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Abstract—The gasoline consumption market demonstrates sig-
nificant brand loyalty, with consumers often preferring specific
gas stations. To enhance customer retention and manage price
fluctuation impacts, some companies have adopted price com-
mitment strategies, assuring consumers they will not pay more
than a predetermined future price, thus mitigating purchasing
risks. However, predicting customer churn in the price com-
mitment scenario is challenging due to the lack of historical
churn data specific to these scenarios. To address the problem,
we introduce the Enhanced Feature Adaptation Network in
Price Commitments (EFANPC) model. The EFANPC model
employs multi-source domain adaptation (MDA) techniques to
transfer knowledge from various source domains without price
commitments to the target domain with price commitments. It
incorporates a newly designed loss function that considers domain
distances in both price commitment and regular scenarios, effec-
tively addressing the unsupervised customer churn prediction
problem under price commitments. We develop features that
reflect consumer purchasing behaviors and introduce a feature
selection method combining both common and domain-specific
features. This method captures the unique consumer behavior
characteristics related to churn under price commitments for
each source domain. Additionally, to tackle the challenges of
insufficient samples and class imbalance in the source domain, we
propose a method that balances class weights and utilizes samples
from all source domains for each classifier’s learning, enhancing
predictive performance. The EFANPC model’s performance is
validated through a case study in North China, demonstrating
its effectiveness in predicting churn and offering practical insights
for gasoline companies.

Index Terms—Price Commitment Strategy, Customer Churn
Prediction, Multi-source Domain Adaptation

I. INTRODUCTION

In the gasoline consumption market, a substantial segment
of consumers demonstrates brand loyalty, consistently choos-
ing gas stations for refueling [1]. For gasoline retail businesses,
attracting and retaining customers is essential for success.

Corresponding author: xi.zhang@pku.edu.cn

Therefore, given the impact of gasoline price fluctuations
on consumer choices, and drawing inspiration from effective
promotional strategies in other scenes such as ticket sales [2],
goods sales [3], and order procurement [4], some companies
have adopted a price commitment marketing strategy. This
approach guarantees that enrolled consumers will not pay more
than the committed price during a designated future period, as
the actual payment price will be the lower of the committed
price or the market selling price at that time. Price commit-
ment mitigates purchasing risks for consumers [2], offering
a significant assurance for their gasoline needs. Although
this policy enhances consumer benefits and minimizes price
volatility risks during its validity, the risk of consumer attrition
persists. Therefore, identifying churn consumers under the
price commitment is crucial.

In fact, the price commitment policy substantially affects
consumer purchasing decisions [3]. During periods of market
price increases, certain consumers, identified as price-sensitive,
may opt for refueling at stations offering price commitments,
thus showing a reduced propensity to switch stations. Further-
more, consumers with frequent refueling needs do not alter
their consumption patterns in anticipation of price increases;
instead, they tend to refuel subsequent to price reduction.
Consequently, assessing the churn risk among participants of
the price commitment campaign, especially in light of sales
price volatility, emerges as a crucial concern that requires
focused examination. Traditional churn prediction methods
rely on static identity features [5] or dynamic behavior features
[6]. These methods train machine learning models on historical
data with churn labels and use the trained models to predict
customer churn. However, predictive methodologies for con-
sumer churn within the price commitment context are scarce,
and an in-depth analysis of consumer behavior under these
conditions is lacking. As this campaign is initiated for the first
time, predicting consumer future behavior remains speculative,



evidenced by the absence of churn labels, as shown in Figure 1.
The enterprise currently lacks direct correspondence between
consumer consumption behavior and churn under the circum-
stances of price commitment. Therefore, leveraging existing
techniques for this classification challenge proves impractical.

Nevertheless, companies possess consumer consumption
data in traditional scenarios (no price commitment scenarios)
from multiple gasoline stations in the local and neighboring
areas. This data allows for the identification of consumer attri-
tion based on their consumption patterns following their last
transaction. Given the similarity between these two scenarios,
leveraging the available data to train models and applying
them to the target problem [7], which can be accomplished
through the multi-source domain adaptation (MDA) technique
in transfer learning (TF) [8]. The approach enables the adap-
tation of knowledge from multiple source domains to improve
the performance on the target domain, thereby addressing the
classification challenge effectively.

However, several critical issues arise in multi-source domain
adaptation. Due to the absence of customer labels under price
commitments, data from different sources may differ in feature
space, data distribution and label. Effectively leveraging these
heterogeneous data from general consumption scenarios to
address the issue of customer churn prediction under price
commitments is challenging. Additionally, consumption data
tends to be sparse, making it difficult to identify features
that positively contribute to label prediction across different
domains. Furthermore, source domain data is often insufficient
and imbalanced, presenting another challenge in multi-source
domain adaptation.

To overcome the aforementioned challenges, we present
a novel multi-source domain adaptive model Enhanced Fea-
ture Adaptation Network in Price Commitments (EFANPC)
for predicting consumer churn, specifically within the price
commitment. By leveraging feature transformation, we iden-
tify consumer consumption data from regions lacking price
commitment initiatives as the source domain. This approach
establishes a functional link between consumer behavior and
churn in these regions. For each region, unique feature selec-
tion functions are developed to transpose the consumer data
from the source to the target domain’s feature space, which
encompasses price commitment conditions. In the price com-
mitments, considering the insufficient quantity and imbalance
of classes in the source domain samples, we propose the new
cross entropy function and domain distance functions. Specif-
ically, our main contributions are summarized as follows:

1. We present the EFANPC model based on MDA, incor-
porating a newly designed loss function that considers domain
distances in both price commitment and regular scenarios. This
model effectively addresses the unsupervised customer churn
prediction problem under price commitments.

2. We have independently developed features that reflect
consumer purchasing behaviors and introduced a feature se-
lection method that combines both common and domain-
specific features. This method effectively captures the unique
consumer behavior characteristics related to churn under price

commitments for each source domain.
3. To tackle challenges of insufficient samples and class

imbalance in the source domain, we propose a method that
balances class weights and utilizes samples from all source
domains for each classifier’s learning, significantly enhancing
predictive performance.

This article is structured as follows. Section II presents a
review of the pertinent literature. Section III details the pro-
posed EFANPC method. Section IV validate the performance
of the proposed method through a real case study in North
China. Section V gives conclusions and future work.

II. LITERATURE REVIEW

In the section, we introduce the development of customer
churn prediction methods. Then, we propose the effectiveness
of transfer learning, including multi-source domain adaptation
methods, and analyze their limitations. The specifics are
detailed in the following.

A. Churn prediction

In the contemporary, highly competitive business environ-
ment, customer churn has become a critical concern across
various sectors [9]. The phenomenon of customer churn, po-
tentially diminishing a firm’s long-term profitability, highlights
the essential role of accurately predicting and identifying
customers at risk of churn. Customer churn prediction employs
a data-driven methodology, which includes the analysis of
historical data and the application of machine learning and
statistical models, to anticipate which customers might dis-
continue their services and to implement strategies aimed at
reducing churn rates. Jens et al. [10] concentrated on predict-
ing consumer lifetime within an anonymous, location-based
social network. Through extensive testing, they demonstrated
that simplifying the prediction challenge to a binary decision
significantly enhances the effectiveness of lifetime prediction
models.

Traditionally, churn prediction analyses have predominantly
focused on static customer attributes to determine their impact
on the likelihood of churn. De et al. [11] explored the
relationship between demographic attributes, including age,
gender, income, and the propensity for churn, highlighting
the significant influence of geographic location on churn
behaviors. Similarly, Rajamohamed et al. [5] investigated
churn prediction among credit card holders by examining
the correlation between characteristics such as age, education
level, marital status, and churn likelihood. Their findings
reinforce the critical role that specific static features play in
churn prediction.

Recent studies increasingly address the influence of con-
sumer dynamic behavior on churn likelihood, especially under
data privacy constraints that limit companies to accessing only
consumers’ purchase histories rather than personal identifiers
like phone numbers. This highlights the importance of basing
future churn predictions on consumption behavior character-
istics. In churn prediction, prevalent methodologies include



Fig. 1. Customer consumption history and future churn window.

tree-based models, binary classification sequence models, Re-
current Neural Network (RNN)-based solutions, and survival
analysis for predicting consumer return times. Wu et al. [9]
introduced the Multivariate Behavior Sequence Transformer
(MBST), incorporating dual attention mechanisms to analyze
temporal and behavioral data independently, and integrated a
tree-based classifier for enhanced churn prediction, markedly
outperforming existing models. Similarly, Georg et al. [6]
developed an RNN survival model, RNNSM, which surpasses
traditional methods in distinguishing between returning and
non-returning customers in extensive e-commerce datasets.

Nonetheless, the niche of churn prediction in the price
commitment scenarios remains underexplored. Price commit-
ments may alter consumer behaviors around market price
changes, affecting the dynamic relationship between consump-
tion behaviors and churn. Furthermore, existing research often
reduces churn prediction to a binary classification challenge,
overlooking the varying significance of non-churning cus-
tomers. This gap necessitates a dedicated solution for predict-
ing gasoline consumer churn in price commitment scenarios.

B. Transfer Learning

In recent years, transfer learning has emerged as a crucial
paradigm in the churn prediction, aiming to enhance the
generalization capabilities and performance of models across
different domains or data sources [12]. The fundamental
challenge of transfer learning lies in effectively leveraging
the knowledge gained in the source domain with abundant
labeled data to improve learning tasks in the target domain
with limited or unlabeled data. Various techniques have been
proposed to address challenges related to domain shifts, taking
into account differences in data distribution, feature spaces,
or class labels between different domains. Transfer learning
has found applications in various domains, including computer
vision [13] and natural language processing [14].

Single-source domain adaptation (SDA) is a pivotal concept
in transfer learning, aiming to address the knowledge transfer
challenge from one domain (source domain) to another (target
domain) [15]. The objective of single-source domain adapta-
tion is to employ methodologies that enable models trained
on the source domain to generalize more effectively to the

target domain. This typically involves modeling the distribu-
tion differences between the source and target domains and
implementing measures to mitigate these disparities [7]. One
of the primary challenges is learning in the absence of target
domain labels, as the target domain often lacks labeled samples
[16]. Consequently, SDA methods strive to identify shared
features between the source and target domains and devise
strategies to counter domain-specific differences. Yang et al.
[17] proposed a novel approach for deep semantic information
propagation in scenarios with an unlabeled target domain and
a labeled source domain, utilizing a graph attention network
to achieve semantic propagation and transfer. Zhang et al. [18]
introduced an optical image matching model that employs a
domain adaptation (DA) method with a composite loss func-
tion to enhance the performance of unsupervised matching.
However, while Single Domain Adaptation (SDA) methods
often focus on a single source domain, they struggle to fully
leverage multi-source information for improved adaptability.
Consequently, the limitations of SDA become apparent when
dealing with more complex and diverse real-world problems.

As an extension of SDA, Multi-source Domain Adaptation
(MDA) deals with situations where data comes from multiple
different sources or domains. Real-world data often exhibits
differences in distribution, feature space, or data volume across
various sources. Multi-source domain adaptation involves the
integration of data from multiple source domains to enhance
a model’s generalization performance in a target domain [19].
This method necessitates modeling intricate relationships be-
tween diverse domains, taking into account variations among
source domains, and understanding their reciprocal influence
on the target domain [20]. Typically, multi-source domain
adaptation methods incorporate domain alignment to mitigate
distribution differences between domains, thereby improving
the model’s adaptability [8]. Xu et al. [21] modeled the
joint distribution of observed values on different Markov
networks, utilizing data from multiple source domains for
label prediction. Ye et al. [22] proposed a Multi-Source Do-
main Adaptive Network (MSDAN) based on transfer learning,
applied to battery health degradation monitoring under var-
ious operating conditions. However, traditional multi-source



domain adaptation requires a substantial amount of source
data and demands a well-balanced distribution across different
categories. Additionally, conventional MDA methods impose
high sample quality requirements on source domain data,
leading to suboptimal performance when dealing with dirty
data in the source domain samples.

III. METHODOLOGY

In this section, to enhance the accuracy of consumer churn
prediction, we have meticulously crafted a churn prediction
framework that is tailored to the intrinsic characteristics of
the data at hand. The framework is composed of two principal
components: feature extraction and the design of multi-source
domain classifiers, which is shown in Figure 2. The detailed
structure is delineated as follows.

A. Notation and Problem Statement

We first present the consumption data of the N gasoline
customers. Among them, at every time point t from 1 to cycle
T , each customer i will have a money consumption mi,t.
The information of the ith customer at all times constitutes
the money consumption vector mi = [mi,1,mi,2, ...,mi,T ].
In fact, due to the consumption of gasoline by private cars,
customers will generally wait a few days to refuel after the
completion of the refuelling. Therefore, We say that transac-
tion of consumer i occurs at time t when mi,t > 0. The non-
zero points mi,t in the matrix correspond one-to-one indicating
that the refueling date of customer i is time t, and mi is a
sparse vector.

In this problem, we need to predict the churn of customers
in the future period based on their fuel consumption during
the full activity cycle. Specifically, for each consumer, its daily
money consumption before time T are known, and its money
consumption in the period from T +1 to T +W is predicted.
Mathematically speaking, when the time T + W arrives, the
vector m will expand on the original basis to construct a new
vector mF

i with extended consumption period, expressed as:

mF
i = [mi,1,mi,2, ...,mi,T+W ]. (1)

In fact, according to the consumption situation in the
price commitment activity cycle T , the churn situation and
consumption level of consumers in the future window W can
be classified. According to the method defined in the literature
[23], [24], a customer is considered to have churn when it does
not continue to purchase the product for a long period of time
∆t. Specifically, each customer i in the dataset is labelled.
Specially,

yi =

{
0, if C(i, [T + 1, T +W ]) = 0,
1, otherwise . (2)

In Equation 2, the label yi is set to 0 if there is no consump-
tion during this period, and 1 otherwise. The consumption
C(i, [T + 1, T +W ]) over a time interval [T + 1, T +W ] is
computed as follows:

C (i, [T, T +W ]) =

T+W∑
t=T

mi,t. (3)

B. Feature Extraction

According to the consumer behavior characteristics of con-
sumers, by extracting common features and specific features
between different domains, and building corresponding classi-
fiers, the type can better adapt to the data of the target domain,
improve the generalization ability, and carry out information
transfer between different source domains, so as to achieve
better performance on the target domain.

A shared feature extractor is a model component that is
responsible for extracting shared feature representations from
data from multiple source domains. This component builds
a shared feature space by learning features that are common
in the source domain data to capture similarities and com-
monalities between different source domains. Considering the
sparsity of consumer consumption data, if the consumer’s daily
consumption amount is taken as the input, the dimension and
complexity of the model will be increased, and even lead to
overfitting of subsequent training. Therefore, this paper adopts
the extraction method of construction features, namely:

x′
i = f(xi), (4)

where xi = mi = [mi,1,mi,2, ...,mi,T ] represents the
original consumption features of customer i, and x′

i =
[x′

i,1, x
′
i,2, ..., x

′
i,n] denotes the newly generated feature vector

for customer i, with f(·) being the shared feature extraction
function. Here, n << T , indicating a substantial dimension-
ality reduction in the original data. Specifically, referring to
the feature extraction approach outlined in [25], the extracted
features encompass in Table I. Upon completion of the shared
feature extraction, the original consumption features from
the source and target domains are transformed into smaller-
dimensional feature vectors, facilitating their subsequent uti-
lization.

Then, source-specific feature extractors refer to a feature
extraction module tailored to different data sources. They are
adaptable to differences among data sources and aligned with
the objectives of the task, yield highly informative features
that serve as valuable input for model training and prediction.
Specially,

x′k
i = gk(x

′
i), (5)

where gk(·) serves as the source-specific feature extractor for
the kth source, incorporating the feature selection method
proposed by [26]. This function effectively identifies and
selects features from each source domain that are pertinent
to predicting outcomes in the target domain. Subsequently,
selected features are mapped into a new feature space, facili-
tating improved predictive performance.

C. Multi-domain Classifier Learning

1) Classifiers on insufficient and imbalanced data: Fol-
lowing the approach proposed in [27], the process of sample
filtering necessitates an evaluation of the transferability of the
data from the source domain to the target domain. Initially,



Fig. 2. Framework of EFANPC.

TABLE I
VARIABLES ABOUT THE CUSTOMERS IN THE PRICE COMMITMENT

SCENARIO.

Variable Index
Total Number of Purchases x[1]

Average Time Interval Between Purchases x[2]
Standard Deviation of Purchase Interval x[3]

Maximum Purchase Interval x[4]
Time Interval from Last Purchase to Present x[5]
Total Fuel Consumption at the Gas Station x[6]

Average Fuel Consumption at the Gas Station x[7]
Maximum Fuel Consumption at the Gas Station x[8]

Fuel Consumption Median at the Gas Station x[9]
Total Monetary Expenditure at the Gas Station x[10]

Average Monetary Expenditure at the Gas Station x[11]
Maximum Monetary Expenditure at the Gas Station x[12]

classifiers from the source domain are individually optimized
with respect to the loss function, as detailed below:

Psk = argminLcls = argmin
Psk

LCE(Psk(gk(f(xsk))),ysk
),

(6)

where (xsk ,ysk
) ∈ Dsk and LCE(·) is the cross-entropy loss

function on labeled source data. However, when the number of
single source domain samples is insufficient, it is a great choice
to use all source domain samples as the training set of each
specific classifier to avoid overfitting [28]. At the same time,
in view of the imbalanced number of labels in the sample,
in order to improve the overall prediction performance, it is
significant to set different weights for labels to reduce the
impact of different sample numbers [29]. Since the number
of consumers with labels in each source gasoline station is

also limited and the proportion of labels is imbalanced, this
paper redesigned the classification loss function to address this
problem, which is specifically written as follows:

Lcls+ = − 1

ns

K∑
k=1

nsk∑
i=1

Hi,ky
i
sk

log(Psk(gk(f(x
i
sk
))), (7)

where K denotes the number of source domains, nsk repre-
sents the number of samples in the kth source domain, and ns

denotes the total number of samples across all source domains.
The term Hi,k represents the class weight, which is specifically
defined as follows:

Hi,k =

C∑
c=1

1(yi
sk

= c)

pc,k
, (8)

where 1(·) denotes the indicator function, while pc,k represents
the proportion of samples belonging to class c in the kth

source.

2) MMD in the price commitment scenario: Considering
that multiple source domains are typically available, the ob-
jective is to enhance the model’s performance in a target
domain through adaptive techniques. The fundamental idea
of Maximum Mean Discrepancy (MMD) is to maximize
the discrepancy between the empirical means of the feature
mappings from the two distributions Da and Db [30], as



expressed in Equation 9.

MMD (Da,Db) = sup
h∈H

∥∥∥∥∥ 1

na

na∑
i=1

h
(
gk

(
f
(
xi
a

)))
− 1

nb

nb∑
j=1

h
(
gk

(
f
(
xj
b

)))∥∥∥∥∥∥
2

H

. (9)

where H denotes a reproducing kernel Hilbert space (RKHS).
Besides, na and nb represent the number of samples from the
distributions Da and Db, respectively. The notation ∥·∥H signi-
fies the norm in the RKHS, utilized to measure the difference
between the mean embeddings of the two distributions. The
characteristic kernel function h (·) operates in H. To ensure
that the classifier trained on the source data demonstrates
effective performance on the target domain, we employ a
method of global alignment and category alignment between
the source and target data [27], as detailed:

Lk = MM
h∈H

D(Dsk ,Dt), (10)

Lc =
1

C

C∑
c=1

MM
h∈H

D(Dc
sk
,Dc

t )

− 1

2C(C − 1)

C∑
c1=1

C∑
c2 ̸=c1

(
MMD

h∈H
(Dc1

sk
,Dc2

sk
)

+MM
h∈H

D(Dc1
t ,Dc2

t )

)
, (11)

where Lk is the distance of distributions on between the kth

source domain and target domain, and Lc is that on the classes.
Dsck

and Dc
t are the kth filtered source domain and target

domain in the cth class. Regarding the price commitment, we
propose that the distribution of consumers with the same level
of price sensitivity should be approximately consistent. When
there are changes in gasoline prices, the same price fluctuation
should have a uniform impact on consumer behavior. When
selecting source domain samples, it is imperative to quantify
the influence of gasoline market price fluctuations on the
refueling behavior of various consumers, denoted as Qi

sk
. This

influence Qi
sk

is articulated as follows:

Qi
sk

=

T∑
t=1

1(t ∈ Tc)U i,t
sk
V i,t
sk

, (12)

where Tc represents the set of times when price changes occur
compared to the previous day. 1(·) is the indicator function,
and U i,t

sk
and V i,t

sk
denote the consumption interval fluctuation

factor and the consumption amount factor for consumer i in
source domain sk at time t, respectively. These are specifically
expressed as follows:

U i,t
sk

= 1(mi,t
sk

> 0 ∧ |∆T i,t
sk

− T̄ i
sk
| > ϕ), (13)

where M i,t
sk

and ∆T i,t
sk

respectively denote the consumption
amount and the time interval between the consumption of use
i at time t and their previous consumption, T̄ i

sk
denotes the

average consumption interval for consumer i within a cycle,
and ϕ indicates the threshold for the change of consumption
interval. Then,

V i,t
sk

= 1(

t+ω∑
t1=t−ω

mi,t1
sk

> 0), (14)

where ω represents the time observation radius centered
around the time point when the price changes. A higher value
of Qi

sk
indicates that the consumer’s consumption behavior is

more likely to be influenced by price changes, and this source
sample has a greater impact on classifying consumers under
price commitments. The source domain and target domain
samples are divided into different price sensitivity domains,
denoted as D′q

sk
and Dq

t , respectively. Specifically:

Lpc =

max
i

Qi
t∑

q=1

MM
h∈H

D(Dq
sk
,Dq

t ). (15)

By incorporating all the aforementioned elements, we propose
an enhanced loss function, as detailed below:

L = Lcls+ + λ1Lc + λ2Lk + λ3Lp. (16)

3) Domain Discrimination and Prediction: In order to
distinguish different domains, we construct the domain dis-
criminator Fd to determine which specific source domain each
sample belongs to. This is achieved by minimizing the domain
discrimination loss function Ldd, which is defined as follows:

Ldd =

K∑
k=1

LCE (Fd (f (xsk)) , k) ,xsk ∈ {Dsk}
K
k=1 . (17)

The trained domain discriminator Fd can be used to assess
the similarity between specific target domain samples and
different source domains. The probability list of the target
domain samples is defined as follows:

Fd (f (xt)) =
[
p1td , p

2
td
, . . . , pKtd

]
. (18)

Here, pktd denotes the probability that the sample belongs to
category k. In the subsequent prediction process, the classifica-
tion results for the target domain are weighted and aggregated
based on the probabilities of target domain samples belonging
to each source domain. Specifically, the classification predictor
for the target domain Pt is weighted and summed as follows:

Pt =

K∑
k=1

pktdPsk . (19)

After the model is established, we need to train the model
parameters, as detailed in Algorithm 1. Subsequently, the
trained classifier is used to obtain the prediction results for
the corresponding target domain samples, as shown in Formula
19.



Algorithm 1: The process of task domain prediction

Input: Source domains {Dsk}
K
k=1, target domain Dt.

Pre-trained feature extraction networks f, gk
and source predictor Psk ;

Output: Trained gk and Psk ;
1 Learn domain discriminator as in 17;
2 Calculate the weight vector of the target sample being

an insider of source domains as in 18;
3 for i = 1, i < Max iter, i++ do
4 Refine source and target data by minimizing the

function in 10 and 11;
5 Train the source domain model to the target

domain using price sensitivity under the price
commitment in 15;

6 Update gk and Psk according to 16;
7 end

IV. EMPIRICAL ANALYSIS

A. Data Description

In this study, we utilize a dataset derived from consumer
transactions at four gas stations in northern China. Three of
the gas stations represent the source domain data, depicting
traditional consumption patterns, while one gas station rep-
resents consumption under the price commitment scenario.
The labeled dataset from these three gas stations under tradi-
tional conditions includes gasoline sales records from January
1, 2021, to August 1, 2022. The unlabeled data from the
gas station under the price commitment scheme covers the
period from August 12, 2022, to December 31, 2022. The
datasets consist of several features, including customer ID
(phone number), transaction timestamp, payment amount per
transaction, and the quantity of fuel purchased per transaction.
The source domain datasets comprise 62,062, 266,041, and
194,028 records from 4,954, 12,906, and 8,967 consumers,
respectively. The target domain dataset includes 4,883 records
from 1,338 consumers who participated in the price commit-
ment scenario.

B. Experimental Setting

In our experiments, we set the time observation radius ω
to 5 days, the threshold of interval change ϕ to 5 days and
the future consumption window length W to 90. Following the
methodologies outlined in [27], [31], we defined λ1 = λ2 =
λ3 = 2

1+e−10ρ − 1, where ρ is a linearly varying parameter
from 0 to 1. Additionally, we employed a batch size of 128,
conducted Max iter = 100 iterations, utilized a learning rate
schedule with an initial value of 0.01, applied a momentum
term of 0.9, logged training progress every 10 iterations, and
incorporated an L2 regularization decay rate of 5 × 10−4 to
enhance model generalization.

C. Visualization and Analysis

To provide deeper insights into the model’s performance, we
present several visualizations and analyses. Figure 3 illustrates

TABLE II
CONFUSION MATRIX SHOWING THE CLASSIFICATION RESULTS OF THE

MODEL.

Predicted Positive
(Non-churn)

Predicted Negative
(Churn)

Actual Positive
(Non-churn) 248 90

Actual Negative
(Churn) 107 893

the mapping of the some domain data both before and after
applying the EFANPC model. This visualization helps to
understand how the model transforms the data distribution in
the different domains. Specifically, it shows how the EFANPC
model aligns the target domain data and the source domain
data, thereby improving the model’s transferability.

In addition to the visualization, we provide a detailed
performance evaluation using a confusion matrix, as shown
in Table II. The confusion matrix provides a comprehensive
breakdown of the model’s classification results, highlighting
the number of true non-churn cases, false non-churn cases,
true churn cases, and false churn cases.

From Table II, it is evident that the model demonstrates a
high true non-churn rate, which signifies its effectiveness in
accurately identifying non-churn cases. This high true non-
churn rate is advantageous as it ensures that most of the non-
churn cases are correctly classified, minimizing the risk of
falsely identifying loyal customers as churn cases. The model
also exhibits a commendable ability to detect churn cases, as
evidenced by the high true churn rate. This high true churn
rate is beneficial because it indicates that the model effectively
identifies those who are at risk of churning, thus enabling
timely interventions.

D. Results Analysis
In this section, we evaluate the model using Precision,

Recall, and F1-Score as our metrics. Precision measures the
accuracy of the model’s positive predictions, Recall assesses
the model’s ability to identify all positive instances, and the
F1-Score balances Precision and Recall, providing a compre-
hensive evaluation metric. Higher values for Precision, Recall,
and F1-Score indicate better model performance. The specific
calculation formulas are as follows:

Precision =
TP

TP + FP
, (20)

where TP represents the number of true positive instances
(correctly identified positive cases), and FP denotes the num-
ber of false positive instances (incorrectly identified positive
cases). Then,

Recall =
TP

TP + FN
, (21)

where TP is the number of true positive instances, and FN
represents the number of false negative instances (positive
cases that were incorrectly identified as negative). And

F1-Score = 2× Precision × Recall
Precision + Recall

. (22)



Fig. 3. Visualization of target domain data mapping before and after domain alignment.

TABLE III
COMPARISON OF MODEL PERFORMANCE IN CHURN PREDICTION BASED

ON VARIOUS EVALUATION CRITERIA.

Model Precision Recall F1-Score

MDDA [32] 0.59 0.68 0.64
MFSAN [31] 0.62 0.67 0.64
iMSDA [33] 0.66 0.69 0.67

EFANPC 0.70 0.73 0.72

The F1-Score is the harmonic mean of Precision and Recall,
providing a single metric that balances both concerns by
considering their relative contributions.

In comparison with existing state-of-the-art models in the
MDA domain, including MDDA [32], MFSAN [31], and
iMSDA [33], our proposed model demonstrates superior clas-
sification performance across various metrics, as shown in
Table III. Additionally, we conducted ablation experiments
to evaluate the impact of each component on the EFANPC
model’s performance. Specifically, EFANPC-all denotes the
model without the improved classification loss, optimized only
using Equation 6, and excluding class alignment, domain
alignment, and price commitment-sensitive consumer align-
ment loss functions. Subsequent ablation tests added back
these loss functions incrementally. As indicated in Table IV,
each module positively influences classification performance.

V. CONCLUSION

This study presents the EFANPC model, developed to ad-
dress the challenge of unsupervised customer churn prediction
in the context of price commitments. The EFANPC model
successfully transfers knowledge from regions devoid of price
commitments, employing a novel loss function that integrates
domain distances to enhance prediction accuracy. Through
the design of specific consumer behavior features and the

TABLE IV
THE ABLATION STUDY OF THE EFANPC MODEL CONDUCTED ACROSS A

SPECTRUM OF EVALUATION METRICS.

Model Precision Recall F1-score

EFANPC-all 0.60 0.63 0.61
EFANPC-c, k, p 0.62 0.69 0.65
EFANPC-k, p 0.63 0.71 0.66
EFANPC-p 0.65 0.72 0.69
EFANPC 0.70 0.73 0.72

implementation of a two-stage feature selection process, the
model demonstrates significant improvements in predictive
performance. A case study conducted in North China validates
the effectiveness of the EFANPC model, showing superior
performance compared to existing approaches. Additionally,
ablation studies confirm the contribution of each model en-
hancement.

Future work will aim to advance the EFANPC model by
focusing on several key areas. Firstly, we will investigate
methods to further refine the model’s adaptability to diverse
and dynamic market conditions, including varying levels of
data granularity and market volatility. Enhancing the model’s
robustness in the presence of incomplete or noisy data will also
be a priority, ensuring reliable performance across different
scenarios. Furthermore, we plan to explore the integration
of additional features and advanced techniques, such as deep
learning-based feature extraction and domain adaptation strate-
gies, to improve the model’s accuracy and generalizability.
Another promising direction is the application of the EFANPC
model in other domains with similar predictive challenges,
such as customer retention in subscription-based services or
churn prediction in the telecommunications industry. These ef-
forts will collectively contribute to the development of a more



versatile and resilient customer churn prediction framework.
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