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Sherlock: Towards Multi-scene Video Abnormal Event
Extraction and Localization via a Global-local

Spatial-sensitive LLM
Anonymous Author(s)

Please analyze the following video 
then locate the timestamp and extract 
the quadruple of the abnormal events.

From 23s to 25s, there exists anomalous event, and the 
abnormal quadruple is [                , Steal,            , Street]. It 
means a people Steal a car at street.

Anomaly Event

0s 23s 24s 25s 31s

CarPeople

Scene: Street

Anomaly Event

Scene: Residence

From 15s to 17s, there exists anomalous event, and the abnormal 
quadruple is [                ,Vandalism,                     , Residence]. It 
means a people vandalism a sculpture at residence area.

SculpturePeople

0s 15s 16s 17s 20s

Please analyze the following video 
then locate the timestamp and extract 
the quadruple of the abnormal events.

collision

carmotor

traffic

forest

Global: 100%

(a) (b) (c)

Figure 1: (a) and (b) illustrate two surveillance video examples for our M-VAE task and Sherlock model in two scenes (Street
and Residence). Sherlock precisely generates the abnormal event quadruples and their corresponding timestamps. (c) presents
a circular ratio diagram illustrating different spatial information. From (c), we observe that the global spatial information and
the local spatial information (i.e., action, object relation, and background) in our M-VAE dataset are imbalanced.

Abstract
In the literature, prior studies on Video Anomaly Detection (VAD)
mainly focus on detecting whether each video frame is abnormal or
not in the video, which largely ignore the structured video semantic
information (i.e., what, when, and where does the abnormal event
happen), though this structured information could be employed to
construct a more precise and efficient system for abnormal event
monitoring and retrieval. With this in mind, we propose a new
chat-paradigm Multi-scene Video Abnormal Event Extraction and
Localization (M-VAE) task, aiming to extract the abnormal event
quadruples (i.e., subject, event type, object, scene) and localize such
event. Further, this paper believes that this new task faces two
key challenges, i.e., global-local spatial modeling and global-local
spatial balancing. To this end, this paper proposes a Global-local
Spatial-sensitive Large Language Model (LLM) named Sherlock,
i.e., acting like Sherlock Holmes to track down the criminal events,
for this M-VAE task. Specifically, this model designs a Global-local
Spatial-enhanced MoE (GSM) module and a Spatial Imbalance Reg-
ulator (SIR) to address the above two challenges respectively. Ex-
tensive experiments on our constructed M-VAE instruction dataset
show the significant advantages of Sherlock over several advanced
Video-LLMs. This justifies the importance of global-local spatial
information for the M-VAE task and the effectiveness of Sherlock
in capturing such information.

CCS Concepts
• Computing methodologies→ Artificial intelligence.

Keywords
Multi-scene Video, Video Abnormal Event, Spatial-sensitive LLM

1 Introduction
Video Understanding is a foundational task in artificial intelligence,
which focuses on analyzing and interpreting the content of videos
to enable various applications, including video classification, ac-
tivity recognition, and scene understanding [42, 66, 67]. As a crit-
ical branch of video understanding, Video Anomaly Detection
(VAD) [22], which aims to automatically detect abnormal videos, has
garnered significant research attention due to its wide range of ap-
plications in criminal activity detection and disaster response [63].
Prior studies on VADmainly focus on detecting whether each video
frame is abnormal or not in the video [22, 31, 43, 63]. However, these
studies overlook targeting at determining the underlying video se-
mantic structure, i.e., “what is the abnormal type, where they have
occurred, which people or things are involved” with a given video.

Motivated by these, this paper proposes a novel Multi-scene
Video Abnormal Event Extraction and Localization (M-VAE) task1,
aiming at localizing abnormal events (i.e., starting and ending times
of the anomaly) and extracting event quadruples (i.e. [subject of the
event, event type, object of the event, scene of the event]) through
a chat paradigm. Take an example of Street scene in Figure 1 (a),
within 23s to 25s, a man bends down and pries the lock, then drives
away from the street and the abnormal event quadruple is [people,
steal, car, street]. Different scene (i.e., Residence scene) is also shown
in Figure 1 (b). Within 15s to 17s, a man vandalizes a sculpture at
one’s residence and the quadruple is [people, Vandalism, Sculpture,
Residence]. This structured processing for abnormal videos can sig-
nificantly improve the practicality and efficiency of video anomaly
localization systems. In fields such as real-time abnormal event
monitoring that require high reliability and precision monitoring,
using such structured processing can quickly search and screen for
1Relevance to the Web: M-VAE task belongs to Development of structured data topic
of Semantics and Knowledge track, which aims to extract and locate quadruple from
web videos (like YouTube and Tik Tok) , making web content more accessible through
video quick retrieval.
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the required abnormal elements, which provides more convenient
and intuitive evidence for further processing. Therefore, it is worth-
while to address this new task. Nevertheless, we believe that this
new task faces two key challenges.

For one thing, it is challenging to model the global-local spa-
tial information (named global-local spatial modeling challenge).
Existing video understanding models [36, 40, 61] mainly focus on
modeling general global information. However, local spatial infor-
mation in our M-VAE task is often crucial compared to general
global information, which are highly discriminative and essential
for precise identification. Taking Figure 1 (a) as an example, the
local spatial information, such as action (bend down), object rela-
tions (<man, near, car>), and background (street), can help better
identify abnormal events. However, those local spatial information
(e.g., actions, object relations, backgrounds) have different heteroge-
neous representations (i.e., different model structures and encoders).
Therefore, a single, fixed-capacity transformer-based model, often
makes it difficult to capture those critical local spatial information
in videos. Recently, the Mixture of Expert (MoE) [20, 25] paradigm
has demonstrated scalability in multi-modal heterogeneous repre-
sentation fusion tasks [20, 25, 26]. Inspired by this, a well-behaved
model for our task should adopt the MoE paradigm to not only con-
sider global spatial information but also emphasize the importance
of local spatial information.

For another, a straightforward approach is to employ a basic Mix-
ture of Expert (MoE) mechanism [20, 25, 26] to treat global spatial
information (i.e., general representations of videos) and local spatial
information (e.g., actions) as the global expert and local experts
for integrating those information. However, the data imbalance
issue among local spatial information may lead to the basic MoE
experts being biased towards the more frequently occurring spatial
information in the dataset. The statistics in Figure 1 (c) can illustrate
this imbalance. Certain frequently appearing local information (i.e.,
action at 45%), can lead to higher weight for the corresponding ex-
pert. However, in Figure 1 (a), the object relations information, with
the smallest proportion (25%), but is the most discriminative for
extracting and localizing Theft events. More seriously, global spatial
information is the most frequent and our preliminary experiments
in Figure 7 (a) reveal global expert is often more thoroughly trained
and often have the highest weights. Therefore, a better-behaved
MoE expert fusion mechanism should mitigate this data imbal-
ance (named global-local spatial balancing challenge), ensuring all
experts are sufficiently trained to highlight their importance.

To tackle above challenges, we propose a Global-local Spatial-
sensitive LLM named Sherlock, i.e., acting like Sherlock Holmes to
track down criminal events, for M-VAE. Specifically, this model
designs a Global-local Spatial-enhanced MoE (GSM) module to
address the global-local spatial modeling challenge, which includes
four spatial experts to extract spatial information and an expert
gate to weigh global and local spatial information. Furthermore,
this model designs a Spatial Imbalance Regulator (SIR) to address
the global-local spatial balancing challenge, which includes a Gated
Spatial Balancing Loss (GSB) to further balance global and local
experts. Particularly, we construct a M-VAE instruction dataset to
better evaluate the effectiveness of our model. Detailed experiments
show Sherlock can effectively extract and localize abnormal events
and surpass advanced Video-LLMs in multiple evaluation metrics.

2 Related Work
• Video Anomaly Detection. Video Understanding is a rapidly
evolving research field which encompasses several tasks, includ-
ing video grounding [42, 66, 67], spatial-temporal detection [15]
and so on. As an important branch of video understanding, pre-
vious studies on Video Anomaly Detection (VAD) can be catego-
rized into unsupervised, weakly-supervised, and fully-supervised
categories. Unsupervised approaches focus on leveraging recon-
struction techniques to identify anomalies [17, 22, 71, 73]. Weakly-
supervised methods have shown promising results in identify-
ing abnormal frames [13, 38, 64, 68, 83]. Fully-supervised meth-
ods are scarce due to the expensive frame-level annotations re-
quired [9, 12, 14, 21, 60, 62, 80]. Different from the above studies,
our Sherlock model aims to target at determining the underlying
video semantic structure, providing a structured quadruple that
goes beyond previous methods, facilitating the rapid detection and
early warning of abnormal events in real-time.
• Event Extraction (EE) focuses on extracting structured infor-
mation from given types of information. Traditional EE methods
mainly extract from text documents [23, 27, 37, 39, 59]. Recently,
many studies [3, 46, 75, 77, 78] generate similar event structures
from visual image data. Different from all the above studies, we are
the first to focus on extracting the abnormal event from videos and
constructing a quadruple dataset, incorporating information from
multiple spatial information, enriching the task of event extraction,
and making it more practical for real-world applications.
• Scene Recognition is a fundamental task applied in remote
sensing [8, 58] and autonomous driving [70]. Traditional methods
rely on hand-crafted features for extracting visual attributes [8, 58].
Recently, ARCNet [65] and CapsNet [81] reinforcement, aim to
locate important regions. Others, like using CapsNet in [2] and
FACNN [48], focus on modeling global context. SCViT [50] and
KFB combine fine-grained information. Recently, many studies [52,
55, 76] utilize LLMs to solve the illusion problem. Different from
the above studies, we introduce scene classification into our M-VAE
task and integrate scenes into event quadruples, greatly improving
the applicability of our M-VAE task in the real world.
• Video-oriented Large Language Models. The rise of Chat-
GPT [54] has stimulated the prosperity of Video Large Language
Models which can be categorized into four major types: firstly,
Video Chat [36] and Video LLaMA [79], which utilize BLIP-2 [35]
and Q-Former to map visual representations onto Vicuna; secondly,
models like Video ChatGPT [51], Otter [33], Valley [49], mPLUG-
Owl [74], and Chat-UniVi [28], which leverage CLIP [57] to en-
code visual features; thirdly, PandaGPT [61], which adopts Image-
Bind [16] as its core architecture for video understanding; and
fourthly, VideoLLaVA [40], which aligns image and video features
into a linguistic feature space using LanguageBind [84]. Recently, a
few studies [29, 72] consider incorporating spatial information in
models. Besides, some studies [20, 25, 26] introduce the concept of
MoE into LLMs, but they only focus on efficiency, without consid-
ering the balance between different information. Different from all
the above studies, we design a new Sherlock model, to address our
M-VAE task, which includes a Global-local Spatial-enhanced MoE
module and a Spatial Imbalance Regulator to address the challenges
of global-local modeling and balancing.

2
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Figure 2: The overall framework of Sherlock. It consists of a Global-local Spatial-enhanced MoE (GSM) Module and a Spatial
Imbalance Regulator (SIR). The SIR exerts a direct influence on the output weights of the expert gate. W SIR or W/o SIR means
with or without Spatial Imbalance Regulator.

3 Our Sherlock Model
In this paper, we propose a Sherlock model to address the M-
VAE task. Figure 2 illustrates the framework of Sherlock, which is
composed of two core components (i.e., the Global-local Spatial-
enhanced MoE (GSM) module (sec 3.1) for the global-local spa-
tial modeling challenge and the Spatial Imbalance Regulator (SIR)
(sec 3.2) for the global and local spatial balancing challenge). Subse-
quently, we present our training strategies to enhance the ability
of understanding spatial information (sec 3.3).
Backbone.We choose Video-LLaVA2 [40] and its visual encoder
LanguageBind [84] as the core framework. Video-LLaVA, which is
optimized with a mixed dataset of images and videos, demonstrates
leading performance across most image and video benchmarks. We
employ Video-LLaVA as the backbone to explore the potential of
Video-LLMs in extracting and localizing abnormal events.
Task Formulation. Given a video 𝑉 for𝑀 frames, each frame is
labeled with 1 or 0, where 1 and 0 represent whether this frame
conveys an abnormal event. The goal of M-VAE is to interactively
generate the quadruple (𝑠𝑢𝑏, 𝑡𝑦𝑝𝑒 , 𝑜𝑏 𝑗 , 𝑠𝑐𝑒) for each event along
with the corresponding timestamp 𝑠𝑡𝑎 and 𝑒𝑛𝑑 , where 𝑠𝑢𝑏, 𝑡𝑦𝑝𝑒 ,
𝑜𝑏 𝑗 , 𝑠𝑐𝑒 , 𝑠𝑡𝑎 and 𝑒𝑛𝑑 are the subject, event type, object, scene, start
time and end time of the abnormal event. As shown in Figure 1 (a),
a man steals a car at street from 23s to 25s. Therefore, the output
of our M-VAE task is {23s, 25s, (people, steal, car, street)}.

2https://github.com/PKU-YuanGroup/Video-LLaVA.git

3.1 Global-local Spatial-enhanced MoE Module
As shown in Figure 2, we design a Global-local Spatial-enhanced
MoE (GSM) Module for the global-local spatial modeling challenge.
Inspired by Mixture-of-Experts (MoE) [26], we design three Local
Spatial Experts (i.e., Local Action Expert, Local Object Relation
Expert and Local Background Expert) and a Global Spatial Expert
to extract spatial information, detailed as follows.

Local Spatial Experts contain three local spatial experts (i.e.,
action, object relation, and background), detailed as follows.

• Local Action Expert (Action Expert, AE). We leverage High-
erHRNet [7], a well-adopted bottom-up human pose estimation
network to extract local spatial action information. HigherHRNet
can generate local spatial action tokens T𝒂 = {𝒕𝒂1 , ..., 𝒕

𝒂
𝒊 , ..., 𝒕

𝒂
𝒎}, and

each token consists of 17 human joint nodes for each individual
in every frame of a video sequence. Here, 𝑖 denotes the 𝑖-th frame.
Next, we apply Action Graph Attention to integrate T𝒂 with the
video tokens T𝒗 = {𝒕𝒗1 , ..., 𝒕

𝒗
𝒊 , ..., 𝒕

𝒗
𝒎} generated by the Video En-

coder in Video-LLMs. We start by calculating the attention weights
𝛼𝑘 𝑗 for each node 𝑒𝑘 in 𝒕𝒂𝒊 relative to its neighboring node 𝑒 𝑗 :

𝜶𝒌𝒋 = softmax
( (Waℎ𝑘 ) · (Waℎ 𝑗 )√

𝑑

)
(1)

where ℎ𝑘 and ℎ 𝑗 is the features of 𝑒𝑘 and 𝑒 𝑗 respectively.Wa denote
the learnable weight matrix, and 𝑑 is the feature dimension. Then
we aggregate the feature ℎ̂𝑘 of node 𝑒𝑘 : ℎ̂𝑘 =

∑
𝑗∈N(𝑒𝑘 ) 𝛼𝑘 𝑗 · ℎ 𝑗 ,

where N(𝑒𝑘 ) is the neighboring nodes of 𝑒𝑘 . Finally the feature of
3
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𝑒𝑘 is calculated by ℎ′
𝑘
= ReLU(Wk [ℎ̂𝑘 , ℎ𝑘 ]), whereWa donates the

weight matrix and [ℎ̂𝑘 , ℎ𝑘 ] is the concatenation of ℎ̂𝑘 and ℎ𝑘 .
After graph attention operation, we enhance T𝒂 using the atten-

tion mechanism with query Q𝒗 , key K𝒂 , and value V𝒂 calculation
to obtain final action tokens: T′𝒂 = softmax

(
Q⊤
𝒗 · K𝒂

)
· V𝒂 .

• Local Object Relation Expert (Object Relation Expert,
ORE). We leverage RelTR [11], a well-studied one-stage object
relation graph generation method to extract local spatial object
relation information. RelTR can generate an object relation token
𝒕𝒐𝒊 = (𝑅𝑖 , 𝐸𝑖 ), which represents the object relation graph of the 𝑖-th
frame. Here, 𝑅𝑖 = {

(
𝑐𝑖,1, 𝑏𝑖,1

)
, ...,

(
𝑐𝑖,𝑘 , 𝑏𝑖,𝑘

)
} is a set of 𝑘 detected

objects, with class 𝑐 and corresponding bounding box 𝑏. The set
𝐸𝑖 = {𝑐𝑖,𝑝 , 𝑟𝑖,(𝑝,𝑞) , 𝑐𝑖,𝑞} consists of the directed edges in the graph,
representing two directional edges from 𝑐𝑖,𝑝 to 𝑟𝑖,(𝑝,𝑞) and from
𝑟𝑖,(𝑝,𝑞) to 𝑐𝑖,𝑞 , where 𝑟𝑖,(𝑝,𝑞) denotes a relationship category. For
example, an object might be represented as (man, <0.36, 0.24, 0.75,
1.62>), and an edge as (man, near, car). Subsequently, we apply
object-aware masking with Masked Graph Transformer Networks
(MaskGTN) to fully utilize object relations. We mask irrelevant
object parts based on the bounding box information, and aggregate
information from neighbors using a graph transformer layer (GT).
Given an input graph of region classes and edges, MaskGTN com-
putes updated vectors for each region and edge. Assuming we use
𝐿 layers of GT, with H(ℓ ) representing the features of the ℓ-th layer,
the final forward propagation is defined as follows:

H(ℓ+1) = 𝜎

(√︁
D̃ · Ã ·

√︁
D̃ · H(ℓ ) ·W(ℓ )

)
(2)

where 𝜎 is the activation function on the graph. Ã is the adjacency
matrix of the object-relation graph, derived from 𝐸𝑖 , and D̃ is its
degree matrix, with D̃𝑖𝑖 =

∑
𝑖 Ã𝑖 𝑗 .W(ℓ ) is a trainable weight matrix.

• Local Background Expert (Background Expert, BE). We
leverage SAM2 [30], an advanced model for visual segmentation,
to extract local spatial background information from videos. SAM2
can generate a background image for each frame of video. Then we
leverage InternVit [6] to encode local spatial background informa-
tion which is a large vision encoder extending the parameters of
vision transformer (VIT) [5] to 6B, formally represented as:

T𝒃 = InternVit (SAM2 (𝑣𝑖 )) (3)

where 𝑣𝑖 is the 𝑖-th frame of video 𝑉 . This process results in the
local spatial background tokens T𝒃 = {𝒕𝒃1 , ..., 𝒕

𝒃
𝒊 , ..., 𝒕

𝒃
𝒎} for the

entire video sequence, with 𝑛 representing the total number of
frames.

Global Spatial Expert has a comprehensive understanding of
the training data. Collaborate with local spatial experts to bring
specialization and generalization capabilities to M-VAE tasks.

• Global Spatial Expert (Global Expert, GE). The weight as-
signed to the global spatial expert complements that of the local
spatial experts. Consequently, the local spatial experts acquire spe-
cialized skills for specific tasks, whereas the global spatial expert
develops a comprehensive understanding of the entire training
corpus. The collaboration between these two types of experts pro-
vides both specialization and generalization for our M-VAE task.
In this way, we leverage LanguageBind [84] in Video-LLaVA [40],
which inherits the ViT-L/14 structure from CLIP and is equipped
with powerful and universal visual encoding capabilities to extract

global spatial information for our task. We subsequently leverage
a pre-trained FFN layer by [40] to align the dimension with other
spatial information, formally represented as:

T𝒈 = FFN (LanguageBind (𝑣𝑖 )) (4)

where 𝑣𝑖 is the 𝑖-th frame of video 𝑉 . This process yields the full
set of global tokens T𝒈 = {𝒕𝒈1 , ..., 𝒕

𝒈
𝒊 , ..., 𝒕

𝒈
𝒎} for the entire video

sequence, with 𝑛 representing the total number of frames.
After designing four experts, we ensure that the four Spatial

Experts can dynamically adjust the weights of the four heteroge-
neous types of spatial information inspired by Mixture-of-Experts
(MoE) [20]. As shown in Figure 2, unlike methods that embed sev-
eral FFNs within LLMs, our GSM put four experts outside the LLMs
to adjust weights for global and local spatial information. Based on
this, we introduce a dynamic Expert Gate (EG) [56], which controls
the contribution of each expert by calculating gating weights as a
soft gate. Finally, the outputO of GSM, based on four spatial experts
and EG, is formally represented as:

𝒈 = softmax

(
W𝑔 ·

𝑁∑︁
𝑖=1

(Si)
)

(5)

O = LayerNorm

(
𝑁∑︁
𝑖=1

(𝑔𝑖 · Si)
)

(6)

where LayerNorm (·) indicates layer normalization [1]. 𝑔𝑖 (the 𝑖-th
entry in 𝒈) represents the weight of the 𝑖-th expert. Si represents the
outputs of the 𝑖-th Spatial expert. 𝑁 is the total number of spatial
expert, andW𝑔 being the trainable weight matrix.

3.2 Spatial Imbalance Regulator
After modeling the spatial information, we design a Spatial Imbal-
ance Regulator (SIR) including a Gated Spatial Balancing Loss (GSB)
for the global-local spatial balancing challenge, detailed as follows.

Gated Spatial Balancing (GSB) Loss. Previous researches em-
ploy a basic Mixture of Experts (MoE) [20, 25] to model global and
local spatial information. When faced with an imbalance between
these two types of information, the weights assigned to experts tend
to be biased toward those that appear more frequently. As shown in
Figure 1 (c), there are the most spatial elements (e.g., People) related
to local spatial action information in event quadruple. This implies
that performance will deteriorate when faced with real-world data
that is not processed by an action expert (e.g., object relations). More
seriously, as shown in Figure 1 (c), global information holds sig-
nificant weight in all data, which will lead to excessive training of
global experts and weaken the abilities of local experts with lower
weights. This imbalance phenomenon will greatly affect the perfor-
mance of our model. Based on this, we should keep the weights of
all spatial experts not too different and achieve the optimal state
of relative balance where every expert is fully trained. Inspired by
MoELoRA [44], we propose a Gated Spatial Balancing (GSB) Loss
to balance spatial weights, as follows:

Lgate =

(
1

𝑁local

𝑁local∑︁
𝑖=1

−log (𝑔𝑖 )
)
− log

(
𝑔global

)
(7)

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Sherlock WWW, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: The statistics of the number of events and the duration in seconds (s) of events for each scene.
Split School Shop Underwater Street Road Boat Wild Forest Residence Bank Commercial Factory Lawn Other Total
Train 55 (2136s) 107 (4130s) 78 (3022s) 113 (7076s) 114 (5586s) 115 (5203s) 111 (4681s) 102 (3918s) 117 (4914s) 89 (3380s) 105 (5011s) 82 (3173s) 104 (5943s) 56 (1497s) 1348 (59670s)

Inference 13 (534s) 26 (1032s) 19 (755s) 28 (1769s) 28 (1396s) 29 (1300s) 27 (1170s) 25 (979s) 29 (1228s) 22 (845s) 26 (1252s) 20 (793s) 26 (1485s) 14 (374s) 332 (14912s)

Train
80163s (640K Frames)

Stage 1:   The dataset of pre-tuning for spatial understanding

Stage 2:   Our constructed dataset for M-VAE task

COCO
20K Frames

Inference 
20053s (160K Frames)

RSI-CB
20K Frames

Ref-L4
20K Frames

HumanML3D
20K Frames

Figure 3: Data composition for training and inference.

where 𝑁local is the number of local expert. 𝑔global is the weight of
global expert. The first term of Eq.(7) is balancing between local
experts, and the second term is balancing between local and global
experts. The weights of four experts have already balanced when
the loss is optimized to aminimum. This regulation achieves a better
balance among all experts, reducing the impact of data imbalance,
which effectively addresses the global-local balancing challenge.
Finally, the overall loss of Sherlock can be represented as:

L = LD + 𝛼 ∗ Lgate (8)

where 𝛼 is the hyper-parameter that controls the strength of Lgate,
and LD is the next-token prediction loss of Video-LLMs.

3.3 Training Strategies for Sherlock
In order to enhance the ability of understanding spatial information,
we design a two-stage training process. Stage 1 is to enhance the
ability of understanding spatial information and Stage 2 is to address
the M-VAE task, detailed as follows.

Stage 1. Pre-Tuning for spatial understanding. As shown
in Figure 2, we first pre-tune Video-LLaVA using four high-quality
datasets. We aim for Video-LLaVA to have a good spatial under-
standing ability. Specifically, we selected four high-quality datasets:
HumanML3D [18], Ref-L4 [4], RSI-CB [34], and COCO-Caption [41],
as described in sec 4.1. For each pre-tuning dataset, we enable this
dataset to understand corresponding spatial information.

Stage 2. Instruction Tuning for M-VAE task.We aim to en-
able the model to localize abnormal events and extract quadruples
through the chat paradigm. We construct an instruction tuning
dataset described in sec 4.1 and instruct the pre-tuned Video-LLaVA
to Extract quadruples and localize abnormal events. The quadruple
includes subject, event type, object, and scene in abnormal events.
The instruction will undergo text embedding to obtain the textual
tokens T𝒕 . Finally, the input of the LLM is “O from Eq.(5) + T𝒕 ”.

4 Experimental Settings
4.1 Instruction Data Construction
The training pipeline of Sherlock contains two stages. As shown in
Figure 3, for each stage, we construct the corresponding instruction
dataset for better tuning.

For Stage 1.We construct a special understanding dataset based
on Ref-L4 [4], HumanML3D [18], RSI-CB [34] and COCO [41].
Specifically, we manually design an instruction for each type of
spatial information, for instance: Instruction: "Judge the action of
the characters in the image. Describe the image region <objs> in the
image. Judge the background of the image. Describe the image". As
HumanML3D has 25K videos with an average duration of 1 second,

Figure 4: The word cloud distribution of quadruple elements
in the M-VAE dataset, which reveals the spatial imbalance.
(e.g., The proportion of people is the highest)

and we take 8 frames per second. For the data balance, we randomly
select 20K images or frames from each dataset.

For Stage 2.We construct an M-VAE instruction dataset based
on CUVA [12], which primarily consists of surveillance videos, with
an average duration of 80 seconds per video. As this dataset in-
cludes five detailed video Q-A tasks (i.e., timestamp, classification,
reason, result, and description tasks), it is highly beneficial for con-
structing our M-VAE dataset. 1) For abnormal event quadruples,
constructing quadruples involves two steps. First, we collect an-
swers from the reason, result, and description tasks in CUVA for
each video. Subsequently, we construct initial quadruples through
ChatGPT [54] based on the answers to these tasks, with the instruc-
tion: "Please extract the subject, object, and scene of the event based on
the responses below". Second, we create multiple candidate sets for
subjects, objects, and scenes in quadruple. Specifically, for subjects
and objects elements, we manually construct a set of around 40
for subjects and objects and filter elements based on this set. For
event types elements, we adopt the 11 categories (i.e., Fighting,
Animals, Water, Vandalism, Accidents, Robbery, Theft, Pedestrian,
Fire, Violations, and Forbidden) from CUVA as the event types. For
scenes elements, we assign two annotators to classify scenes for
each abnormal event. If they cannot reach an agreement, an expert
will make the final decision to ensure annotation quality. The Kappa
consistency check value of the annotation is 0.87. 2) For localization
task, we use the timestamp in the CUVA as labels for localization.
Furthermore, we adhere to the split of CUVA for training and infer-
ence videos and take 8 frames per second, resulting in 800K frames
from 1k videos and each video contains 1.68 abnormal event on
average. The statistics of the number of events and the duration in
seconds (s) of events for each scene are shown in Table 1. Finally,
we obtain our M-VAE instruction dataset. Our instruction for the
M-VAE task is: "Generate a quadruple and localize an abnormal event
in the video. The quadruple includes subject, event type, object, and
scene in abnormal events.". Figure 1 (c) and Figure 4 show the top
20 quadruple elements, revealing the spatial imbalance.

4.2 Baselines
In this paper, we select several advanced Video-LLMs as base-
lines which are introduced as follows. VideoChat [51] employs
Q-Former [35] to map visual representations to Vicuna [10]. Video-
ChatGPT [51] integrates LLMs with CLIP [57] for video represen-
tations. Valley [49] employs a temporal modeling module to bridge
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Table 2: Comparison of several Video-LLMs and Sherlock on our instruction dataset, wherein evaluation for Anomaly Cls.
(i.e., Anomaly classification) is to assess traditional anomaly classification task [19, 47, 69] (i.e., whether each video frame is
ab- normal or not in the video). The ↓ beside FNRs indicates the lower the metric, the better the performance. AE, ORE, BE,
GE, and EG represent four Spatial Experts and Expert Gate respectively. Sub, Type, Obj, and Sce represent Subject, Event type,
Object, and Scene respectively. T5-based and GPT-based metrics are based [53] for LLM especially. For each task, Blue and
Green donate the first and second place respectively.

Event Extraction Event Location Anomaly Cls.
Single (F1) Pair (F1) Quadruple mAP@tIoUModels

Subject Type Object Scene Sub-Type Obj-Type Sub-Sce Obj-Sce F1 T5-based GPT-based Average 0.1 0.2 0.3 Average FNRs F2

Video Chat 73.14 71.35 64.28 71.76 70.12 58.69 71.55 61.18 40.95 51.68 53.94 62.6 77.28 74.93 66.26 72.82 38.79 65.88
Video ChatGPT 61.87 59.51 54.82 46.39 54.23 49.68 43.26 41.38 39.63 47.36 50.38 49.86 74.65 70.91 67.03 70.86 41.47 61.35

Valley 64.64 62.27 58.94 52.26 58.36 51.64 49.68 46.42 42.38 53.34 56.67 54.23 69.34 62.26 57.66 63.08 43.49 59.42
Panda GPT 73.09 75.45 68.42 61.93 71.96 59.92 59.79 59.45 41.17 44.36 48.55 60.37 76.64 62.69 57.21 65.51 35.62 69.16
mPLUG-Owl 52.86 37.54 40.24 37.68 31.97 28.89 33.9 27.87 22.12 29.68 32.41 34.1 61.42 53.21 46.46 53.69 56.98 51.66
Chat-UniVi 59.71 57.26 55.28 44.23 52.43 50.62 41.24 40.96 37.68 45.34 48.84 43.59 65.89 58.62 40.02 54.84 52.52 53.78
Video-LLaVA 77.85 73.68 65.67 75.91 69.32 59.21 73.25 62.24 41.32 52.94 56.74 64.37 78.31 74.79 64.92 72.67 41.34 64.96
Sherlock 87.97 82.12 74.99 92.15 77.06 66.28 85.16 73.17 57.57 65.46 67.52 75.22 94.03 82.59 76.12 84.24 17.24 83.59
w/o AE 83.15 77.64 71.28 90.16 72.36 63.47 80.52 70.39 52.48 59.61 62.02 71.18 92.24 81.21 75.38 82.94 21.82 80.45
w/o ORE 83.96 78.25 72.37 90.01 74.24 64.46 81.56 70.97 54.35 62.28 65.08 72.5 91.13 82.08 74.62 82.61 22.97 78.83
w/o BE 81.16 74.65 67.88 88.07 69.29 61.12 77.64 66.64 48.63 53.04 55.94 67.71 88.62 79.09 72.24 79.98 25.36 73.51
w/o GE 79.2 74.09 66.71 84.11 70.38 60.77 75.44 66.28 46.34 53.97 57.06 66.75 86.18 78.37 69.28 77.94 28.97 71.28
w/o EG 78.83 73.96 65.02 83.15 70.15 60.26 74.15 63.37 43.64 49.14 51.82 64.86 81.31 77.68 67.88 75.62 32.58 67.07
w/o SIR 84.47 80.14 71.94 92.34 75.58 64.84 83.21 70.06 55.73 62.87 65.18 73.3 83.41 78.49 68.37 76.75 30.64 70.97

w/o pre-tuning 78.24 74.44 64.22 82.21 68.55 57.74 72.62 62.91 42.51 47.22 50.54 63.74 79.58 75.32 65.07 73.32 34.87 66.64

visual and textual modes. PandaGPT [61] utilizes ImageBind [16]
to demonstrate cross-modal capabilities.mPLUG-Owl [74] intro-
duces a visual abstractor module to align different modes. Chat-
UniVi [28] merges visual tokens with semantic meanings. Video-
LLaVA [40] conducts joint training on images and videos. To ensure
a fair comparison, we re-implement these models using their re-
leased codes in our experiments, with all LLMs sized at 7B.

4.3 Evaluation Metrics
M-VAE focuses on extracting event quadruples and locating ab-
normal events from videos, requiring evaluation metrics in three
aspects (i.e., extract event quadruples, locate abnormal events, and
classify abnormal events). For the extraction performance, we
measure our model through three perspectives. 1) Single: perfor-
mance of generating each individual element. 2) Pair: performance
of generating the element pair, i.e., Subject-Type pair, Object-Type
pair, Subject-Scene pair, Object-Scene pair. 3) Quadruple Gener-
ation: performance of generating the complete event quadruple.
Following the prior works [32], the performance is evaluated with
Macro-F1. Furthermore, we use T5-based and GPT-based metrics
based on Video-bench [53] especially for LLM. For localization
performance, we use the mAP@tIoU metric [82], calculated by
mean Average Precision (mAP) at different IoU thresholds from
0.1 to 0.3 with 0.1 intervals. For classification performance, we
refer to the traditional anomaly classification task [19, 47, 69] for
anomaly classification metric, which mainly determines whether
each video frame is abnormal or not in the video. We prefer Recall
over Precision and report F2 [82] as another classification metric.
Furthermore, our model focuses on accurately distinguishing abnor-
mal events. As shown in Figure 1, it’s better to mark all timestamps
as abnormal than to miss any. So we prioritize false negative rates
(FNRs): FNRs = num of false-negative frame

num of positive frame , which is the rate of mis-
labeling an abnormal event frame as normal. In addition, 𝑡 test3 is
used to evaluate the significance of the performance.

3https://docs.scipy.org/doc/scipy/reference/stats.html

4.4 Implementation Details
In our experiments, we utilize open-source codes to obtain exper-
imental results of all the baselines in Table 2 and Table 4. The
hyper-parameters of these baselines remain the same setting re-
ported by their public papers. The others are tuned according to
the best performance. For both Stage 1 and 2, we use a batch size
of 16 and train for 1 epoch with the AdamW [45] optimizer and a
cosine learning rate decay schedule with a warm-up period. The
initial learning rate is 2e-5. The hyper-parameter 𝛼 in L is set to
0.4. We tune the Video-LLaVA model using LoRA [24]. The LoRA
matrix dimension, dropout rate, and dropout rate are 16, 64, and
0.05 respectively. Experiments are run on a single NVIDIA A100
GPU with 40GB memory. Stage 1 training takes about 16 hours,
Stage 2 takes 60 hours, and inference takes about 8 hours. To facili-
tate the corresponding research, all codes and the M-VAE datasets
will be released via GitHub.

5 Results and Discussions
5.1 Experimental Results
Table 2 shows the performance comparison of different models
on our M-VAE task, and we can see that: For extraction perfor-
mance, our Sherlock model outperforms all baselines, with an
average improvement of 10.85 (𝑝-value < 0.05) over the second-best
performance. More specifically, our Sherlock model surpasses the
second-best performance by an average of 9.9 (𝑝-value < 0.05), 8.59
(𝑝-value < 0.05), and 9.52 (𝑝-value < 0.05) in average Single, Pair,
and Quadruple metrics, justifying the effectiveness of our Sher-
lock model on extraction task. For localization performance,
our Sherlockmodel exceeds the second-best performance by 11.42
(𝑝-value < 0.01) in average mAP@tIoU metric, justifying the effec-
tiveness of our Sherlock model on localization task. Furthermore,
for classification performance, in FNRs and F2 metric, our Sher-
lockmodel surpasses the second-best performance in 18.38 (𝑝-value
< 0.01) and 14.43 (𝑝-value < 0.01). This implies the importance of our
global and local spatial information and justifies the effectiveness
of our Sherlock model on classification task.
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Table 3: Comparison of several advanced Video-LLMs and Sherlock on the 14 scenes of the M-VAE dataset with FNRs.
Models School Shop Underwater Street Road Boat Wild Forest Residence Bank Commercial Factory Lawn Other

Video Chat 39.57 39.47 37.3 36.81 27.41 35.32 33.27 33.36 35.95 40.59 38.97 45.52 35.26 49.04
Video Chatgpt 45.91 41.98 39.36 41.41 30.11 38.19 36.32 37.73 37.54 44.5 42.96 40.78 36.28 52.33

Valley 46.68 43.76 41.37 44.24 35.66 42.15 46.78 39.25 42.15 48.35 48.31 47.21 37.11 53.09
Pandagpt 34.56 35.65 34.47 36.48 24.42 35.85 31.78 32.37 34.18 38.55 37.89 41.46 31.17 44.24

mPLUG-Owl 54.13 54.41 53.21 47.34 36.51 45.02 58.37 46.31 45.63 57.94 56.88 53.14 54.74 59.56
Chatunivi 52.51 48.82 47.52 48.68 35.53 44.41 59.88 45.96 44.34 54.92 55.66 51.12 52.22 55.48
Video-llava 45.27 37.43 34.63 38.84 27.76 32.54 26.41 30.29 31.45 21.19 29.84 20.08 30.72 28.31
Sherlock 16.35 21.91 15.16 24.24 14.63 20.96 17.29 18.48 20.43 11.21 23.43 8.96 21.44 13.6
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Figure 5: Convergence analysis of other baselines, Sherlock,
and its variant without specific components.
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Figure 6: The visualization of balanced spatial expert weights
calculated in Eq.(5). The length of the bar in different colors
represents the weights for the corresponding expert. 𝐶1 to
𝐶11 is different Event types in quadruples.

5.2 Contributions of Each Key Component
In order to further investigate the contributions of different modules
of Sherlock, we conduct an ablation study on our Sherlockmodel.
As shown in Table 2, w/o AE, w/o ORE, w/o BE, w/o GE, w/o EG,
and w/o pre-tuning represent without four Spatial Experts, Expert
Gate, and pre-tuning stage in sec 3.2 respectively.

Effectiveness Study of Global and Local Spatial Expert.
From Table 2, we can see that: The performance of w/o AE, w/o
ORE, w/o BE and w/o GE degrades in all metrics, with an average
decrease of 7.54 (𝑝-value < 0.01), 7.57 (𝑝-value < 0.01), 4.37 (𝑝-value
< 0.01), and 5.68 (𝑝-value < 0.01) in FNRs, F2, average map@tIoU,
and average event extraction metrics. This confirms the importance
of global and local spatial information in extracting and localizing
abnormal events, and our Sherlock model can better model those
information well.

Effectiveness Study of Spatial Imbalance Regulator. From
Table 2, we can see that: 1) Compared with Sherlock, w/o EG
shows poorer performance in all metrics, with a decrease of FNRs,
F2, average map@tIoU, and average extraction performance by
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Figure 7: (a) is the visual comparison of our SIR and (b) is the
comparison of the average inference time for a one-minute
video between Sherlock and other Video-LLMs.

Table 4: Comparison of localization and anomaly classifi-
cation task with several well-performing non-LLMmodels
which is conducted on publicly available datasets.

Anomaly Location Anomaly Cls.
mAP@tIoUModels

0.1 0.2 0.3 Average FNRs F2

BiConvLSTM[21] 52.74 37.31 31.12 40.39 68.05 44.48
SPIL[62] 53.28 38.89 32.91 41.69 67.84 46.87

FlowGatedNet[9] 53.64 39.64 33.18 42.15 67.24 46.55
X3D[60] 54.52 40.05 34.96 43.17 65.08 48.65
HSCD[14] 56.14 42.87 35.28 44.76 60.36 52.28
Sherlock 94.03 82.59 76.12 84.24 17.24 83.59

15.34 (𝑝-value < 0.01), 16.52 (𝑝-value < 0.01), 8.62 (𝑝-value < 0.05)
and 10.36 (𝑝-value < 0.01), respectively. This demonstrates the ef-
fectiveness of GSM in global-local spatial modeling and encourages
us to consider handling heterogeneity issues between spatial in-
formation in the manner of MoE. 2) From Table 2, we can see that
compared to performance of w/o SIR, the performance of w/o MG
is poorer, with FNRs, F2, average map@tIoU, and average event
extraction metrics decreasing by 1.94 (𝑝-value < 0.05), 3.9 (𝑝-value
< 0.05), 1.13 (𝑝-value < 0.05) and 4.84 (𝑝-value < 0.05), respectively.
This further demonstrates the effectiveness of Lgate in global-local
spatial balancing and encourages us to consider using SIR to better
balance spatial information. 3) In addition, we record the weights
of four spatial experts after training in Figure 6 and Figure 7 (a). We
can see that the weights of all experts have been relatively balanced,
and each expert has demonstrated outstanding professional abilities
when facing different types of abnormal videos.

Effectiveness Study of Pre-tuning. From Table 2, we can see
that w/o pre-tuning, the performance is inferior to Sherlock.
FNRs, F2, average map@tIoU, and average event extraction metrics
have decreased by 17.63 (𝑝-value < 0.01), 16.95 (𝑝-value < 0.01), 10.92
(𝑝-value < 0.01) and 11.48 (𝑝-value < 0.01), respectively. This further
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Sherlock: From 13s to 16s, there exists abnormal events, and the abnormal
quadruple is (             , Robbery, Room, Shop). It means people broke into the 
room and robbed the shop.

0s 13s 16s

Ground TruthExample1 (Scene of shop robbing)
Instruction: Please analyze the following video and localize the timestamp and extract the quadruple of abnormal events.

0s 9s 15s

Ground TruthExample2 (Scenes of road traffic accidents)

PandaGPT : From 11s to 15s, we have discovered an anomaly. A group of 
people broke into the bank and stole a large amount of property. The quadruple is 
(People, Theft, Bank, Shop).

Video-LLaVA : In this video, I think it's a normal video that depicts two people 
going shopping at a grocery store.

Sherlock: From 9s to 15s, there exists abnormal events, and the abnormal
quadruple is (           , Traffic Accident, Rail, Road). It means a truck violently 
crashed into the roadside fence.

PandaGPT : From 9s to 13s, we have discovered an anomaly, a large truck 
was violently dismantled and destroyed by someone, and the quadruple is 
(People, Vandalism, Truck, Road).

Video-LLaVA: In this video, I did not see any anomalies, and the video 
describes a truck parked on the side of the road.

People Truck

Figure 8: Two Visualized samples to compare Sherlock with other Video-LLMs.

justifies the effectiveness of pre-tuning, as well as encourages us to
usemore high-quality datasets to enhance the spatial understanding
ability of Video-LLMs before instruction-tuning.

5.3 Convergence Analysis and Practical
Assessment for Sherlock

In order to analyze the convergence of Sherlock, we record the loss
of baseline Video-LLMs, Sherlock, and its variant without specific
components over various training steps during the experiment. The
results are shown in Figure 5 and we can see that: 1) Sherlock
demonstrates the fastest convergence compared to other Video-
LLMs. At the convergence point, the loss of Sherlock is 1.05, while
Video-LLaVA is 2.06. This underscores the high efficiency of Sher-
lock over other advanced Video-LLMs, which hints at the potential
of Sherlock for quicker training steps and less resource utilization.
2) Sherlock demonstrates the fastest convergence compared to its
variant without specific components in Figure 5. This justifies that
the four types of spatial information along with GSM and SIR can
accelerate the convergence process, which further encourages us
to consider the spatial information in the M-VAE task.

To assess practicality, we analyze the FNRs of Sherlock for each
scene. As shown in Table 3, we can observe that in every scene,
Sherlock outperforms other Video-LLMs. This indicates that the
possibility of misclassifying abnormal events as normal events is
minimized, thereby demonstrating the importance of global and
local spatial modeling of Sherlock. We also analyze the average
inference time in seconds for a one-minute video. As shown in
Figure 7 (b), Sherlock does not perform much differently from the
other models in terms of inference time. This is reasonable, as some
studies confirm that the MoE architecture can improve efficiency
[11, 28]. This suggests that introducingmore information alongwith
a MoE module for the M-VAE task does not increase the inference
time and Sherlock can maintain good inference efficiency.

5.4 Compared with Advanced Non-LLM Models
on Public Dataset

In order to more comprehensively evaluate the effectiveness of
Sherlock, we compare our Sherlock model with other advanced
non-LLM models [9, 14, 21, 60, 62] on traditional anomaly local-
ization and anomaly classification task based on publicly available
CUVA datasets [12]. Specifically, we need Sherlock to determine

whether each second of the video is abnormal or not without gen-
erating quadruples. As shown in Table 4, non-LLM models not
only underperform relative to other Video-LLMs presented in Ta-
ble 4 but also significantly inferior to our Sherlock model. This
further demonstrates the importance of the global and local spatial
information we proposed for the M-VAE task.

5.5 Qualitative Analysis for Sherlock
As shown in Figure 8, we visualize and compare Sherlock with
other Video-LLMs. We randomly select two samples from our
dataset and ask these models to Analyze the following video and lo-
calize the timestamp and extract the quadruple of the abnormal events.
From the figure, we can see that: 1) Accurately localizing abnormal
events and extracting correct quadruples is a huge challenge. For
instance, example 2 captures a segment from 9s to 15s, where iden-
tifying the collision of the truck at road is particularly challenging,
2) Compared with other advanced Video-LLMs, Sherlock shows
excellent performance in localizing abnormal events. In example 1,
Sherlock outperforms other models in terms of prediction accu-
racy. In example 2, it outperforms PandaGPT in terms of accuracy
and can generate a correct quadruple. This further demonstrates
the effectiveness of Sherlock in precisely extracting and localizing
abnormal events in video segments.

6 Conclusion
In this paper, we firstly propose a new M-VAE task and a con-
structed M-VAE instruction dataset, making a significant contribu-
tion to future research on abnormal events. Secondly, we propose
a Global-local Spatial-sensitive LLM named Sherlock to assist in
localizing and extracting abnormal event quadruples, providing
decision-makers with more intuitive and comprehensive informa-
tion support. This model includes a Global-local Spatial-enhanced
MoE module and Spatial Imbalance Regular to model and balance
spatial information. In the end, our experimental results demon-
strate the outstanding performance of Sherlock. In future work, we
hope to consider the relationships between events and enrich our
tasks with event inference to improve the performance of extrac-
tion. In addition, we also hope to improve the interpretability of
our model by providing explanations for each abnormal event.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Sherlock WWW, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Lin Bai, Qingxin Liu, Cuiling Li, Zhen Ye, Meng Hui, and Xiuping Jia. 2022.

Remote sensing image scene classification using multiscale feature fusion co-
variance network with octave convolution. IEEE Transactions on Geoscience and
Remote Sensing (2022), 1–14.

[3] Antoine Bosselut, Jianfu Chen, David Scott Warren, Hannaneh Hajishirzi, and
Yejin Choi. 2016. Learning Prototypical Event Structure from Photo Albums. In
Proceedings of ACL 2016.

[4] Jierun Chen, Fangyun Wei, Jinjing Zhao, Sizhe Song, Bohuai Wu, Zhuoxuan
Peng, S.-H. Gary Chan, and Hongyang Zhang. 2024. Revisiting Referring Expres-
sion Comprehension Evaluation in the Era of Large Multimodal Models. CoRR
abs/2406.16866 (2024).

[5] Xiangning Chen, Cho-Jui Hsieh, and BoqingGong. 2022. WhenVision Transform-
ers Outperform ResNets without Pre-training or Strong Data Augmentations. In
Proceedings of ICLR 2022.

[6] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan
Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu
Qiao, and Jifeng Dai. 2023. InternVL: Scaling up Vision Foundation Models and
Aligning for Generic Visual-Linguistic Tasks. CoRR abs/2312.14238 (2023).

[7] Bowen Cheng, Bin Xiao, JingdongWang, Honghui Shi, Thomas S. Huang, and Lei
Zhang. 2020. HigherHRNet: Scale-Aware Representation Learning for Bottom-Up
Human Pose Estimation. In Proceedings of CVPR 2020. 5385–5394.

[8] Gong Cheng, Peicheng Zhou, Junwei Han, Lei Guo, and Jungong Han. 2015. Auto-
encoder-based shared mid-level visual dictionary learning for scene classification
using very high resolution remote sensing images. IET Computer Vision 9 (2015),
639–647.

[9] Ming Cheng, Kunjing Cai, and Ming Li. 2020. RWF-2000: An Open Large Scale
Video Database for Violence Detection. In Proceedings of ICPR 2020. 4183–4190.

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,
and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with
90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/

[11] Yuren Cong, Michael Ying Yang, and Bodo Rosenhahn. 2023. RelTR: Relation
Transformer for Scene Graph Generation. IEEE Trans. Pattern Anal. Mach. Intell.
45, 9 (2023), 11169–11183.

[12] Hang Du, Sicheng Zhang, Binzhu Xie, Guoshun Nan, Jiayang Zhang, Junrui Xu,
Hangyu Liu, Sicong Leng, Jiangming Liu, Hehe Fan, Dajiu Huang, Jing Feng,
Linli Chen, Can Zhang, Xuhuan Li, Hao Zhang, Jianhang Chen, Qimei Cui, and
Xiaofeng Tao. 2024. Uncovering What, Why and How: A Comprehensive Bench-
mark for Causation Understanding of Video Anomaly. CoRR abs/2405.00181
(2024).

[13] Jia-Chang Feng, Fa-TingHong, andWei-Shi Zheng. 2021. MIST:Multiple Instance
Self-Training Framework for Video Anomaly Detection. In Proceedings of CVPR
2021. 14009–14018.

[14] Guillermo Garcia-Cobo and Juan C. SanMiguel. 2023. Human skeletons and
change detection for efficient violence detection in surveillance videos. Comput.
Vis. Image Underst. 233 (2023).

[15] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew Zisserman. 2019. Video
Action Transformer Network. In Proceedings of CVPR 2019. 244–253.

[16] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev
Alwala, Armand Joulin, and Ishan Misra. 2023. ImageBind One Embedding Space
to Bind Them All. In Proceedings of CVPR 2023. 15180–15190.

[17] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour,
Svetha Venkatesh, and Anton van den Hengel. 2019. Memorizing Normality
to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised
Anomaly Detection. In Proceedings of ICCV 2019. 1705–1714.

[18] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li
Cheng. 2022. Generating Diverse and Natural 3D Human Motions From Text. In
Proceedings of CVPR 2022. 5142–5151.

[19] Huiwen Guo, Xinyu Wu, Nannan Li, Ruiqing Fu, Guoyuan Liang, and Wei Feng.
2013. Anomaly detection and localization in crowded scenes using short-term
trajectories. In Proceedings of ROBIO 2013. 245–249.

[20] Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua
Lin, Yu Qiao, Peng Gao, and Xiangyu Yue. 2023. OneLLM: One Framework to
Align All Modalities with Language. CoRR abs/2312.03700 (2023).

[21] Krishnagopal Sanjukta Davis Larry Hanson Alex, PNVR Koutilya. 2019. Bidirec-
tional Convolutional LSTM for the Detection of Violence in Videos. In Proceedings
of ECCV 2018. 280–295.

[22] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K. Roy-Chowdhury, and
Larry S. Davis. 2016. Learning Temporal Regularity in Video Sequences. In
Proceedings of CVPR 2016. 733–742.

[23] Yu Hong, Jianfeng Zhang, Bin Ma, Jian-Min Yao, Guodong Zhou, and Qiaom-
ing Zhu. 2011. Using Cross-Entity Inference to Improve Event Extraction. In
Proceedings of ACL 2011. 1127–1136.

[24] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proceedings of ICLR 2022.

[25] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
1991. Adaptive Mixtures of Local Experts. Neural Comput. 3, 1 (1991), 79–87.

[26] Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Pra-
teek Jain, Anurag Arnab, and Sujoy Paul. 2024. Mixture of Nested Experts:
Adaptive Processing of Visual Tokens. CoRR abs/2407.19985 (2024).

[27] Heng Ji and Ralph Grishman. 2008. Refining Event Extraction through Cross-
Document Inference. In Proceedings of ACL 2008. 254–262.

[28] Peng Jin, Ryuichi Takanobu, Caiwan Zhang, Xiaochun Cao, and Li Yuan. 2023.
Chat-UniVi: Unified Visual Representation Empowers Large Language Models
with Image and Video Understanding. CoRR abs/2311.08046 (2023).

[29] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye
Daudt, and Konrad Schindler. 2024. Repurposing Diffusion-Based Image Genera-
tors for Monocular Depth Estimation. In Proceedings of CVPR 2024. 9492–9502.

[30] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross B. Girshick. 2023. Segment Anything. In Proceedings of ICCV
2023. 3992–4003.

[31] Federico Landi, Cees G. M. Snoek, and Rita Cucchiara. 2019. Anomaly Locality
in Video Surveillance. CoRR abs/1901.10364 (2019).

[32] Bobo Li, Hao Fei, Fei Li, Yuhan Wu, Jinsong Zhang, Shengqiong Wu, Jingye
Li, Yijiang Liu, Lizi Liao, Tat-Seng Chua, and Donghong Ji. 2023. DiaASQ: A
Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis. In
Proceedings of ACL 2023. 13449–13467.

[33] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei
Liu. 2023. Otter: A Multi-Modal Model with In-Context Instruction Tuning. CoRR
abs/2305.03726 (2023).

[34] Haifeng Li, Xin Dou, Chao Tao, ZhixiangWu, Jie Chen, Jian Peng, Min Deng, and
Ling Zhao. 2020. RSI-CB: A Large-Scale Remote Sensing Image Classification
Benchmark Using Crowdsourced Data. Sensors 20 (2020).

[35] Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. 2023. BLIP-2:
Bootstrapping Language-Image Pre-training with Frozen Image Encoders and
Large Language Models. In Proceedings of ICML 2023. 19730–19742.

[36] Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang,
Limin Wang, and Yu Qiao. 2023. VideoChat: Chat-Centric Video Understanding.
CoRR abs/2305.06355 (2023).

[37] Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event Extraction via Structured
Prediction with Global Features. In Proceedings of ACL 2013. 73–82.

[38] Shuo Li, Fang Liu, and Licheng Jiao. 2022. Self-Training Multi-Sequence Learning
with Transformer for Weakly Supervised Video Anomaly Detection. In Proceed-
ings of AAAI 2022. 1395–1403.

[39] Shasha Liao and Ralph Grishman. 2010. Using Document Level Cross-Event
Inference to Improve Event Extraction. In Proceedings of ACL 2010. 789–797.

[40] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. 2023.
Video-LLaVA: Learning United Visual Representation by Alignment Before Pro-
jection. CoRR abs/2311.10122 (2023).

[41] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Proceedings of ECCV 2014. 740–755.

[42] Zihang Lin, Chaolei Tan, Jian-Fang Hu, Zhi Jin, Tiancai Ye, and Wei-Shi Zheng.
2023. Collaborative Static and Dynamic Vision-Language Streams for Spatio-
Temporal Video Grounding. In Proceedings of CVPR 2023. 23100–23109.

[43] Kun Liu and Huadong Ma. 2019. Exploring Background-bias for Anomaly
Detection in Surveillance Videos. In Proceedings of MM 2019. 1490–1499.

[44] Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and
Yefeng Zheng. 2023. MOELoRA: An MOE-based Parameter Efficient Fine-Tuning
Method for Multi-task Medical Applications. CoRR abs/2310.18339 (2023).

[45] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In Proceedings of ICLR 2019.

[46] Cewu Lu, Ranjay Krishna, Michael S. Bernstein, and Li Fei-Fei. 2016. Visual
Relationship Detection with Language Priors. In Proceedings of ECCV 2016. 852–
869.

[47] Cewu Lu, Jianping Shi, and Jiaya Jia. 2013. Abnormal Event Detection at 150 FPS
in MATLAB. In Proceedings of ICCV 2013. 2720–2727.

[48] Xiaoqiang Lu, Hao Sun, and Xiangtao Zheng. 2019. A feature aggregation
convolutional neural network for remote sensing scene classification. IEEE
Transactions on Geoscience and Remote Sensing 57 (2019), 7894–7906.

[49] Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Minghui Qiu, Pengcheng Lu,
Tao Wang, and ZhongyuWei. 2023. Valley: Video Assistant with Large Language
model Enhanced abilitY. CoRR abs/2306.07207 (2023).

[50] Pengyuan Lv, Wenjun Wu, Yanfei Zhong, Fang Du, and Liangpei Zhang. 2022.
SCViT: A spatial-channel feature preserving vision transformer for remote sens-
ing image scene classification. IEEE Transactions on Geoscience and Remote
Sensing (2022), 1–12.

[51] MuhammadMaaz, Hanoona Abdul Rasheed, Salman H. Khan, and Fahad Shahbaz
Khan. 2023. Video-ChatGPT: Towards Detailed Video Understanding via Large

9

https://lmsys.org/blog/2023-03-30-vicuna/


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Vision and Language Models. CoRR abs/2306.05424 (2023).
[52] Dilxat Muhtar, Zhenshi Li, Feng Gu, Xueliang Zhang, and Pengfeng Xiao. 2024.

Lhrs-bot: Empowering remote sensing with vgi-enhanced large multimodal
language model. arXiv preprint arXiv:2402.02544 (2024).

[53] Munan Ning, Bin Zhu, Yujia Xie, Bin Lin, Jiaxi Cui, Lu Yuan, Dongdong Chen,
and Li Yuan. 2023. Video-Bench: A Comprehensive Benchmark and Toolkit for
Evaluating Video-based Large Language Models. CoRR abs/2311.16103 (2023).

[54] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
[55] Chao Pang, Jiang Wu, Jiayu Li, Yi Liu, Jiaxing Sun, Weijia Li, Xingxing Weng,

Shuai Wang, Litong Feng, Gui-Song Xia, et al. 2024. H2RSVLM: Towards Helpful
and Honest Remote Sensing Large Vision Language Model. arXiv preprint
arXiv:2403.20213 (2024).

[56] Joan Puigcerver, Carlos Riquelme Ruiz, Basil Mustafa, and Neil Houlsby. 2024.
From Sparse to Soft Mixtures of Experts. In Proceedings of ICLR 2024.

[57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
Proceedings of ICML 2021. 8748–8763.

[58] Jianfeng Ren, Xudong Jiang, and Junsong Yuan. 2015. Learning LBP structure by
maximizing the conditional mutual information. Pattern Recognition 48 (2015),
3180–3190.

[59] Zhiyi Song, Ann Bies, Stephanie M. Strassel, Tom Riese, Justin Mott, Joe Ellis,
Jonathan Wright, Seth Kulick, Neville Ryant, and Xiaoyi Ma. 2015. From Light
to Rich ERE: Annotation of Entities, Relations, and Events. In Proceedings of
EVENTS 2015. 89–98.

[60] Jiayi Su, Paris Her, Erik Clemens, Edwin E. Yaz, Susan C. Schneider, and Henry
Medeiros. 2022. Violence Detection using 3D Convolutional Neural Networks.
In Proceedings of AVSS 2022. 1–8.

[61] Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. 2023.
PandaGPT: One Model To Instruction-Follow Them All. CoRR abs/2305.16355
(2023).

[62] Yukun Su, Guosheng Lin, Jin-Hui Zhu, and Qingyao Wu. 2020. Human Interac-
tion Learning on 3D Skeleton Point Clouds for Video Violence Recognition. In
Proceedings of ECCV 2020. 74–90.

[63] Waqas Sultani, Chen Chen, and Mubarak Shah. 2018. Real-World Anomaly
Detection in Surveillance Videos. In Proceedings of CVPR 2018. 6479–6488.

[64] Yu Tian, Guansong Pang, Yuanhong Chen, Rajvinder Singh, Johan W. Verjans,
and Gustavo Carneiro. 2021. Weakly-supervised Video Anomaly Detection
with Robust Temporal Feature Magnitude Learning. In Proceedings of ICCV 2021.
4955–4966.

[65] Qi Wang, Shaoteng Liu, Jocelyn Chanussot, and Xuelong Li. 2018. Scene classifi-
cation with recurrent attention of VHR remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing 57 (2018), 1155–1167.

[66] Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and
Fahad Shahbaz Khan. 2024. Video-GroundingDINO: Towards Open-Vocabulary
Spatio-Temporal Video Grounding. CoRR abs/2401.00901 (2024).

[67] Jiannan Wu, Yi Jiang, Bin Yan, Huchuan Lu, Zehuan Yuan, and Ping Luo. 2023.
UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces.
arXiv preprint arXiv:2312.15715 (2023).

[68] PengWu, Jing Liu, Yujia Shi, Yujia Sun, Fangtao Shao, ZhaoyangWu, and Zhiwei
Yang. 2020. Not only Look, But Also Listen: Learning Multimodal Violence
Detection Under Weak Supervision. In Proceedings of ECCV 2020. 322–339.

[69] Peng Wu, Xuerong Zhou, Guansong Pang, Lingru Zhou, Qingsen Yan, Peng
Wang, and Yanning Zhang. 2024. VadCLIP: Adapting Vision-Language Models
for Weakly Supervised Video Anomaly Detection. In Proceedings of AAAI 2023.
6074–6082.

[70] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. 2010. SUN database:
Large-scale scene recognition from abbey to zoo. In Proceedings of CVPR 2010.
3485–3492.

[71] Dan Xu, Yan Yan, Elisa Ricci, and Nicu Sebe. 2017. Detecting anomalous events
in videos by learning deep representations of appearance and motion. Comput.
Vis. Image Underst. 156 (2017), 117–127.

[72] Zhixuan Xu, Chongkai Gao, Zixuan Liu, Gang Yang, Chenrui Tie, Haozhuo
Zheng, Haoyu Zhou, Weikun Peng, Debang Wang, Tianyi Chen, Zhouliang
Yu, and Lin Shao. 2024. ManiFoundation Model for General-Purpose Robotic
Manipulation of Contact Synthesis with Arbitrary Objects and Robots. CoRR
(2024).

[73] Zhiwei Yang, Jing Liu, Zhaoyang Wu, Peng Wu, and Xiaotao Liu. 2023. Video
Event Restoration Based on Keyframes for Video Anomaly Detection. In Pro-
ceedings of CVPR 2023. 14592–14601.

[74] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang
Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong
Chen, Junfeng Tian, Qian Qi, Ji Zhang, and Fei Huang. 2023. mPLUG-Owl:
Modularization Empowers Large Language Models with Multimodality. CoRR
abs/2304.14178 (2023).

[75] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New similarity metrics for semantic inference
over event descriptions. Trans. Assoc. Comput. Linguistics 2 (2014), 67–78.

[76] Yang Zhan, Zhitong Xiong, and Yuan Yuan. 2024. Skyeyegpt: Unifying remote
sensing vision-language tasks via instruction tuning with large language model.
arXiv preprint arXiv:2401.09712 (2024).

[77] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. 2017. Visual
Translation Embedding Network for Visual Relation Detection. In Proceedings of
CVPR 2017. 3107–3115.

[78] Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. 2017. PPR-FCN:
Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN. In
Proceedings of CVPR 2017. 4243–4251.

[79] Hang Zhang, Xin Li, and Lidong Bing. 2023. Video-LLaMA: An Instruction-tuned
Audio-Visual Language Model for Video Understanding. In Proceedings of EMNLP
2023. 543–553.

[80] Huaxin Zhang, Xiaohao Xu, Xiang Wang, Jialong Zuo, Chuchu Han, Xiaonan
Huang, Changxin Gao, Yuehuan Wang, and Nong Sang. 2024. Holmes-VAD:
Towards Unbiased and Explainable Video Anomaly Detection via Multi-modal
LLM. CoRR abs/2406.12235 (2024).

[81] Wei Zhang, Ping Tang, and Lijun Zhao. 2019. Remote sensing image scene
classification using CNN-CapsNet. Remote Sensing 11 (2019), 494.

[82] Zhicheng Zhang and Jufeng Yang. 2022. Temporal Sentiment Localization: Listen
and Look in Untrimmed Videos. In Proceedings of MM 2022. 199–208.

[83] Jia-Xing Zhong, Nannan Li, Weijie Kong, Shan Liu, Thomas H. Li, and Ge Li.
2019. Graph Convolutional Label Noise Cleaner: Train a Plug-And-Play Action
Classifier for Anomaly Detection. In Proceedings of CVPR 2019. 1237–1246.

[84] Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang,
Wenhao Jiang, Junwu Zhang, Zongwei Li, Caiwan Zhang, Zhifeng Li, Wei Liu,
and Li Yuan. 2024. LanguageBind: Extending Video-Language Pretraining to
N-modality by Language-based Semantic Alignment. In Proceedings of ICLR 2024.

10


	Abstract
	1 Introduction
	2 Related Work
	3 Our Sherlock Model
	3.1 Global-local Spatial-enhanced MoE Module
	3.2 Spatial Imbalance Regulator
	3.3 Training Strategies for Sherlock

	4 Experimental Settings
	4.1 Instruction Data Construction
	4.2 Baselines
	4.3 Evaluation Metrics
	4.4 Implementation Details

	5 Results and Discussions
	5.1 Experimental Results
	5.2 Contributions of Each Key Component
	5.3 Convergence Analysis and Practical Assessment for Sherlock
	5.4 Compared with Advanced Non-LLM Models on Public Dataset
	5.5 Qualitative Analysis for Sherlock

	6 Conclusion
	References

