(Qϕ||P (I)
τ ) =

∫
Qϕ(x)

(
logQϕ(x)− log

e−f(I)(x)/τ∑
z∈{0,1}n e−f(I)(z)/τ

)
dx (4)

=
1

τ
Ex∼Qϕ(·)[f

(I)(x)]−H(Qϕ) + log
∑

z∈{0,1}n

e−f(I)(z)/τ (5)

where H(p) = −
∑

x p(x) log p(x) denote the entropy of a distribution p. Removing the terms not
involving ϕ and multiplying the constant τ , we define our annealed loss functions for ϕ and τ as:

Lτ (ϕ, I) = Ex∼Qϕ(·)[f
(I)(x)]− τH(Qϕ) (6)

Lτ (θ) = EI∼I

[
Ex∼QGθ(I)(·)[f

(I)(x)]− τH(QGθ(I))
]

(7)

In this work, we consider the variational distribution as a product distribution:

Qϕ(x) =

n∏
i=1

(1− ϕi)
1−xiϕxi

i (8)

where ϕ ∈ [0, 1]n. Such a form is popular in learning graphical neural networks for combinatorial
optimization (Li et al., 2018; Dai et al., 2020; Karalias & Loukas, 2020) for its simplicity and effec-
tiveness. However, directly applying it to unsupervised learning is challenging. Unlike supervised
learning, where the loss function cross-entropy is convex for ϕ, Lτ (ϕ, I) in unsupervised learning
could be highly non-convex, especially when τ is small.

2.3 ANNEALED TRAINING

To address the non-convexity in training, we employ annealed training. In particular, we use a large
initial temperature τ0 to smooth the loss function and reduce τt gradually to zero during training. From
proposition 2.1, it can be seen as a curriculum learning (Bengio et al., 2009) along the interpolation
path from the easier uniform distribution to a more challenging target distribution.

Why is it helpful? We need a thorough investigation of the training procedure to answer this. Since
the loss function equation 7 is the expectation over the set of instances I , we use a batch of instances
I1, ..., IB to calculate the empirical loss L̂τ (θ) and perform stochastic gradient descent. It gives:

∇θL̂τ (θ) =

B∑
i=1

∇θLτ (Gθ(Ii), Ii) =

B∑
i=1

∂Gθ(Ii)

∂θ
∇ϕLτ (ϕ, Ii)|ϕ=Gθ(Ii) (9)

= EI∼I

[
∂Gθ(I)

∂θ
∇ϕLτ (ϕ, I)|ϕ=Gθ(I)

]
+ ξ (10)

≈ EI∼I

[
∂Gθ(I)

∂θ
(∇ϕLτ (ϕ, I)|ϕ=Gθ(I) + ζ)

]
(11)

In equation 10, we assume the batch introduces a stochastic term ξ in gradient w.r.t. θ. In equation 11,
we incorporate the stochastic term into the gradient with respect to ϕ. When we assume ζ is a
Gaussian noise, the inner term g = ∇ϕLτ (ϕ, I)|ϕ=Gθ(I) + ζ performs as a stochastic Langevin
gradient with respect to ϕ Welling & Teh (2011). Since the training data is sampled from a fixed
distribution I ∼ I , the scale of the noise ζ is also fixed. When Lτ (ϕ, i) is unsmooth, the randomness
from ζ is negligible compared to the gradient ∇Lτ (ϕ, i) and can not bring ϕ out of local optima. By
introducing the temperate τ , we smooth the loss function and reduce the magnitude of ∇Lτ (ϕ, i).
During the training, the annealed training performs an implicit simulated annealing (Kirkpatrick et al.,
1983) for ϕ.
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Figure 1: A toy example of maximum independent set

2.4 A TOY EXAMPLE

We look at a toy example to have a more intuitive understanding of the annealed training. Consider a
MIS problem on an undirected, unweighted graph G = (V,E), the corresponding energy function
f(x) is:

f(x) = −
n∑

i=1

xi +
∑

(i,j)∈E

xixj (12)

Its correctness can be justified by proposition 3.1. When we use the variational distribution Qϕ in
equation 8, the first term in Lτ (ϕ, I) becomes to:

Ex∼Qϕ(·)[f
(I)(x)] = −

n∑
i=1

ϕi +
∑

(i,j)∈E

ϕiϕj (13)

and accordingly, the gradient w.r.t. ϕ is:

g = −1 + 2
∑

j∈N(i)

ϕj + τ(log ϕi − log(1− ϕi)) + ζ (14)

where we assume ζ ∼ N (0, σ2) for a very small σ. When the temperature τ = 0, ϕi will collapse to
either 0 or 1 very fast. When ϕi = 1, we have g = −1 + ζ, when ϕi = 0, we have g ≥ 1 + ζ. Since
σ is small, the noise ζ can hardly have an effect, and ϕ will be stuck at local optima, i.e., any maximal
independent set such as figure. 1 (a). In figure. 1, we simulate the input (a) at decreasing temperatures
τ = 1.0, 0.5, 0.1. When τ is large, all ϕi will be pushed to a neutral state, e.g., in the figure. 1 (b)
where the difference of ϕi is at scale 10−3. In this case, the noise ζ can significantly affect the sign
of the gradient g and lead to phase transitions. By gradually decreasing the temperature, ϕ collapses
to the global optimum and provides correct guidance to update θ.

3 CASE STUDY

We consider four combinatorial optimization problems on graphs in this work: maximum independent
set (MIS), maximum clique, minimum dominate set (MDS), and minimum cut. An undirected
weighted graph can represent all problems G = (V,E,w), where V = {1, ..., n} is the set of nodes,
E is the set of edges, and w is the weight function. For any i ∈ V , wi = w(i) is the weight of the
node. For any (i, j) ∈ E, wij = w(i, j) is the weight of the edge. For each problem, we derive the
minimum value of the penalty coefficient β such that the energy function has the lowest energy at
optimal solutions, and we use the derived values to design the loss functions in our experiments.

3.1 MAXIMUM INDEPENDENT SET AND MAXIMUM CLIQUE

An independent set is a subset of the vertices S ⊆ V , such that for arbitrary i, j ∈ S, (i, j) /∈ E. The
MIS problem is finding an independent set S with the largest weight. Rigorously, if we denote xi = 1
to indicate i ∈ S and xi = 0 to indicate i /∈ S, the problem can be formulated as:

argmin
x∈{0,1}n

c(x) := −
n∑

i=1

wixi, subject to xixj = 0,∀(i, j) ∈ E (15)
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We define the corresponding energy function:

f(x) := −
n∑

i=1

wixi +
∑

(i,j)∈E

βijxixj (16)

Proposition 3.1. If βij ≥ max{wi, wj} for all (i, j) ∈ E, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 15 and has lower energy: f(x′) ≤ f(x).

Maximum Clique is equivalent to MIS on the complementary graph. Since a GNN is unaware of this
connection, studying maximum clique for learning based approaches is still fruitful. The definition of
maximum clique is in Appendix B.2 and show how to properly select the penalty coefficient here.
Proposition 3.2. If βij ≥ max{wi, wj} for all (i, j) ∈ Ec, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

3.2 MINIMUM DOMINATE SET

A dominate set is a subset of the vertices S ⊆ V , where for any v ∈ V , there exists u ∈ S such that
(u, v) ∈ E. The MDS problem is finding a dominate set S with the minimum weight. Rigorously, if
we denote xi = 1 to indicate i ∈ S and xi = 0 to indicate i /∈ S, the problem can be formulated as:

argmin
x∈{0,1}n

c(x) :=

n∑
i=1

wixi, subject to (1− xi)
∏

j∈N(i)

(1− xj) = 0,∀i ∈ V (17)

We define the corresponding energy function:

f(x) := −
n∑

i=1

wixi +

n∑
i=1

βi(1− xi)
∏

j∈N(i)

(1− xj) (18)

Proposition 3.3. If βi ≥ mink{wk : k ∈ N(i) or k = i}, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

3.3 MINIMUM CUT

A partition consists of two subsets: S and V \S. The cut cut(S) is defined as the number of weights
between S and V \S. The volume of S is defined as vol(S) =

∑
i∈S di, where di is the degree of

node i. The minimum cut problem is to find a S having the minimum cut, subject to the degree of S
is between [D0, D1]. Rigorously, if we denote xi = 1 to indicate i ∈ S and xi = 0 to indicate i /∈ S,
the problem can be formulated as:

argmin
x∈{0,1}n

c(x) :=
∑

(i,j)∈E

xi(1− xj)wij , subject to D0 ≤
n∑

i=1

dixi ≤ D1 (19)

We define the corresponding energy function:

f(x) :=
∑

(i,j)∈E

xi(1− xj)wij + β(

n∑
i=1

dixi −D1)+ + β(D0 −
n∑

i=1

dixi)+ (20)

Proposition 3.4. If β ≥ maxi{
∑

j∈N(i) |wi,j |}, then any x ∈ {0, 1}n, there exists a x′ ∈ {0, 1}n
that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

4 RELATED WORK

Recently, there has been a surge of interest in learning algorithms for CO problems (Bengio et al.,
2020). Supervised learning is widely used. Numerous works have combined GNNs with search
procedures to solve classical CO problems, such as the traveling salesman problem (Vinyals et al.,
2015; Joshi et al., 2019; Prates et al., 2019), graph matching (Wang et al., 2019; 2020), quadratic
assignments (Nowak et al., 2017), graph coloring (Lemos et al., 2019), and MIS (Li et al., 2018).

5



Under review as a conference paper at ICLR 2023

Table 1: Evaluation of Maximum Independent Set

Size small large Collab Twitter

Method ratio time (s) ratio time (s) ratio time (s) ratio time (s)

Erdos 0.805 ± 0.052 0.156 0.781 ± 0.644 2.158 0.986 ± 0.056 0.010 0.975 ± 0.033 0.020
Our’s 0.898 ± 0.030 0.165 0.848 ± 0.529 2.045 0.997 ± 0.020 0.010 0.986 ± 0.012 0.020
RUNCSP 0.823 ± 0.145 1.936 0.587 ± 0.312 7.282 0.912 ± 0.101 0.254 0.845 ± 0.184 4.429
RUNCSP(A)0.851 ± 0.158 1.942 0.629 ± 0.451 7.268 0.923 ± 0.188 0.281 0.877 ± 0.209 4.438

Greedy 0.761 ± 0.058 0.002 0.720 ± 0.046 0.009 0.996 ± 0.017 0.001 0.957 ± 0.037 0.006
MFA 0.784 ± 0.058 0.042 0.747 ± 0.056 0.637 0.998 ± 0.007 0.002 0.994 ± 0.010 0.003
G(0.5s) 0.864 ± 0.169 0.723 0.632 ± 0.176 1.199 1.000 ± 0.000 0.029 0.950 ± 0.191 0.441
G(1.0s) 0.972 ± 0.065 1.063 0.635 ± 0.176 1.686 1.000 ± 0.000 0.029 1.000 ± 0.000 0.462

Table 2: Evaluation of Maximum Clique

Size small large Collab Twitter

Method ratio time (s) ratio time (s) ratio time (s) ratio time (s)

Erdos 0.813 ± 0.067 0.279 0.735 ± 0.084 0.622 0.960 ± 0.019 0.139 0.822 ± 0.085 0.222
Our’s 0.901 ± 0.055 0.262 0.831 ± 0.078 0.594 0.988 ± 0.011 0.143 0.920 ± 0.083 0.213
RUNCSP 0.821 ± 0.131 2.045 0.574 ± 0.299 7.332 0.887 ± 0.134 0.164 0.832 ± 0.153 4.373
RUNCSP(A)0.860 ± 0.189 2.101 0.609 ± 0.381 7.294 0.895 ± 0.162 0.188 0.877 ± 0.221 4.442

Greedy 0.764 ± 0.064 0.002 0.727 ± 0.038 0.014 0.999 ± 0.002 0.001 0.959 ± 0.034 0.001
MFA 0.804 ± 0.064 0.144 0.710 ± 0.045 0.147 1.000 ± 0.000 0.005 0.994 ± 0.010 0.010
G(0.5s) 0.948 ± 0.076 0.599 0.812 ± 0.087 0.617 0.997 ± 0.035 0.061 0.976 ± 0.065 0.382
G(1.0s) 0.984 ± 0.042 0.705 0.847 ± 0.101 1.077 0.999 ± 0.015 0.062 0.997 ± 0.029 0.464

Another fruitful direction is combining learning with existing solvers. For example, in the branch
and bound algorithm, He et al. (2014); Khalil et al. (2016); Gasse et al. (2019); Nair et al. (2020)
learn the variable selection policy by imitating the decision of oracle or rules designed by human
experts. However, the success of supervised learning relies on large labeled datasets, which is hard to
efficiently generate in an unbiased and representative manner (Yehuda et al., 2020).

Many works, therefore, choose to use reinforcement learning instead. Dai et al. (2017) combines
Q-learning with greedy algorithms to solve CO problems on graphs. Q-learning is also used in (Bai
et al., 2020) for maximum subgraph problem. Sun et al. (2020) uses an evolutionary strategy to learn
variable selection in the branch and bound algorithm. Yolcu & Póczos (2019) employs REINFORCE
algorithm to learn local heuristics for SAT problems. Chen & Tian (2019) uses actor-critic learning
to learn a local rewriting algorithm. Despite being a promising approach that avoids using labeled
data, reinforcement learning is typically sample inefficient and notoriously unstable to train due to
poor gradient estimations, correlations present in the sequence of observations, and hard explorations
(Espeholt et al., 2018; Tang et al., 2017).

Works in unsupervised learning show promising results. In initial attempts, Hopfield & Tank (1985);
Van den Bout & Miller (1989); Ramanujam & Sadayappan (1995) transform CO problems into
optimization problem of neural networks with differentible objective functions. More recently, a
series of deep learning approaches emerges. Yao et al. (2019) train GNN for the max-cut problem by
optimizing a relaxation of the cut objective, Toenshoff et al. (2021) trains RNN for maximum-SAT
via maximizing the probability of its prediction. Karalias & Loukas (2020) use a GNN to predict the
distribution and the graphical neural network to minimize the expectation of the objective function
on this distribution. The probabilistic method provides a good framework for unsupervised learning.
However, optimizing the distribution is typically non-convex (Mezard & Montanari, 2009), making
the training very unstable.

5 EXPERIMENTS
5.1 SETTINGS

Dataset: For MIS and maximum clique, problems on both real and random graphs are easy (Dai et al.,
2020). Hence, we follow Karalias & Loukas (2020) to use RB graphs (Xu et al., 2007), designed to
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generate hard instances. We use a small dataset containing graphs with 200-300 nodes and a large
dataset containing graphs with 800-1200 nodes. For MDS, we follow Dai et al. (2020) to use BA
graphs with 4 attaching edges (Barabási & Albert, 1999). We also use a small dataset containing
graphs with 200-300 nodes and a large dataset containing graphs with 800-1200 nodes. We also
use real graph datasets Collab, Twitter from TUdataset (Morris et al., 2020). For minimum cut, we
follow Karalias & Loukas (2020) and use real graph datasets including SF-295 (Yan et al., 2008),
Facebook (Traud et al., 2012), and Twitter (Morris et al., 2020). For RB graphs, the optimal solution
is known during the graph construction. For other problems, we generate the "ground truth" solution
through Gurobi 9.5 (Gurobi Optimization) with a time limit of 3600 seconds. For synthetic datasets,
we generate 2000 graphs for training, 500 for validation, and 500 for testing. For real datasets, we
follow Karalias & Loukas (2020) and use a 60-20-20 split for training, validating, and testing.

Implementation: We train our graph neural network on training data with 500 epochs. We choose
the penalty coefficient β at the critical point for each problem type. We use the schedule:

τk = τ0/(1 + αk) (21)

where τ0 is chosen as the Lipschitz constant of the energy function equation 2 and α is selected
to make sure the final temperature τ500 = 0.001. Since the contribution of this work focuses on
the training framework, the architecture of the graph neural network is not important. Hence, we
provide results from applying annealing training to Karalias & Loukas (2020) and Toenshoff et al.
(2021) for fair comparison, denoted as "Annealed Erdos" and "Annealed RUNCSP" respectively. In
particular, the architecture from Karalias & Loukas (2020) consists of multiple layers of the Graph
Isomorphism Network (Xu et al., 2018) and a graph Attention (Veličković et al., 2017). More details
refer to Karalias & Loukas (2020). Moreover, the architecture from Toenshoff et al. (2021) creates a
network that approximates a Constraint Language (Dechter et al., 2003) using a message-passing
GNN using an LSTM for internal updates (Hochreiter & Schmidhuber, 1997). With both of these
GNN architectures, after obtaining the variational distributionQϕ equation 8, we generate the solution
via conditional decoding (Raghavan, 1988).

Baselines: We compare our method with unsupervised neural methods, classical algorithms, and
integer programming solvers. To establish a strong baseline for neural methods, we use the Erdos
GNN (Karalias & Loukas, 2020), the state-of-the-art unsupervised learning framework for combina-
torial optimization problems. For maximum clique and MIS, we transform the problem to constraint
programming and compare them with RUNCSP (Toenshoff et al., 2021). We also implement the
annealed training version of RUNCSP and denote it as RUNCSP(A). We followed Karalias & Loukas
(2020) for minimum cut and built the L1 GNN and L2 GNN. In classical algorithms, we consider
greedy algorithms and mean field annealing (MFA) (Bilbro et al., 1988). MFA also runs mean field
approximation (ANDERSON, 1988) to predict a variational distribution as our method. The differ-
ence is that the update rule of MFA is determined after seeing the current graph, while the parameters
in GNN are trained on the whole dataset. Also, in minimum cut, we follow (Karalias & Loukas,
2020) to compare with well-known and advanced algorithms: Pageran-Nibble (Andersen et al., 2006),
Capacity Releasing Diffusion (CRD) (Wang et al., 2017), Max-flow Quotient-cut Improvement (Lang
& Rao, 2004), and Simple-Local (Veldt et al., 2016). For integer programming solver, we use Gurobi
9.0 (Gurobi Optimization) and set different time limits t. We denote G(ts) as Gurobi 9.0 (t s). where
t is the solving time limit. One needs to notice that Gurobi has proprocessing before solving, so the
actual running time can be longer than the given time limit.

5.2 RESULTS

We report the results for MIS in Table 1, the results for maximum clique in Table 2, for MDS in
Table 3, for minimum cut in Table 4. More results for comparison with supervised learning methods
and evaluation on very large graphs are provided in C.4 and C.5. In the MIS and maximum clique,
we report the ratios computed by dividing the optimal value by the obtained value (the larger, the
better). In the MDS, we report the ratios computed from the obtained value by dividing the optimal
value (the larger, the better). In minimum cut, we follow Karalias & Loukas (2020) and evaluate
the performance via local conductance: cut(S)/vol(S) (the smaller the better). We can see that the
annealed training substantially improves the performance of Erdos across all problem types and all
datasets, except for SF-295 in minimum cut, by utilizing a better-unsupervised training framework.
Our method also outperforms greedy heuristics, classical algorithms such as MFA, CRD, MQI, and
other learning based approaches such as RUNCSP, L1/L2 GNN. Besides, with annealed training,
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Table 3: Evaluation of Minimum Dominate Set

Size small large Collab Twitter

Method ratio time (s) ratio time (s) ratio time (s) ratio time (s)

Erdos 0.909 ± 0.037 0.121 0.889 ± 0.017 0.449 0.982 ± 0.070 0.007 0.924 ± 0.098 0.015
Our’s 0.954 ± 0.006 0.120 0.931 ± 0.015 0.453 0.993 ± 0.062 0.006 0.952 ± 0.074 0.016

Greedy 0.743 ± 0.053 0.254 0.735 ± 0.026 3.130 0.661 ± 0.406 0.028 0.741 ± 0.142 0.079
MFA 0.926 ± 0.032 0.213 0.910 ± 0.016 3.520 0.895 ± 0.210 0.030 0.952 ± 0.076 0.099
G(0.5s) 0.993 ± 0.014 0.381 0.994 ± 0.013 0.384 1.000 ± 0.000 0.042 1.000 ± 0.000 0.084
G(1.0s) 0.999 ± 0.005 0.538 0.999 ± 0.005 0.563 1.000 ± 0.000 0.042 1.000 ± 0.000 0.084

Table 4: Evaluation of Minimum Cut

Size SF-295 Facebook Twitter

Method ratio time (s) ratio time (s) ratio time (s)

Erdos 0.124 ± 0.001 0.22 0.156 ± 0.026 289.3 0.292 ± 0.009 6.17
Our’s 0.135 ± 0.011 0.23 0.151 ± 0.045 290.5 0.201 ± 0.007 6.16

L1 GNN 0.188 ± 0.045 0.02 0.571 ± 0.191 13.83 0.318 ± 0.077 0.53
L2 GNN 0.149 ± 0.038 0.01 0.305 ± 0.082 13.83 0.388 ± 0.074 0.53
Pagerank-Nibble 0.375 ± 0.001 1.48 N/A N/A 0.603 ± 0.005 20.62
CRD 0.364 ± 0.001 0.03 0.301 ± 0.097 596.46 0.502 ± 0.020 20.35
MQI 0.659 ± 0.000 0.03 0.935 ± 0.024 408.52 0.887 ± 0.007 0.71
Simple-Local 0.650 ± 0.024 0.05 0.955 ± 0.019 404.67 0.895 ± 0.006 0.84
G(10s) 0.105 ± 0.000 0.16 0.961 ± 0.010 1787.79 0.535 ± 0.006 52.98

the learned GNN outperforms MFA in most problems, with less number of iterations. It indicates
that learning the shared patterns in graphs is helpful in solving CO problems. Comparing to integer
solver, Gurobi is able to obtain good ratio on smaller graphs. On larger scale instances, our method
can achieve comparable or even better results.

5.3 PARAMETER CHANGE DISTANCE

We want to stress that we use the same graph neural network as Erdos or RUNCSP, and the perfor-
mance improvements come from our annealed training framework. In scatter plot 2, 3, we report the
relative change for the parameters of GNN in MIS and MDS problems on the Twitter dataset. The
relative change is calculated as ∥u−v∥2

∥v∥2
, where v and u are vectors flattened from the parameters of

GNN before and after training. For each method, we run 20 seeds. After introducing the annealed
training, we see that both the ratio and the relative change of the parameters have a systematic
increase, meaning the parameters of GNN can traverse to more distant regions and find better optima
in annealed learning. We believe this effectively supports that annealed training prevents the training
from being stuck at local optima.

6 ABLATION STUDY

We conduct an ablation study to answer two questions:

1. How does the penalty coefficient β in equation 2 influence the performance?

2. How does the annealing schedule influence the performance?

We conduct the experiments for the MDS problem on the small BA graphs from the previous section.

6.1 PENALTY COEFFICIENT

In the MDS problem, we know that the minimum penalty coefficient β needed to ensure the EBMs
unbiased on the unweighted BA graphs is β = 1.0. To justify the importance to use the minimum
penalty, we evaluate the performance for β = {0.0, 0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 5.0}. For each
β, we run experiments with five random seeds, and we report the result in Figure 4. We can see
that the minimum penalty β = 1 has the best ratio. When the penalty coefficient β < 1, the EBMs
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Figure 5: Ablation for annealing schedule

equation 3 are biased and have weights on infeasible solutions, thereby reducing the performance.
When the penalty coefficient β > 1, the energy model equation 3 becomes less smooth and increases
the difficulty in training. The penalty coefficient β = 1 gives the smoothest unbiased EBMs and has
the best performance. We want to note that when β = 0, the loss function is non-informative, and the
performance ratio can be as low as 0.3, so we do not plot its result in the figure.

6.2 ANNEALING SCHEDULE

We use the schedule equation 21 so as to make sure the potential change f/τk+1 − f/τk ≡ C is a
constant for all steps k. In fact, with the schedule equation 21, the potential f/τk = (1+α(k−1))f/τ0
is a linear function w.r.t. k. Hence, we name it a linear schedule. It is possible to use other schedules,
e.g. f/τk = (1+α(k− 1))

1
2 f/τ0 and f/τk = (1+α(k− 1))3f/τ0, and we name them as concave

and convex schedule. The visualization of the temperature schedule and the potential schedule is
given in Figure 5. The initial temperature is also an important hyperparameter. We evaluate the
initial temperature τ0 = {0.0, 0.1, 0.5, 1.0, 2.0, 5.0}. We report the results in Figure 5. We see
that the performance is robust for whichever convex, linear, or concave schedule is used. The more
important factor is the initial temperature τ0. The performance is reduced when τ0 is too small as the
energy-based model equation 3 is not smooth enough, and the performance is robust when τ0 is large.

7 DISCUSSION

This paper proposes a generic unsupervised learning framework for combinatorial optimization
problems and substantially improves the performance of the state-of-the-art method. One restriction
of the current method is that it relies on condtional decoding to samle solutions from the learned
variational distributions. For problems with more complex constraints, the decoded solutions might
be infeasible. Hence, we believe better decoding strategies should be considered in future work.

The framework’s success relies on smoothing the loss function via critical penalty coefficients and
annealed training as they effectively prevent the training from being stuck at local optima. The
techniques introduced here can be potentially applied in a broader context beyond combinatorial
optimization, especially in the weakly supervised learning setting like logic reasoning (Huang et al.,
2021), program induction (Chen et al., 2020), question answering (Ren et al., 2021) where fine-grained
supervisions are missing and required to be inferred.
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A TYPES OF PROBLEMS SOLVABLE

The current method uses conditional decoding (Raghavan, 1988) to sample solutions from the learned
variational distributions, which requires monotonic post-processing to make sure the final solution is
feasible. For example, in the maximum independent set, the monotonic post-processing is removing
nodes when conflict happens, in the minimum dominant set, the monotonic post-processing is adding
nodes when a node has not been covered. Such a framework can be applied to CO problems that
have trivial solutions, such as set covering problems, but can not be applied to CO problems with
complicated constraints, such as vehicle routing problems.

B COMPLETE PROOF

B.1 MAXIMUM INDEPENDENT SET

In MIS, we use the energy function:

f(x) := −
n∑

i=1

wixi +
∑

(i,j)∈E

βijxixj (22)

We are going to prove the following proposition.
Proposition B.1. If βij ≥ min{wi, wj} for all (i, j) ∈ E, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 15 and has lower energy: f(x′) ≤ f(x).

Proof. For arbitrary x ∈ {0, 1}n, if x satisfies all constraints, we only need to let x′ = x. Else, there
must exist an edge (i, j) ∈ E, such that xixj = 1. Denote k = argmin{wi, wj}, we define x′i = xi
if i ̸= k and x′k = 0. In this case, we have:

f(x′)− f(x) = wk −
∑

j∈N(k)

βk,jxj ≤ wk(1−
∑

j∈N(k)

xj) ≤ 0 (23)

Thus we show f(x′) ≤ f(x).

On the other side, consider a graph G = (V = {1, 2}, E = {(1, 2)}) and β12 < w1 < w2. Then the
maximum independent set is {2}, which can be represented by x = (0, 1). However, in this case, let
x′ = (1, 1) is feasible while f(x′) ≤ f(x). This means the condition we just derived is sharp.

B.2 MAXIMUM CLIQUE

A clique is a subset of the vertices S ⊆ V , such that every two distinct i, j ∈ S are adjacent:
(i, j) ∈ E. The maximum problem is finding a clique S with the largest weight. Rigorously, if we
denote xi = 1 to indicate i ∈ S and xi = 0 to indicate i /∈ S, the problem can be formulated as:

argmin
x∈{0,1}n

c(x) := −
n∑

i=1

wixi, subject to xixj = 0,∀(i, j) ∈ Ec (24)

where Ec = {(i, j) ∈ V × V : i ̸= j, (i, j) /∈ E} is the set of complement edges on graph G. We
define the corresponding energy function:

f(x) := −
n∑

i=1

wixi +
∑

(i,j)∈Ec

βijxixj (25)
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We are going to prove the following proposition.
Proposition B.2. If βij ≥ min{wi, wj} for all (i, j) ∈ Ec, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

Proof. For arbitrary x ∈ {0, 1}n, if x satisfies all constraints, we only need to let x′ = x. Else,
there must exist an edge (i, j) ∈ Ec, such that xixj = 1. Denote k = argmin{wi, wj}, we define
x′i = xi if i ̸= k and x′k = 0. In this case, we have:

f(x′)− f(x) = wk −
∑

j:(k,j)∈Ec

βk,jxj ≤ wk(1−
∑

j:(k,j)∈Ec

xj) ≤ 0 (26)

Thus we show f(x′) ≤ f(x).

On the other side, consider a graph G = (V = {1, 2}, E = {}) and β12 < w1 < w2. Then the
maximum clique is {2}, which can be represented by x = (0, 1). However, in this case, let x′ = (1, 1)
is feasible while f(x′) ≤ f(x). This means the condition we just derived is sharp.

B.3 MINIMUM DOMINATE SET

In MIS, we use the energy function:

f(x) :=

n∑
i=1

wixi +

n∑
i=1

βi(1− xi)
∏

j∈N(i)

(1− xj) (27)

We are going to prove the following proposition.
Proposition B.3. If βi ≥ mink{wk : k ∈ N(i) or k = i}, then for any x ∈ {0, 1}n, there exists a
x′ ∈ {0, 1}n that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

Proof. For arbitrary x ∈ {0, 1}n, if x satisfies all constraints, we only need to let x′ = x. Else, there
must exist a node t ∈ V , such that xt = 0 and xj = 0 for all j ∈ N(t). Let k = argmin{wj : j ∈
N(t), or j = t}, we define x′i = xi if i ̸= k and x′k = 1. In this case, we have:

f(x′)− f(x) = wk − βt +
∑
i̸=t

βi

[
(1− x′i)

∏
j∈N(i)

(1− x′j)− (1− xi)
∏

j∈N(i)

(1− xj)
]
≤ 0 (28)

Thus, we prove f(x′) ≤ f(x).

On the other side, consider a graph G = (V = {1}, E = {}) and β1 < w1. Then the maximum
clique is {1}, which can be represented by x = (1). However, in this case, let x′ = (0) is feasible
while f(x′) ≤ f(x). This means the condition we just derived is sharp.

B.4 MINIMUM CUT

In MIS, we use the energy function:

f(x) :=
∑

(i,j)∈E

xi(1− xj)wij + β(

n∑
i=1

dixi −D1)+ + β(D0 −
n∑

i=1

dixi)+ (29)

We are going to prove the following proposition.
Proposition B.4. If β ≥ maxi{

∑
j∈N(i) |wi,j |}, then any x ∈ {0, 1}n, there exists a x′ ∈ {0, 1}n

that satisfies the constraints in equation 24 and has lower energy: f(x′) ≤ f(x).

C EXPERIMENT DETAILS

C.1 HARDWARE

All methods were run on Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz, with 377GB of available
RAM. The neural networks were executed on a single RTX6000 25GB graphics card. The code was
executed on version 1.9.0 of PyTorch and version 1.7.2 of PyTorch Geometric.
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Table 5: Evaluation of MDS on BA-4 compared to Supervised Learning

Graphs 256-300 512-600 1024-1100

Supervised 0.947 0.938 0.934
Erdos 0.909 0.905 0.898
Ours 0.937 0.935 0.926

C.2 GREEDY ALGORITHM

For MIS, greedy algorithm can be described in the following steps:

1. Pick the variable i has the smallest degree di in the candidate set.

2. Delete i and all its neighborhood N(i) = {j : (i, j) ∈ E} on the current graph.

3. Repeat step 1-2, until the current graph is empty.

For maximum clique, we first transform the graph into its complementary, then apply the greedy
algorithm for MIS.

For MDS, greedy algorithm can be described in the following steps:

1. For every node i, initialize its state si = 1 to indicate whether it has not been covered.

2. For every node i, initialize its covering number ci = si +
∑

j∈N(i) sj to indicate how many
nodes can be covered by selecting node i

3. Select the node i has the largest covering number ci.

4. Mark si = 0, and sj = 0 for j ∈ N(i).

5. Repeat step 3-4, until all si = 0.

C.3 DATASETS

For MIS and maximum clique, we follow Karalias & Loukas (2020) and use RB graphs (Xu et al.,
2007). The construction of RB graphs has 4 parameters n, k, p. Following Karalias & Loukas (2020),
for small graphs, we use n uniformly sampled from the integers [20, 25] and k uniformly sampled
from [5, 12]; for large graphs, we use n uniformly sampled from the integers [40, 55] and k uniformly
sampled from [20, 25].

For minimum dominant set, we follow Dai et al. (2020) to Barabasi-Albert networks (Barabási &
Albert, 1999) with attachment 4.

C.4 COMPARISON TO SUPERVISED LEARNING

In order to compare our unsupervised results to supervised results, we provide evaluation results for
the MDS problem on BA-4 graphs, using the supervised learning result in Dai et al. (2020). As in
Table 5, we can see that annealed training significantly improves the performance of unsupervised
learning and has a ratio very close to supervised learning. We also provide a comparison for supervised
learning for evaluation on small RB graphs for MIS. As a source of labels, we use Gurobi to solve
the maximum independent set problem. Due to the computational limitations, we set a time limit as
10 seconds and some of the instances are not solved to optimal. In this case as in Table 6, we observe
that, with the proper training algorithm, the unsupervised learning can even beat the supervised
learning.

C.5 EVALUATION ON VERY LARGE GRAPHS

We conduct extra experiments for MIS on large BA-4 Graphs following Dai et al. (2020). The model
is trained on BA-4 graphs with size 1024-1100. For each larger size, we evaluate the methods on 100
graphs and report the mean, std, and average running time. We can see that the performance of Gurobi
decreases with increasing the graph size and the learning based approaches. Another observation
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Table 6: Evaluation of MIS on small RB graphs compared to Supervised Learning

Graphs Small

Supervised 0.889
Erdos 0.805
Ours 0.898

Table 7: Evaluation of MIS on Very Large BA-4 Graphs

Method 2048-2200 4096-4400 8192-8800

Size Ratio Time Ratio Time Ratio Time

Greedy 928 ± 26 5.6e−3 1861 ± 50 2.7e−2 3727 ± 102 1.3e−1

Erdos 950 ± 26 6.5e−2 1900 ± 49 1.6e−1 3742 ± 118 3.2e−1

Ours 960 ± 25 6.5e−2 1923 ± 48 1.6e−1 3845 ± 99 3.2e−1

Gurobi 919 ± 26 1.2e0 1845 ± 59 5.3e0 3165 ± 656 5.5e0

is that the learning based approaches have much smaller running time, as Dai et al. (2020) has the
conditional decoding implemented in cpp, while our conditional decoding is implemented in python.
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