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Abstract

Long document question answering (DocQA)001
aims to answer questions from long documents002
over 10k words. They usually contain con-003
tent structures such as sections, sub-sections,004
and paragraph demarcations. However, the005
indexing methods of long documents remain006
under-explored, while existing systems gener-007
ally employ fixed-length chunking. As they008
do not consider content structures, the resul-009
tant chunks can exclude vital information or010
include irrelevant content. Motivated by this,011
we propose the Multi-view Content-aware in-012
dexing (MC-indexing) for more effective long013
DocQA via (i) segment structured document014
into content chunks, and (ii) represent each015
content chunk in raw-text, keywords, and sum-016
mary views. We highlight that MC-indexing017
requires neither training nor fine-tuning. Hav-018
ing plug-and-play capability, it can be seam-019
lessly integrated with any retrievers to boost020
their performance. Besides, we propose a long021
DocQA dataset that includes not only question-022
answer pair, but also document structure and023
answer scope. When compared to state-of-art024
chunking schemes, MC-indexing has signifi-025
cantly increased the recall by 42.8%, 30.0%,026
23.9%, and 16.3% via top k = 1.5, 3, 5, and027
10 respectively. These improved scores are the028
average of 8 widely used retrievers (2 sparse029
and 6 dense) via extensive experiments.1030

1 Introduction031

Document question answering (DocQA) is a piv-032

otal task in natural language processing (NLP) that033

involves responding to questions using textual doc-034

uments as the reference answer scope. Conven-035

tional DocQA systems comprise three key compo-036

nents: (i) an indexer that segments the document037

into manageable text chunks indexed with embed-038

dings, (ii) a retriever that identifies and fetches039

the most relevant chunks to the corresponding040

1We will release dataset and code upon paper acceptance.

Question (a): HOW TO BAKE A CHOCOLATE CAKE?
Desired Reference Text: You can bake a chocolate cake by
following procedures: 1.Preparation: ... 2.Gather Ingredients:
... 3.Dry Ingredients Mixture: ... 4.Wet Ingredients Mixture:
... 5.Combine Mixtures: ... 6.Bake the Cake: ... (500 words)
Actual Chunks Retrieved: ... You can bake a chocolate cake
by following procedures: 1.Preparation: ... (100 words)

(a) The whole section (approx. 500 words) is required to
answer the question. The retrieved chunk only has 100 words.

Question (b): WHAT IS THE HARDWARE SPECIFICATIONS
(CPU, DISPLAY, BATTERY, ETC) OF DELL XPS 13?
Desired Reference Text: ... 11th Gen Intel Core i7 processor
... a 13.4-inch FHD InfinityEdge display ... battery life ...
backlit keyboard ... with Thunderbolt 4 ports ... (250 words)
Actual Chunks Retrieved:
1. ... an 11th Gen Intel Core i7 processor ... 13.4-inch FHD
InfinityEdge display ... (Content: Dell XPS 13, 100 words)
2. ... new M1 Pro chip ... 14-inch Liquid Retina XDR display
showcases ... (Content: MacBook Pro, 100 words)
3. ... a powerful Intel Core M processor ... 13.3-inch 4K UHD
touch display ... (Content: Dell XPS 12, 100 words)

(b) The whole section (approx. 250 words) is required to
answer the given question related to Dell XPS 13. Missing in-
formation (e.g, model name) leads to conflicting information.

Figure 1: Bad cases from fixed-length chunking due to
relevant text missing and inclusion of irrelevant text.

question, and (iii) a reader that digests the re- 041

trieved answer scope and generates an accurate an- 042

swer. Unlike the retriever (Robertson and Zaragoza, 043

2009; Karpukhin et al., 2020; Khattab and Zaharia, 044

2020a) and reader (Nie et al., 2019; Lewis et al., 045

2020; Izacard and Grave, 2021) that are vastly stud- 046

ied, the indexer received relatively less attention. 047

Existing indexing schemes overlook the impor- 048

tance of content structures when dealing with long 049

documents, as they are usually organized into chap- 050

ters, sections, subsections, and paragraphs (Yang 051

et al., 2020; Buchmann et al., 2024), i.e., structured. 052

The widely used fixed-length chunking strategy can 053

easily break the contextual relevance between text 054

chunks for long documents. Such chunking er- 055

rors can be further aggravated by the retriever and 056

the reader. Moreover, determining the boundary 057
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between chunks can be tricky, requiring delicate058

design to prevent contextual coherence disruption.059

Ideally, each chunk should represent a coherent060

and content-relevant textual span. Otherwise, it061

can lead to the exclusion of relevant information062

or the inclusion of irrelevant text, as exemplified063

in Figure 1. Our empirical study on fixed-length064

chunking reveals that setting the chunk length to065

100 results in over 70% of long answers/supporting066

evidence being truncated, i.e., incomplete. Such067

incompleteness still exists at 45%, despite an in-068

crease of chunk length to 200.2069

Meanwhile, most existing retrieval systems rely070

solely on the raw text of chunks to determine rel-071

evance to a query. While raw-text-based seman-072

tic embeddings effectively address queries seek-073

ing specific short-form details, they often fail to074

capture complete semantic essence of the text.075

When inquiring high-level information, such as076

event summaries or comparisons, raw-text embed-077

dings may fall short. Additionally, reliance on078

raw text poses practical constraints, as models e.g.,079

DPR (Karpukhin et al., 2020), E5 (Wang et al.,080

2022), BGE (Xiao et al., 2023) based on BERT (De-081

vlin et al., 2019) typically have a token limit of 512.082

This leads to potential truncation and loss of infor-083

mation during the indexing process. Zhang et al.084

(2022) attempt to embed the entire document with085

multiple representations, however, these embed-086

dings are not applicable to individual chunks.087

To mitigate aforementioned gaps, we present088

Multi-view Content-aware Indexing, termed MC-089

indexing, for more effective retrieval over long090

documents. Our method involves content-aware091

chunking of structured long documents, whereby,092

instead of employing naïve fixed-length chunking,093

the document is segmented into section chunks.094

The content-aware chunking can effective eliminate095

chunking errors. Each of these section chunks is096

then indexed in three different views, representing097

each chunk with raw-text, a list of keywords, and098

a summary. The keyword and summary view can099

provide richer but more concise representation of100

section chunks, thereby significantly enhancing the101

semantic richness of each chunk. For retrieval,102

we aggregate the top relevant chunks from each103

view. Note that the entire process of MC-indexing104

is unsupervised. We leverage on the strength of105

existing retrievers for the embedding generation of106

raw-text, keyword, and summary views.107

2More statistics of chunking errors are in Appendix A.

To our best knowledge, existing DocQA datasets 108

do not provide content structure. Hence, we trans- 109

form an existing long documents dataset, namely 110

WikiWeb2M (Burns et al., 2023), into a QA 111

dataset, by adding annotations to the documents. 112

In addition, we complement Natural Questions 113

dataset (Kwiatkowski et al., 2019) with content 114

structure, and filter only long documents for our 115

experiment. Distinct from other QA datasets, our 116

documents are longer (averaging at 15k tokens) and 117

contain detailed content structure. Our contribu- 118

tions are in fourfold: 119

• We propose a long document QA dataset anno- 120

tated with question-answer pair, document con- 121

tent structure, and scope of answer. 122

• We propose Multi-view Content-aware indexing 123

(MC-indexing), that can (i) segment the long 124

documents according to their content structures, 125

and (ii) represent each chunk in three views, i.e., 126

raw-text, keywords, and summary. 127

• MC-indexing requires neither training nor fine- 128

tuning, and can seamlessly act as a plug-and-play 129

indexer to enhance any existing retrievers. 130

• Through extensive experiments and analysis, 131

we demonstrate that MC-indexing can signifi- 132

cantly improve retrieval performance of eight 133

commonly-used retrievers (2 sparse and 6 dense) 134

on two long DocQA datasets. 135

2 Related Work 136

Chunking Methods. Chunking is a crucial step 137

in either QA or Retrieval-Augmented Generation 138

(RAG). When dealing with ultra-long text docu- 139

ments, chunk optimization involves breaking the 140

document into smaller chunks. Existing systems 141

focus on how to retrieve relevant chunks, but ne- 142

glecting how text content is chunked. In practice, 143

fixed-length chunking is a commonly used method 144

that is easy to be implemented. It chunks text at a 145

fixed length, e.g., 200 words. Sentence chunking in- 146

volves dividing textual content based on sentences. 147

Recursive chunking employs various delimiters, 148

such as paragraph separators, newline characters, 149

or spaces, to recursively segment the text. Raina 150

and Gales (2024) propose to represent each chunk 151

as a set of atomic pieces of information. How- 152

ever, these methods often fail to preserve semantic 153

integrity of critical content. In contrast, content- 154

aware chunking (Section 3.2) chunk the text by the 155

smallest subdivision according to the document’s 156

content structure. This ensures each chunk to be se- 157

mantically coherent, thus reducing chunking error. 158
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Long Document Question Answering. Tradi-159

tional retrieval methods such as BM25 and DPR160

only retrieve short consecutive chunks from the re-161

trieval corpus, limiting the overall understanding of162

the context of long documents. To overcome this163

drawback, several methods focusing on long docu-164

ment retrieval have been proposed. Nie et al. (2022)165

propose a compressive graph selector network to166

select question-related chunks from the long doc-167

ument and then use the selected short chunks for168

answer generation. AttenWalker (Nie et al., 2023)169

addresses the task of incorporating long-range in-170

formation by employing a meticulously crafted an-171

swer generator. Chen et al. (2023) convert the long172

document into a tree of summary nodes. Upon re-173

ceiving a question, LLM navigates this tree to find174

relevant summaries until sufficient information is175

gathered. Sarthi et al. (2024) utilize recursive em-176

bedding, clustering, and summarizing chunks of177

text to build a tree with different levels of summa-178

rization. However, existing methods only consider179

the retrieval of long documents from one view, lim-180

iting the semantic completeness and coherence.181

3 Methodology182

3.1 Overview of MC-indexing183

As shown in Figure 2b, MC-indexing consists of184

two stages. (1) Indexing: given a input document,185

we first chunk the document into content-aware186

chunks (Section 3.2). We then represent each sec-187

tion chunks with three distinct views: raw-text,188

keywords, and summary view (Section 3.3). (2)189

Retrieval and Question Answering: Given a user190

query, we use existing retriever to fetch top-k rele-191

vant chunks constructed by our MC-indexing. The192

query along with retrieved results are fed into LLM193

to generate the final answer.194

3.2 Content-aware Chunking195

We elaborate how Content-Aware chunking is per-196

formed in order to obtain section chunks. Given197

a piece of structured document (e.g., Markdown,198

Latex, and HTML), we first extract the table of con-199

tents of the document (or header information, in200

the event where the table of content is not readily201

available). Upon acquiring this information, we202

identify the smallest division in the document, such203

as a section, subsection, or sub-subsection, depend-204

ing on the structure of the content. It is reasonable205

to assume that these smallest divisions function as206

atomic, coherent semantic units within the docu-207

ment. The text present in each smallest division is 208

the desired section chunk. 209

Chunking text based on the smallest division, 210

as opposed to fixed length chunking, ensures that 211

information in each chunk cannot contain infor- 212

mation across two different sections. Most impor- 213

tantly, we preserve the semantic integrity during the 214

chunking process, leading to each section chunk to 215

be an atomic and coherent semantic unit. Note that 216

different sections may have a hierarchical relation- 217

ship between them. We ignore them for now and 218

assume a flat structure between different chunks. 219

3.3 Multi-View Indexing and Retrieval 220

Most dense retrieval methods primarily use raw 221

text from each chunk to determine the relevancy of 222

each chunk with respect to a given query. However, 223

raw-text alone may not fully represent the semantic 224

meaning of each chunk. Hence, we propose using 225

the summary view and the keyword view for richer 226

but more concise representation of section chunks. 227

The summary view represents each section 228

chunk with a succinct summary. It captures the key 229

information of each section. The summary can be 230

more easily fits within the dense retrieval model’s 231

maximum input limit. To compensate for the po- 232

tential omission of critical details in the generated 233

summaries, we introduce a keyword view. This 234

view characterizes each section chunk by a list of 235

essential keywords, including significant concepts, 236

entities, and terms from the section. The detailed 237

generation process of summary and keywords are 238

discussed in Section 5.7. 239

Finally, we describe the procedure for utilizing 240

multi-view indexing to retrieve top-k relevant sec- 241

tions with respect to a given question. For each 242

of the views, e.g., raw-text, summary, keywords, 243

we simply rank the sections using each view to 244

first retrieve the top-k
′

results. Setting k
′ ≈ 2k/3 245

works since empirically we expect on average a to- 246

tal of 3k
′
/2 unique results after deduplication (see 247

more details in Appendix E). Thereafter we feed 248

the retrieved results along with the given question 249

to LLM for answer generation (see Figure 10 for 250

prompt details). Note that MC-indexing is indepen- 251

dent of retriever selection. MC-indexing can utilize 252

the strengths of any existing retrievers, and further 253

improve their retrieval performance. Moreover, as 254

a plug-and-play boost for retrievers, MC-indexing 255

requires no additional training or fine-tuning to in- 256

tegrate effectively. 257
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(b) MC-indexing: document → section content → multi-view content indexing → retrieved sections → answer

Figure 2: Comparison between conventional fixed length chunking and our proposed MC-indexing.

4 Dataset Construction258

In our work, we focus on long and structured docu-259

ment, thus we collect dataset corpus based on the260

following two factors. (1) Presence of structured261

information: The content of long documents is262

usually divided into multiple sections. For exam-263

ple, a research paper is organized into various sec-264

tions such as Abstract, Introduction, Methodology265

and Conclusion. Structured documents have ex-266

plicitly labelled sections along their correspond-267

ing text. Most of the existing QA datasets (e.g.,268

SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi269

et al., 2017), Ms Macro (Bajaj et al., 2018)) do not270

include the content structure of source documents.271

Due to the absence of structure information, they272

are not considered in our work. (2) Sufficiently273

Long Document: The main focus of our study is274

on context retrieval in long documents. Short doc-275

uments, being within the LLM’s capacity, do not276

necessitate a structured layout for question answer-277

ing. Hence, to ensure the challenge of our dataset,278

we select only documents with at least 15k words.279

According to these criteria, we select Wikipedia280

Webpage 2M (WikiWeb2M) (Burns et al., 2023)281

and Natural Questions (NQ) (Kwiatkowski et al.,282

2019) datasets. We discuss dataset processing and283

annotations on these datasets in finer detail.284

4.1 Wikipedia Webpage 2M (WikiWeb2M)285

WikiWeb2M is designed for multimodal webpage286

understanding rather than QA. The dataset stores287

individual sections within each Wikipedia article.288

Thus, on top of the structured information, we an-289

notate additional question-answer pairs and their290

answer scope. We utilize GPT-4 to construct ques- 291

tions for selected articles (over 10k tokens) in Wiki- 292

Web2M. To ensure that the questions rely on long 293

answer scope span, we define the 8 types of ques- 294

tions.3 For each section given, we request GPT-4 295

(using prompt shown in Figure 6) to generate (i) 296

three questions, (ii) the corresponding answers to 297

the each question, and (iii) the answer scope for 298

each answer. We then evaluate the retrieval ef- 299

ficiency and answer quality of MC-indexing by 300

utilizing the constructed data. 301

Using this approach we have generated ques- 302

tions for 83,625 sections from 3,365 documents. 303

For evaluation, in order to demonstrate the effec- 304

tiveness of our method in long DocQA, we only 305

use questions generated from documents with 28k 306

to 30k tokens, resulting in 30 documents for evalu- 307

ation. The remaining questions not used in evalua- 308

tion are intended for training / fine-tuning. 309

4.2 Natural Questions (NQ) 310

The NQ dataset provides rendered HTML of 311

Wikipedia articles alongside the questions and an- 312

swer scope. By parsing the rendered HTML, we 313

are able to extract the section name and the corre- 314

sponding texts in each section of the document. We 315

augment the NQ dataset with our extracted struc- 316

tured information. We omit sections such as ‘See 317

Also’, ‘Notes’, and ‘References’, which refer as 318

references for the main content, to reduce noise 319

during retrieval. We follow NQ’s train/test split 320

setting in our work. However, we only retain the 321

3Refer to Appendix B.1 for more details about the type,
definition, and statistics of question annotations.
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Statistics NQ WikiWeb2M
Test Train Test Train

questions 586 36.8k 3027 82.6k
sections/doc 34.1 33.2 75.0 42.7
tokens/doc 17.4k 17.4k 28.1k 15.2k
tokens/sec 510 525 375 356
tokens/ans 827 581 109 104

Table 1: Document statistics for NQ and WikiWeb2M.

question whose corresponding document has more322

than 10k tokens. For dev set, there exists multiple323

annotations. We only retain questions where all324

annotations reside within the same section. After325

filtering, we obtain 36,829 and 586 question-article326

pairs for train/test respectively. Again, we empha-327

sise that our approach does not require fine-tuning328

and solely utilises the test-set.329

5 Experiment330

5.1 Baseline Systems331

Chunking and Indexing. Our experiment consists332

of 5 chunking/indexing methods as follows: (i)333

Fixed-length chunking (FLC), (ii) Recursive Fixed-334

length chunking, known as RAPTOR (Sarthi et al.,335

2024), (iii) Atomic chunking (Raina and Gales,336

2024), (iv) Content-aware chunking, and (v) our337

proposed MC-indexing. Refer to Appendix C for338

more implementation details.339

Retrieval. We apply MC-indexing and baselines340

on 2 sparse (TF-IDF and BM25) and 6 dense (DPR,341

ColBERT, Contriever, E5, BGE, and GTE) retriev-342

ers. The description and implementation details of343

these retrievers are written on Appendix D.344

5.2 Evaluation Metrics345

We evaluate the performance of MC-indexing and346

other baselines based on (i) recall of retrieval and347

(ii) quality of answer generation.348

Recall of Retrieval. The retriever scores each349

chunk in the document based on its relevance to350

the question, and returns the top k chunks with the351

highest scores. We define recall as the proportion352

of the ground truth answer scope that is success-353

fully retrieved by retriever. For instance, if each354

of three retrieved chunks overlaps with 10%, 50%355

and 0% of the ground truth answer scope, the recall356

is the sum of all individual scores to be 0.6. The357

recall gives us a clear indication of how effective358

our chunking strategy has boosted the retriever.359

Answer Generation. As the final goal of DocQA360

is to generate accurate answer, it is essential for361

us to evaluate the quality of final answer based on362

retrieved chunks. We evaluate the answers via pair- 363

wise evaluation using GPT-4 as evaluator. Specifi- 364

cally, we provide prompt for GPT-4 (see Figure 11) 365

to score each answer. To avoid any positional bias, 366

which may cause the GPT-4 model to favor the ini- 367

tial displayed answer, we switch answer positions 368

in two evaluation rounds. The winning answer is 369

determined based on scores in two rounds. 370

For Score-based evaluation, each answer’s scores 371

from the two rounds are combined. The answer 372

with higher overall score is the winner. The re- 373

sult is a tie if both answers have same score. For 374

Round-based evaluation, the scores from each 375

round are compared, and the winner of each round 376

is determined by the higher score. The overall win- 377

ner is the one that wins both rounds. In cases where 378

each answer wins a round, or answers tie in both 379

rounds, the result is marked as a tie. 380

5.3 Main Results 381

We display our main result in Table 2 and sum- 382

marise the our analysis with several key observa- 383

tions as follows: (1) The size of chunk significantly 384

impacts the recall. As shown in Table 2, the im- 385

provement from FLC-100 to FLC-300 is around 386

10-15%. We believe that larger chunks are able 387

to retain more information of the answer scope 388

in a single chunk, which lead to better prediction 389

from the retrieval. (2) Each view of multi-view 390

strategy tends to help retrieval achieves a higher re- 391

call than FLC. Among each individual view, utiliz- 392

ing summary view generate the best results, while 393

raw-text view generate the second best results. De- 394

spite keywords view down-performs overall due 395

to text having poor semantic structure, we observe 396

that keyword is able to solve some tasks which the 397

other two view unable. This contributes to a posi- 398

tive impact (see Section 5.5). (3) The multi-view 399

strategy, which consolidates top-ranked results of 400

raw-text, keywords, and summary views, can sub- 401

stantially all baselines. We believe the improve- 402

ment is mainly contributed by the content-aware 403

chunking and multi-view indexing strategy. Differ- 404

ent views are able to rank the relevance of sections 405

to question from different perspectives, thus pro- 406

viding complimentary information. 407

5.4 Evaluation of Answer Generation 408

We compare the performance of MC-indexing 409

against FLC-300 via the relevance of generated 410

answers. For our experiments, we employ vari- 411

ous retrieval methods, including BM25, DPR, Col- 412
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Chunking Scheme
Sparse Retrieval Dense Embedding Retrieval

AvgTF-IDF BM25 DPR ColBERT Contriever E5 BGE GTE
2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ

To
p
k
=

1
.5

FLC: 100 tokens 47.8 14.6 45.8 7.8 35.3 25.1 54.2 27.4 54.2 22.9 57.7 33.0 55.8 27.9 56.3 29.8 37.2
FLC: 200 tokens 51.1 19.4 56.1 11.7 40.6 35.7 62.0 37.1 61.9 29.8 67.0 41.9 63.2 37.3 63.7 38.1 44.8
FLC: 300 tokens 60.9 20.8 61.6 13.9 41.5 41.3 64.0 37.5 64.4 35.0 68.1 47.9 64.6 41.1 65.1 41.8 48.1
RAPTOR 15.1 20.2 16.3 13.5 14.1 21.0 22.8 37.8 23.4 38.6 25.3 38.0 25.2 38.3 25.6 36.7 25.7
Atomic Unit 51.0 30.1 49.9 38.1 28.1 39.1 45.5 36.7 48.2 35.7 48.0 42.2 46.8 38.5 45.9 43.8 41.7
Atomic Unit: Plus 73.3 47.1 75.6 51.2 54.0 54.5 65.1 51.9 71.1 51.6 73.4 58.5 69.6 55.6 71.5 60.8 61.6
Content: raw-text 59.0 22.5 66.7 19.6 49.0 39.6 67.1 43.2 72.1 34.5 76.3 43.5 72.7 45.9 74.0 47.8 52.1
Content: keyword 47.4 16.7 57.8 12.8 46.5 31.3 69.2 38.9 67.0 30.4 70.0 44.2 65.8 39.8 68.3 41.0 46.7
Content: summary 66.2 24.4 72.2 17.6 54.3 43.3 74.0 42.7 72.8 37.0 73.3 53.2 71.8 47.4 73.3 45.6 54.3
MC-indexing 79.2 40.9 83.7 36.9 67.7 58.4 85.1 62.3 83.8 52.2 87.0 69.6 83.7 63.1 84.0 62.3 68.7

To
p
k
=

3

FLC: 100 tokens 58.3 21.2 58.7 12.9 46.9 35.4 64.4 39.2 65.0 35.2 69.5 46.3 69.4 41.1 69.5 43.0 48.5
FLC: 200 tokens 67.7 30.2 70.2 21.9 55.0 48.7 70.9 50.8 73.5 43.6 77.8 56.7 75.7 52.9 77.5 54.2 58.0
FLC: 300 tokens 70.7 32.3 74.9 23.7 58.4 54.4 73.8 50.0 75.6 51.7 81.2 62.1 77.7 57.6 78.2 59.2 61.3
RAPTOR 30.1 34.8 34.2 26.3 27.1 34.3 41.4 52.1 43.0 54.5 45.0 55.2 47.8 56.2 46.1 56.1 42.8
Atomic Unit 64.4 47.1 65.6 51.2 43.1 54.5 56.6 51.9 60.8 51.6 62.4 58.5 60.0 55.6 61.6 60.8 56.6
Atomic Unit: Plus 79.8 60.7 81.7 64.7 63.9 70.2 72.5 64.7 79.0 67.6 80.1 73.2 77.7 69.0 79.2 74.1 72.4
Content: raw-text 75.2 46.8 81.4 41.6 66.5 69.5 80.0 68.9 86.1 62.6 88.1 77.3 85.6 73.9 86.4 74.4 72.8
Content: keyword 69.5 39.9 73.8 30.7 64.9 59.7 84.2 65.5 82.5 63.3 83.6 75.6 83.3 70.1 84.5 70.3 68.8
Content: summary 83.1 51.9 86.1 39.1 71.1 72.4 86.8 71.1 86.6 64.5 88.1 81.6 86.9 76.9 87.3 76.3 75.6
MC-indexing 86.6 54.1 89.3 47.6 77.2 75.1 91.0 77.1 90.5 70.8 92.8 85.3 90.6 78.8 90.8 77.8 79.7

To
p
k
=

5

FLC: 100 tokens 65.5 28.4 65.2 19.2 54.8 45.4 70.6 46.7 70.9 43.3 77.7 55.2 75.8 50.8 76.8 52.0 56.1
FLC: 200 tokens 74.1 39.2 77.2 30.1 64.9 60.2 76.1 59.5 78.9 54.0 83.6 66.3 81.6 61.6 82.4 63.9 65.9
FLC: 300 tokens 76.7 42.5 80.8 34.9 65.7 66.8 78.8 60.3 81.9 62.8 85.9 73.1 83.1 68.6 84.1 70.0 69.8
RAPTOR 47.0 46.1 48.9 36.6 37.9 47.8 56.8 62.5 60.4 64.3 60.6 63.3 62.6 69.1 60.8 70.0 55.9
Atomic Unit 71.4 59.3 73.6 61.0 51.4 66.5 62.7 60.5 69.2 64.3 71.3 70.1 67.4 64.8 69.1 70.4 65.8
Atomic Unit: Plus 83.5 72.9 85.7 71.9 71.3 79.4 77.8 75.4 83.6 77.8 84.9 82.3 82.3 78.3 84.0 81.7 79.6
Content: raw-text 80.0 63.5 85.3 53.8 74.2 80.7 84.5 78.2 90.2 74.2 91.3 87.9 89.2 82.6 89.7 84.1 80.6
Content: keyword 76.5 53.8 80.2 43.3 73.0 75.1 89.0 76.6 87.5 75.8 87.8 85.8 87.8 82.8 88.9 82.0 77.9
Content: summary 88.1 66.5 89.5 51.9 78.2 84.8 90.7 81.9 90.8 78.1 91.7 90.9 90.7 86.4 91.2 86.5 83.6
MC-indexing 90.5 67.6 93.6 60.1 81.9 87.5 93.4 85.2 92.8 82.1 94.5 91.8 93.0 89.2 93.1 88.0 86.5

To
p
k
=

1
0

FLC: 100 tokens 73.3 38.8 73.0 29.2 65.7 60.9 77.8 60.3 80.0 55.9 83.8 68.6 83.2 63.6 83.9 64.8 66.4
FLC: 200 tokens 81.1 52.4 83.5 44.2 74.9 73.8 82.5 70.8 85.5 69.8 88.4 78.7 88.2 75.2 88.5 75.8 75.8
FLC: 300 tokens 82.7 60.8 86.9 52.1 75.6 79.7 85.7 75.8 87.9 77.6 89.9 85.1 89.0 83.3 89.9 81.1 80.2
RAPTOR 67.8 63.9 69.2 63.9 56.9 67.5 74.9 78.0 79.1 81.0 79.0 79.7 81.2 83.3 79.4 83.7 74.3
Atomic Unit 78.1 72.9 79.9 71.9 60.9 79.4 70.9 75.4 77.1 77.8 78.3 82.3 76.0 78.3 77.0 81.7 76.1
Atomic Unit: Plus 88.9 85.5 90.2 85.7 81.4 88.5 85.2 87.7 90.3 88.7 90.3 92.1 89.0 89.8 89.6 92.0 88.4
Content: raw-text 85.3 82.4 89.3 74.2 83.5 89.9 90.2 90.6 93.6 88.7 94.3 96.2 92.6 93.7 93.7 93.0 89.5
Content: keyword 84.5 76.6 86.8 67.2 82.3 89.8 92.9 90.8 91.9 89.2 93.0 94.4 93.0 92.2 93.7 92.5 88.2
Content: summary 92.9 84.5 93.3 76.8 86.9 94.2 94.3 92.2 94.4 90.9 95.2 96.4 94.1 94.5 94.6 94.5 91.8
MC-indexing 94.5 85.7 95.3 78.2 88.8 95.0 96.0 94.8 95.8 92.7 96.5 97.2 95.3 95.4 96.0 95.4 93.3

Table 2: Main results: recall of ground truth span. The best score is in boldface and second best score is underlined.

BERT, and BGE. For each of MC-indexing and413

FLC-300, we first use these retrievers to sample414

the sections related to the question. Given the re-415

trieved sections, we proceed to generate answers416

using the prompt provided in Figure 10. The gen-417

erated answers are then compared using pairwise418

comparison (see Section 5.2).419

The results of this comparative assessment are420

displayed in Figure 3. We find that MC-indexing421

consistently demonstrates higher win rates than422

loss rates against FLC-300 across all retrievers and423

both evaluation metrics.424

Positional bias in GPT-4 may cause it to assign425

higher scores to the first answer in the prompt. Un-426

like score-based evaluation, which takes into ac-427

count the magnitude of score differences, round-428

based evaluation is purely predicated on the num-429

ber of rounds won by each answer. Consequently, 430

we anticipate that the round-based evaluation will 431

yield more ties than the score-based evaluation. 432

5.5 Ablation Study 433

We conducted an in-depth study by ablating each 434

view from our multi-view indexing strategy and 435

measuring the performance by recall. From the 436

results presented in Table 3, we observe that: (1) 437

Removing the summary view leads to the most sig- 438

nificant decrease in performance, ranging between 439

2 and 8%. (2) Eliminating the raw-text view re- 440

sults in the second-most considerable performance 441

drop, varying between 2 and 5%. (3) Disregard- 442

ing the keywords view contributes to a decrease of 443

performance ranging from 1 to 4%. 444

Thus, we infer that the impact of each view on 445
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Figure 3: The evaluation results of answer generation.

Chunk Scheme Top1.5 Top3 Top5 Top10 ∆

T
F-

ID
F MC-indexing 79.2 86.6 90.5 94.5 -

- w/o raw text 71.2 82.6 87.4 93.3 -4.1
- w/o keyword 76.8 85.6 89.1 93.8 -1.4
- w/o summary 68.2 77.8 82.1 87.9 -8.7

B
M

25

MC-indexing 83.7 89.3 93.6 95.3 -
- w/o raw text 78.2 85.9 91.0 93.8 -3.2
- w/o keyword 81.6 87.8 92.1 94.0 -1.6
- w/o summary 74.9 83.8 88.4 91.5 -5.8

D
PR

MC-indexing 67.7 77.2 81.9 88.8 -
- w/o raw text 61.3 72.0 77.6 86.1 -4.7
- w/o keyword 63.6 73.9 79.2 86.7 -3.0
- w/o summary 59.3 69.9 75.6 84.2 -6.7

C
ol

B
E

R
T MC-indexing 85.1 91.0 93.4 96.0 -

- w/o raw text 82.3 89.5 91.8 95.3 -1.7
- w/o keyword 82.0 88.6 91.3 94.4 -2.3
- w/o summary 78.4 86.3 90.1 94.1 -4.2

C
on

tr
ie

ve
r MC-indexing 83.8 90.5 92.8 95.8 -

- w/o raw text 79.1 87.4 90.4 94.7 -2.8
- w/o keyword 81.5 89.0 91.5 95.0 -1.5
- w/o summary 78.9 87.3 90.6 94.4 -2.9

E
5

MC-indexing 87.0 92.8 94.5 96.5 -
- w/o raw text 80.6 89.0 92.1 95.4 -3.4
- w/o keyword 84.6 91.3 93.3 96.0 -1.4
- w/o summary 83.9 90.3 92.8 95.5 -2.1

B
G

E

MC-indexing 83.7 90.6 93.0 95.3 -
- w/o raw text 78.3 87.0 90.5 94.1 -3.2
- w/o keyword 81.0 89.0 91.3 94.3 -1.8
- w/o summary 79.7 88.1 91.1 94.2 -2.4

G
T

E

MC-indexing 84.0 90.8 93.1 96.0 -
- w/o raw text 79.6 87.7 90.6 94.5 -2.9
- w/o keyword 81.8 89.2 91.8 94.7 -1.6
- w/o summary 80.4 88.5 91.4 94.5 -2.3

Table 3: Ablation study of recall on WikiWeb2M, ∆
refers to the average decrease of top 1.5, 3, 5, and 10.

the recall performance of retrieval, from the most to446

the least significant, is as follows: summary view,447

raw-text view, and keywords view. In conclusion,448

each view plays a crucial role in improving recall449

performance. More ablation results on NQ dataset450

are shown in Appendix F.451

5.6 Does MC-indexing improve FLC?452

MC-indexing improves the performance of FLC by453

(i) incorporating document structures and (2) using454

multi-view indexing. In this section, we discuss455

results (Table 4) of applying MC-indexing on FLC456

(300 tokens). More results of MC-indexing impact457

Chunk Scheme Top1.5 Top3 Top5 Top10 ∆

T
F-

ID
F FLC: 300 tokens 60.9 70.7 76.7 82.7 -

- w/ content 64.5 76.2 80.3 85.2 +3.8
- w/ multi-view 69.5 75.2 82.6 88.8 +6.3

B
M

25

FLC: 300 tokens 61.6 74.9 80.8 86.9 -
- w/ content 66.3 76.4 81.1 85.4 +1.3
- w/ multi-view 69.9 79.3 84.3 89.2 +4.6

D
PR

FLC: 300 tokens 41.5 58.4 65.7 75.6 -
- w/ content 48.8 61.8 69.4 78.5 +4.3
- w/ multi-view 50.1 60.8 70.0 79.0 +4.7

C
ol

B
’ FLC: 300 tokens 64.0 73.8 78.8 85.7 -

- w/ content 73.0 82.5 87.1 91.8 +8.0
- w/ multi-view 72.7 81.7 85.7 91.9 +7.4

C
on

t’ FLC: 300 tokens 64.4 75.6 81.9 87.9 -
- w/ content 73.5 85.0 89.0 93.0 +7.7
- w/ multi-view 69.3 80.0 86.6 91.1 +4.3

E
5

FLC: 300 tokens 68.1 81.2 85.9 89.9 -
- w/ content 75.9 86.9 90.4 93.7 +5.5
- w/ multi-view 74.2 83.7 88.8 93.5 +3.8

B
G

E FLC: 300 tokens 64.6 77.7 83.1 89.0 -
- w/ content 75.1 85.5 89.5 92.8 +7.1
- w/ multi-view 69.3 79.7 86.5 92.2 +3.3

G
T

E FLC: 300 tokens 65.1 78.2 84.1 89.9 -
- w/ content 75.7 87.1 91.2 95.1 +8.0
- w/ multi-view 70.4 81.8 87.7 93.2 +4.0

Table 4: Using MC-indexing on FLC 300 tokens, ∆
refers to the average increase of top 1.5, 3, 5, and 10.

on FLC (200 tokens) are shown in Table 8. 458

Content-awareness. We evaluate the capability of 459

content awareness in boosting FLC. We first seg- 460

ment the document into section chunks, and further 461

apply FLC on each section. Hence, a section may 462

have multiple chunks but each chunk is only be as- 463

sociated with a section. In this way, content-aware 464

chunking reduces possibility of the ground truth 465

answer scope being split, i.e., chunking error (see 466

Appendix A). As shown in Table 4, given same 467

chunk length, FLC improves by 3-8% after content 468

information is incorporated. 469

Multi-view Indexing. We evaluate if multi-view in- 470

dexing improves FLC, given the absence of content 471

structure. In this case, each FLC is additionally in- 472

dexed with summary and keywords view for more 473

efficient retrieval. We observe that the multi-view 474

indexing significantly improves the performance of 475

FLC by 3-7%, as shown in Table 4. 476
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Multi-view via Top1.5 Top3 Top5 Top10 Avg
B

M
25

GPT4 83.7 89.3 93.6 95.3 90.5
Llama2-7B 79.7 87.4 89.3 93.1 87.4
Mistral-7B 80.3 89.3 93.6 93.6 89.2

D
PR

GPT4 67.7 77.2 81.9 88.8 78.9
Llama2-7B 69.1 77.1 82.1 89.4 79.4
Mistral-7B 68.1 76.0 82.3 89.4 78.9

C
ol

B
’ GPT4 85.1 91.0 93.4 96.0 91.4

Llama2-7B 84.7 89.6 93.1 96.0 90.9
Mistral-7B 83.6 88.5 92.1 95.8 90.0

E
5

GPT4 87.0 92.8 94.5 96.5 92.7
Llama2-7B 87.6 91.9 94.1 96.2 92.4
Mistral-7B 86.9 91.8 94.2 96.2 92.3

G
T

E GPT4 84.0 90.8 93.1 96.0 91.0
Llama2-7B 84.6 90.7 93.0 95.7 91.0
Mistral-7B 84.2 90.1 92.3 95.7 90.6

Table 5: Using different LLMs for summary generation
and keywords extraction during multi-view indexing.

5.7 Multi-view Indexing using different LLMs477

Multi-view indexing involves two well-studied478

NLP tasks: text summarization and keywords ex-479

traction. In this section, we elaborate on using480

different LLMs for summary and keywords gen-481

eration. Firstly, we apply the proprietary model482

(GPT-4) to generate summary and keywords. We483

acknowledge that using such approach on larger484

scale of long documents could be cost-intensive.485

Hence, we have attempted using a far less cost-486

intensive open-sourced models (e.g., Llama2-7B487

and Mistral-7B) instead. Our findings suggest that488

open-sourced models are capable of generating re-489

liable summary and keywords. The final results, as490

shown in Table 5, indicate that using Llama2-7B491

and Mistral-7B for multi-view indexing is nearly492

as effective as using GPT-4 model.493

5.8 Can Long-context LLM resolve Long494

Document QA?495

Recently, there is a growing interest in utilizing496

LLMs for QA tasks (Chen et al., 2023; Sarthi et al.,497

2024). However, feeding LLM directly with long498

documents are infeasible due to its token limit con-499

straints. For instance, LLaMA (Touvron et al.,500

2023a), LLaMA 2 (Touvron et al., 2023b), and501

Mistral (Jiang et al., 2023) have token limit of to502

2k, 4k, and 8k, respectively, which is too less for503

long documents. Furthermore, Liu et al. (2023)504

indicates that LLMs struggle in retaining and ref-505

erencing information from earlier portions of long506

documents. In this section, we test if advanced507

LLMs (e.g., GPT-3.5 and 4), can effectively under-508

stand long documents. We have opted for Span-QA509

setting to simplify the process, where gold answer510

(a) Span-QA using GPT3.5 (b) Span-QA using GPT4

Figure 4: GPT on span-QA using Full Doc vs Section

is a span of raw text from the input document. We 511

then measure the precision, recall, and F1 score of 512

the retrieved span based on gold answer. 513

GPT-3.5 takes in document with 15k tokens as 514

context, while GPT-4 taking longer documents with 515

30k tokens. They are given 2,000 questions to an- 516

swer, which questions are all sourced from our 517

Wiki-2M dataset. On the other hand, we use only 518

the section (370 tokens in average) containing gold 519

answers as context to GPT, to observe if GPT per- 520

forms more proficiently on shorter answer scope. 521

As depicted in Figure 4, our research indicates that 522

the performance of GPT-3.5 and GPT-4 in span- 523

based QA deteriorates substantially when given 524

long documents as compared to a specific section. 525

When GPT-4 is applied to documents of around 30k 526

words, the recall is a mere 52.3%. This score is far 527

lower than that of the existing index-then-retrieve 528

systems, which can yield a recall of 90-97%. 529

6 Conclusion 530

In this paper, we propose a new approach: Multi- 531

view Content-aware indexing (MC-indexing) for 532

more effective long document question answer- 533

ing. Specially, we propose a long document QA 534

dataset which annotates not only the question- 535

answer pair, but also the document structure and 536

the document scope to answer this question. We 537

propose a content-aware chunking method to seg- 538

ment the document into content chunks according 539

to its organizational content structure. We design 540

a multi-view indexing method to represent each 541

content chunk in raw-text, keywords, and summary 542

views. Through extensive experiments, we demon- 543

strate that content-aware chunking can eliminate 544

chunking errors, and multi-view indexing can sig- 545

nificantly benefit long DocQA. For future work, 546

we would like to explore how to use the hierarchi- 547

cal document structure for more effective retrieval. 548

Moreover, we would like to train or finetune a re- 549

triever that can generate more fine-grained or nu- 550

anced embeddings across multiple views. 551
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Limitations552

The limitations of our method MC-indexing, can553

be evaluated from two primary perspectives.554

Firstly, our method considers the structured for-555

mat of a document. When the document lacks556

clear indications of content structure, applying our557

content-aware chunking technique becomes chal-558

lenging. However, we would like to emphasize559

that our work focuses on structured indexing and560

retrieval of long documents, and long documents561

usually have structured content to be utilised. It562

is unusual to encounter lengthy and poorly struc-563

tured documents in which the authors have written564

tens of thousands of words without providing clear565

document section or chapter demarcations.566

To study the usability of our method to unstruc-567

tured documents, we apply the multi-view index-568

ing on fixed-length chunking (FLC) documents, as569

mentioned in Section 5.6. We observe that multi-570

view indexing significantly improves FLC by 3-7%.571

Hence we believe our proposed MC-indexing will572

benefit existing FLC, even when content structure573

of the document is not available.574

Secondly, short documents, being within the575

Large Language Model’s (LLM) capacity, which576

means structured layout might not be required for577

the model to perform Question Answering (QA)578

tasks efficiently. Hence, we clarify that our method579

does not aim to enhance retrieval performance580

on unstructured short document. In contrast, our581

method can significantly benefit the retrieval of582

structured long documents.583

Potential Risks584

In this work, we utilize two existing datasets:585

Wikipedia Webpage 2M (WikiWeb2M) (Burns586

et al., 2023) and Natural Questions (NQ)587

(Kwiatkowski et al., 2019) datasets. Both datasets588

are from public resource, Wikipedia, which we be-589

lieve the potential risk of malicious or unintended590

harmful content is minimal.591
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Chunk Dataset FLC FLC- Content
content -aware

N=100 Wiki-NQ 66.4 50.8 0.0
Wiki-2M 75.3 60.9 0.0

N=200 Wiki-NQ 41.4 23.2 0.0
Wiki-2M 46.6 28.7 0.0

N=300 Wiki-NQ 26.4 13.5 0.0
Wiki-2M 32.2 15.0 0.0

Table 6: Chunking Error for each chunking method.
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A Chunking Error800

As previously discussed in Section 1, FLC tends to801

cause significant chunking errors. Such chunking802

errors can significant affect the performance of the803

quality of final answer. In this section, we elaborate804

the chunking errors from two fixed-length chunking805

strategies on two datasets.806

Firstly, the existing FLC method is content-807

agnostic. This is due to the fact the method di-808

vides the entire document into fixed-length chunks,809

which may inadvertently break a coherent section810

into separate parts. Alternatively, we recommend a811

Figure 5: Pie chart of question type distribution.

different FLC approach that segments each section 812

of the document into fixed-length chunks. This 813

would ensure that a chunk doesn’t span across two 814

different sections, thereby more robust to chunking 815

errors. In summary, our proposed content-aware 816

chunking strategy ensures that no chunk extends 817

over two sections, effectively reducing chunking er- 818

rors. Results shown in Table 6 highlight the impact 819

of content-aware chunking on chunking error. 820

B WikiWeb2M: More Annotation Details 821

B.1 Question Generation for WikiWeb2M 822

We aim to generate question that tends to rely on a 823

long answer scope. Typically, the length of answer 824

scope ranges from 50 to 500 tokens. We define 825

questions of the following 8 types: 826

• Narrative and Plot Details: inquire specific de- 827

tails or sequence of events in a narrative (e.g., a 828

story, movie, or historical account). 829

• Summarization: require the summarization of a 830

long passage, argument, or complicated process. 831

• Inferential and Implied: depend on understand- 832

ing subtleties and reading across a long passage. 833

• Information Synthesis: inquire the synthesis of 834

information dispersed across a long passage. 835

• Cause and Effect: understand the causal relation- 836

ship between events in a long passage. 837

• Comparative: ask for comparisons between dif- 838

ferent ideas, characters, or events within a text. 839

• Explanatory: ask for explanations of complex 840

concepts or processes that are described in detail. 841

• Themes and Motifs: consider entire text to iden- 842

tify patterns and conclude on central messages. 843

The distribution of generated question types is 844

shown in Figure 5. 845
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B.2 Question Answer Annotation for846

WikiWeb2M847

For each given section, we request GPT-4 to gen-848

erate 3 questions, the corresponding answers and849

identify the raw text that maps to the answer. In850

our prompt from Figure 6, we provide GPT-4 the851

raw text of the given section, the description of the852

8 question types from Appendix B.1 and our de-853

signed prompt instruction. Our prompt instruction854

ensures GPT-4 to generate the continuous context855

sentences to sufficiently answer the question. The856

answer scope is then used to evaluate the retrieval857

efficiency of MC-indexing.858

C Implementation Details of859

Chunking/Indexing Baselines860

C.1 Fixed-length chunking (FLC)861

We firstly segment the document into individual862

sentences using NLTK library 4. This is to avoid863

the first and last sentence in each chunk being trun-864

cated. Subsequently, we merge consecutive sen-865

tences into fixed length chunks, with approximately866

100, 200 or 300 tokens. Note that in order to pre-867

vent chunking sentences in the middle, the number868

of tokens per chunk is not exactly same to the pre-869

defined length.870

C.2 Recursive Fixed-length chunking871

We follow Sarthi et al. (2024) to implement RAP-872

TOR scheme, which consist of the document index-873

ing process (recursive fixed-length chunking) and874

retrieval process (hierarchical tree traversal). The875

implementation is based on the source code, which876

is available on GitHub.5.877

Document Indexing. The document is divided878

into chunks of 300 tokens. The chunks are879

then used to construct RAPTOR tree construction,880

which the procedures are as follows: the chunks881

are initialised as the leaf nodes of the tree. Each882

node is embedded using a chosen dense embedding883

model, and clustered based on Gaussian Mixture884

Models (GMMs). The nodes in each cluster are885

summarised using large language model and re-886

embedded. The summarised text and embedding887

of the each cluster is initialised as node, a layer888

above the leaf node. The clustering and embedding889

process are repeated until the number of nodes890

are too less to be clustered. For ColBERT, tree891

4https://www.nltk.org/api/nltk.tokenize.html
5https://github.com/parthsarthi03/raptor

construction is not possible. This is due to the 892

fact ColBERT relies on post interactions between 893

the embedding of both query and chunk. In other 894

words, the embedding of the chunk is dependent 895

to query and could not be constructed standalone. 896

Sparse retrieval does not have embedding model, 897

hence making tree construction not possible. For 898

these three experiments, we used text-embedding- 899

ada-002, which is the same encoder provided from 900

the GitHub6 to embed the chunks and construct the 901

tree. 902

Chunk Retrieval. For tree retrieval, there are 903

two methods available, namely tree traversal and 904

collapsed tree respectively. We choose the tree 905

traversal approach as it allows retrieving a fixed 906

number of leaf nodes, which is required to calcu- 907

late recall of retrieval for each top-k (see Section 908

5.2). Given that our top-k sampling is k, and the 909

tree has n layers, the steps for tree traversal are 910

as follows : the query is embedded with the same 911

embedding model used for tree construction. The 912

cosine similarity between the embedding of query 913

and nodes are computed. k nodes are sampled in 914

the root layer based to form set Si. The cosine simi- 915

larity for each child node in Si are calculated and k 916

nodes are sampled to form set Si+1. The iteration 917

continues until it reaches the last layer of the tree, 918

which Sn consists of k number of leaf nodes. We 919

calculate the recall of retrieval based on the original 920

token positions of the corresponding chunk of the 921

retrieved leaf nodes. For k = 1.5, we set k as 1 for 922

half of the query and k as 2 for the other half. As it 923

is not possible to embed the query using sparse re- 924

trieval, we modify the sampling procedure of every 925

layer based on the retrieval relevance score of the 926

text in each nodes given the query. 927

C.3 Atomic Unit Chunking 928

The atomic unit chunking scheme loosely fol- 929

lows text chunking ideas described in (Raina and 930

Gales, 2024), with some modification to ensure 931

fair comparison with our models and various base- 932

line methodologies. The procedures of atomic unit 933

chunking are as follows: we first split each long 934

text documents into 2000-token segments using 935

the NLTK library. Then a LLM is instructed to 936

split each 2000-token segment into atomic chunks, 937

where the prompt template is given in Figure 12. 938

6https://github.com/parthsarthi03/raptor
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Atomic Unit: Plus. Since the lengths of atomic939

unit chunking is usually much shorter than the940

section length in NQ and WikiWeb2M, for abal-941

ation purposes controlling for chunk length, we942

also increased number of passages to be retrieved943

under the Atomic Unit: Plus such that the number944

of tokens retrieved is close to (top-k retrieved ×945

average number of token per section). Note that946

since the average length of chunks produced by947

atomic chunking is 94 and 233 for WikiWeb2M948

and NQ respectively, and average number of tokens949

in each section produced by raw-text chunking is950

375 and 510 for WikiWeb2M and NQ respectively,951

the number of chunks retrieved in Atomic Unit :952

Plus is 4 times and 2 times in WikiWeb2M and953

NQ respectively the number of chunks retrieved in954

Atomic Unit chunking scheme.955

Atomic Chunking Details. Since the LLM
might not faithfully reproduce sentences in each
section (e.g. leaving out certain words, sentences;
paraphrasing content etc.), we map contiguous sen-
tences, where each sentence is tokenized using
NLTK, from the original document to correspond-
ing sections produced by the LLM. These contigu-
ous subsequence of sentences would form the pas-
sages to be retrieved. We describe the procedures
as follows: Let the i-th section generated by the
designated LLM be denoted by Si and the j-th orig-
inal sentence in the original text be denoted by yj
where the indices are ordered according to their
order of appearance. We first breakdown each sec-
tion Si into sentences using NLTK where the k-th
sentence from the generated section Si is denoted
by si,k. For each section Si, we define the distance
between a sentence yj and the section generated by
the LLM to be

D(yj , Si) = min
si,k∈Si

d(yj , si,k)

where d is the Levenshtein Distance7 function be-956

tween two strings (note the abuse of notation here957

for Si is not strictly a set of sentences). Start-958

ing from i, j = 1, we find the first j1 such that959

D(yj1 , S1) > D(yj1 , S2). All sentences y1 to960

yj1−1 will first be mapped to S1. Similarly, we961

recursively define ji ≥ ji−1 to be the first index962

such that D(yji , Si) > D(yji , Si+1). Thus the963

contiguous sequence of sentences yji , . . . yji+1−1964

forms the i + 1-th section which we concatenate965

7https://en.wikipedia.org/wiki/Levenshtein_
distance

to form a atomic semantic unit to be retrieved for 966

atomic chunking. 967

C.4 Content-aware chunking. 968

The content-aware chunking methods are variants 969

of our proposed MC-indexing. We first split the 970

long documents as section chunks. Hence, the 971

chunking process is content-aware, and each chunk 972

is a semantic coherent unit. Differing from MC- 973

indexing, we utilize only a single view from raw- 974

text, keywords, and summary views for retrieval. 975

D Retrieval Models 976

In our experiments (section 5), we implement 2 977

sparse retrievers and 6 dense retrievers on our pro- 978

posed MC-indexing and other chunking/indexing 979

baselines. To facilitate understanding of these re- 980

trieval models, we first introduce the background of 981

these commonly used retrievers in Appendix D.1. 982

We then elaborate the implementation details in 983

Appendix D.2. 984

D.1 Introduction of Retrievers 985

Current approaches to content retrieval are pri- 986

marily classified into sparse and dense retrieval. 987

There are two widely-used sparse retrieval meth- 988

ods, namely TF-IDF (Salton et al., 1983) and 989

BM25 (Robertson et al., 1994). TF-IDF calculates 990

the relevance of a word to a document in the corpus 991

by multiplying the word frequency with the inverse 992

document frequency. BM25 is an advancement of 993

TF-IDF that introduces nonlinear word frequency 994

saturation and length normalization to improve re- 995

trieval accuracy. 996

Recently, dense retrieval methods have shown 997

promising results, by encoding content into high- 998

dimensional representations. DPR (Karpukhin 999

et al., 2020) is the pioneering work of dense vec- 1000

tor representations for QA tasks. Similarly, Col- 1001

BERT (Khattab and Zaharia, 2020b) introduces an 1002

efficient question-document interaction model, en- 1003

hancing retrieval accuracy by allowing fine-grained 1004

term matching. Contriever (Izacard et al., 2022) 1005

further leverages contrastive learning to improve 1006

content dense encoding. E5 (Wang et al., 2022) and 1007

BGE (Xiao et al., 2023) propose novel training and 1008

data preparation techniques to enhance retrieval 1009

performance, e.g., consistency-filtering of noisy 1010

web data in E5 and the usage of RetroMAE (Xiao 1011

et al., 2022) pre-training paradigm in BGE. More- 1012

over, GTE (Li et al., 2023) integrates graph-based 1013

techniques to enhance dense embedding. 1014
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Model Dimension Base Model HuggingFace Checkpoint

DPR 768 bert-base https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base
https://huggingface.co/facebook/dpr-question_encoder-multiset-base

ColBERT 768 bert-base https://huggingface.co/colbert-ir/colbertv2.0
Contriever 768 bert-base https://huggingface.co/facebook/contriever-msmarco
E5 1024 bert-large https://huggingface.co/intfloat/e5-large-v2
BGE 1024 RetroMAE https://huggingface.co/BAAI/bge-large-en-v1.5
GTE 1024 bert-large https://huggingface.co/thenlper/gte-large

Table 7: Implementation details for Dense Models

D.2 Implementation Details of Retrievers1015

Sparse Retrievers. In our experiments (sec-1016

tion 5), we implement 2 sparse retrievers that are1017

BM25 and TF-IDF (Term Frequency - Inverse Doc-1018

ument Frequency). Note that when calculating1019

scores for BM25 and TF-IDF for each question,1020

we restrict the set of corpus to chunks appearing1021

in the sole relevant Wikipedia article. For BM25,1022

we use the code from github repository https://1023

github.com/dorianbrown/rank_bm25. For TF-1024

IDF we use the TF-IDF Vectorizer from scikit-learn1025

library 8. We briefly describe how we rank docu-1026

ment using the TF-IDF vectorizer here. First, given1027

the corpus (i.e. the chunks appearing in the sole1028

relevant Wikipedia article) we convert each chunk1029

into a sparse vector with each entry indicating the1030

TF-IDF score of each word appearing in the chunk.1031

Next, we convert the question into a sparse vector.1032

Finally to rank each chunk, we calculate the cosine1033

similarity between the question sparse vector and1034

sparse vectors of each individual chunk.1035

Dense Retrievers. In our experiments (section 5),1036

we implement 6 types of dense embedding re-1037

trievers. The dense retrieval models deployed are1038

namely DPR (Dense Passage Retriever), ColBERT,1039

Contriever, E5, BGE and GTE. These models use1040

the WordPiece tokenizer from BERT and also in-1041

herit the maximum input length of 512 tokens from1042

BERT (Devlin et al., 2019). We use pre-trained1043

checkpoints available on HuggingFace 9; the spe-1044

cific checkpoint information can be found in Ta-1045

ble 7 alongside other configuration details. Addi-1046

tionally, we make use of the sentence-transformer1047

library10 when deploying E5, BGE and GTE.1048

8https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

9https://huggingface.co/
10https://www.sbert.net/

Chunk Scheme Top1.5 Top3 Top5 Top10 ∆

T
F-

ID
F FLC: 200 tokens 51.1 67.7 74.1 81.1 -

- w/ content 58.9 72.9 77.8 82.7 +4.6
- w/ multi-view 64.1 74.3 80.1 85.7 +7.5

B
M

25

FLC: 200 tokens 56.1 70.2 77.2 83.5 -
- w/ content 60.6 71.7 77.2 82.4 +1.2
- w/ multi-view 64.3 74.9 80.1 86.0 +4.6

D
PR

FLC: 200 tokens 40.6 55.0 64.9 74.9 -
- w/ content 45.5 61.6 69.5 78.6 +4.9
- w/ multi-view 49.2 58.9 66.1 76.7 +3.9

C
ol

B
’ FLC: 200 tokens 62.0 70.9 76.1 82.5 -

- w/ content 71.0 81.8 85.9 90.7 +9.5
- w/ multi-view 68.9 79.2 85.2 90.0 +8.0

C
on

t’ FLC: 200 tokens 61.9 73.5 78.9 85.5 -
- w/ content 70.1 83.4 87.6 90.6 +7.9
- w/ multi-view 66.1 77.0 83.6 89.4 +4.1

E
5

FLC: 200 tokens 67.0 77.8 83.6 88.4 -
- w/ content 73.6 84.3 89.1 92.9 +5.8
- w/ multi-view 70.9 81.4 87.4 91.9 +3.7

B
G

E FLC: 200 tokens 63.2 75.7 81.6 88.2 -
- w/ content 71.9 82.7 87.1 91.3 +6.1
- w/ multi-view 67.6 77.8 84.9 92.0 +3.4

G
T

E FLC: 200 tokens 63.7 77.5 82.4 88.5 -
- w/ content 72.4 85.2 89.5 93.4 +7.1
- w/ multi-view 67.9 80.5 86.0 91.1 +3.4

Table 8: Using MC-indexing on FLC 200 tokens, ∆
refers to the average increase of top 1.5, 3, 5, and 10.

E Top k Selection of MC-indexing 1049

Due to the fact MC-indexing combines the results 1050

from three views, we reduce the number of chunks 1051

retrieved from each view to have a fair compari- 1052

son with single-view baselines. We describe the 1053

procedure for utilizing multi-view indexing to re- 1054

trieve top-k relevant chunks with respect to a given 1055

question in Section 3.3. For each of the views, e.g., 1056

raw-text, summary, keywords, we first retrieve the 1057

top-k
′

chunks, where k
′ ≈ 2k/3. In this way, we 1058

empirically obtain an average a total of 3k
′
/2 ≈ k 1059

unique chunks after deduplication. 1060

Specifically, when comparing with top k = 3 1061

single-view baselines, MC-indexing will only re- 1062

trieve top k = 1 or 2 from each view. By combin- 1063

ing the chunks from each view and remove over- 1064

lapping ones, MC-indexing manages to retrieve an 1065

approximate of 3 chunks in total. Similarly for top 1066

k = 5, our method retrieves only 3 chunks form 1067
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Chunk Scheme Top1.5 Top3 Top5 Top10 ∆
T

F-
ID

F MC-indexing 40.9 54.1 67.6 85.7 -
- w/o raw text 32.4 49.5 63.5 83.8 -4.8
- w/o keyword 34.5 51.2 64.5 84.3 -3.4
- w/o summary 32.4 47.6 60.1 82.6 -6.4

B
M

25

MC-indexing 36.9 47.6 60.1 78.2 -
- w/o raw text 25.9 41.6 52.0 72.9 -7.6
- w/o keyword 30.4 43.2 55.1 74.2 -5.0
- w/o summary 27.6 41.6 54.4 72.7 -6.6

D
PR

MC-indexing 58.4 75.1 87.5 95.0 -
- w/o raw text 53.1 71.0 81.7 93.5 -4.2
- w/o keyword 52.7 71.2 82.6 93.3 -4.0
- w/o summary 49.8 69.1 81.2 90.5 -6.4

C
ol

B
E

R
T MC-indexing 62.3 77.1 85.2 94.8 -

- w/o raw text 54.8 71.7 81.4 93.5 -4.5
- w/o keyword 55.8 72.5 81.1 93.7 -4.1
- w/o summary 55.6 72.4 81.2 93.2 -4.2

C
on

tr
ie

ve
r MC-indexing 52.2 70.8 82.1 92.7 -

- w/o raw text 46.9 65.5 79.4 89.2 -4.2
- w/o keyword 46.1 64.7 78.5 88.7 -4.9
- w/o summary 45.1 65.0 77.6 91.6 -4.6

E
5

MC-indexing 69.6 85.3 91.8 97.2 -
- w/o raw text 63.3 81.4 90.3 95.9 -3.2
- w/o keyword 62.8 80.0 91.3 96.4 -3.3
- w/o summary 60.9 80.3 91.1 96.7 -3.7

B
G

E

MC-indexing 63.1 78.8 89.2 95.4 -
- w/o raw text 58.0 74.9 86.2 94.0 -3.3
- w/o keyword 57.5 73.7 85.7 94.9 -3.7
- w/o summary 56.7 74.4 85.8 94.4 -3.8

G
T

E

MC-indexing 62.3 77.8 88.0 95.4 -
- w/o raw text 55.5 73.0 85.8 94.5 -3.7
- w/o keyword 57.3 74.7 86.1 94.8 -2.7
- w/o summary 57.7 74.0 85.0 94.0 -3.2

Table 9: Ablation study of recall on NQ, ∆ refers to the
average decrease of top 1.5, 3, 5, and 10.

each view. For top k = 10, our method retrieves1068

6 or 7 chunks from each view. To evaluate the1069

performance of our method in greedy ranking, our1070

method retrieves exactly 1 chunk from each view,1071

while other baselines retrieves 1.5 chunks in aver-1072

age. This is achieved by retrieving 1 chunk for half1073

of the questions and 2 chunks for the other half.1074

F Extended Ablation Study on NQ1075

In this section, we reported the ablation results of1076

MC-indexing on NQ dataset, serving as the exten-1077

sion of Section 5.5. From the data in Table 9, it’s1078

evident that: (1) Removing the raw-text view leads1079

to the most significant performance drop, ranging1080

between 3.2 and 7.6%. (2) Eliminating the sum-1081

mary view results in the second-most considerable1082

performance drop, varying between 3.2 and 6.6%.1083

(3) Disregarding the keywords view contributes to1084

a performance drop between 2.7 and 5%.1085

G Prompt Design 1086

In this paper, we utilize the following prompts on 1087

GPT models to facilitate the respective process: 1088

• The generation of WikiWeb2M question, ques- 1089

tion type, answer, and answer contextual sen- 1090

tences. The prompt is shown in Figure 6. 1091

• The contextual sentences retrieval when provided 1092

with a long document or a section of the docu- 1093

ment. This is used to evaluate if GPT-3.5 or GPT- 1094

4 can directly cope with long document. The 1095

prompt is shown in Figure 7. 1096

• The generation of summary for the sections con- 1097

sisting of more than 200 tokens. The generated 1098

summary is used as additional view for document 1099

indexing. The prompt is shown in Figure 8. 1100

• The generation of the list of keywords for each 1101

section. The generated keywords list is used 1102

as additional view for document indexing. The 1103

prompt is shown in Figure 9. 1104

• The generation of atomic chunks are shown in 1105

Figure 12. We further process these results in 1106

the procedures described in Appendix C.3 under 1107

Atomic chunking. 1108

• The answer generation when provided with re- 1109

trieved top k chunks or sections. The prompt is 1110

shown in Figure 10. 1111

• The automatic answer evaluation of two answers, 1112

given the ground truth answer. This is used 1113

to evaluate the answer quality. This prompt is 1114

shown in Figure 11. 1115
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You are a sophisticated question generator. You need to use the reference text to generate a question,
with its question type, and the supporting context sentences, and the short answer.

The generation should strictly follow the following guidelines:
(1) The question must be sufficiently answered by the reference text only;
(2) The question need to be short and accurate;
(3) All supporting context sentences must be the original text from the reference text;
(4) The question should need long context (more than 5 sentences) to answer accurately;
(5) The type of each question needs to be ONE from the following eight types:
1. **Questions about Narrative and Plot Details**: inquire about specific details or the sequence of events

in a narrative (such as a story, movie, or historical account) require understanding the entire context
to provide an accurate answer.

2. **Summarization Questions**: require the summarization of a long passage, argument, or a complicated
process rely on understanding the full context to capture the essence of the content without omitting
crucial details.

3. **Inferential and Implied Questions**: depend on understanding subtleties and reading between the lines.
They may involve inferring the author's intent, the mood of the characters in a story, or the
implications of certain actions, which can't be answered with a direct quote from the text.

4. **Questions Requiring Synthesis of Information**: necessitate the synthesis of information dispersed
across a long passage or multiple passages, requiring an understanding of the broader context to
answer correctly.

5. **Cause and Effect Questions**: to understand the causal relationship between events in a text, one
often needs to consider a substantial portion of the context to identify the factors that led to
a particular outcome.

6. **Comparative Questions**: ask for comparisons between different ideas, characters, or events within
a text often require a comprehensive understanding of each element being compared.

7. **Explanatory Questions**: ask for explanations of complex concepts or processes that are described
in detail within the text. Answering these questions accurately requires a deep understanding of the
entire explanation as presented.

8. **Questions about Themes and Motifs**: when asked about the overarching themes or motifs in a text, one
must consider the entire work to identify patterns and draw conclusions about the central messages.

**Reference text**:
$text

Return the question and answer in the following json format:
{question:"...", type:"...", answer:"...", answer_context:"..."}

Figure 6: GPT-4 Prompt used for question and answer generation.

You are helpful question answering assistant. Given a question and the reference text, you need to find
sufficient context to answer this question. The context sentences must be the original text of reference
text. Note that you must not answer these question.

**Question**: $question

**Reference Text**: $reference

Return the result in json format: {"context": ..., "}

Figure 7: GPT prompt template designed to find the relevant answer scope given the question and section text.

You are a helpful summarization assistant. Please help me summarize the following section into no more
than 10 sentences or 200 words.

**Section Name**:
$section_name

**Section Text**:
$section_text

Figure 8: Prompt template designed to provide summary for section given its corresponding name and text.
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You are a helpful keyword extractor. You need to extract keywords from the following section. The keywords
should consist of concepts, entities, or important descriptions that are related to the section text, which
could be used to answer any questions from users.

**Section Name**:
$section_name

**Section Text**:
**Beginning of text**
$section_text$
**End of text**

Please output format in list format: [...]. Do not output anything else aside from this list.

Figure 9: Prompt template designed to provide keywords for section given its corresponding name and text.

You are a helpful question answering assistant. You are good at answering question based on provided contents.

**Contents**: $quotes

**Question**: $question

**Instruction:**
Assume you do not have any background and internal knowledge about this given contents and question.
You need to answer the question using the given contents only. The answer need to be short and accurate.

Figure 10: Prompt template designed to answer question based on the retrieved results.

You are a helpful assistant for evaluating answers. Given a question and ground truth answer, there will be
two possible answers. Provide a score from 0-10 for each answer.

**Question**: $question

**Ground truth answer**: $ground_truth_answer

**Answer 1**: $answer_1
**Answer 2**: $answer_2

**Instruction:**
Assume you do not have any background and internal knowledge about this given contents and question. You
need to evaluate each answer and give a score based on the ground truth answer.
You must write out your reasoning of the score based on relevance to the answer. If both answers are
exactly similar, you must ensure the scores and reasoning for both answers are the same.
Finally in a new line, you must return the scores and nothing else. The scores must be returned in the
following json format:
{"answer_1_score":"...", "answer_2_score":"..."}

Figure 11: GPT prompt template designed to provide score for each answer in pair-wise evaluations.

You are a helpful text chunking assistant that can divide a piece of text into sections.
Given a piece of text, your task is to partition the sentences in the given text into sections according
to the following guidelines:

1. The sentences in each section should make up one stand-alone atomic fact.

2. Each section should be a contiguous chunk of text from the given text. The text in each section should be faithful
and unchanged from the given text.

3. No sentences in the given text should be divided across two different sections.

Return each section on a new line.

Please breakdown the following text into sections:
$text

Figure 12: Prompt template designed to provide summary for section given its corresponding name and text.
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