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Abstract

Training and evaluation of Reinforcement Learning (RL) web agents have gained
increasing attention, yet a scalable and efficient environment that couples realistic
and robust browser-side interaction with controllable server-side state at scale is
still missing. Existing environments tend to have one or more of the following
issues: they overwhelm policy models with noisy context; they perform actions
non-deterministically without waiting for the UI to stabilize; or they cannot scale
isolated client-server containers effectively for parallel RL rollouts. We propose
WEBSERYV, an environment that includes 1) a compact, site-agnostic browser
environment that balances context and action complexity, and 2) a scalable RL
environment via efficient launching and resetting web-servers to enable scalable RL
training and evaluation. We evaluate WEBSERV on the shopping CMS and Gitlab
tasks in WebArena, achieving state-of-the-art single-prompt success rates while
cutting launch latency by ~5x and storage need by ~240x, with a comparable

memory footprint, enabling 200+ concurrent containers on a single host.

1 Introduction

Web agents are autonomous systems that ob-
serve browser-rendered page state and execute
the same primitive user interactions (click, type,
hover, scroll, navigate) to accomplish tasks on
the web. These agents are increasingly studied
for applications in automated UI/UX testing [6]],
question answering [9], and privacy-preserving
browsing [1]]. Prior work has largely centered
on prompting with or without demonstrations
[[L1} 8] and fine-tuning [5]], while recent stud-
ies, inspired by advances in reasoning-enabled
agents in other domains [2[], have begun to ex-
plore training web agents with Reinforcement
Learning (RL) [[12]]. However, progress in RL

launch,

clone,
Browser Env kill

:[ <>
Incus-based

1
LLM Agent(s) :
1
1
1
1
1 Server Manager
1
1
1
1
1
]

&————

Web Server
Container

] WebServ
Figure 1: System Architecture of WEBSERV.

Each LLM Agent interact with an isolated pair
of Browser Env and Web Server Container.

*Work is done while interning or visiting at Amazon
2Qur code is available at https://github.com/neuhai/WebServ/

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions

in Large Language Models.


https://github.com/neuhai/WebServ/

is constrained by the lack of a reproducible full-stack environment that couples robust client-side
interaction with isolated server-side state.

Existing web-agent environments fail in the scenario of RL for four common reasons. First, some
systems are not scalable because they require manual, per-site observation engineering or they depend
on target-site features such as accessibility trees, which are often missing or inconsistent across
websites [[14}[13]]. Second, some systems make the interface unnecessarily complex: they pass raw
HTML as observations and allow arbitrary Python code for the action space, which inflates input
length and makes action selection difficult (the model also needs programming ability beyond web
understanding) [3]. In addition, these systems often wait for the page to fully load or wait for a
specific period of time before making the next observation, which may lead to the web page being
partially observed with modern single-page applications. Third, many setups do not expose simple
visual hints [[14} [7] that people use to judge interactivity (for example, pointer cursor on links and
buttons, and text cursor on inputs). Without these cues, models often click non-interactive elements,
overlook hover-only controls, and spend extra steps recovering from errors [3)]. Additionally, existing
environments such as WebArena [[14] use Docker containers for server-side reproducibility; however,
these containers are resource-intensive (launching a single shopping environment container requires
approximately 6 GB of storage and about one minute to start [[14]), which limits large-scale parallel
evaluation and massive RL rollouts. Taken together, these limitations impede progress toward building
generalizable and robust web agents.

To tackle these limitations and support future research on web agents, we propose WEBSERV for
scalable and efficient evaluation and RL. First, we design and implement a fully automated parser
that converts the Document Object Model (DOM) into a compact observation by removing invisible
and unnecessary nodes, thereby minimizing context length. Key visual cues available to human
users, for example, cursor style indicating clickability, are preserved and made available to the agent.
Each interactive element is assigned a unique and semantically meaningful identifier that the agent
uses to reference targets in the action space. Second, WEBSERV offers robust action execution that
works with modern single-page applications by intercepting network events in the page JavaScript
runtime, and returning the next observation only after the page has settled. Finally, to enable efficient
large-scale experimentation, WEBSERYV includes a server manager that can use any existing Docker
images as web servers and elastically launch, clone, and reset isolated containers with sub-second
startup and minimal resource overhead.

To measure the effectiveness of our context and action space design, we evaluate prompting-based
agents on WebArena-Lite, where WEBSERV paired with Claude 4.5 achieves a 46.7 % success rate
on the Shopping task, 34.3% on the CMS task, and 40.0% on the Gitlab task, establishing a new
state-of-the-art among single-prompt agents. Furthermore, to demonstrate scalability and resource
efficiency, we show that WEBSERV reduces launch latency by ~5x and storage by ~240x while
maintaining a comparable memory footprint, enabling 200+ concurrent containers on a single host.

To summarize, our contributions are as follows:

» Balanced web environment for text-only LLMs. A site-agnostic interface that shortens the page
description by removing invisible or irrelevant parts and exposes a small, well defined set of actions
with simple parameters, while remaining compatible with arbitrary real websites or dockerized web
applications.

* Robust action execution. An executor that finds elements by meaning, scrolls them into view,
and returns the next observation only after the page has finished updating (for example, after
network requests finish). It uses limited retries and clear error messages, and its semantic targeting
generalizes across diverse sites.

* Scalable environment for RL. An Incus based manager that can start, clone, and reset a paired
browser and web server quickly (sub-second startup), so many runs can proceed in parallel with
low resource use.

2 Related Works

2.1 Web Environment Design

A key challenge in designing browser-based environments is striking a balance between the complexity
of the observation space and the flexibility of the action space. For instance, WebShop [13]] introduces



a simulated shopping environment where the observation space is task-specific. It consists of
the current page (homepage, search results page, or product detail page) along with structured
information such as the list of products. The action space is similarly constrained to a set of task-
specific operations (e.g., search, purchase). While this design keeps the action space minimal yet
semantically meaningful, it suffers from two major limitations: (1) the model requires a long and
complex prompt to encode both the observation and action space definitions, and (2) The environment
lacks generalizability across tasks and domains.

In contrast, WebAgent [3]] represents the observation space using raw HTML and defines the action
space as Python code that directly operates the browser. This design removes the need for manually
specifying the action space and allows the model to leverage its inherent understanding of HTML
elements (for example, recognizing an input field <input type="text"/> without requiring ex-
plicit prompt engineering). However, this approach introduces new challenges: the model must
generate arbitrary code as actions, which requires not only familiarity with external libraries (such as
Playwright) but also the ability to produce syntactically correct and semantically valid code.

To strike a middle ground between raw HTML and task-specific environments, WebArena [[14] intro-
duces an accessibility-tree representation that extracts only the information necessary for completing
web tasks, thereby reducing the noise of raw HTML. It also defines a custom action space consisting
of operations such as clicks and inputs. This approach maintains a compact context while avoiding an
overly complex action space. However, it still requires website-specific adaptations (e.g., accessibility
support), limiting its generalizability across domains.

From an implementation perspective, many existing frameworks re-parse the webpage after a page-
load event following each action. This assumption often fails in real-world websites, where only
parts of the page are refreshed, leading to incomplete or outdated observations. In addition, human
users rely heavily on visual cues while browsing the web, such as cursor styles, to infer interactivity.
For example, humans can easily distinguish between selectable text (indicated by *“:”’) and clickable
elements (indicated by “#”"), whereas agents frequently attempt to click plain text or other non-
interactive elements. Such discrepancies highlight the need for web environments that: (1) balance
the complexity of context and action spaces, (2) ensure robust action execution on dynamic, real-
world websites with complex network conditions, and (3) provide essential visual cues to better align
agent perception with human browsing behavior.

2.2 Web Agents

Recent advances in LLM-based Web Agents have significantly enhanced the ability of LLMs to
assist with web-based tasks. Early work like WebGPT [9]] enabled GPT models to interact with
search engines, significantly improving question-answering performance. Subsequent systems,
including WebVoyager [4], LASER [8], and WebAgent [3]], extended LLM capabilities to multimodal
interaction, complex state space navigation, and long-horizon planning. Claude’s Computer-use AP]E]
further demonstrated precise, general-purpose control over user interfaces beyond web browsers.

Recently, researchers have also begun to explore fine-tuning and reinforcement learning (RL) ap-
proaches for developing web agents. (author?) [5] propose fine-tuning LLM-based web agents
on large-scale online shopping behavioral data to improve their ability to simulate human users.
Building on recent progress in enhancing reasoning capabilities of LLMs through RL, WebAgent-R1
introduces an online training paradigm for web agents with reinforcement learning. However, in their
setup, multiple agents interact with a shared web server instance during the rollout phase, which can
lead to unstable training. For example, one agent may add an item to the shared shopping cart, while
another agent unexpectedly observes a product appearing in the cart, resulting in inconsistent training
signals. The RL community has highlighted the need for scalable and efficient solutions to manage
server containers for large-scale RL training.

*https://www.anthropic.com/news/3-5-models-and- computer-use
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3 WEBSERYV

3.1 System Overview

Existing web-agent environments either overwhelm models with excessive and noisy HTML context,
rely on handcrafted task-specific interfaces that do not generalize across domains, or execute actions
nondeterministically without accounting for dynamic page updates and network latency. Moreover,
containerized environments such as WebArena provide reproducibility but remain resource-intensive
and slow to launch, making them unsuitable for large-scale RL rollouts. To address these challenges,
we propose WEBSERV, a full-stack framework that integrates: (1) a compact yet fully automated
context and action space derived from the browser DOM, (2) a robust action execution backend that
synchronizes observations with Ul and network quiescence, and (3) an efficient and scalable manager
of server containers capable of supporting massive parallel RL training.

3.2 Environment
3.2.1 Observation Space

A central challenge identified in prior work is that raw HTML observations overwhelm models with
excessive and noisy content, while handcrafted task-specific abstractions (for example, WebShop)
lack generality across domains.

To address these challenges, WEBSERV employs a DOM parser that automatically reduces the
page to the elements that are visible and meaningful to human users. Elements that cannot be
perceived by humans, such as <script>, <style>, and media tags, as well as nodes hidden through
CSS (display:none, visibility:hidden, zero opacity), zero-size boxes, and non-scrollable
off-screen nodes are removed. To further reduce redundancy, nested non-semantic containers such
as chains of <div> are flattened, and empty tags are pruned unless they correspond to interactive
controls like <input>, <select>, <button>, or <textarea>.

Filtering. The parser excludes entire classes of tags that are not directly useful for task execution,
including <script>, <style>, <link>, <meta>, <noscript>, <template>, <iframe>, and me-
dia elements such as <video>, <audio>, and <canvas>. In addition, elements that are invisible due
to CSS properties (display:none, visibility:hidden, opacity:0), that render with zero width
and height, or that are completely off-screen and non-scrollable are removed. Only a restricted set
of safe attributes is preserved, consisting of a whitelist of HTML attributes (e.g., id, name, value,
placeholder, role, tabindex) as well as any aria-* or data-* attributes.

Flattening and pruning. To reduce structural redundancy, the parser collapses trivial nesting of
non-semantic containers, such as chains of <div> wrappers, and prunes empty elements. Exceptions
are made for controls that may legitimately appear empty (e.g., <input>, <select>, <textarea>,
<button>, <img>, <head>, <title>). Inline text nodes containing non-whitespace characters are
preserved in order to retain meaningful labels.

Interactivity detection. The parser heuristically determines whether elements are interactive.
Nodes are marked as clickable if they are native controls (<button>, <input>, <select>,
<summary>, <area>), anchors with href, elements with explicit onclick handlers, or ele-
ments with ARIA roles (button, link). In addition, elements with computed cursor style
pointer are considered clickable. Elements that are disabled (via HTML attributes or CSS
pointer-events:none) are excluded. To identify hover-sensitive targets, we monkey-patch
addEventListener such that whenever a node registers a hover event listener, the element is
annotated with data-maybe-hoverable=true.

Semantic identifiers. Each interactive element is assigned a stable, human-readable semantic
identifier. Base names are derived from visible text, placeholders, or tag names, normalized to short
slugs. Identifiers are scoped hierarchically by parent names, and uniqueness is enforced globally
by appending numeric suffixes as needed. Both the cloned stripped node and the original DOM
element receive the same data-semantic-id, and clickable elements are additionally labeled with
data-clickable=true.



Javascript state capture. The parser augments the stripped DOM with fine-grained state informa-
tion. For text inputs, textareas, and contenteditable regions, it records the current value, whether the
control can be edited, numeric values (for type=number), text selection ranges, and focus state. For
select elements, it records the current value, the selected index, whether multiple selection is enabled,
and the set of selected options. Each option is cloned with its text and value, marked as selected when
appropriate, and assigned its own semantic identifier namespaced under the parent select.

Output schema. The final observation is returned as a JSON object with five components: (1) a
stripped and annotated HTML snapshot, (2) a list of clickable elements identified by semantic ID,
(3) a list of hoverable elements, (4) a list of input elements with their state (identifier, type, value,
editability, focus), and (5) a list of select elements with their selection state and per-option identifiers.
This representation removes hidden or redundant markup while retaining the cues that humans rely
on for interactivity, yielding a compact, semantically aligned observation space.

3.2.2 Action Space

Another challenge is that prior systems define action spaces at extremes: WebAgent relies on
arbitrary code generation in Python, which requires library-specific knowledge and produces unstable
executions, while WebShop restricts the agent to narrow, task-specific actions that do not generalize
beyond shopping.

We design the action space so that agents can perform the same primitive interactions as human
users (click, type, hover, select, navigate, manage tabs). To reduce latency and eliminate unnecessary
branching, we remove scroll action (the environment automatically scrolls the target element into
view before execution). Targets are referenced by the stable semantic identifiers described in the
observation construction (data-semantic-id), which makes actions robust to minor DOM changes.
After each action, the executor waits for network and Ul quiescence (for example, no active requests
for a short idle window) before returning the next observation. This design addresses prior challenges
of noisy action choices, arbitrary code generation, and nondeterministic post-action states by keeping
the action set compact, interpretable, and synchronized with the rendered page.

Action definitions. All actions that operate on elements identify their targets using semantic IDs
that are guaranteed unique within the current observation. Before execution, the environment validates
that the target remains interactable, scrolls it into view automatically (therefore no explicit scroll
action is necessary), performs the operation, and then waits for an idle period before emitting the
next observation. We group the available actions into four categories:

* A. Element-level interactions
Click element: perform a click action on the target element such as a button, link, or control.
Hover element: move the cursor over the target element to trigger tooltips or dropdown menus.
Key press: send a keyboard event such as Enter, Escape, Tab, or arrow keys, optionally focusing
an element first.
* B. Form and text input
Type text: enter text into an input field or editable region, optionally pressing Enter afterwards.
Clear input: remove all content from an input field or editable region.
Select option: choose a specific option from a dropdown or select menu.
» C. Navigation and page control
— Navigate to URL: load a new address in the current tab.
Back: navigate one step backward in the browser history.
Forward: navigate one step forward in the browser history.
— Refresh: reload the current page.
* D. Tab management and task control
New tab: open a new browser tab, optionally with a specified URL.
Switch tab: change focus to another tab by index.
Close tab: close an existing browser tab.
Terminate task: shut down the browser session and optionally submit a final answer.



3.3 Robust Action Execution

Prior environments typically enforce a fixed waiting time after each action or assume that a new page
will trigger a complete reload event. Both strategies are brittle. Static sleep intervals either waste
time or fail to capture late-arriving updates, while relying on full page loads is incompatible with
modern single-page applications (SPAs) where only parts of the DOM refresh in response to actions.
As aresult, agents may observe incomplete or inconsistent states, leading to unstable behavior.

To address this issue, WEBSERV introduces a network-aware synchronization mechanism that hooks
into the browser’s JavaScript runtime. We intercept both XMLHttpRequest and fetch APIs to track
active requests and update a global activity counter whenever a request is initiated or completed.
This instrumentation enables us to detect fine-grained network activity across the page, regardless of
whether the site uses traditional reloads or partial updates.

After each agent action, the environment delays the next observation until it has observed a con-
figurable idle period (e.g., 500 ms) with no outstanding network requests. This guarantees that
dynamically loaded content (such as search results, shopping carts, or dropdowns populated asyn-
chronously) is fully rendered before being exposed to the agent. If the page fails to reach an idle state
within a timeout window, the environment returns control with an explicit error state, allowing the
agent or training loop to handle the failure deterministically.

By synchronizing observations with actual network quiescence rather than fixed delays or reload
events, WEBSERV provides robust action execution on real-world websites that depend heavily on
asynchronous content loading.

3.4 Scalable and Efficient Web Server Manager

To enhance reproducibility, recent works adopt containerized web servers. For example, WebArena
distributes its environments as Docker images to ensure consistent server-side state. However, directly
using Docker to manage server containers in reinforcement learning presents practical challenges.
Docker is designed primarily for long-lived services, and its launch speed and resource usage are
not optimized for the repeated resets required in RL. For instance, launching a single shopping
environment container in WebArena requires several gigabytes of storage and tens of seconds of
startup time, making large-scale rollouts infeasible.

To overcome these limitations, we implement a scalable and efficient web server manager based on
Incus, a modern container runtime that extends Linux Containers (LXC). Incus provides lightweight
system containers with advanced filesystem integration, enabling fast cloning and snapshotting.
Compared to Docker’s layered filesystem, which copies entire modified files to the upper layer
upon each launch, Incus leverages modern filesystems (e.g., ZFS, Btrfs) that support block-level
copy-on-write. This distinction is crucial for web environments such as WebArena’s shopping site,
where a single multi-gigabyte file is touched on each reset. With block-level CoW, only the modified
blocks are duplicated, dramatically reducing launch latency and storage overhead. This design offers
two main benefits: (1) sub-second container startup, which enables high-throughput RL rollouts, and
(2) efficient memory caching, which minimizes redundant disk usage across parallel environments.

In addition to performance gains, Incus provides two further advantages. First, it retains compatibility
with Docker images through OCI support, allowing existing Docker-based web environments to
run unmodified. This ensures comparability with prior implementations while improving runtime
efficiency. Second, Incus supports cloning of running containers, which makes it straightforward to
checkpoint server state and resume from consistent snapshots. This feature facilitates reproducible
experiments and efficient training pipelines, especially in scenarios where environments must be
rolled back or branched during RL exploration.

Together, these capabilities enable WEBSERV to scale reproducible web environments to reinforce-
ment learning workloads that demand thousands of parallel container rollouts.

3.5 Post-Training Transfer and Human-Centered Inspection

Although WEBSERYV is designed primarily for scalable training and evaluation, we also consider the
downstream transfer of trained agents to real-world browsing contexts. To bridge the gap between



Model Type Shopping CMS Gitlab

Qwen2.5-3B [12] Single-Prompt 4.4 5.7 13.3
Llama3.1-8B [12] Single-Prompt 8.9 57 100
Qwen2.5-32B [12] Single-Prompt 17.8 20 20.0
GPT-40 [12] Single-Prompt 11.1 20 10.0
GPT-40-Turbo [12]] Single-Prompt 13.3 143 16.7
OpenAl-o3 [12] Reasoning Model 333 457 46.7
Step [ILL] Multi-Prompt 37.0 24.0  30.0
Llama3.1-8B + BC [12] Fine-tuning 17.8 20 6.7

Llama3.1-8B + WebAgent-R1 [12] Reinforcement Learning 44.4 571 56.7
Claude 3.5 sonnet + WEBSERV Single-Prompt 24.4 229 300
Claude 3.7 sonnet + WEBSERV Single-Prompt 37.7 28.5 40.0
Claude 4 sonnet + WEBSERV Single-Prompt 28.9 286 333
Claude 4.5 sonnet + WEBSERV Single-Prompt 46.7 343  40.0
DeepSeek-R1 + WEBSERV Reasoning Model 15.5 257 233

Table 1: Comparison of models across Shopping and CMS tasks in WebArena-Lite [10].

controlled environments and deployment settings, we develop human-centered inspection tools that
make model behavior transparent and verifiable.

Trajectory inspection via replayer. We provide a web-based replayer that steps through an agent’s
action history. Model action can be robustly reproduced on the same webpage. Researchers and
practitioners can quickly identify reasoning failures, misaligned actions, or unexpected navigation
patterns without manually reproducing episodes.

Real-time action preview for human oversight. To support safe transfer to real interfaces, we
implement a real-time execution mode in which model actions are previewed on the webpage before
being carried out. When the agent selects an element to click, type into, or hover over, the target
is temporarily highlighted in the rendered page before being executed. This mechanism prevents
erroneous or unsafe interactions and also allows practitioners to collect targeted feedback signals that
can be used for post-training refinement.

Together, these tools enable trained agents to move beyond offline simulation and be examined,
audited, and adapted for practical integration. They also facilitate the collection of additional user
feedback and correction signals that can guide further fine-tuning or reinforcement learning updates.

4 Evaluation

4.1 Performance Benchmark on WebArena

As a case study, we evaluate the robustness of our browser environment on the shopping, CMS
and GitLab tasks from WebArena [14]. Table[I]summarizes performance across prompting-based
agents, reasoning models, and reinforcement learning methods. While large reasoning models such
as OpenAl-03 or RL-based agents such as WebAgent-R1 achieve strong results, they require multiple
prompts or specialized training to do so. In contrast, our system WEBSERV, when paired with
Claude 4 and Claude 4.5, achieves competitive performance under the strict single-prompt setting,
significantly outperforming other single-prompt baselines. This demonstrates that the clean and
semantically enriched context provided by our environment enables LLMs to perform complex tasks
more effectively without relying on multi-round reasoning or task-specific fine-tuning.

4.2 System Speed and Resource Usage

We benchmark the efficiency of our container manager against a naive Docker-based setup. All
experiments are conducted on an AWS EC2 r6id.metal instance with 128 vCPUs and 1024 GiB



Metric WEBSERYV (Incus) Naive Docker

Launch speed 1.781s 8.963s
Storage 28.01 MiB 6.78 GiB
Memory 1.74 GiB 1.63 GiB

Table 2: Comparison of system efficiency between WEBSERV and Docker.

of memory. To warm up the disk cache, we sequentially launch 10 containers and measure the
launch speed of the last 8. Table [2]reports average launch latency, storage footprint, and memory
consumption when instantiating the WebArena shopping environment.

WEBSERYV achieves an average launch time of 1.78,s, compared to nearly 9,s with Docker, and
reduces persistent storage from 6.78,GB to only 28,MiB through block-level copy-on-write. Memory
usage remains comparable across both systems, with WEBSERV showing a modest increase due to its
built-in virtualization and namespace isolation mechanisms. These improvements enable a single host
to run more than 200 concurrent containers, supporting high-throughput RL rollouts while drastically
lowering both storage overhead and startup latency.

The slightly higher memory usage in Incus primarily results from its architecture, which maintains
a lightweight virtualized environment for each container to ensure deterministic isolation between
rollouts. Unlike Docker, which shares certain kernel and daemon-level resources across containers,
Incus allocates separate namespaces and minimal management daemons to guarantee reproducible
execution and strict process boundaries. This design choice introduces a small, predictable memory
overhead per container (typically within 100-200,MiB), but the benefit is a more stable and isolated
environment that eliminates cross-container interference—a crucial requirement for RL training.

In practice, the limiting factor for scaling up concurrent containers is not memory but disk throughput.
Each container launch involves reading image layers, initializing filesystems, and performing copy-on-
write operations, which can easily saturate I/O bandwidth when using traditional Docker layer storage.
In Docker’s overlay-based storage model, every new container instantiates a fresh upper layer and
writes several gigabytes of duplicated filesystem content to disk (in our measurement, approximately
6,GiB per launch), resulting in high latency and poor parallelism when multiple containers are started
concurrently. These redundant writes not only prolong startup time but also create contention across
concurrent rollouts, since all containers compete for limited write bandwidth.

WEBSERV mitigates this bottleneck by leveraging ZFS-backed block-level snapshots and incremental
cloning, which allow new containers to be created almost instantaneously without duplicating
data. In our Incus-based implementation, only around 28,MiB of new data is written during each
launch, primarily for container-specific metadata and ephemeral state, while the majority of disk
operations are read-only. Because multiple containers share the same base image, read operations are
heavily cached by the host kernel and ZFS buffer pool, further improving launch efficiency under
parallel workloads. This design minimizes write amplification, avoids redundant disk I/O, and scales
efficiently across hundreds of simultaneous rollouts.

As a result, container startup time becomes decoupled from disk speed and dominated instead by
lightweight metadata transactions. Even under heavy parallel initialization, WEBSERV maintains
near-constant launch latency and consistent runtime performance, effectively transforming the primary
scalability bottleneck from a disk-bound operation into a memory-cached snapshot lookup.

5 Discussion

5.1 Supporting RL training at scale

WEBSERV couples realistic browser side interaction with controllable server side state at scale.
Concurrency is constrained mainly by disk throughput (not memory). Using ZFS based block level
snapshots and copy on write, WEBSERV achieves near constant time launches and reproducible
resets while persisting only 28,MiB per container and reaching an average launch time of 1.78,s
versus about 9,s for Docker, enabling more than 200 concurrent containers on a single host. The



modest extra memory in Incus is acceptable because post launch access is read dominant and is
cached by the kernel and the ZFS buffer pool. On the browser side we expose a compact site
agnostic observation and action interface that flattens trivial containers and prunes empty nodes while
preserving informative text, and we execute actions with a deterministic protocol that waits for visual
and network quiescence, with one isolated application server per rollout for reproducible trajectories.

5.2 Richer operations for RL algorithms

Beyond baseline Docker semantics, WEBSERV exposes operations that are directly useful for learning
algorithms. A running container can be snapshotted and cloned with block-level efficiency, which
allows branching from an identical environment state without reinitializing the stack. This makes sub
rollout sampling practical at scale (for example, branching at a decision point to explore multiple
action proposals in parallel), supports speculative execution and top k expansions, and enables
repeated what-if counterfactual trials from a common checkpoint. Fast restore to a named snapshot
provides deterministic retries and fair comparisons across policies, while lightweight resets avoid the
work that causes cold start effects. Together, these operations reduce variance from environment drift
and make evaluation and ablation studies more reliable.

6 Conclusion

We introduced WEBSERYV, a full-stack browser server environment designed for scalable reinforce-
ment learning with web agents E] Our system tackles three persistent challenges in prior environments
(overly noisy or task-specific observation spaces, nondeterministic action execution under dynamic
web conditions, and inefficient server container management). By combining a DOM parser that
produces compact and semantically aligned observations, a network-aware executor that synchronizes
with UI and network quiescence, and an Incus-based container manager that enables sub-second
launches and block-level copy on write, WEBSERV provides both robustness and scalability. In addi-
tion, WEBSERV can target arbitrary websites (users can plug in any real online site or a Dockerized
site) while isolating each rollout in its own server context and preserving realistic client behavior.

Empirical results on WebArena show that WEBSERYV supports state-of-the-art single prompt perfor-
mance while reducing storage requirements by more than two orders of magnitude and enabling 200+
concurrent containers on a single host. These advances make large-scale RL rollouts with realistic
web interfaces both practical and reproducible.

Looking forward, we hope WEBSERV will serve as a foundation for research on web agents that goes
beyond prompting, enabling reproducible evaluation and efficient training for increasingly capable
RL based systems.

Limitations

While WEBSERYV provides a scalable and efficient environment for training and evaluating RL-based
web agents, it has several limitations that open avenues for future work.

First, our current design assumes text-only agents that operate on a stripped DOM representation.
Visual signals are limited to metadata such as cursor styles, but agents cannot directly perceive the
rendered page. As a result, tasks that require reasoning about spatial layout, color, images, or other
visual modalities remain unsupported. Extending the environment with pixel-based or multimodal
observations would allow agents to leverage visual context alongside structured DOM information.
Second, although our parser produces a compact and semantically enriched HTML observation, it
does not retain visual layout cues. For example, when items are arranged in a grid, the observation
exposes them as a flat list without indicating how many items appear per row or whether line wraps
occur. This omission simplifies the representation but removes structural signals that humans rely on
to reason about grouping, alignment, and spatial organization.

“We used AI technologies to help with code writing and paper writing. For paper writing, the usage of Al
was solely for writing assistants.
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