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Abstract

Despite the advancements of Video Large Language Mod-
els (VideoLLMs) in various tasks, they struggle with fine-
grained temporal understanding tasks, such as Dense Video
Captioning (DVC). DVC is a complicated task of describing
all events within a video while also temporally locating each
event in a video, which integrates multiple fine-grained tasks,
including video segmentation, video captioning, and tempo-
ral video grounding. Previous VideoLLMs attempt to solve
DVC in a single step, failing to utilize their reasoning capa-
bility. Moreover, previous loss used for training VideoLLMs
does not fully reflect evaluation metrics, therefore providing
supervision not directly aligned to target tasks. To address
such a problem, we propose a novel framework named Vid-
Chain comprised of Chain-of-Tasks (CoTasks) and Metric-
based Direct Preference Optimization (M-DPO). CoTasks de-
compose a complex task into a sequence of sub-tasks, al-
lowing VideoLLMs to leverage their reasoning capabilities
more effectively. M-DPO aligns a VideoLLM with evaluation
metrics, providing fine-grained supervision to each task that
is well-aligned with metrics. Applied to two different Vide-
oLLMs, VidChain consistently improves their fine-grained
video understanding, thereby outperforming previous Vide-
oLLMs on two different DVC benchmarks and also on the
temporal video grounding task.

1 Introduction
With the rapid advancement of Large Language Models
(LLMs), numerous studies (Liu et al. 2023; Dai et al. 2023;
Liu et al. 2024) have incorporated LLMs into video under-
standing tasks, leading to the emergence of Video Large
Language Models (VideoLLMs). These VideoLLMs (Li
et al. 2023; Zhang, Li, and Bing 2023; Maaz et al. 2024)
have demonstrated strong performance in various tasks such
as video question answering and video captioning, showcas-
ing their ability to understand and utilize visual information.
Despite their success, recent studies (Ren et al. 2024; Huang
et al. 2024; Qian et al. 2024) have revealed that VideoLLMs
exhibit unsatisfactory performance when it comes to fine-
grained temporal video understanding, which often require
multiple video-related sub-tasks given a single untrimmed
video.

We observe that VideoLLMs fall short of fine-grained
temporal video understanding especially in Dense Video
Captioning (DVC) due to two key reasons. First, the con-

ventional practice in DVC of VideoLLMs employs one-step
reasoning, which is known to be inferior to multi-step rea-
soning for complex tasks. In particular, existing VideoLLMs
address DVC by predicting descriptions and timestamps of
all events via a single-step generation. Second, the gap be-
tween training objectives (e.g., next-token prediction) and
evaluation metrics for DVC (e.g., SODA) often leads to sub-
optimal performance. The next-token prediction does not
fully reflect the complex evaluation protocol which involves
diverse metrics such as SODA, METEOR, and IoU.

To tackle these aforementioned issues, we introduce a
novel framework, VidChain that enhances VideoLLMs’
fine-grained temporal video understanding, comprised of
Chain-of-Tasks (CoTasks), and Metric-based Direct Prefer-
ence Optimization (M-DPO). First, we present CoTasks that
decomposes the objective of the challenging task into a se-
quence of sub-task objectives. This simple decomposition
enables the model to elicit its strong reasoning capability on
DVC. Hence it eases the challenge of the complex task by
solving only one sub-task at each step and further enhances
its capability of fine-grained temporal video understanding.
Second, to further align VideoLLM with the evaluation met-
rics of DVC, we present M-DPO which learns the metric
preference, a preference based on the evaluation metric such
as SODA, of each sub-task that composes DVC. Following
the insight from DPO (Rafailov et al. 2023), which aligns
LLM with human preferences, we adopt a similar approach
yet we align VideoLLMs specifically with the metric prefer-
ences.

Interestingly, we observe that this simple adaptation of
evaluation metrics provides two advantages: (1) it reduces
the reliance on human annotators being cost-efficient. (2)
metric evaluations expand beyond the standard binary de-
cision dataset where the labels are continuous e.g., 10.0,
8.5, 3.0, rather than discrete e.g., win or lose. Moreover,
we take account of the sequential sub-task prediction in Co-
Tasks, where we supervise metric preferences on the final
response of the model as well as on the intermediate sub-
tasks that allow for more fine-grained supervision. Overall,
our M-DPO is a novel method that reflects continuous char-
acteristics of the metric-based evaluations into learning, and
also provides intermediate task-specific supervision, further
enhancing fine-grained video understanding of VideoLLMs.
We evaluate our VidChain on two benchmarks-Activitynet



Captions and YouCook2 for the challenging DVC task, and
Activitynet Captions for temporal video grounding (TVG).

In sum, our contributions are three-fold:

• We propose Chain-of-Tasks (CoTasks) that decomposes
a complicated task into a sequence of sub-tasks, enabling
the VideoLLM to elicit its strong reasoning capability to
address the challenging task of DVC.

• We present Metric-based Direct Preference Optimization
(M-DPO) that aligns VideoLLM with evaluation metrics
for multiple fine-grained video understanding tasks, pro-
viding supervision targeted to each task.

• Our novel framework, VidChain comprising of CoTasks
and M-DPO, is generally applicable to LLM-based mod-
els which consistently improves performances when ap-
plied to baseline models.

2 Related works
Video Large Language Models. Recently, multiple
works (Liu et al. 2023; Dai et al. 2023; Liu et al. 2024;
Chen et al. 2024; Ye et al. 2024) incorporating Large
Language Models (LLMs) for vision-language tasks have
been proposed. Following those models’ successes, several
Video Large Language Models (VideoLLMs) have been pro-
posed (Li et al. 2023; Zhang, Li, and Bing 2023; Maaz
et al. 2024; Zhu et al. 2024; Lin et al. 2023; Li et al.
2024). Despite the remarkable performance of VideoLLMs
in tasks requiring a holistic understanding of a video (e.g.,
video-level question-answering or captioning), they often
fall short in fine-grained video understanding. For instance,
they often suffer in temporal grounding tasks (Krishna et al.
2017) or dense video captioning tasks (Krishna et al. 2017;
Zhou, Xu, and Corso 2018), where diverse fine-grained
video understanding capabilities are required. Thus, multi-
ple works (Ren et al. 2024; Huang et al. 2024; Qian et al.
2024) have tried incorporating fine-grained information into
VideoLLMs to address the problem. In this study, we pro-
pose decomposing a complicated task of DVC into simpler
sub-tasks and providing supervision aligned with the de-
sired capability, thereby enhancing VideoLLMs’ capability
in fine-grained understanding.

Direct Preference Optimization. To align LLM outputs
with human preferences, reinforcement learning from hu-
man feedback (RLHF) (Christiano et al. 2017; Ouyang et al.
2022) has been proposed, which maximizes the likelihood
gap between the preferred and unpreferred generation re-
sults. Direct preference optimization (DPO) (Rafailov et al.
2023) is derived to improve the inefficiency of RLHF, lifting
the need for RL-based optimization and dedicated modules
(i.e., reward model), which is applied to various tasks (Song
et al. 2024; Xu et al. 2024; Yuan et al. 2024) to inject hu-
man preferences to a model. In recent, some works have
applied preference alignment in multimodal language mod-
els (MLLMs) to alleviate the hallucination issue (Sun et al.
2023; Yu et al. 2024; Ahn et al. 2024; Gunjal, Yin, and Bas
2024). However, these approaches rely on expensive models
like GPT-4v (Ahn et al. 2024) or human annotators (Yu et al.
2024) to annotate preference data. In this work, we adopt the

idea of Step-DPO (Lai et al. 2024) to align VideoLLM on ev-
ery sub-task with the desired capability in fine-grained video
understanding by defining the preferred and unpreferred re-
sponses using the metric as a criterion. Such an approach
eliminates the need for extensive human labor or computa-
tion. Also, unlike conventional DPO datasets where only a
binary preference exists, a continuous preference exists in
our dataset due to the continuous nature of metrics that we
build upon. Therefore, we further propose a tailored training
scheme reflecting the continuous nature of preferences.

3 Method
In this section, we first provide a brief overview of Dense
Video Captioning (DVC) and Direct Preference Optimiza-
tion (DPO) in Sec. 3.1. Then, we propose a Chain-of-
Tasks (CoTasks) approach which eases the challenge of
DVC by decomposing the task into a sequence of sub-
tasks (Sec. 3.2). We then present a Metric-based DPO (M-
DPO), which further aligns VideoLLMs with evaluation
metrics for sub-tasks (e.g., METEOR, IoU, SODA) to pro-
vide more fine-grained supervision (Sec. 3.3). Comprised of
CoTasks and M-DPO, we propose a novel framework named
VidChain that enhances VideoLLMs’ fine-grained temporal
video understanding capability.

3.1 Preliminaries
Dense Video Captioning. Dense Video Captioning
(DVC) is a challenging task that requires the model to not
only describe all events within the long untrimmed video
but also temporally localize each event in time. Given an
untrimmed video v, the goal of DVC is to maximize the
probability p(c, t, n|v), where n denotes the number of
events in the video, c denotes a set of event captions, and
t denotes a set of event timestamps represented with start
and end time boundaries for each. The key challenge is that
the model must predict the three components (c, t, n) for
all events given an untrimmed video v, which requires a
comprehensive fine-grained understanding regarding multi-
ple video-related tasks: video segmentation, video caption-
ing, and temporal video grounding. The video segmentation
task aims to predict the number of event sequences the video
breaks down into. Video captioning focuses on describing
the events in the video. The temporal video grounding task
aims to identify the timestamps of an event given its event
description. Typically, VideoLLMs address DVC by predict-
ing (c, t, n) in a single step, which imposes more challenge
on the task.

Direct Preference Optimization. Direct Preference Op-
timization (DPO) (Rafailov et al. 2023) aligns Large Lan-
guage Models’ output with human preferences. Often, the
alignment involves further finetuning a supervised finetuned
model. For optimization, DPO adopts a pairwise preference
dataset, where each sample comprises a pair of preferred and
dispreferred responses. To construct the pairwise preference
dataset, several responses ŷ are first sampled from the refer-
ence model πref given a prompt x. Then, those responses are
annotated according to the human preferences by comparing
sampled responses in a pair-wise manner where ŷw and ŷl
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⇡ref(ŷ3|v, h1, h2, x3)

(a) (b) (c)
Figure 1: Illustration of our CoTasks approach (left) and data construction process for M-DPO (right). The left figure
depicts the CoTasks approach of VidChain, which decomposes DVC into a sequence of sub-tasks in two different reasoning
paths. After predicting the number of events, timestamp prediction and caption generation are done in path Pt→c as shown in
(a), while the order of two tasks is interchanged in path Pc→t as in (b). The right figure (c) represents the data construction
of M-DPO, where we sample ns response of ŷ3 (filled black circles) as well as the intermediate sub-task response ŷ2 (hollow
black circles) of CoTask for the given video v. The m2 and m3 denote the task-specific evaluation metric values, e.g., SODAc,
METEOR, IoU, of each sampled response.

denote the preferred and dispreferred response respectively,
i.e., ŷw ≻ ŷl|x. With the constructed pairwise preference
dataset DDPO, the objective of DPO, LDPO, is formally de-
fined as follows:
LDPO(πθ;πref) =

− E(x,ŷw,ŷl)∼DDPO

[
log σ

(
β · r(ŷw;x)− β · r(ŷl;x)

)]
,

(1)

where r(y;x) = log πθ(y|x)
πref(y|x) . Note that σ(·) is the sigmoid

function, πθ is the model to be optimized, which is initial-
ized to πref, and β is a hyperparameter that controls the dis-
tribution disparity of πθ from the reference model πref. Over-
all, the model is trained to increase the likelihood of the pre-
ferred responses relative to that of dispreferred responses.

3.2 Chain-of-Tasks (CoTasks).
To address the lack of fine-grained temporal understanding
of VideoLLMs, especially in DVC that encompasses multi-
ple video-related tasks, we propose a novel approach named
Chain-of-Tasks. Most prior works (Ren et al. 2024; Qian
et al. 2024; Huang et al. 2024; Yang et al. 2023) address
DVC by directly predicting (c, t, n) given v within a single
step. Yet, this approach imposes more challenges on the task
for the VideoLLM, as it obstructs the model from leverag-
ing its strong reasoning capability. Hence, in CoTasks, we
first decompose the objective of DVC into a series of se-
quential sub-task objectives. Then we prompt each task cor-
responding to each objective to the VideoLLM in the form
of a multi-turn QA conversation. Such an approach eases
the challenge of DVC by solving only one sub-task at each

turn and further enhances a VideoLLM’s capability in fine-
grained temporal video understanding.

Objective Decomposition. The objective of DVC can be
decomposed in two different reasoning paths, Pt→c and
Pc→t:

p(c, t, n|v) = p(c|v, n, t)p(t|v, n)p(n|v) (Pt→c) (2)
= p(t|v, n, c)p(c|v, n)p(n|v) (Pc→t). (3)

In the case of Pt→c in Eq. (2), the prediction of (c, t, n)
given a video v breaks down into three sequential tasks.
First, p(n|v) represents the task of predicting the number of
events in the video, while the following p(t|v, n) represents
the task of the timestamp prediction given the total number
of events n, and the final p(c|v, n, t) indicates caption gen-
eration for each event given the video with its t and n. The
other path Pc→t in Eq. (3) is also similarly defined, except
that the order of the caption generation and the timestamp
prediction tasks are interchanged. Based on this decompo-
sition, we cast the task of DVC as a multi-turn prediction,
where the model sequentially solves different tasks at each
turn to tackle the challenging task. An example of our multi-
turn approach, namely CoTasks, is illustrated in Fig. 1.(a)
and 1.(b), each corresponding to Pt→c, and Pc→t.

Training data construction for CoTasks. In this sec-
tion, we elaborate on the construction process of DCT,
a multi-turn conversation dataset used for training Vide-
oLLMs to reason in a CoTasks manner. We build CoTasks
samples using the original DVC dataset (e.g., ActivityNet
or YouCook2), by converting the original single-turn con-
versation samples into multi-turn CoTasks samples of both



Pt→c and Pc→t types. We construct 10K and 1K samples for
AcitivtyNet and YouCook respectively for each path using
the pre-defined templates, where the templates are provided
in the supplementary material. Note we refer to each of the
two types of dataset as Dt→c and Dc→t, respectively. Com-
bining our obtained Dt→c and Dc→t with the dataset used
for training VTimeLLM (Huang et al. 2024) to best follow
their training protocols while adopting the full benchmark
dataset, DCT with a size of 50K for ActivityNet and 6K for
YouCook2 is constructed. More details of DCT are in the
supplement. Then we use DCT to finetune VideoLLMs, re-
sulting in VideoLLMs that are better at multiple fine-grained
video understanding tasks, including DVC and its sub-tasks.
By utilizing LoRA for parameter-efficient fine-tuning, the
most time-consuming experiment was done in just 6 hours
using 8 RTX A6000 GPUs.

Inference pipeline of CoTasks. Since DCT includes both
samples of Dt→c and Dc→t, the VideoLLM trained with
DCT can take either reasoning path during inference to ad-
dress DVC. To encourage the model to take a certain path,
we prompt the model with path-specific prompts. In other
words, for the path of Pc→t, we prompt “Can you explain
what happened in the video?” to encourage the generation
of event captions first, after addressing the common task for
both paths, i.e., the number of event predictions. In our ex-
periments, we provide results in both inference paths.

3.3 Metric-based Direct Preference Optimization
Although CoTasks enhances VideoLLMs in fine-grained
video understanding tasks, the next-token prediction ob-
jective does not fully reflect the complex evaluation pro-
tocol which involves diverse metrics such as SODA, ME-
TEOR, and IoU. Therefore, we propose a novel optimiza-
tion method named Metric-based Direct Preference Opti-
mization (M-DPO). Inspired by DPO, which aligns a model
with human preferences, M-DPO aligns the VideoLLM with
metric preferences using pairs of a preferred and a dispre-
ferred response, where the evaluation metric for tasks within
CoTasks is adopted as criteria to determine preferred and
dispreferred responses. This approach enables more fine-
grained metric preference alignment of the VideoLLM as it
not only supervises the final response but also across the in-
termediate responses within CoTasks. In the following sec-
tions, we first describe the process of constructing a dataset
used for M-DPO training, where a sample comprises pairs of
preferred and dispreferred responses using metrics as crite-
ria. Then, we introduce the overall training objective of M-
DPO. Finally, we present a preference gap-aware M-DPO,
which is an extension of M-DPO equipped with a tailored
training scheme reflecting the continuous nature of metrics.

Training data construction for M-DPO. In this section,
we elaborate on the process of constructing DM-DPO, a pref-
erence dataset used for further aligning a VideoLLM with
metric preferences, where each sample includes a pair of
preferred and dispreferred responses for each specific task in
the CoTask approach. To obtain a preference pair, ns number
of responses are first sampled for each intermediate k-th task

given a video v, prompt xk for k-th task, and the conversa-
tion history h<k that consists of prompts x<k and responses
y<k of previous k tasks. Starting from k = 2, a single sam-
pled response ŷk is represented as:

ŷk ∼ πref(ŷk|v, h<k, xk) (4)

where the reference model πref is a VideoLLM trained
with DCT for CoTasks, and h<2 is the ground-truth con-
versation history consistsing of the prompt x1 and ground-
truth response y1 corresponding to p(n|v). For instance,
in Pt→c path of CoTasks, ŷ3 is a response sampled from
πref(ŷ3|v, h<3, x3), which models p(c|v, n, t). Similarly, ŷ2
is a response sampled from πref(ŷ2|v, h<2, x2), modeling
p(t|v, n). With the ns sampled responses for each task,

(
n2

2

)
pairs of responses are obtained. Then, for each pair, a re-
sponse ŷk with higher evaluation metric mk = Mk(ŷk, yk)
is set as a preferred response ŷwk , and the other response is
set as a dispreferred response ŷlk, where Mk denotes a met-
ric corresponds to k-th task (i.e., METEOR, IoU, SODAc).
In other words, ŷwk ≻ ŷlk|v, h<k, xk, given mw

k > ml
k .

Overall, a sample dM-DPO ∼ DM-DPO is defined as a tu-
ple consists of pair of responses ŷwk , ŷ

l
k, metrics mw

k ,m
l
k of

each response, ground-truth conversation history h<k up to
(k − 1)-th task, prompt xk for the k-th task, and a corre-
sponding video v. The illustration of our M-DPO training
dataset construction process is in Fig 1. (c).

Training objective of M-DPO. With the M-DPO dataset
DM-DPO obtained as described above, the VideoLLM is fur-
ther trained to align with the metric preferences. Formally,
the M-DPO loss regarding a single data dM-DPO from DM-DPO
is defined as:

Ls(y
w
k , y

l
k; v, h<k, xk) =[

log σ
(
βr(ŷwk ; v, h<k, xk)− βr(ŷlk; v, h<k, xk)

)]
,

(5)

where σ denotes the sigmoid function, r(ŷk; v, h<k, xk) =

log πθ(ŷk|v,h<k,xk)
πref(ŷk|v,h<k,xk)

denotes a likelihood ratio, πθ denotes
the target model to be optimized, and β is a hyperparame-
ter controlling the distribution disparity of πθ from the ref-
erence model πref. Thus, by minimizing the given loss, it
encourages the model to learn the metric-based preference
on the k-th task by enlarging the gap of the likelihood ra-
tio between preferred and dispreferred responses in terms of
the target metric. Then, the basic version of M-DPO train-
ing objective is defined as below, of which the M-DPO loss
is averaged over every sample in DM-DPO:

LM-DPO−(πθ;πref) =

− EdM-DPO∼DM-DPO

[
Ls

(
ŷwk , ŷ

l
k; v, h<k, xk

)]
,

(6)

where πθ is a model to be optimized, which is built by
adding LoRA modules after the initialization with πref. Note
that LoRA modules in πθ are only trainable parameters, and
πref is left unchanged.

Preference gap-aware M-DPO. Training data for con-
ventional DPO only includes binary preferences ŷw and ŷl,
which only indicates whether a response is preferred or not.
On the contrary, data in DM-DPO also comprises continuous



ActivityNet YouCook2
LM size SODAc METEOR CIDEr SODAc METEOR CIDEr

VideoChat (Li et al. 2023) 7B 0.9 0.9 2.2 - - -
VideoLLaMA (Zhang, Li, and Bing 2023) 7B 1.9 1.9 5.8 - - -
VideoChatGPT (Maaz et al. 2024) 7B 1.9 2.1 5.8 - - -
TimeChat (Ren et al. 2024) 13B - - - 3.4 - 11.0
VTimeLLM (Huang et al. 2024) 13B 5.9 6.7 27.2 - - -

VTimeLLM† (Huang et al. 2024) (Baseline) 7B 5.8 6.8 27.6 3.4 3.5 10.7
VTimeLLM + VidChain-Pt→c (Ours) 7B 6.5 7.4 28.2 4.6 4.9 17.6
VTimeLLM + VidChain-Pc→t (Ours) 7B 6.6 7.2 29.8 4.3 4.5 16.3
VideoLLaMA2† (Cheng et al. 2024) (Baseline) 7B 7.2 7.7 32.9 3.3 3.5 12.3
VideoLLaMA2 + VidChain-Pt→c (Ours) 7B 8.2 8.7 43.1 4.6 5.5 22.3
VideoLLaMA2 + VidChain-Pc→t (Ours) 7B 8.8 8.8 43.9 4.8 5.6 23.8

Table 1: Comparison of VideoLLMs on DVC. Baseline+VidChain-Pt→c and Baseline+VidChain-Pc→t are identical models
trained with DCT which adopt two different reasoning path prompts for inference, Pt→c and Pc→t respectively. See Sec. 3.2 for
more detail. † denotes reproduced results.

LM size R@0.3 R@0.5 R@0.7 mIoU
VideoChat 7B 8.8 3.7 1.5 7.2
VideoLLaMA 7B 6.9 2.1 0.8 6.5
VideoChatGPT 7B 26.4 13.6 6.1 18.9
TimeChat 13B - - - -
VTimeLLM 13B 44.8 29.5 14.2 31.4

VTimeLLM (Baseline) 7B 44.0 27.8 14.3 30.4
VTimeLLM + VidChain (Ours) 7B 63.3 47.0 29.5 45.5
VideoLLaMA2 (Baseline) 7B 49.4 26.8 15.0 33.9
VideoLLaMA2 + VidChain (Ours) 7B 63.3 44.8 25.2 44.1

Table 2: Comparison of VideoLLMs on TVG. We simply
adopt the task-specific prompt for TVG instead of two dif-
ferent inference prompts (i.e., Pt→c, and Pc→t) specifically
defined for DVC, since they are not applicable to TVG.

preferences mw
k and ml

k which not only indicates whether
a response is preferred or not but also reveals how much
a response is preferred since it is built on continuous met-
rics. We observe that when optimizing with such continuous
preferences, taking the gap of preferences between ŷwk and
ŷlk into account further facilitates the proper training. To this
end, we propose LM-DPO, an advanced version of LM-DPO−

by modifying Eq. (6) as:

LM-DPO(πθ;πref) = −EdM-DPO∼DM-DPO[
1
(
mw

k −ml
k > γ

)
· Ls

(
ŷwk , ŷ

l
k; v, h<k, xk

)]
,

(7)

where 1(·) denotes an indicator function. Concretely, we
only calculate losses on preference pairs where the gap of
the evaluation metrics between the preferred and dispre-
ferred response is above a certain threshold γ. Such an ap-
proach alleviates difficulties in optimizing pairs with subtle
differences in metrics, thereby facilitating the overall opti-
mization process. In the following sections, the term ‘M-
DPO’ refers to LM-DPO in Eq. (7) instead of LM-DPO− in
Eq. (6) unless specified. Training with M-DPO is also effi-
ciently done in 9 hours with 8 RTX A6000 GPUs in the most
time-consuming experiment. Overall, we propose a novel
framework named VidChain comprised of CoTasks and M-
DPO which effectively enhances the fine-grained temporal
video understanding of VideoLLMs.

ActivityNet YouCook2
SODAc METEOR SODAc METEOR

VTimeLLM
Baseline 5.8 6.8 3.4 3.5
+ CoTasks-Pt→c 6.5 7.1 4.1 4.4
+ VidChain-Pt→c 6.5 7.4 4.6 4.9
+ CoTasks-Pc→t 6.5 7.3 3.8 4.3
+ VidChain-Pc→t 6.6 7.2 4.3 4.5

VideoLLaMA2
Baseline 7.2 7.7 3.3 3.5
+ CoTasks-Pt→c 7.5 8.3 4.2 5.1
+ VidChain-Pt→c 8.2 8.7 4.6 5.5
+ CoTasks-Pc→t 7.7 8.5 4.5 5.5
+ VidChain-Pc→t 8.8 8.8 4.8 5.6

Table 3: Ablation study on components of VidChain. Vid-
Chain denotes CoTasks + M-DPO.

4 Experiments
4.1 Benchmarks
Dense Video Captioning. We experiment on two differ-
ent dense video captioning benchmarks, ActivityNet Cap-
tions (Krishna et al. 2017) and YouCook2 (Zhou, Xu,
and Corso 2018). ActivityNet Captions dataset consists of
20k videos annotated with temporally localized descrip-
tions. YouCook2 dataset is composed of 2,000 videos from
89 recipes. Each video has temporal bounds and their
corresponding context sentences. As evaluation metrics,
SODAc (Fujita et al. 2020), METEOR (Banerjee and Lavie
2005), and CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015) following previous works (Huang et al. 2024; Qian
et al. 2024).

Temporal Video Grounding. Temporal video grounding
is the task of localizing multiple events in the video given
captions of each event. For temporal video grounding, we
use ActivityNet Captions dataset (Krishna et al. 2017) to val-
idate the effectiveness of our method. As evaluation metrics,



Training Data (DCT) Dense Video Captioning
Dt→c Dc→t SODAc METEOR

Baseline ✘ ✘ 7.2 7.7

CoTasks-Pt→c
✔ ✘ 7.4 7.6
✔ ✔ 7.5 8.3

CoTasks-Pc→t
✘ ✔ 7.6 8.1
✔ ✔ 7.7 8.5

Table 4: Ablation study on data composition of DCT.

R@{0.3, 0.5, 0.7} and mIoU are applied following the pre-
vious works (Huang et al. 2024; Qian et al. 2024). For im-
plementation details and further details about metrics, refer
to the supplementary material.

4.2 Main results
We evaluate VidChain on the challenging Dense Video Cap-
tioning (DVC) and temporal video grounding (TVG) to ver-
ify the effectiveness of our approach in enhancing the fine-
grained video understanding. Note we report performances
for both CoTasks paths, Pc→t and Pt→c for the DVC task.

Results. Table 1 demonstrates the effectiveness of the pro-
posed VidChain by applying it on two state-of-the-art Vide-
oLLMs, VTimeLLM and VideoLLaMA2. VidChain im-
proves both VideoLLMs on two DVC benchmarks, Activ-
ityNet and YouCook, thereby outperforming every Vide-
oLLM. In detail, VideoLLaMA2+VidChain-Pc→t shows a
+22.2% gain in SODAc increasing from 7.2 to 8.8, 14.3%
gain in METEOR and as much as 33.4% in CIDEr on Ac-
tivityNet. In YouCook2, the model shows an 45.5%, 60%,
93.5% increase for SODAc, METEOR, and CIDEr, respec-
tively.

Similar to the case of VideoLLaMA2, VidChain also
shows consistent performance gains with VTimeLLM. For
instance, VidChain boosts the performance of VTimeLLM
by up to 1.2, 1.4, and 6.9 points in SODAc, METEOR, and
CIDEr respectively on the YouCook benchmark for DVC,
while it also outperforms the baseline in the ActivityNet
in every metrics. Notably, VidChain applied to VTimeLLM
with 7B LLM outperforms the baseline VTimeLLM with
13B LLM on every task by a large margin.

Moreover, Tab. 2 demonstrates the effectiveness of Vid-
Chain on TVG, where we show a prominent increase in
performance when applied to both VideoLLMs. In partic-
ular, VTimeLLM+VidChain shows a 19.3, 19.2, 15.2, and
15.1 increase in Recall@0.3, Recall@0.5, Recall@0.7, and
mIoU. The enhanced performance on TVG underlines the
effectiveness of VidChain in enhancing the capability of a
VideoLLM fine-grained video understanding, thereby also
improving performance on a sub-task for DVC.

4.3 Quantitative Analysis
In the following experiments and analysis, we report results
on ActivityNet for DVC using our best-performing model
VideoLLaMA2+VidChain unless specified.

Effectiveness of CoTasks. In Tab. 3, we analyze the ef-
fectiveness of CoTasks. Results show that CoTasks yields

DVC TVG
SODAc METEOR R@0.3 mIoU

Baseline 7.7 8.5 60.2 41.9
LDPO 8.3 8.6 61.6 42.8
LM-DPO− 8.6 8.8 62.4 43.4
LM-DPO (Ours) 8.8 8.8 63.3 44.1

Table 5: Analysis on DPO objectives. Note the baseline
refers to VideoLLaMA2+CoTasks-Pc→t.

consistent performance improvement on both VTimeLLM
and VideoLLaMA2 regardless of the inference path (Pt→c

or Pc→t), compared to the baselines. In particular, when
applied to VTimeLLM, CoTasks-Pt→c shows 12.1% gain
in SODAc for ActivityNet, and 20.6% gain in YouCook2.
Moreover, we also observe consistent gains in TVG tasks by
applying CoTasks, where the results are in the supplemen-
tary material. This result verifies the effectiveness of Co-
Tasks in enhancing the reasoning capability of a VideoLLM.

Effectiveness of M-DPO. In Tab. 3, results of +Vid-
Chain are also reported, which denotes that M-DPO is
also applied on top of CoTasks. Our results show that
M-DPO generally improves performance on both Vide-
oLLMs, VTimeLLM, and VideoLLaMA2. For instance,
further training VideoLLaMA2+CoTasks-Pc→t with M-
DPO improves SODAc, and METEOR by 1.1, and 0.3
points, as shown by the result of VideoLLaMA2+VidChain-
Pc→t. Similarly, applying M-DPO consistently boosts per-
formance on every VideoLLMs and benchmarks, showing
its effectiveness.

Ablation study on data composition of DCT. We conduct
an ablation study on the effect of the inclusion of data with
two paths for DVC, namely Dt→c and Dc→t in CoTasks
training data DCT. The results are in Tab. 4, where including
data with both paths is shown to perform better than only uti-
lizing a single type of path. We conjecture that two different
paths are complementary to each other, therefore compos-
ing DCT with data in both paths facilitates a VideoLLM’s
fine-grained video understanding capacity by letting a Vide-
oLLM learn to solve the same objective in different ways.

Analysis on DPO objectives. In Tab. 5, an analysis of
different DPO objectives is presented. Every experiment is
done with DM-DPO dataset constructed by ours, while the
optimization objective applied differs. LDPO (row 2) de-
notes that DPO is only applied to the final task instead of
intermediate tasks, and preference-gap aware DPO is not
applied. Overall, it generally improves DVC performance,
showing the effectiveness of the DPO approach in the DVC
task. Still, additionally optimizing intermediate tasks with
LM-DPO− (row 3) enables additional gains of 0.3, and 0.2
over LDPO (row 2) in SODAc, and METEOR. Finally, ap-
plying the preference gap-aware M-DPO (LM-DPO) results
in the best performance (row 4). The ablation results show
the effectiveness of M-DPO components.

Analysis on DPO margin. In Fig. 3, the margin of likeli-
hood ratio between preferred and dispreferred responses un-
der different DPO objectives is plotted by epoch. A larger



Q2: “Can you explain what happened in the video?” 
A2: 1. A woman is seen sitting on a couch holding a pair of clippers and speaking 
to the camera. 
2. The woman then cuts the nails of a cat in her lap while the cat moves it's feet. 
3. The woman continues cutting the nails and is shown speaking to the camera.

Ground Truth

CoTasks VidChain (CoTasks + M-DPO)
Q1: “How many of time segments can this video breakdown into?”
A1: 3 time segments.

Q2: “Can you explain what happened in the video?” 
A2: 1. A woman is sitting on a couch with a cat in her lap. 
2. She holds up a pair of clippers and a pair of scissors.
3. She then proceeds to cut the cat's claws.

Q3: “What are the time segments for each event?”
A3: First event, from 00 to 11. Second event, from 12 to 55. Third event, 
from 56 to 99.

Q1: “How many of time segments can this video breakdown into?”
A1: 3 time segments.

Q3: “What are the time segments for each event?”
A3: First event, from 00 to 25. Second event, from 25 to 74. Third event, from 
73 to 99.

[00, 25]: A woman is seen holding on a cat on a coach and holding up a pair of nail clippers.
[25, 72]: She begins cutting the cat's claws while the cat squirms around a bit.
[72, 93]: She continues cutting the claws while speaking to the camera.

Q: “Could you outline the incidents that occurred at various timestamps in the video?”

A: A woman is seen sitting on a couch with a cat in her lap, from 00 to 17. She clips the cat's nails and then pets him, from 17 to 33. She then clips the cat’s 
other paw and pets him, from 33 to 50. She clips the cat's other paw and pets him, from 33 to 50. She clips the cat's other paw and pets him, from 67 to 83. 
She clips the cat's other paw and pets him, from 83 to 99. 

Single-turn
00 11 22 33 44 55 66 77 88 99

→	Wrong number of events & repetitive captions

→ Closest to ground truth

Figure 2: Qualitative example of Dense Video Captioning. Predictions of baseline VideoLLM (Single-turn), Vide-
oLLM+CoTasks, and VidChain (CoTasks + M-DPO) are illustrated. Red and green highlights denote erroneous and accurate
predictions, respectively. Visualization is done on ActivityNet validation set with VTimeLLM in Pc→t path.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
M-DPO
M-DPO
DPO

Figure 3: Margin of the likelihood ratio between pre-
ferred and dispreferred responses with LDPO, LM-DPO− ,
and LM-DPO. x-axis stands for training epochs.

margin implies that preferred and dispreferred responses
are clearly distinguished by a model. As illustrated, LDPO
(blue) fails to teach the model to discriminate between pre-
ferred and dispreferred responses, as shown by the small-
est margin. On the contrary, also optimizing the intermedi-
ate task with LM-DPO− further enlarges the margin between
responses (green). Furthermore, only optimizing samples
where the preference gap between responses is large enough
with LM-DPO (orange) results in the largest margin, which is
6.6 times of that in LDPO at the end of training. The results
show that each component in M-DPO contributes to teach-
ing a VideoLLM to better discriminate between preferred
and dispreferred responses.

4.4 Qualitative Analysis
In Fig. 2, qualitative results of a baseline (single-turn), and
results of a VideoLLM trained with CoTasks and VidChain
(CoTasks + M-DPO) are reported. As illustrated, baseline

VideoLLM shows inferior performance on DVC, segment-
ing a video into an overly large number of events (6 pre-
dicted vs. 3 ground-truth events), while captions for each
event are also highly repetitive (“She clips the cat’s other
paw and pets him”), revealing the lack of a baseline in the
capability of fine-grained video understanding. In contrast,
a VideoLLM trained with CoTasks successfully segments
a video into three events, while captions for each segment
are more distinctive, showing the effectiveness of CoTasks
in DVC by decomposing the complex task into multiple
sub-tasks. Moreover, a VideoLLM further aligned to metrics
with M-DPO produces the best result, where the timestamps
predicted and captions generated for each event are closest
to ground-truths, demonstrating the efficacy of M-DPO in
providing supervision well aligned with the metric.

5 Conclusion

In this paper, we propose a framework named VidChain
comprised of the Chain-of-Tasks (CoTasks), and Metric-
based Direct Preference Optimization (M-DPO). CoTasks
decompose the complicated task into a series of sub-tasks,
easing the difficulties in solving the task. M-DPO aligns
a VideoLLM with evaluation metrics of sub-tasks, provid-
ing supervision aligned with the abilities required for those
tasks. Applied on two different VideoLLMs, VidChain en-
hances fine-grained understanding of models, consistently
improving their performance thereby outperforming previ-
ous VideoLLMs on multiple fine-grained video understand-
ing benchmarks.
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