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Abstract

An efficient table-to-text summarization system can drastically reduce manual
efforts to understand and summarise tabular data into textual reports. However, in
practice, the problem is heavily impeded by data sparsity and the inability of the
state-of-the-art natural language generation models (such as T5, PEGASUS, and
GPT-Neo) to produce coherent and accurate outputs. This is particularly true in
pre-clinical and clinical domains. In this paper, we propose a novel table-to-text
approach and tackle these problems with the help of synthetic data generation as
well as copy mechanism. Experiments show that the proposed method can boost
the performance of copying concise and relevant information from tabular data to
generate assay validation and toxicology reports.

1 Introduction

Neural table-to-text (table2text) generation, which aims to condense tabular data into textual narratives
automatically, has been studied with various successful approaches (2; 4; 19). In the medical domain,
an automated table2text system can support clinical scientists in accelerating the writing of medical
reports based on experimental tabular data with time and cost savings.

However, neural table2text generation of the medical and scientific text still remains a challenging
problem (10). Data sparsity is the main barrier, as scientific medical summaries are produced in
small quantities with high-level quality by domain experts however may lack adequate numbers of
extractable observations. In addition, the factual consistency between the tabular values and the text is
essential for the validity of the generated text. The state-of-the-art text generation models, especially
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Transformer based (17) models, lack the ability to learn how to copy the relevant values accurately
from the input tables to the text narratives in a low resource setting, which limits these models from
generating high-quality reports.

To address the aforementioned challenges, we propose a two-step architecture with synthetic data
generation, and a copy mechanism (14; 18) to increase the accuracy of the table2text model in
presenting key tabular values in generated textual narratives.

The proposed architecture consists of two modules, the table extractor to extract the most relevant
and principal values from input tables and the text generator to generate textual narratives based on
the extracted values. Both modules are guided by copy mechanism, which acts as pointers to directly
copy principal tabular values to the generated text. To ensure that relevant and principal values
remain consistent between input tables and generated text, we propose a synthetic data generation
method that creates training samples by slot-value replacements respecting the type of values (1). For
example, “200 ml” will be replaced by similar values with similar conditions, such as “100 ml”. The
proposed synthetic data generation promotes training examples where only principal tabular values
are changed. The copy mechanism allows the table extractor and text generator to focus on these
principal tabular values and ensure the accuracy of copying.

We collect two datasets to train and evaluate our methods, namely assay validation reports and
toxicology reports. Experiments show that our approach with synthetic data generation achieves
state-of-the-art performance compared to baseline methods. In summary, the main contributions of
our work are: (1) we propose a table2text architecture for the generation of accurate medical scientific
reports; (2) we propose a method of synthetic data generation with copy mechanism to address data
sparsity for the medical scientific table2text.

2 Datasets

In this study, we collect two datasets from anonymous provider, namely assay validation reports and
toxicology reports, to train and evaluate our proposed methods. Table 1 shows the statistics of the
two datasets, and examples from the two datasets are provided in Appendix.

Assay Validation Reports are written to describe the quantitative performance of an assay, includ-
ing its accuracy, sensitivity, specificity, precision, detection limit, range, and quantitation limits. In
addition, complete reports contain inter-assay and inter-laboratory assessments of assay repeatability
and robustness. In this study, we collect pairs of tables and paragraphs from 92 raw complete assay
validation reports. These pairs are constructed automatically by firstly matching the table number and
then selecting the most relevant paragraph that contains most of the values from the table. Overall,
1,239 pairs are collected, which are split into the training set (1,133 pairs) and testing set (106 pairs).

Toxicology Reports are expert statements describing the results of pre-clinical toxicology studies
carried out by pharmaceutical companies. These documents have been identified as valuable sources
of safety findings for investigational drugs. In this study, we focus on the summarized findings of
body weight changes, clinical observations, and mortality rates. We manually collect 87 tables and
paragraph pairs, split into the training set (43 pairs) and testing set (44 pairs).

Table 1: Statistics of assay validation reports and toxicology reports.

Assay Validation
Reports (Training)

Assay Validation
Reports (Testing)

Toxicology Reports
(Training)

Toxicology Reports
(Testing)

#, pairs of tables and reports 1133 106 43 44
avg #, tokens in tables 307.0 308.6 62.5 73.7
avg #, tokens in reports 126.8 170.0 43.8 53.0
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Real Input Tables

Real Target Reports
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Evaluation and Optimization

Figure 1: The architecture with table extractor, text generator, equipped with Synthetic Data Generator.

3 Methodology

3.1 Architecture

We formalize the table2text problem as a sequence-to-sequence problem; hence the input tables
are flattened row by row into a sequence of tokens, whereas the target reports are already in free
text. As shown in Figure 1, following best practices in the domain (12), we propose a two-step
architecture with a table extractor and a text generator to generate scientific medical narratives from
tabular data. Figure 2 shows that table extractor takes the full input table and extracts the most
relevant values. The extracted values contain key values from the tables in the order that they should
appear in the target text. The key values are usually biomedical concepts (such as drug names or
disease names extracted from the real training samples), identifiers of experiments, abbreviations,
and numerical values. The extracted values only focus on the valuable information concerning the
target during training and ignore other characters such as punctuation marks or common words. The
extractor is trained to capture repetitions if the values are repeated in the target text and maintain the
order of these values with respect to other key values. Figure 3 shows that text generator takes the
extracted values from table extractor and generates the respective medical scientific narratives. We
also prepend the titles of all input tables and the last three rows of each full table, which provide
additional information and strengthen the generation capability of the text generator.

Table 5. Interference/Cross Reactivity - Hemolysis

Level of Hemolysis 5% 10% 15%

NC pool
HEMPC 11

Low ATA
HEMPC 22

High ATA
HEMPC 33

NC pool
HEMPC 44

Low ATA
HEMPC
55

High ATA
HEMPC 66

NC pool
HEMPC 77

Low ATA
HEMPC 88

High ATA
HEMPC 99

Run ID ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001

19ABCDEH2 0.111 0.222 0.333 0.444 0.555 0.666 0.777 0.888 0.999

Theoretical
Concentration
(ng/mL) %

Difference from

0.00 50 100 0 50 100 0 50 100

ABCDE 8 N/A N/A N/A N/A N/A 1.0 N/A N/A 2.0

Result Negative Positive Positive Negative Positive Positive Negative Positive Positive

Table Extractor

Hemolysis ATA 19ABCDEH2 HEMPC 11 22 33 HEMPC 44 55 66 50

Figure 2: The table extractor takes the full table
as the input and extracts key tabular values.

Text Generator

Hemolysis ATA 19ABCDEH2 HEMPC 11 22 33 HEMPC 44 55 66 50

The effect of Hemolysis on the detection of ATA was evaluated in 
run 19ABCDEH2 by analyzing blanks ( HEMPC 11, 22, and 33 ), 
low - level ( HEMPC 44, 55, and 66 at 50 ng/mL).

Figure 3: The values extracted from the table ex-
tractor are fed into the text generator to generate
the output text.

As inputs and outputs are both sequences of tokens, both table extractor, and text generator are
implemented by Transformer encoder-decoder architecture, which is guided by copy mechanism
following (6). The copying mechanism incorporates a switching function to decide whether to
generate a word by the decoder or to copy an crucial word from the input directly. The decision is
monitored by the attention distribution over the encoder representations at each decoder timestamp.

3.2 Synthetic Data Generator

As the table2text generation task is defined as a two-step process of extracting principal values from
tables and describing these values with textual narratives, the values extracted from the table and
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copied into the text should be matched to preserve factual consistency. Therefore, we follow the
previous study (1) to propose a slot-value replacement approach. Each slot is filled with a random
value as long as the type of value (such as integers, floats, strings) at this slot stays the same. For
example, a string can only be replaced by another string. To create pairs of synthetic tables and
reports, if a value in the input table is replaced by a new value, the corresponding value in the target
report will also be replaced.

Assay Validation Reports The following value types are considered for assay validation reports,
namely drug names, disease names, biomedical abbreviations (such as ADA for anti-drug antibody,
CV representing coefficient of variation), integers, floats, identifiers of experiment runs, and identifiers
of tables. The drug names, disease names, and biomedical abbreviations are replaced by other values
of the same type from a dictionary. For example, “Hemolysis” can be replaced by “Lipolysis”.
Numerical values are created by randomizing the original values but ensuring that the new values
are close to the original values (such as using 0.71 to replace 0.70). Alphanumerical values (such
as the identifiers of experiments and tables) can be created by randomizing the order of the original
values (such as “CDE123” modified to “C1D2E3”). Figure 4 in Appendix provides an example of
the synthetic data.

Toxicology Reports Slightly different from assay validation reports, the following value types
are defined for toxicology reports: drug names, genders, integers, and floats. Drug names (such as
“G1234”) can be replaced by either randomly picking up a value from the collected dictionary for
drugs (such as “G1235”) or randomizing the order of the original values (such as “G4321”). Genders
are represented by either “F” or “M”, and the genders in the real data are swapped to the opposite
genders. Numerical values, such as the dosage level, can be created by randomizing the original
values slightly. For the findings of clinical observations, we build a dictionary that contains all
existing clinical observations, such as hair loss, swelling, and crust. The original observation can be
replaced by randomly selecting another observation from the dictionary. For the findings of mortality
rates, one additional dictionary is built to indicate the status of the animals (such as terminal sacrifice,
found dead, moribund sacrifice). The status of the synthetic samples can be randomly selected from
this dictionary. An example of the synthetic data is provided by Figure 5 in Appendix.

For each pair of real tables and reports, we generate 1,000 synthetic pairs. Combined with the
copy mechanism, our synthetic samples generated by token-level modification promote precision of
copying relevant values from inputs to the outputs, as these token-level differences between training
samples force the model to learn the importance of these values.

4 Experiments

4.1 Implementation Details

The code was implemented by Python 3.8, and Pytorch (9). Both models (table extractor and text
generator) weights were initialised from PEGASUS-pubmed (21) checkpoint from transformers library
(20). We fine-tuned each model for 50,000 steps with a batch size of 4, and Adafactor (15) as the
optimizer.

4.2 Baseline Methods

We compared our approach with other Transformer based models, which directly took tables as
inputs to generate reports in a single step rather than two steps. (1) PEGASUS (21) is a Transformer
encoder-decoder model which achieves state-of-the-art performance on 12 abstractive summarisation
datasets. We fine-tuned PEGASUS-pubmed checkpoint from the transformers library for 30,000
steps with a batch size of 4. (2) T5 (13) is also a Transformer encoder-decoder which unifies
natural language processing tasks into a text-to-text format and defines a multi-task mixture of
unsupervised and supervised tasks as pre-training objectives. We fine-tuned t5-large checkpoint
from the transformers library for 30,000 steps with a batch size of 4. To achieve optimal results for
T5, we updated the length penalty to 1.2 to encourage the model to generate longer sequences. (3)
GPT-Neo is an open-sourced GPT model which was pre-trained on the Pile corpus (3) and fine-tuned
for 30,000 steps using the teacher-forcing method to use the ground truth from a prior time step
as input. In addition to Transformer based models, we also considered (4) content selection and
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planning (11) which separated the generation process into two stages. The first stage produced a
content plan highlighting the order of the values to appear in the text and the second stage took the
content plan to generate the report using a Long Short-Term Memory (LSTM) (5) encoder-decoder
model. We constructed the gold-standard content plan by extracting the overlap tokens between input
tables and target reports. (5) Template-based algorithm was designed to find the closest report
from the real training set as a template for report generation. For each table, we selected the closest
template according to table titles using the longest contiguous matching sub-sequence algorithm. The
token-level slots in the selected template were filled with values from the corresponding positions in
the test table.

4.3 Evaluation Metrics

Considering the importance of copying the tabular values from the input tables to the generated
reports with high precision, we have used two metrics focused on the assessment of copying these
values.

Given the unique tabular values from input tables that appear in target reports, Table Recall estimates
the percentage of such unique tabular values that actually appear in the generated reports. The order
and count of the tabular values are not taken into consideration.

BLEU Extract computes the precision values of consecutive token spans between the table extract
restored from the generated report and the reference table extract. The table extracts restored from
the text contain only the words and numbers present both in the generated text and in the reference
table extract. This metric is proposed based on the popular text generation metric BLEU (8). In this
metric, the order and count of the tabular values from the tables are considered.

Apart from the above metrics, standard metrics including ROUGE (7), BLEU (8) and TER (16)
for comparing lexical content of target and generated text are also reported. ROUGE measures the
n-grams overlap between target text and generated text, BLEU focuses on the n-gram precision, and
TER takes the minimum number of edits into consideration and quantifies the efforts required to
change a generated text to its target, so the lower TER means the generated text is better.

4.4 Quantitative Results

Table 2: Results on Assay Validation Reports. Please note all methods in this table do not use
synthetic training data unless it is specified.

Table Recall ↑ BLEU Extract ↑ ROUGE 1 ↑ ROUGE 2 ↑ ROUGE L ↑ BLEU ↑ TER ↓

Template 0.3856 27.07 0.5666 0.4192 0.4984 40.30 0.6661
(11) 0.5352 20.38 0.3996 0.2318 0.3140 17.34 1.4980
GPT-Neo 0.8577 23.82 0.2110 0.0715 0.1207 1.83 1.3508
T5 0.4923 15.87 0.3968 0.1956 0.2435 14.82 1.1228
PEGASUS 0.5927 39.49 0.6128 0.4927 0.5550 42.04 0.7147
Ours w/o Synthetic Data 0.6497 47.61 0.6591 0.5422 0.6029 48.84 0.6470
Ours with Synthetic Data 0.7245 46.92 0.6590 0.5304 0.5986 44.36 0.6455

Table 3: Results on Toxicology Reports. Please note all methods in this table are enhanced with
synthetic training data.

Table Recall ↑ BLEU Extract ↑ ROUGE 1 ↑ ROUGE 2 ↑ ROUGE L ↑ BLEU ↑ TER ↓

GPT-Neo 0.9127 25.03 0.6980 0.2867 0.5132 8.72 1.2586
T5 0.8784 26.47 0.7364 0.5874 0.7240 41.79 0.5990
PEGASUS 0.8999 29.98 0.9038 0.7799 0.8867 64.71 0.2789
Ours 0.8897 29.49 0.9055 0.7760 0.9034 65.18 0.2640

For assay validation reports, Table 2 shows that our method, without using synthetic data, outperforms
other baseline methods on all evaluation metrics. By comparing our method with other Transformer
models, it suggests that the two-step architecture with table extractor and text generator is more
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effective than a single-step Transformer model. Also, combined with synthetic training data, the
proposed method achieves significantly higher Table Recall (0.7245) than the baseline methods. This
indicates that using synthetic data can be useful to improve the accuracy of copying key values from
inputs to outputs.

For toxicology reports, due to the limited number of real training samples, the baseline methods can
not produce reasonable results for evaluation without synthetic data; hence all baseline methods, as
well as the proposed approach, are trained with synthetic data. As shown in Table 3, with synthetic
data, PEGASUS and our method achieves comparable scores, which are higher than T5. As both
PEGASUS and our method are initialised by the PEGASUS-pubmed checkpoint, it may indicate that
pre-training a model on PubMed is beneficial for scientific medical applications and a single-step
model can be sufficient to generate good results for toxicology reports.

However, interestingly, GPT-Neo tends to simply copy the input tables into the output, which achieves
an exaggerated Table Recall score of 0.8577 for assay validation reports and 0.9127 for toxicology
reports, but other scores are rather low.

5 Conclusion

In this paper, we propose a table2text method with a two-step architecture, including a table extractor
and text generator, to generate scientific medical reports from tabular data. Coupled with copy
mechanism, we propose synthetic data generation, which is shown to enhance the performance
of the model. Experiments show the proposed method achieves state-of-the-art performance in
generate assay validation reports and toxicology reports compared with baseline methods. With the
precise value extraction from the tables and the concise text generation for drafting a report, it can
dramatically reduce manual efforts in writing prospective reports in the scientific medical domain
and speed up regulatory report submission for pre-clinical and clinical studies.
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6 Appendix

Table 5. Interference/Cross Reactivity - Hemolysis

Level of Hemolysis 5% 10% 15%

NC pool
HEMPC 11

Low ATA
HEMPC 22

High ATA
HEMPC 33

NC pool
HEMPC 44

Low ATA
HEMPC 55

High ATA
HEMPC 66

NC pool
HEMPC 77

Low ATA
HEMPC 88

High ATA
HEMPC 99

Run ID ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001

19ABCDEH2 0.111 0.222 0.333 0.444 0.555 0.666 0.777 0.888 0.999

Theoretical
Concentration
(ng/mL) %

Difference from

0.00 50 100 0 50 100 0 50 100

ABCDE 8 N/A N/A N/A N/A N/A 1.0 N/A N/A 2.0

Result Negative Positive Positive Negative Positive Positive Negative Positive Positive

Table 5. Interference/Cross Reactivity - Lipolysis

Level of Lipolysis 5% 10% 15%

NC pool
HEMPC 12

Low ATA
HEMPC 23

High ATA
HEMPC 34

NC pool
HEMPC 45

Low ATA
HEMPC 56

High ATA
HEMPC 67

NC pool
HEMPC 77

Low ATA
HEMPC 88

High ATA
HEMPC 99

Run ID ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001 ABC001

ABCDEH192 0.111 0.222 0.333 0.444 0.555 0.666 0.777 0.888 0.999

Theoretical
Concentration
(ng/mL) %

Difference from

0.00 50 100 0 51 100 0 50 100

ABCDE 8 N/A N/A N/A N/A N/A 1.0 N/A N/A 2.0

Result Negative Positive Positive Negative Positive Positive Negative Positive Positive

Real Target:

The effect of Hemolysis on the detection 
of ATA was evaluated in run 
19ABCDEH2 by analyzing blanks ( 
HEMPC 11, 22, and 33), low - level ( 
HEMPC 44, 55, and 66 at 50 ng/mL).

Synthetic Target:

The effect of Lipolysis on the detection of 
ATA was evaluated in run ABCDEH192
by analyzing blanks ( HEMPC 12, 23, and 
34), low - level ( HEMPC 45, 56, and 67
at 51 ng/mL).

Figure 4: Example of synthetic values created from the original table for assay validation reports.
In this example, “Hemolysis” is replaced by “Lipolysis”. The synthetic value “ABCDEH192” is
created by randomising the original value “19ABCDEH2”. Numerical values such as “50” have been
modified to new values “51” that are close to the original values.

Sex Group Set Subject ID 1-7 1-8

F

1--Vehicle Mean -2.00 -0.01

2--100mg/kg ABCD0001 Mean -1.01 -0.02

3--200mg/kg ABCD0001 Mean -3.00 -0.03

4--300mg/kg ABCD0001 Mean -2.02 -0.04

M

1--Vehicle Mean 10.01 0.05

2--100mg/kg ABCD0001 Mean 10.03 0.06

3--200mgkg ABCD0001 Mean 10.04 0.07

4--300mg/kg ABCD0001 Mean 0.01 -0.08

Sex Group Set Subject ID 1-7 1-8

M

1--Vehicle Mean -2.02 -0.01

2--200mg/kg ABC0001D Mean -1.01 -0.02

3--300mg/kg ABC0001D Mean -3.15 -0.03

4--400mg/kg ABC0001D Mean -2.02 -0.04

F

1--Vehicle Mean 10.05 0.05

2--300mg/kg ABC0001D Mean 10.03 0.06

3--400mgkg ABC0001D Mean 10.04 0.07

4--500mg/kg ABC0001D Mean 0.02 -0.08

Real Target:

Body weight change consisting of 1.00% loss 
compared to control in females at 200.0 mg/kg; 
Body weight change consisting of 10.00% loss 
compared to control in males at 300.0 mg/kg

Synthetic Target:

Body weight change consisting of 1.13% loss 
compared to control in males at 300.0 mg/kg; 
Body weight change consisting of 10.03% loss 
compared to control in females at 500.0 mg/kg

Figure 5: Example of synthetic values created from the original table for toxicology reports (the
findings of body weight changes). In this example, the original drug name “ABCD0001” has been
modified to “ABC0001D”. Dosage levels such as “200mg/kg” are replaced by other values such as
“300mg/kg”. The percentages of body weight changes are also replaced by randomising the original
values slightly.
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