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MDDR: Multi-modal Dual-Attention aggregation for Depression
Recognition

Anonymous Author(s)∗

ABSTRACT
Automated diagnosis of depression is crucial for early detection
and timely intervention. Previous research has largely concentrated
on visual information, often neglecting the value of leveraging a
variety of data types. Although some studies have attempted to
employ multiple modalities, they typically fall short in investigating
the complex dynamics between features from various modalities
over time. To address this challenge, we present an innovative
Multi-modal Dual-Attention aggregation architecture for Depres-
sion Recognition (MDDR). This framework capitalizes on multi-
modal pre-trained features and introduces two attention aggrega-
tion mechanisms: the Feature Alignment and Aggregation (FAA)
module and the Sequence Encoding and Aggregation (SEA) module.
The FAA module is designed to dynamically evaluate the relevance
of multi-modal features for each instance, facilitating a dynamic
integration of these features over time. Following this, the SEA
module determines the importance of the amalgamated features
for each frame, ensuring that aggregation is conducted based on
their significance, to extract the most relevant features for accu-
rately diagnosing depression. Moreover, we propose a unique loss
calculation method specifically designed for depression assessment,
named DRLoss. Our approach, evaluated on the AVEC2013 and
AVEC2014 depression audiovisual datasets, achieves unparalleled
performance.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; •
Human-centered computing → Human-centered computing.

KEYWORDS
Affective Computing; Automatic depression recognition; Multi-
modal; Attention aggregation; Self-attention.
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1 INTRODUCTION
Major Depression Disorder (MDD) is a severe mental illness, with
over 350 million people worldwide suffering from it [1]. However,
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Figure 1: Our approach employs a Multi-modal framework
that effectively capture the complex dynamics between fea-
tures from various modalities over time, aimed at achieving
accurate and efficient automatic depression assessment.

due to factors such as social stigma and a significant imbalance
between the number of doctors and patients, over 50 percent of
individuals with depression do not receive relevant mental health
services, missing the optimal time for intervention [2, 3]. In fact,
diagnosing depression is a highly complex and time-consuming
task.Clinicians must comprehensively consider multiple diagnostic
outcomes, including patient interviews and depression test scales,
to assess the symptoms and severity of a patient’s depression [4].
Nonetheless, such assessments, which heavily rely on the subjective
analysis of clinicians, are prone to errors and inefficiency.

In recent years, significant advancements have been made in
the research on automatic depression diagnosis based on patient
facial videos, thanks to the rapid development of computer vision
and deep learning technologies. Initial research primarily focused
on analyzing video data of patients, utilizing basic models such
as convolutional neural networks (CNNs) to detect facial features
indicative of depression [7, 8, 17, 21, 23]. However, subsequent
findings have revealed that the indicators of depression are not
confined to visual cues alone but also include the patient’s speech
patterns and head movements [5, 6, 45, 46]. These elements are vital
as they provide significant insights into an individual’s emotional
and cognitive states, thereby presenting a more comprehensive set
of indicators for depression.

Recent efforts have sought to incorporate multiple modalities,
analyzing features within individual modalities before integrating
them [16, 18, 26, 27, 42]. This approach, however, tends to overlook
the nuanced diagnostics practiced in clinical settings, where clini-
cians assess patients’ conditions through a combination of verbal
and non-verbal cues and dynamically adjust their focus based on
the context. This situation highlights the need for methodologies
that not only merge multimodal features but also adaptively priori-
tize their importance over time, mirroring the variable emphasis
clinicians place on different aspects of patient behavior. To date,
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existing research has yet to fully embrace this approach, mark-
ing a significant gap in the development of depression recognition
systems that effectively replicate clinical diagnostic processes.

In this paper, we aim to bridge the identified gap by proposing
a model that dynamically weights multimodal features, offering a
more nuanced and clinically aligned method for depression recog-
nition, as illustrated in Figure 1. We introduce a novel Multi-modal
Dual-Attention Aggregation framework for this purpose, referred
to as MDDR. To enhance the generalizability of our model, we have
employed pre-trained models to extract features related to facial
expressions, acoustic properties, and head movements separately.

To explore the complex dynamics between features from various
modalities over time, we introduce two attention-based modules:
the Feature Alignment and Aggregation (FAA) module and the Se-
quence Encoding and Aggregation (SEA) module. The FAA module
utilizes an attention mechanism to adaptively determine the impor-
tance of each modality at each timestep, leveraging these weights
to compile a fused multimodal representation for each moment.
The SEA module employs a self-attention mechanism to identify
interrelations among fused features at different moments, generat-
ing an aggregated representation that reflects the significance of
these features throughout the entire sequence.

Furthermore, we recognize that the actual diagnosis of depres-
sion more accurately resembles an interval prediction challenge. To
address this, we propose a novel loss function specifically designed
for depression recognition, termed the Depression Recognition (DR)
loss. The DR loss introduces a range discrimination hyperparameter,
aiming to diminish the model’s sensitivity to outliers and ensure
the convergence of prediction results within a specified range.

Our contributions can be summarized as follows:
• We propose a novel Multi-modal Dual-Attention Aggre-

gation architecture for Depression Recognition (MDDR),
offering a more nuanced and clinically aligned approach to
diagnosing depression.

• We propose two Attention Aggregation modules (FAA and
SEA), designed for the dynamic fusion of features from
various modalities over time.

• We have introduced a novel loss function specifically de-
signed for depression recognition, namedDepression Recog-
nition (DR) loss.

• We evaluated our approach on two depression audiovisual
datasets: AVEC2013 and AVEC2014, both achieving state-
of-the-art results.

The rest of this paper is organized as follows. In Section 2, we
briefly summarizes the related works for depression. In Section
3, we detail our proposed method (MDDR). Section 4 and Section
5 illustrate the experimental setup, along with the evaluate and
analyze results, respectively. Finally, in Section 6, we discuss the
conclusions of this paper and future work.

2 RELATEDWORK
Considering the challenges faced in existing research on automated
depression diagnosis using patient facial videos, we can categorize
them into the following types.

Multi-modal learning. Recently, Multi-modal methods have
made valuable progress in many depression recognition tasks [12,

13, 22]. For instance, Zhang et al. utilized state-of-the-art mod-
els to extract Multi-modal (audio and visual) features, then fused
these features using a Transformer Encoder, achieving excellent
results in multiple emotion analysis tasks [14]. Sun et al. used mul-
tilayer perceptrons (MLPs) instead of self-attention to mix across
three dimensions (modality, sequence length, features) for tasks
like sentiment analysis and depression estimation. [15]. Chao et
al. concatenated audio features, facial appearance features, and
facial shape features for early exploration of multimodal learning
in depression recognition [18]. Chen et al. employed audio, tex-
tual, and visual features to design a feature fusion framework both
within and across modalities, achieving advanced results in depres-
sion recognition [16]. However, the complex relationships between
modalities over time have not been effectively explored. In this
paper, we designed two Attention Aggregation modules to dynami-
cally fuse features from various modalities over time, achieving a
more refined multimodal integration.

Spatio-temporalmodeling. To fully utilize the spatio-temporal
information in patients’ videos, researchers employ Dual-stream
approaches or recurrent neural networks (RNN, LSTM) to model the
spatio-temporal representation of the entire video [18–20]. For in-
stance, Azher et al. utilized Bi-directional Long Short-TermMemory
networks (BiLSTM) to capture the global representation of entire
videos for depression recognition [20]. Jazaery et al. employed
RNNs to model the local and global spatio-temporal information
of continuous facial expressions to identify patients’ depressive
states [7]. Zhu et al. and Melo et al. propose a depression assess-
ment method based on a two-stream framework, where one stream
learns static features in the video through convolutional neural
networks, and another stream learns dynamic features, combining
results from both streams to diagnose depression [19, 29]. However,
these methods focusing solely on the variation of spatial features
temporally, overlooking the interrelations between spatial features
at different times, represent a significant oversight. In this paper,
we employ a self-attention mechanism to capture the interrelations
among spatial features at different times, obtaining an enhanced
representation that incorporates global relationships and spatio-
temporal information.

Pre-trained models. Due to the scarcity of publicly available
depression video datasets, researchers utilize pre-trained models to
extract facial depression features from videos [19–21]. For instance,
Azher et al. used the Inception-ResNet-v2 network, pretrained on
the ImageNet dataset, to extract static features from videos for
depression assessment [20]. Melo et al. employed a two-stream
framework, with both streams utilizing the ResNet-50 network,
pretrained on the VGG Face dataset, to capture appearance and
motion information from videos for depression assessment [19].
Zhou et al. utilized a ResNet network trained on the CASIA large-
scale facial database, subsequently fine-tuning it to capture facial
depression features in patients [17]. Jazaery et al. and Melo et al.
pre-trained the C3D network on the Sports-1M and UCF101 video
datasets to learn depression representations in videos [7, 21]. How-
ever, these methods use pret-rained data that significantly differ
from the depression recognition task, limiting the improvement in
model performance. Considering the strong correlation between fa-
cial emotional states and depression outcomes, in this paper, we first
utilize a pre-trained model, trained on a large-scale facial emotion
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dataset, to extract facial depression features from videos, thereby
enhancing the model’s generalization ability.

3 METHODOLOGY
3.1 Overview
Our framework takes a face video containing audio as input. As
illustrated in Figure 2, the Multi-modal features pre-extraction mod-
ule extracts three modal features from given video: visual features
𝑋𝑣 , acoustic features 𝑋𝑎 and Head movement features 𝑋𝑝 . The Fea-
tures Alignment and Aggregation (FAA) module aligns and stacks
these features into 𝑋 ∈ R𝐿×𝑀×𝐷 , where L represents the length
of the sequence, M represents the number of modalities, and D
represents the feature dimension. The 𝑋 is processed by the Inter-
modality Attention aggregation network to produce 𝐹 ∈ R𝐿×𝐷 .
Following this, the Sequence Encoding and Aggregation (SEA) mod-
ule uses a self-attention-based Encoder to process 𝐹 and produce
𝑂 ∈ R𝐿×𝐷 , followed by the Temporal Attention aggregation net-
work that yields an aggregated representation 𝐸 ∈ R𝐷 . Finally, 𝐸
is processed by a classification network based on a Multilayer Per-
ceptrons (MLPs) to produce the final depression assessment results,
which is a depression score ranging from 0 to 63.

3.2 Multi-modal features pre-extraction
To derive more generalized features indicative of depression, we
utilize pre-trained models to extract deep representations from
each modality within raw audiovisual data. This paper focuses
on extracting three types of features: visual, acoustic, and head
movement features, each demonstrating unique characteristics as-
sociated with depression. For the extraction of head movement and
acoustic features, we employ OpenFace[34] and HuBERT[35], re-
spectively. Specifically, considering the strong correlation between
depression-related visual features and facial expressions, coupled
with the challenge conventional image pre-trained models (such as
those based on ImageNet[44]) face in extracting effective emotional
features, we have developed a facial feature extraction model. This
model, which is pre-trained using ResNet-50[47] on the extensive
emotion recognition dataset AffectNet[43], achieves a generalized
deep representation of facial expressions.

3.3 Features alignment and aggregation (FAA)
Due to variations in the methods used for pre-extracting features
across different modalities, there can be discrepancies in sequence
lengths and feature dimensions. These differences pose challenges
for the subsequent fusion of information amongmodalities. To align
the acoustic and head movement features with the visual features,
we utilize two alignment networks that process these two types of
features separately. Both alignment networks employ a 1D-CNN
as their backbone, enabling them to effectively capture the local
features within the input sequence. After processing, we obtained
three modalities of features with aligned dimensions, including
visual features 𝑋𝑣 ∈ R𝐿×𝐷 , acoustic features 𝑋𝑎 ∈ R𝐿×𝐷 and head
movement features 𝑋𝑝 ∈ R𝐿×𝐷 .

In diagnosing depression, clinicians dynamically focus on pa-
tients’ depressive characteristics at different modalities over time
and considering them comprehensively based on the context. To

emulate this complex diagnostic approach, we utilize an attention
mechanism to adaptively determine the importance of each modal-
ity at each timestep, leveraging these weights to compile a fused
multimodal representation for each moment. Referred to as Inter-
modality Attention aggregation network, as illustrated in Figure 3
(a). First, we stack these aligned features from different modalities,
denoted as 𝑋 ∈ R𝐿×𝑀×𝐷 . This step is primarily for the ease of
subsequent unified data processing, with the attention weights for
each modality learned separately. Next, we utilize a multi-layer
fully connected network with shared weights to learn the attention
weights of each modality at different times, which are then normal-
ized using a softmax function. Finally, we multiply the attention
weights of each modality by their respective feature vectors and
sum these products, obtaining a fused feature that incorporates the
significance of each modality over all times, defined as 𝐹 ∈ R𝐿×𝐷 .
This method involves a linear combination of each feature based on
attention weights, proves to be much faster andmore space-efficient
in practice. The Attention aggregation calculation formula is as
shown in Equation 1, where𝑊𝑚 represents a trainable parameter,
𝑊𝑚 ∈ R𝐿×1×𝐷 .

𝐹 =

𝑀∑︁
𝑖=0

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑚𝑋
𝑇 )𝑋 (1)

3.4 Sequence encoding and aggregation (SEA)
The complex interrelations between depressive characteristics at
different times may contain subtle clues of depression. To cap-
ture these clues, we utilize a self-attention-based Encoder module
to encode the input sequence. The Encoder consists of multiple
Blocks, each comprised of a self-attention network and a fully con-
nected layer. Within a Block, the process begins with a Multi-Head
Attention layer, followed by a residual connection and Layer Nor-
malization, then fed into a Feed Forward network, with multiple
Blocks repeating this process to finally output a sequence. Addi-
tionally, the input vectors are not fed directly into the Encoder but
are first augmented with Positional Encoding, which is crucial for
processing time-series data. The self-attention calculation formula
is as shown in Equation 2, where 𝑄 , 𝐾 , and 𝑉 represent the query,
key, and value vectors, respectively. 𝑂 ∈ R𝐿×𝐷 denotes the output
obtained from self-attention computations that encompasses global
relationship information.

𝑂 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 (2)

We implemented a method similar to the Inter-modality attention
aggregation described in Section 3.3 to aggregate temporal infor-
mation, referred to as Temporal attention Aggregation network,
as illustrated in Figure 3 (b). The Temporal Attention aggregation
network dynamically focuses on the significance of each moment
within the input sequence, condensing long sequences into a fixed
representation that encompasses the significance of all temporal
aspects. 𝑂 , after the Temporal Attention Aggregation network, is
transformed into a fixed-size depression representation 𝐸 ∈ R𝐷 .
Finally, this representation is passed through a classification net-
work based on Multilayer Perceptrons (MLPs) to output the final
depression assessment results.

3
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Figure 2: Overall framework of the proposed method MDDR. The Multi-modal feature Extraction module extracts multiple
pre-defined features from raw audiovisual data, including visual features 𝑋𝑣 , acoustic features 𝑋𝑎 and head movement features
𝑋𝑝 . The FAA module aligns and stacks these features into 𝑋 ∈ R𝐿×𝑀×𝐷 . Processed by the Inter-modality Attention aggregation
network to produce 𝐹 ∈ R𝐿×𝐷 . After that, the SEA module uses a self-attention-based Encoder to process 𝐹 and produce
𝑂 ∈ R𝐿×𝐷 , followed by the Temporal Attention aggregation network that yields a representation 𝐸 ∈ R𝐷 . Finally, 𝐸 is processed
by a classification network to produce the final depression assessment results.

Figure 3: We utilized two different Attention aggregation
network to separately aggregate information across modal-
ities and over temporal sequences. (a) The Inter-modality
Attention aggregation Network. (b) The Temporal Attention
aggregation network.

3.5 Depression Recognition Loss (DR)
In clinical practice, depression scores obtained through interviews
and scales are usually range values, and doctors categorize scores
within the same range into one category [39]. Therefore, we de-
signed a loss calculation method suitable for depression assessment

(DR), which introduces a range discrimination hyperparameter 𝛿
aimed at reducing the model’s sensitivity to outliers and ensuring
convergence of prediction results within a specified range. Specif-
ically, when the predicted value and the target value are in the
same category and the prediction error is less than 𝛿 (𝑙𝑜𝑠𝑠 ≤ 𝛿 ),
the model’s predictions can be considered consistent with clinical
diagnoses. In this case, we multiply the loss by a very small weight
𝑤 to minimize the gradient impact from the current sample. In all
other cases, the Huber loss is applied to calculate the loss. Huber
loss is a loss calculation method that combines the advantages of
Mean Square Error (MSE) and Mean Absolute Error (MAE), offering
robustness against outliers.[40].

𝐿𝛿 (𝑦, 𝑓 (𝑥)) =
{
𝑤𝐿𝐻 , if(𝑦, 𝑓 (𝑥)) ∈ 𝐶 ∧ |𝑦 − 𝑓 (𝑥) | ≤ 𝛿
𝐿𝐻 , other

(3)

The DR loss calculation formula as shown in Equation 3 , where 𝑦
represents the target value, 𝑓 (𝑥) represents the predicted value. 𝐶
denotes a specific depression category,𝐿𝐻 is theHuber loss function.
𝑤 is a minimal weight value, set here as 0.1. The hyperparameter 𝛿
can be selected through cross-validation for optimal value.
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4 EXPERIMENTAL SETUP
4.1 Dataset
We conducted extensive experiments on theAVEC2013 andAVEC2014
audiovisual depression datasets [30, 31]. These are the currently
known two public datasets containing original video data of patients
with depression, providing conditions for our research to capture
depressive features from raw audiovisual data. The AVEC2013 de-
pression dataset comprises 150 videos from 82 participants, with
an average video length of about 25 minutes. Each video docu-
ments participants performing a series of tasks, including sustained
vowel phonation, speaking loudly, counting from 1 to 10, among
others. The AVEC 2014 depression dataset contains 300 recorded
videos from 84 participants, with an average video length of about
2 minutes. It encompasses two types of recordings: one in which
participants loudly read excerpts from the German fable "The North
Wind and the Sun" and another where they answer routine ques-
tions.

Each video is labeled with an assessment based on the Beck
Depression Inventory (BDI-II), representing its level of depression.
The BDI-II is the most widely used self-rating questionnaire re-
lated to depression, extensively employed for detecting depressive
symptoms in the general population and assessing the severity
of depression in psychiatric patients [38]. It consists of 21 ques-
tions measuring aspects of depression, including typical symptoms
such as sadness, guilt, suicidal thoughts, and lack of interest. BDI-II
scores range from minimal (0-13), to mild (14-19), moderate (20-28),
and severe (29-63).

4.2 Evaluation Metrics
The model performance is evaluated using Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), both of which are
used to measure the degree of deviation between predicted values
and target values. RMSE represents the square root of the average
squared differences between predicted values and target values.
MAE represents the average absolute deviation between predicted
values and target values. The definitions of MAE and RMSE are as
follows:

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑥𝑖 | (4)

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖 )2 (5)

Where 𝑁 is the total number of samples, 𝑥𝑖 is the predicted value
for the 𝑗-th sample, and 𝑥𝑖 is the true value for the 𝑖-th sample.

4.3 Implementation details
Considering the redundancy in video data, we extracted one frame
out of every 100 for AVEC 2013 and four frames out of every 100
for AVEC 2014, cropping the images to a size of 224×224 pixels. We
utilize facial emotion pre-trained model to extract visual features
from facial images, resulting in 2048-dimensional deep representa-
tions. We use the audio processing library librosa to extract audio
signals from videos with a sampling rate of 16000 Hz. We utilize
speech pre-trained model to extract acoustic features, resulting in
1024-dimensional deep representation. Using the open-source tool

OpenFace, we extract head pose and gaze features from the face
images after frame extraction, obtaining a feature dimension of 12.
For missing sequence features, we use zero-padding to ensure that
each sample sequence length is consistent.

We employed the PyTorch deep learning framework for all ex-
periments, which were conducted on AMD Ryzen 9 5900HX with
GeForce RTX 3080 hardware. In our method, we adopted the Sto-
chastic Gradient Descent (SGD) algorithm with a momentum of 0.9
and a weight decay of 0.0005. The initial learning rate was set to
0.001, employing learning rate decay (the learning rate is multiplied
by 0.1 every 50 training rounds). The batch size was set to 16. We
utilized DRLoss as the loss function, with hyperparameters set to 2.
Data normalization was performed using LayerNorm, with ReLu as
the activation function and a dropout rate of 0.1. The AL-CNN uses
three 1D convolutional layers for acoustic features with strides (5, 5,
2), kernels (10, 5, 3), and filters (128, 256, 512), and a single layer for
head movement features with a stride of 1, a kernel size of 1, and
512 filters. The hidden dimension of the sequence Encoder module
is 2048, the number of heads in the multi head attention model is 8,
and the number of encoder layers is 6. The classification network
employs two fully connected layers, with a hidden layer dimension
of 128.

4.4 Baseline
We introduce the baselines compared in our experiments as follows,
including common base classifiers and novel deep learning methods.

LPQ[32, 33]: This approach employs artificial features such as
Local Phase Quantization (LPQ) to extract features of patients’ facial
expressions. However, this method is susceptible to changes in the
external environment, can only represent spatial information, and
fails to capture dynamic information.

Two-stream[19, 29]: This approach utilizes convolutional neural
networks to extract static features from video frames and employs
optical flow or temporal pooling methods to capture the dynamic
features of the video. Finally, the results from both streams are
aggregated to determine the ultimate depression outcome.

C3D[7, 21, 23]: 3D convolutional neural network can simulta-
neously extract spatial and temporal features from 3-dimensional
data, making them more suitable for video data modeling. However,
the number of parameters in 3D CNN is much larger than in 2D
CNN, and due to hardware, memory, and runtime limitations, they
cannot model excessively long video sequences at once.

RNN[18, 20]: This approach uses 2D CNN to extract static fea-
tures from video frames or employs 3D CNN to extract short-term
spatio-temporal features from video clips. Then, recurrent neural
networks (RNN, LSTM) are used to further learn global spatio-
temporal information from sequential features, facilitating depres-
sion assessment.

Attention[17]: The authors utilize the ResNet-50 network to
learn frame-level features from the video, outputting a set of fea-
ture vectors. Subsequently, two cascaded attention modules are
employed to adaptively learn the weights of different facial images,
generating an aggregated representation. Finally, a regression layer
uses the aggregated features to produce a depression score.

AUs[28]: The authors use Facial Action Units (AUs) as the un-
derlying features for each frame and employ spectral heatmaps
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and spectral vectors to characterize multi-scale spatio-temporal
information in videos. Subsequently, the constructed spectral rep-
resentations are fed into Convolutional Neural Network (CNN) and
Artificial Neural Network (ANN) for depression analysis.

5 EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Comparative experimental results
We compared our proposed method with the latest results on
the AVEC2013 and AVEC2014 audiovisual depression datasets, as
shown in Table 1. Our method outperforms all schemes in the ta-
ble, achieving state-of-the-art results. In AVEC2013, our method
improved the MAE results by 3.8% compared to the previous state-
of-the-art approaches. In AVEC2014, both RMSE and MAE results
saw improvements of 3.5% and 0.4%, respectively, against prior
state-of-the-art methods. Specifically, 1) Methods using deep neural
networks surpassed those relying on manual features (LPQ) [30–
33]. 2) Our approach exceeded the performance of all convolutional
neural network methods [8, 21]. Such methods focusing solely on
the spatial features and overlooking the temporal features, which
impacts model accuracy. 3) Our method also outperformed both
Dual-stream and recurrent neural network approaches [7, 20, 29].
Such methods primarily focuses on the temporal changes in facial
spatial features, and the interrelations between spatial features at
different times have not been adequately addressed, resulting in lim-
ited model effectiveness. 4) Our method surpassed those using other
pre-trained models [17, 19, 20]. Interestingly, although both [19]
and [20] employed Dual-stream approaches and used pre-trained
models to extract facial features, Melo et al. utilized a face recogni-
tion pre-trained model that is more closely related to the task of
depression recognition, yielding better results. Notably, we found
that attention-based methods are effective [17, 25]. For example,
[25] utilized two attention modules to capture facial depression
characteristics in patients, achieving commendable depression de-
tection results even without the use of pre-trained models. Further-
more, Song et al. employed additional low-dimensional features
related to emotions, such as Facial Action Units (AUs) [28]. This
approach also yielded favorable results, providing new insights for
our subsequent research.

5.2 Ablation study
To further validate the effectiveness of each module we designed,
we conducted extensive ablation experiments.

5.2.1 Ablation Study on Pre-trained models. To assess the effec-
tiveness of facial emotion pre-trained models, we conducted ex-
periments under three conditions: using models pre-trained on
AffectNet[43], using models pre-trained on ImageNet[44], and with-
out using any pre-trained models, as shown in Table 2. The results
indicate that using facial emotion pre-trained models trained on Af-
fectNet significantly enhances model performance, outperforming
other scenarios considerably. Compared to usingmodels pre-trained
on ImageNet, RMSE and MAE improved by 14.3% and 19.2%, re-
spectively, in AVEC2013. In AVEC2014, RMSE and MAE increased
by 13.9% and 21.7%, respectively. Using facial emotion pre-trained
models enhances the focus on facial expression details, thereby
extracting more effective features of expressions. Such features are

Methods AVEC2013 AVEC2014
MAE↓ RMSE↓ MAE↓ RMSE↓

Baseline[30, 31] 10.88 13.61 8.86 10.86
LPQ + Geo [32, 33] 7.86 9.72 8.20 10.27
Concat+LSTM[18] \ \ 7.91 9.98
Two-DCNN [29] 9.82 7.58 7.47 9.55
C3D+RNN [7] 7.37 9.28 7.22 9.20
Two-Stream[20] 7.04 8.93 6.86 8.78
C3D+atten[23] 6.83 8.46 6.78 8.42
C3D+Pool [21] 6.40 8.26 6.59 8.31
LGA-CNN[25] 6.59 8.39 6.51 8.30

ResNet + atten [17] \ \ 6.37 8.43
ResNet+distribution[8] 6.30 8.25 6.15 8.23

Two-stream[19] 5.96 7.97 6.20 7.94
AUs[28] 6.16 8.10 5.95 7.15

Proposed Approach 5.98 7.80 5.75 7.12

Table 1: Comparison of our method with recent other meth-
ods on the AVEC 2013 and AVEC 2014 datasets

highly correlated with depression and enable the model to general-
ize facial depression features from limited training data, which is
crucial for depression recognition tasks.

Pre-trained AVEC2013 AVEC2014
MAE↓ RMSE↓ MAE↓ RMSE↓

\ 9.86 10.53 9.45 10.93
ImageNet 7.13 8.92 7.0 8.11
AffectNet 5.98 7.80 5.75 7.12

Table 2: Result of the study on Pre-training models

5.2.2 Ablation Study on multiple modalities. To assess the impact
of different modal information on depression assessment, we com-
pared the effects of a single visual modality with those of integrated
multiple modalities information, as shown in Table 3. Experiments
indicate that although visual modalities have the potential to con-
tain abundant depressive cues, indicators of depression are not
confined to visual cues alone. In fact, these indicators also encom-
pass other modalities such as the patient’s speech patterns and
head movements. In our experiments, integrating multimodal in-
formation, including audio and head movement, significantly en-
hanced model performance. These results validate our hypothesis
that integrating information from various modalities enhances our
comprehensive understanding of patients’ mental states, thereby
improving the accuracy of depression detection.

5.2.3 Ablation Study on Dual-Attention aggregation module. To as-
sess the effectiveness of our proposed Dual-Attention aggregation
modules, we conducted experiments on depression assessment re-
sults with the FAA module removed, the SEA module removed, and
both modules in use, as shown in Table 4. The results show a signif-
icant decline in performance when either module is removed. This
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Figure 4: The experiment was conducted on the AVEC2014 dataset, employing different loss functions to obtain depression
assessment results. Different colors represent different categories of depression severity, with red indicating outliers where the
predicted values do not match the target value category. (a) represents the depression assessment results using DR loss. (b)
represents the depression assessment results using Huber loss.

Model AVEC2013 AVEC2014
MAE↓ RMSE↓ MAE↓ RMSE↓

v 6.32 8.11 6.21 7.76
a 8.55 10.25 8.76 9.94
p 9.53 10.24 9.0 10.01

v+a+p 5.98 7.80 5.75 7.12

Table 3: Result of the study on multiple modalities

confirms our hypothesis: Firstly, the characteristics of depression in
patients change over time across various modalities in depression
diagnosis. The FAA module dynamically learns the importance
of different modalities over time, enabling effective integration of
multimodal information. Secondly, patients’ depressive manifesta-
tions are often highly concealed. The SEA module, by capturing
the interrelations among features fused at different times within
videos, enabling the detection of subtle depression clues hidden
within complex temporal relationships. These considerations are
crucial for a detailed and accurate depression diagnosis. Notably, the
method integrating both FAA and SEA modules achieved the best
results, with RMSE and MAE reaching 7.12 and 5.75, respectively.

Methods AVEC2013 AVEC2014
MAE↓ RMSE↓ MAE↓ RMSE

FAN 6.85 8.55 6.22 7.65
SAN 6.68 8.36 6.13 7.32

FAN+SAN 5.98 7.80 5.75 7.12

Table 4: Result of the study on the Dual-Attention aggrega-
tion module

5.2.4 Ablation Study on DR Loss. To verify the effectiveness of
our proposed DR loss, experiments were conducted to compare

depression assessment results using different loss calculation meth-
ods. According to the classification method in Section 4.1 using the
BDI-II, depression severity is categorized into four levels: minimal
(white, circle), mild (green, triangle), moderate (yellow, square), and
severe (blue, diamond) [38]. Red dots represent outliers, indicating
data points that do not fall into the same category as their actual
depression level. All true values and predicted values were plotted
on one graph, as illustrated in Figure 4. The results show that the
number of outliers with the Huber loss method was 47, while with
the DR loss method, it was 43. Our loss calculation method resulted
in fewer outliers and depression scores within the same category
being closer together, which also aligns more closely with clinical
diagnostic outcomes in real-world scenarios.

6 CONCLUSION
In this paper, We propose a novel Multi-modal Dual-Attention
aggregation architecture for depression recognition (MDDR). It ex-
tracts multiple modalities features from patient video as inputs and
employs two Attention aggregation modules to capture the com-
plex dynamics between features from various modalities over time,
facilitating accurate and efficient automatic depression assessment.
Additionally, we propose a loss calculation method (DR) suitable
for depression assessment. Our method was evaluated on two stan-
dard depression audiovisual datasets (AVEC2013 and AVEC2014),
demonstrating its effectiveness and superiority.

Due to the scarcity of data, the method of extracting depression
features from video data using complex deep neural networks is
limited. In future work, we will focus on mining more effective
and generalized depression features from small sample data. Fur-
thermore, we will collect more data from depression patients and
establish a multimodal database of depression patients (including
EEG, physiological indicators, etc.) to enhance our research.
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