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ABSTRACT

Designing an incentive compatible auction that maximizes expected revenue is a
central problem in Auction Design. While theoretical approaches to the problem
have hit some limits, a recent research direction initiated by Duetting et al. (2019)
consists in building neural network architectures to find optimal auctions. We
propose two conceptual deviations from their approach which result in enhanced
performance. First, we use recent results in theoretical auction design to introduce a
time-independent Lagrangian. This not only circumvents the need for an expensive
hyper-parameter search (as in prior work), but also provides a single metric to
compare the performance of two auctions (absent from prior work). Second,the
optimization procedure in previous work uses an inner maximization loop to
compute optimal misreports. We amortize this process through the introduction of
an additional neural network. We demonstrate the effectiveness of our approach
by learning competitive or strictly improved auctions compared to prior work.
Both results together further imply a novel formulation of Auction Design as a
two-player game with stationary utility functions.

1 INTRODUCTION

Efficiently designing truthful auctions is a core problem in Mathematical Economics. Concrete
examples include the sponsored search auctions conducted by companies as Google or auctions run
on platforms as eBay. Following seminal work of Vickrey (Vickrey, 1961) and Myerson (Myerson,
1981), auctions are typically studied in the independent private valuations model: each bidder has a
valuation function over items, and their payoff depends only on the items they receive. Moreover, the
auctioneer knows aggregate information about the population that each bidder comes from, modeled
as a distribution over valuation functions, but does not know precisely each bidder’s valuation (outside
of any information in this Bayesian prior). A major difficulty in designing auctions is that valuations
are private and bidders need to be incentivized to report their valuations truthfully. The goal of the
auctioneer is to design an incentive compatible auction which maximizes expected revenue.
Auction Design has existed as a rigorous mathematical field for several decades and yet, complete
characterizations of the optimal auction only exist for a few settings. While Myerson’s Nobel prize-
winning work provides a clean characterization of the single-item optimum (Myerson, 1981), optimal
multi-item auctions provably suffer from numerous formal measures of intractability (including
computational intractability, high description complexity, non-monotonicity, and others) (Daskalakis
et al., 2014; Chen et al., 2014; 2015; 2018; Hart & Reny, 2015; Thanassoulis, 2004).
An orthogonal line of work instead develops deep learning architectures to find the optimal auction.
Duetting et al. (2019) initiated this direction by proposing RegretNet, a feed-forward architecture.
They frame the auction design problem as a constrained learning problem and lift the constraints
into the objective via the augmented Lagrangian method. Training RegretNet involves optimizing
this Lagrangian-penalized objective, while simultaneously updating network parameters and the
Lagrangian multipliers themselves. This architecture produces impressive results: recovering near-
optimal auctions in several known multi-item settings, and discovering new mechanisms when a
theoretical optimum is unknown.
Yet, this approach presents several limitations. On the conceptual front, our main insight is a
connection to an exciting line of recent works (Hartline & Lucier, 2010; Hartline et al., 2011; Bei &
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Huang, 2011; Daskalakis & Weinberg, 2012; Rubinstein & Weinberg, 2018; Dughmi et al., 2017;
Cai et al., 2019) on ε-truthful-to-truthful reductions.1 On the technical front, we identify three areas
for improvement. First, their architecture is difficult to train in practice as the objective is non-
stationary. Specifically, the Lagrangian multipliers are time-dependent and they increase following
a pre-defined schedule, which requires careful hyperparameter tuning (see §3.1 for experiments
illustrating this). Leveraging the aforementioned works in Auction Theory, we propose a stationary
Lagrangian objective. Second, all prior work inevitably finds auctions which are not precisely
incentive compatible, and does not provide a metric to compare, say, an auction with revenue 1.01
which is 0.002-truthful, or one with revenue 1 which is 0.001-truthful. We argue that our stationary
Lagrangian objective serves as a good metric (and that the second auction of our short example
is “better” for our metric). Finally, their training procedure requires an inner-loop optimization
(essentially, this inner loop is the bidders trying to maximize utility in the current auction), which is
itself computationally expensive. We use amortized optimization to make this process more efficient.

CONTRIBUTIONS

This paper leverages recent work in Auction Theory to formulate the learning of revenue-optimal
auctions as a two-player game. We develop a new algorithm ALGnet (Auction Learning Game
network) that produces competitive or better results compared to Duetting et al. (2019)’s RegretNet.
In addition to the conceptual contributions, our approach yields the following improvements (as
RegretNet is already learning near-optimal auctions, our improvement over RegretNet is not due to
significantly higher optimal revenues).

– Easier hyper-parameter tuning: By constructing a time-independent loss function, we
circumvent the need to search for an adequate parameter scheduling. Our formulation also
involves less hyperparameters, which makes it more robust.

– A metric to compare auctions: We propose a metric to compare the quality of two auctions
which are not incentive compatible.

– More efficient training: We replace the inner-loop optimization of prior work with a neural
network, which makes training more efficient.

– Online auctions: Since the learning formulation is time-invariant, ALGnet is able to quickly
adapt in auctions where the bidders’ valuation distributions varies over time. Such setting
appears for instance in the online posted pricing problem studied in Bubeck et al. (2017).

Furthermore, these technical contributions together now imply a novel formulation of auction learning
as a two-player game (not zero-sum) between an auctioneer and a misreporter. The auctioneer is
trying to design an incentive compatible auction that maximizes revenue while the misreporter is
trying to identify breaches in the truthfulness of these auctions. The paper decomposes as follows.
Section 2 introduces the standard notions of auction design. Section 3 presents our game formulation
for auction learning. Section 4 provides a description of ALGnet and its training procedure. Finally,
Section 5 presents numerical evidence for the effectiveness of our approach.

RELATED WORK
Auction design and machine learning. Machine learning and computational learning theory have
been used in several ways to design auctions from samples of bidder valuations. Machine learning has
been used to analyze the sample complexity of designing optimal revenue-maximizing auctions. This
includes the framework of single-parameter settings (Morgenstern & Roughgarden, 2015; Huang
et al., 2018; Hartline & Taggart, 2019; Roughgarden & Schrijvers, 2016; Gonczarowski & Nisan,
2017; Guo et al., 2019), multi-item auctions (Dughmi et al., 2014; Gonczarowski & Weinberg, 2018),
combinatorial auctions (Balcan et al., 2016; Morgenstern & Roughgarden, 2016; Syrgkanis, 2017)
and allocation mechanisms (Narasimhan & Parkes, 2016). Other works have leveraged machine
learning to optimize different aspects of mechanisms (Lahaie, 2011; Dütting et al., 2015). Our
approach is different as we build a deep learning architecture for auction design.

Auction design and deep learning. While Duetting et al. (2019) is the first paper to design auctions
through deep learning, several other paper followed-up this work. Feng et al. (2018) extended it to
budget constrained bidders, Golowich et al. (2018) to the facility location problem. Tacchetti et al.
(2019) built architectures based on the Vickrey- Clarke-Groves mechanism. Rahme et al. (2021) used
permutation-equivariant networks to design symmetric auctions. Shen et al. (2019) and Duetting

1By ε-truthful, we mean the expected total regret R is bounded by ε. See Prop. 1 for a definition of R.
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et al. (2019) proposed architectures that exactly satisfy incentive compatibility but are specific to
single-bidder settings. While all the previously mentioned papers consider a non-stationary objective
function, we formulate a time-invariant objective that is easier to train and that makes comparisons
between mechanisms possible.

2 AUCTION DESIGN AS A TIME-VARYING LEARNING PROBLEM

We first review the framework of auction design and the problem of finding truthful mechanisms. We
then recall the learning problem proposed by Duetting et al. (2019) to find optimal auctions.

2.1 AUCTION DESIGN AND LINEAR PROGRAM

Auction design. We consider an auction with n bidders and m items. We will denote by N =
{1, . . . , n} and M = {1, . . . ,m} the set of bidders and items. Each bidder i values item j at a
valuation denoted vij . We will focus on additive auctions. These are auctions where the value of a set
S of items is equal to the sum of the values of the elements in that set at

∑
j∈S vij . Additive auctions

are perhaps the most well-studied setting in multi-item auction design (Hart & Nisan, 2012; Li &
Yao, 2013; Daskalakis et al., 2014; Cai et al., 2016; Daskalakis et al., 2017).
The auctioneer does not know the exact valuation profile V = (vij)i∈N,j∈M of the bidders in
advance but he does know the distribution from which they are drawn: the valuation vector of bidder i,
~vi = (vi1, . . . , vim) is drawn from a distribution Di over Rm. We will further assume that all bidders
are independent and that D1 = · · · = Dn. As a result V is drawn from D := ⊗ni=1Di = D⊗

n

1 .

Definition 1. An auction is defined by a randomized allocation rule g = (g1, . . . , gn) and a payment
rule p = (p1, . . . , pn) where gi : Rn×m → [0, 1]m and pi : Rn×m → R>0. Additionally for all items
j and valuation profiles V , the gi must satisfy

∑
i[gi(V )]j 6 1.

Given a bid matrix B = (bij)i∈N,j∈M , [gi(B)]j is the probability that bidder i receives object j
and pi(B) is the price bidder i has to pay to the auction. The condition

∑
i[gi(V )]j 6 1 allows the

possibility for an item to be not allocated.

Definition 2. The utility of bidder i is defined by ui(~vi, B) =
∑m
j=1[gi(B)]jvij − pi(B).

Bidders seek to maximize their utility and may report bids that are different from their true valuations.
In the following, we will denote by B−i the (n−1)×m bid matrix without bidder i, and by (~b′i, B−i)

the n ×m bid matrix that inserts ~b′i into row i of B−i (for example: B := (~bi, B−i). We aim at
auctions that incentivize bidders to bid their true valuations.

Definition 3. An auction (g, p) is dominant strategy incentive compatible (DSIC) if each bidder’s
utility is maximized by reporting truthfully no matter what the other bidders report. For every bidder
i, valuation ~vi ∈ Di, bid~bi ′ ∈ Di and bids B−i ∈ D−i, ui(~vi, (~vi, B−i)) > ui(~vi, (~bi

′, B−i)).

Definition 4. An auction is individually rational (IR) if for all i ∈ N, ~vi ∈ Di and B−i ∈ D−i,

ui(~vi, (~vi, B−i)) > 0. (IR)

In a DSIC auction, the bidders have the incentive to truthfully report their valuations and therefore,
the revenue on valuation profile V is

∑n
i=1 pi(V ). Optimal auction design aims at finding a DSIC

and IR auction that maximizes the expected revenue rev := EV∼D[
∑n
i=1 pi(V )]. Since there is no

known characterization of DSIC mechanisms in the multi-item setting, we resort to the relaxed notion
of ex-post regret. It measures the extent to which an auction violates DSIC.

Definition 5. The ex-post regret for a bidder i is the maximum increase in his utility when considering
all his possible bids and fixing the bids of others. For a valuation profile V , it is given by ri(V ) =

max~bi ′∈Rm ui(~vi, (~bi
′, V−i))− ui(~vi, (~vi, V−i)). In particular, DSIC is equivalent to

ri(V ) = 0, ∀i ∈ N, ∀V ∈ D. (IC)

The bid~b′i that achieves ri(V ) is called the optimal misreport of bidder i for valuation profile V .
Therefore, finding an optimal auction is equivalent to the following linear program:

min
(g,p)∈M

− EV∼D

[
n∑
i=1

pi(V )

]
s.t. ri(V ) = 0, ∀ i ∈ N, ∀ V ∈ D,

ui(~vi, (~vi, B−i)) > 0, ∀i ∈ N, ~vi ∈ Di, B−i ∈ D−i.
(LP)
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2.2 AUCTION DESIGN AS A LEARNING PROBLEM

As the space of auctionsM may be large, we will set a parametric model. In what follows, we
consider the class of auctions (gw, pw) encoded by a neural network of parameter w ∈ Rd. The
corresponding utility and regret function will be denoted by uwi and rwi .
Following Duetting et al. (2019), the formulation (LP) is relaxed: the IC constraint for all V ∈ D
is replaced by the expected constraint EV∼D[rwi (V )] = 0 for all i ∈ N. The justification for this
relaxation can be found in Duetting et al. (2019). By replacing expectations with empirical averages,
the learning problem becomes:

min
w∈Rd

− 1

L

L∑
`=1

n∑
i=1

pwi (V
(`)) s.t. r̂wi :=

1

L

L∑
`=1

rwi (V
(`)) = 0, ∀i ∈ N. (L̂P)

The learning problem (L̂P) does not ensure (IR). However, this constraint is usually built into the
parametrization (architecture) of the model: by design, the only auction mechanism considered satisfy
(IR). Implementation details can be found in Duetting et al. (2019); Rahme et al. (2021) or in Sec 4.

3 AUCTION LEARNING AS A TWO-PLAYER GAME

We first present the optimization and the training procedures for (L̂P) proposed by Duetting et al.
(2019). We then demonstrate with numerical evidence that this approach presents two limitations:
hyperparameter sensitivity and lack of interpretability. Using the concept of ε-truthful to truthful
reductions, we construct a new loss function that circumvents these two aspects. Lastly, we resort to
amortized optimization and reframe the auction learning problem as a two-player game.

3.1 THE AUGMENTED LAGRANGIAN METHOD AND ITS SHORTCOMINGS

Optimization and training. We briefly review the training procedure proposed by Duetting et al.
(2019) to learn optimal auctions. The authors apply the augmented Lagrangian method to solve the
constrained problem (L̂P) and consider the loss:

L(w;λ; ρ) = − 1

L

L∑
`=1

∑
i∈N

pwi (V
(`)) +

∑
i∈N

λir
w
i (V

(`)) +
ρ

2

(∑
i∈N

rwi (V
(`))

)2

,

where λ ∈ Rn is a vector of Lagrange multipliers and ρ > 0 is a parameter controlling the weight of
the quadratic penalty. More details about the training procedure can be found in Appendix A.

Scheduling consistency problem. The parameters λ and ρ are time-varying. Indeed, their value
changes according to a pre-defined scheduling of the following form: 1) Initialize λ and ρ with
respectively λ0 and ρ0, 2) Update ρ every Tρ iterations : ρt+1 ← ρt + c, where c is a pre-defined
constant, 3) Update λ every Tλ iterations according to λti ← λti + ρt r̂w

t

i .

Therefore, this scheduling requires to set up five hyper parameters (λ0, ρ0, c, Tλ, Tρ). Some of the
experiments found Duetting et al. (2019) were about learning an optimal mechanism for an n-bidder
m-item auction (n×m) where the valuations are iid U [0, 1]. Different scheduling parameters were
used for different values of n and m. We report the values of the hyper parameters used for the 1× 2,
3 × 10 and 5 × 10 settings in Table 1(a). A natural question is whether the choice of parameters
heavily affects the performance. We proceed to a numerical investigation of this questions by trying
different schedulings (columns) for different settings (rows) and report our the results in Table 1(b).
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Table 1: (a): Scheduling parameters values set in Duetting et al. (2019) to reach optimal auctions in
n×m settings with n bidders, m objects and i.i.d. valuations sampled from U [0, 1]. (b): Revenue
rev := EV∼D[

∑n
i=1 pi(V )] and average regret per bidder reg := 1/nEV ∈D [

∑n
i=1 ri(V )] for n×m

settings when using the different parameters values set reported in (a).

1× 2 3× 10 5× 10

λ0 5 5 1
ρ0 1 1 0.25
c 50 1 0.25
Tλ 102 102 102

Tρ 104 104 105

(a)

Scheduling

1× 2 3× 10 5× 10

Setting rev rgt rev rgt rev rgt

1× 2 0.552 0.0001 0.573 0.0012 0.332 0.0179
3× 10 4.825 0.0007 5.527 0.0017 5.880 0.0047
5× 10 4.768 0.0006 5.424 0.0033 6.749 0.0047

(b)

The auction returned by the network dramatically varies with the choice of scheduling parameters.
When applying the parameters of 1× 2 to 5× 10, we obtain a revenue that is lower by 30%! The
performance of the learning algorithm strongly depends on the specific values of the hyperparameters.
Finding an adequate scheduling requires an extensive and time consuming hyperparameter search.
Lack of interpretability. How should one compare two mechanisms with different expected
revenue and regret? Is a mechanism M1 with revenue P1 = 1.01 and an average total regret
R1 = 0.02 better than a mechanism M2 with P2 = 1.0 and R2 = 0.01 ? The approach in Duetting
et al. (2019) cannot answer this question. To see that, notice that when λ1 = · · · = λn = λ we can
rewrite L(w;λ; ρ) = −P + λR+ ρ

2R
2. Which mechanism is better depends on the values of λ and

ρ. For example if ρ = 1 and λ = 0.1 we find that M1 is better, but if ρ = 1 and λ = 10 then M2

is better. Since the values of λ and ρ change with time, the Lagrangian approach in Duetting et al.
(2019) cannot provide metric to compare two mechanisms.

3.2 A TIME-INDEPENDENT AND INTERPRETABLE LOSS FUNCTION FOR AUCTION LEARNING

Our first contribution consists in introducing a new loss function for auction learning that addresses
the two first limitations of Duetting et al. (2019) mentioned in Section 3.1. We first motivate this loss
in the one bidder case and then extend it to auctions with many bidders.

3.2.1 MECHANISMS WITH ONE BIDDER

Proposition 1. [Balcan et al. (2005), attributed to Nisan] Let M be an additive auction with
1 bidder and m items. Let P and R denote the expected revenue and regret, P = EV ∈D [p(V )] and
R = EV ∈D [r(V )]. There exists a mechanismM∗ with expected revenue P ∗ = (

√
P −
√
R)2 and

zero regret R∗ = 0.

A proof of this proposition can be found in Appendix C. Comparing two mechanisms is straightfor-
ward when both of them have zero-regret: the best one achieves the highest revenue. Prop. 1 allows a
natural and simple extension of this criteria for non zero-regret mechanism with one bidder: we will
say that M1 is better than M2 if and only if M∗1 is better than M∗2 :

M1 >M2 ⇐⇒ P ∗(M1) > P ∗(M2) ⇐⇒
√
P1 −

√
R1 >

√
P2 −

√
R2

Using our metric, we find that a one bidder mechanism with revenue of 1.00 and regret of 0.01 is
”better” than one with revenue 1.01 and regret 0.02.

3.2.2 MECHANISMS WITH MULTIPLE BIDDERS

Let M1 and M2 be two mechanisms with n bidders and m objects. Let Pi and Ri denote their total
expected revenue and regret, Pi = EV ∈D

[∑n
j=1 pj(V )

]
and Ri = EV ∈D

[∑n
j=1 rj(V )

]
. We can

extend our metric derived in Section 3.2.1 to the multiple bidder by the following:

M1 is ”better” than M2 ⇐⇒ M1 >M2 ⇐⇒
√
P1 −

√
R1 >

√
P2 −

√
R2

When n = 1 we recover the criteria from Section 3.2.1 that is backed by Prop. 1. When n > 1, it
is considered a major open problem whether the extension of Prop. 1 still holds. Note that a multi-
bidder variant of Prop. 1 does hold under a different solution concept termed “Bayesian Incentive
Compatible” (Rubinstein & Weinberg, 2018; Cai et al., 2019), supporting the conjecture that Prop. 1
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indeed extends.2 Independently of whether or not Prop. 1 holds, this reasoning implies a candidate
loss function for the multi-bidder setting which we can evaluate empirically.

This way of comparing mechanisms motivates the use of loss function: L(P,R) = −(
√
P −

√
R)

instead of the Lagrangian from Section 3, and indeed this loss function works well in practice. We
empirically find the loss function Lm(P,R) = −(

√
P −

√
R) +R further accelerates training, as

it further (slightly) biases towards mechanisms with low regret. Both of these loss function are
time-independent and hyperparameter-free.

3.3 AMORTIZED MISREPORT OPTIMIZATION

To compute the regret rwi (V ) one has to solve the optimization problem:
max~vi ′∈Rm uwi (~vi, (~vi

′, V−i)) − uwi (~vi, (~vi, V−i)). In Duetting et al. (2019), this optimiza-
tion problem is solved with an inner optimization loop for each valuation profile. In other words,
computing the regret of each valuation profile is solved separately and independently, from scratch. If
two valuation profiles are very close to each other, one should expect that the resulting optimization
problems to have close results. We leverage this to improve training efficiency.

We propose to amortize this inner loop optimization. Instead of solving all these optimization
problems independently, we will instead learn one neural network Mϕ that tries to predict the
solution of all of them. Mϕ takes as entry a valuation profile and maps it to the optimal misreport:

Mϕ :

{
Rn×m → Rn×m

V = [~vi]i∈N →
[
argmax~v′∈Dui(~vi, (~v

′, V−i))
]
i∈N

The loss Lr that Mϕ is trying to minimize follows naturally from that definition and is then given by:
Lr(ϕ,w) = −EV ∈D [

∑n
i=1 u

w
i (~vi, ([M

ϕ(V )]i, V−i))] .

3.4 AUCTION LEARNING AS A TWO-PLAYER GAME

In this section, we combine the ideas from Sections 3.2 and 3.3 to obtain a new formulation for
the auction learning problem as a two-player game between an Auctioneer with parameter w and a
Misreporter with parameter ϕ. The optimal parameters for the auction learning problem (w∗, ϕ∗) are
a Nash Equilibrium for this game.

The Auctioneer is trying to design a truthful (IC) and rational (IR) auction that maximizes revenue.
The Misreporter is trying to maximize the bidders’ utility, for the current auction selected by
Auctioneer, w. This is achieved by minimizing the loss function Lr(ϕ,w) wrt to ϕ (as discussed in
Sec 3.3). The Auctioneer in turn maximizes expected revenue, for the current misreports as chosen by
Misreporter. This is achieved by minimizing Lm(w,ϕ) = −(

√
Pw+

√
Rw,ϕ)+Rw,ϕ with respect to

w (as discussed in Sec 3.2). Here, Rw,ϕ is an estimate of the total regret that auctioneer computes for
the current Misreporter ϕ, Rw,ϕ = 1

L

∑L
`=1

∑
i∈N (uwi (~vi, ([M

ϕ(V )]i, V−i))− uwi (~vi, (~vi, V−i))) .
This game formulation can be summarized as follows:


Misreporter:

{
loss: Lr(ϕ,w)
parameter: ϕ

Auctioneer:
{

loss: Lm(w,ϕ)

parameter: w

(G)

Remark 1. The game formulation (G) reminds us of Generative Adversarial Networks (Goodfellow
et al., 2014). Contrary to GANs, it is not a zero-sum game.

2An auction is Bayesian Incentive Compatible if every bidder maximizes their expected utility by truthful
reporting in expectation over the other bidders’ truthful bids. Compare this to Dominant Strategy Incentive
Compatible (our paper), where every bidder maximizes their expected utility by truthful reporting for all
realizations of the other bidders’ bids.
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4 ARCHITECTURE AND TRAINING PROCEDURE

We describe ALGnet, a feed-forward architecture solving for the game formulation (G) and then
provide a training procedure. ALGnet consists in two modules that are the auctioneer’s module and
the misreporter’s module. These components take as input a bid matrix B = (bi,j) ∈ Rn×m and are
trained jointly. Their outputs are used to compute the regret and revenue of the auction.

Notation. We use MLP(din, nl, h, dout) to refer to a fully-connected neural network with input
dimension din, output dimension dout and nl hidden layers of width h and tanh activation function.
sig denotes the sigmoid activation function. Given a matrix B = [~b1, . . . ,~bn]

> ∈ Rn×m, we define
for a fixed i ∈ N , the matrix B(i) := [~bi,~b1, . . . ,~bi−1,~bi+1, . . . ,~bn].

4.1 THE AUCTIONEER’S MODULE

It is composed of an allocation network that encodes a randomized allocation gw : Rnm → [0, 1]nm

and a payment network that encodes a payment rule pw : Rnm → Rn.

Allocation network. It computes the allocation probabily of item j to bidder i [gw(B)]ij as
[gw(B)]ij = [f1(B)]j · [f2(B)]ij where f1 : Rn×m → [0, 1]m and f2 : Rn×m → [0, 1]m×n are
functions computed by two feed-forward neural networks.

– [f1(B)]j is the probability that object j ∈ M is allocated and is given by
[f1(B)]j = sig (MLP(nm, na, ha, n)).

– [f2(B)]ij is the probability that item j ∈ M is allocated to bidder i ∈ N conditioned on
object j being allocated. A first MLP computes lj := MLP(nm, na, ha,m)(B(j)) for all j ∈ M .
The network then concatenates all these vectors lj into a matrix L ∈ Rn×m. A softmax activation
function is finally applied to L to ensure feasibility i.e. for all j ∈M,

∑
i∈N Lij = 1.

Payment network. It computes the payment [pw(B)]i for bidder i as [pw(B)]i =
p̃i
∑m
j=1Bij [g

w(B)]ij , where p̃ : Rn×m → [0, 1]n. p̃i is the fraction of bidder’s i utility that she has
to pay to the mechanism. We compute p̃i = sig (MLP(nm, np, hp, 1)) (B(i)). Finally, notice that by
construction [pw(B)]i 6

∑m
j=1Bijg

w(B)ij which ensures that (IR) is respected.

4.2 THE MISREPORTER’S MODULE

The module consists in an MLP(nm, nM , hM ,m) followed by a projection layer Proj that en-
sure that the output of the network is in the domain D of the valuation. For example when
the valuations are restricted to [0, 1], we can take Proj = sig, if they are non negative num-
ber,we can take Proj = SoftPlus. The optimal misreport for bidder i is then given by Proj ◦
MLP(nm, nM , hM ,m)(B(i)) ∈ Rm. Stacking these vectors gives us the misreport matrix Mϕ(B).

4.3 TRAINING PROCEDURE AND OPTIMIZATION

We optimize the game (G) over the space of
neural networks parameters (w,ϕ). The algo-
rithm is easy to implement (Alg. 1).
At each time t, we sample a batch of valuation
profiles of size B. The algorithm performs τ
updates for the Misreporter’s network (line 9)
and one update on the Auctioneer’s network
(line 10). Moreover, we often reinitialize the
Misreporter’s network every Tinit steps in the
early phases of the training (t 6 Tlimit). This
step is not necessary but we found empirically
that it speeds up training.

Algorithm 1 ALGnet training

1: Input: number of agents, number of objects.
2: Parameter: γ > 0; B, T, Tinit, Tlimit, τ ∈ N.
3: Initialize misreport’s and auctioneer’s nets.
4: for t = 1, . . . , T do
5: if t ≡ 0 mod Tinit and t < TLimit then:
6: Reinitialize Misreport Network
7: Sample valuation batch S of size B.
8: for s = 1, . . . , τ do
9: ϕs+1 ← ϕs − γ∇ϕLr(ϕs, wt)(S).

10: wt+1 ← wt − γ∇wLm(wt, ϕ)(S).

5 EXPERIMENTAL RESULTS

We show that ALGnet can recover near-optimal auctions for settings where the optimal solution is
known and that it can find new auctions for settings where analytical solution are not known. Since
RegretNet is already capable of discovering near optimal auctions, one cannot expect ALGnet to
achieve significantly higher optimal revenue than RegretNet. The results obtained are competitive or
better than the ones obtained in Duetting et al. (2019) while requiring much less hyperparameters
(Section 3). We also evaluate ALGnet in online auctions and compare it to RegretNet.

7



Published as a conference paper at ICLR 2021

For each experiment, we compute the total revenue rev := EV∼D[
∑
i∈N p

w
i (V )] and average regret

rgt := 1/nEV∼D[
∑
i∈N r

w
i (V )] on a test set of 10, 000 valuation profiles. We run each experiment 5

times with different random seeds and report the average and standard deviation of these runs. In our
comparisons we make sure that ALGnet and RegretNet have similar sizes for fairness (Appendix D).
5.1 AUCTIONS WITH KNOWN AND UNKNOWN OPTIMA

Known settings. We show that ALGnet is capable of recovering near optimal auction in different
well-studied auctions that have an analytical solution. These are one bidder and two items auctions
where the valuations of the two items v1 and v2 are independent. We consider the following settings.
(A): v1 and v2 are i.i.d. from U [0, 1], (B): v1 ∼ U [4, 16] and v2 ∼ U [4, 7], (C): v1 has density
f1(x) = 5/(1 + x)6 and v2 has density f2(y) = 6/(1 + y)7.

(A) is the celebrated Manelli-Vincent auction (Manelli & Vincent, 2006); (B) is a non-i.i.d. auction
and (C) is a non-i.i.d. heavy-tail auction and both of them are studied in Daskalakis et al. (2017).
We compare our results to the theoretical optimal auction (Table 2). (Duetting et al. (2019) does not
evaluate RegretNet on settings (B) & (C)). During the training process, reg decreases to 0 while rev
and P ∗ converge to the optimal revenue. For (A), we also plot rev , rgt and P ∗ as function of the
number of epochs and we compare it to RegretNet (Fig. 1).

Contrary to ALGnet, we observe
that RegretNet overestimates the rev-
enue in the early stages of training
at the expense of a higher regret. As
a consequence, ALGnet learns the
optimal auction faster than Regret-
Net while being schedule-free and
requiring less hyperparameters.

Table 2: Revenue & regret of ALGnet for settings (A)-(C).

Optimal ALGnet (Ours)

rev rgt rev rgt (×10−3 )
(A) 0.550 0 0.555 (±0.0019) 0.55 (±0.14)
(B) 9.781 0 9.737 (±0.0443) 0.75 (±0.17)
(C) 0.1706 0 0.1712 (±0.0012) 0.14 (±0.07)

(a) (b) (c)

(d) (e) (f)

Figure 1: (a-b-c) compares the evolution of the revenue, regret and P ∗ as a function of the number of
epoch for RegretNet and ALGnet for setting (A). (d-e-f) plots the the revenue, regret and P ∗ as a
function of time for ALGnet and (offline & online) RegretNet for an online auction (Section 5.2).

Unknown and large-scale auctions. We now consider settings where the optimal auction is un-
known. We look at n-bidder m-item additive settings where the valuations are sampled i.i.d from
U [0, 1] which we will denote by n×m. In addition to "reasonable"-scale auctions (1× 10 and 2× 2),
we investigate large-scale auctions (3 × 10 and 5 × 10) that are much more complex. Only deep
learning methods are able to solve them efficiently. Table 3 shows that ALGnet is able to discover
auctions that yield comparable or better results than RegretNet.
5.2 ONLINE AUCTIONS

ALGnet is an online algorithm with a time-independent loss function. We would expect it to
perform well in settings where the underlying distribution of the valuations changes over time. We
consider a one bidder and two items additive auction with valuations v1 and v2 sampled i.i.d from
U [0, 1+ t] where t in increased from 0 to 1 at a steady rate. The optimal auction at time t has revenue

8
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Table 3: Comparison of RegretNet and ALGnet. The values reported for RegretNet are found in
Duetting et al. (2019), the numerical values for rgt and standard deviations are not available.

Setting RegretNet ALGnet (Ours)

rev rgt rev rgt

1× 2 0.554 < 1.0 · 10−3 0.555 (±0.0019) 0.55 · 10−3(±0.14 · 10−3)
1× 10 3.461 < 3.0 · 10−3 3.487 (±0.0135) 1.65 · 10−3(±0.57 · 10−3)
2× 2 0.878 < 1.0 · 10−3 0.879 (±0.0024) 0.58 · 10−3(±0.23 · 10−3)
3× 10 5.541 < 2.0 · 10−3 5.562 (±0.0308) 1.93 · 10−3(±0.33 · 10−3)
5× 10 6.778 < 5.0 · 10−3 6.781 (±0.0504) 3.85 · 10−3(±0.43 · 10−3)

0.55× (1+ t). We use ALGnet and two versions of RegretNet, the original offline version (Appendix
A) and our own online version (Appendix B) and plot rev(t), rgt(t) and P ∗(t) (Fig. 1). The offline
version learns from a fixed dataset of valuations sampled at t = 0 (i.e. with V ∼ U [0, 1]nm) while the
online versions (as ALGnet) learns from a stream of data at each time t. Overall, ALGnet performs
better than the other methods. It learns an optimal auction faster at the initial (especially compared to
RegretNet Online) and keep adapting to the distributional shift (contrary to vanilla RegretNet).

6 CONCLUSION
We identified two inefficiencies in previous approaches to deep auction design and propose solutions,
building upon recent trends and results from machine learning (amortization) and theoretical auction
design (stationary Lagrangian). This resulted in a novel formulation of auction learning as a two-
player game between an Auctioneer and a Misreporter and a new architecture ALGnet. ALGnet
requires significantly fewer hyperparameters than previous Lagrangian approaches. We demonstrated
the effectiveness of ALGnet on a variety of examples by comparing it to the theoretical optimal
auction when it is known, and to RegretNet when the optimal solution is not known.
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A TRAINING ALGORITHM FOR REGRET NET

We present the training algorithm for RegretNet, more details can be found in Duetting et al. (2019).

Algorithm 2 Training Algorithm.

1: Input: Minibatches S1, . . . ,ST of size B
2: Parameters: γ > 0, η > 0, c > 0, R ∈ N, T ∈ N, Tρ ∈ N, Tλ ∈ N.
3: Initialize Parameters: ρ0 ∈ R, w0 ∈ Rd, λ0 ∈ Rn,
4: Initialize Misreports: v′i

(`) ∈ Di, ∀` ∈ [B], i ∈ N.
5:
6: for t = 0, . . . , T do
7: Receive minibatch St = {V (1), . . . , V (B)}.
8: for r = 0, . . . , R do
9: ∀` ∈ [B], i ∈ n :

v′i
(`) ← v′i

(`)
+ γ∇v′iu

wt

i (vi
(`); (v′i

(`)
, V

(`)
−i ))

10:
11: Get Lagrangian gradient and update wt:
12: wt+1 ← wt − η∇wL(wt;λt; ρt).
13:
14: Update ρ once in Tρ iterations:
15: if t is a multiple of Tρ then
16: ρt+1 ← ρt + c
17: else
18: ρt+1 ← ρt

19:
20: Update Lagrange multipliers once in Tλ iterations:
21: if t is a multiple of Tλ then
22: λt+1

i ← λti + ρt r̂i(w
t),∀i ∈ N

23: else
24: λt+1 ← λt
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B TRAINING ALGORITHM FOR ONLINE REGRET NET

We present an online version of the training algorithm for RegretNet, more details can be found
in Duetting et al. (2019). This version in mentionned in the orginal paper but the algorithm is not
explicitly written there. The following code is our own adaptation of the original RegretNet algorithm
for online settings.

Algorithm 3 Training Algorithm.

1: Input: Valuation’s Distribution D
2: Parameters: γ > 0, η > 0, c > 0, R ∈ N, T ∈ N, Tρ ∈ N, Tλ ∈ N, B ∈ N
3: Initialize Parameters: ρ0 ∈ R, w0 ∈ Rd, λ0 ∈ Rn,
4: for t = 0, . . . , T do
5: Sample minibatch St = {V (1), . . . , V (B)} from distribution D.
6: Initialize Misreports: v′i

(`) ∈ Di, ∀` ∈ [B], i ∈ N.
7:
8: for r = 0, . . . , R do
9: ∀` ∈ [B], i ∈ n :

v′i
(`) ← v′i

(`)
+ γ∇v′iu

wt

i (vi
(`); (v′i

(`)
, V

(`)
−i ))

10:
11: Get Lagrangian gradient and update wt:
12: wt+1 ← wt − η∇wL(wt;λt; ρt).
13:
14: Update ρ once in Tρ iterations:
15: if t is a multiple of Tρ then
16: ρt+1 ← ρt + c
17: else
18: ρt+1 ← ρt

19:
20: Update Lagrange multipliers once in Tλ iterations:
21: if t is a multiple of Tλ then
22: λt+1

i ← λti + ρt r̂i(w
t),∀i ∈ N

23: else
24: λt+1 ← λt
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C PROOF OF PROP. 1

Lemma 1. Let M be a one bidder m item mechanism with expected revenue P and expected regret
R, then ∀ε > 0, there exists a mechanism M ′ with expected revenue P ′ = (1− ε)P − 1−ε

ε R and
zero expected regret, R′ = 0.

Proof. For every valuation vector v ∈ D, let g(v) and p(v) denote the allocation vector and price
that M assigns to v.

We now consider the mechanism M ′ that does the following:

• g′(v) = g(v′)

• p′(v) = (1− ε) p(v′)

Where v′ is given by : v′ = argmaxṽ∈D 〈v , g(ṽ)〉 − (1− ε) p(ṽ). By construction, the mechanism
M ′ has zero regret, all we have to do now is bound its revenue. If we denote by R(v) the regret of
the profile v in the mechanism M , R(v) = maxṽ∈D 〈v , g(ṽ)− g(v)〉 − (p(ṽ)− p(v)) we have.

〈v , g(v′)〉 − p(v′) = 〈v , g(v)〉 − p(v) + 〈v , g(v′)− g(v)〉 − (p(v′)− p(v))
6 〈v , g(v)〉 − p(v) +R(v)

Which we will write as:

〈v , g(v)〉 − p(v) > 〈v , g(v′)〉 − p(v′)−R(v)

Second, we have by construction:

〈v , g(v′)〉 − (1− ε)p(v′) > 〈v , g(v)〉 − (1− ε)p(v)

By summing these two relations we find :

p(v′) > p(v)− R(v)

ε

Finally we get that:

p′(v) > (1− ε) p(v)− 1− ε
ε

R(v)

Taking the expectation we get:

P ′ > (1− ε)P − 1− ε
ε

R

Proposition 1. LetM be an additive auction with 1 bidders and m items. Let P and R denote
the total expected revenue and regret, P = EV ∈D [p(V )] and R = EV ∈D [r(V )]. There exists a

mechanismM∗ with expected revenue P ∗ =
(√

P −
√
R
)2

and zero regret R∗ = 0.

Proof. From Lemma 1 we know that ∀ε > 0, we can find a zero regret mechanism with revenue
P ′ = (1−ε)P − 1−ε

ε R. By optimizing over ε we find that the best mechanism is the one correspond

to ε =
√

R
P . The resulting optimal revenue is given by:

P ∗ = (1−
√
R

P
)P −

√
R
P√
R
P

R = P − 2
√
PR+R =

(√
P −

√
R
)2
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D IMPLEMENTATION AND SETUP

We implemented ALGnet in PyTorch and all our experiments can be run on Google’s Colab plateform
(with GPU). In Alg. 1, we used batches of valuation profiles of size B ∈ {500} and set T ∈
{160000, 240000}, Tlimit ∈ {40000, 60000}, Tinit ∈ {800, 1600} and τ ∈ {100}.
We used the AdamW optimizer (Loshchilov & Hutter, 2017) to train the Auctioneer’s and the
Misreporter’s networks with learning rate γ ∈ {0.0005, 0.001}. Typical values for the architecture’s
parameters are na = np = nm ∈ [3, 7] and hp = hn = hm ∈ {50, 100, 200}. These networks are
similar in size to the ones used for RegretNet in Duetting et al. (2019).

For each experiment, we compute the total revenue rev := EV∼D[
∑
i∈N p

w
i (V )] and average regret

rgt := 1/nEV∼D[
∑
i∈N r

w
i (V )] using a test set of 10, 000 valuation profiles. We run each experiment

5 times with different random seeds and report the average and standard deviation of these runs.
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