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Abstract

We investigate the use of denoising diffu-
sion probabilistic models (DDPMs) with U-
Net backbones for multilingual character gen-
eration across diverse writing systems. Our
study spans Devanagari, English, Arabic, and
Mayan scripts, exploring both script-specific
and unified multi-script generation approaches.
We systematically evaluate the effects of reso-
lution scaling, training dataset size, and atten-
tion mechanisms on generation quality. Ad-
ditionally, we incorporate conditional genera-
tion with T5 text embeddings to guide a uni-
fied model across scripts. Experiments show
that diffusion models can faithfully learn indi-
vidual script characters when trained in isola-
tion. However, a unified model spanning mul-
tiple scripts faces significant challenges: cross-
script generalization is sensitive to training
data diversity, the number of training epochs,
and visual similarity among scripts. We find
that increasing image resolution yields only
marginal quality gains unless accompanied by
more training data. While T5-based condi-
tioning improves control across scripts, over-
lapping character features across scripts still
cause confusion. Our findings highlight both
the potential of diffusion models for multilin-
gual symbol generation and the practical chal-
lenges of achieving robust unified generation
across diverse scripts.

1 Introduction

Multilingual or logographic character generation
holds immense value in the context of language
preservation, OCR systems, and universal char-
acter synthesis. Scripts like Devanagari, Arabic,
and Mayan differ vastly in structure and style, re-
quiring generative models to generalize across di-
verse visual representations. In this work, we ex-
plore whether Diffusion models that are known for
their success in natural image generation (Ho et al.,
2020; Nichol and Dhariwal, 2021) can learn to gen-

erate high-quality character images across multiple
scripts.

2 Related Work
Several works have explored the use of GANs
and VAEs for character generation (Azadi et al.,
2018; Graves, 2013), especially for handwriting
synthesis and font style transfer. Diffusion mod-
els have recently shown promise in high-fidelity
image synthesis, but their application to symbol
generation across diverse scripts remains underex-
plored. Prior work on diversity metrics and proxy-
comparison (Sajjadi et al., 2018; Heusel et al.,
2017) frameworks in generative models forms the
foundation for evaluating cross-script generation.

3 Problem Statement
We define the following research questions:

• RQ1: Can diffusion models generate high-
quality logographic and alphabetic charac-
ters?

• RQ2: How do data size and image resolution
affect output quality?

• RQ3: Can these models serve as a proxy for
cross-script comparison tasks?

These questions aim to understand the capability
and limits of diffusion models in learning symbolic
structure and style.

4 Methodology
We adopt a U-Net-based architecture using Hug-
gingFace’s Diffusers library (HuggingFace, 2023)
under the DDPM framework. The model operates
on grayscale character images (1 × 128 × 128 or
1×256×256) with symmetric downsampling and
upsampling blocks, skip connections, and six reso-
lution stages (128 → . . . → 4), with feature chan-
nels scaling from 128 to 512. Each block includes



one ResNet layer (layers_per_block = 1), and
timestep embeddings condition the model through-
out. To assess attention’s role, we tested variants
with no attention, bottleneck attention (1/4/8 heads
at 4×4), and higher-resolution attention (16×16),
keeping other hyperparameters fixed. Training was
done from scratch in PyTorch (Paszke et al., 2019)
using Gaussian noise and a configurable scheduler
loop. While attention was hypothesized to help
capture global stroke dependencies, results showed
that a reduced-channel convolutional U-Net suf-
ficed for high-quality generation, particularly un-
der limited data conditions.

5 Dataset Preparation

5.1 Devanagari

Figure 1: Sample grid of Devanagari characters dataset

We constructed synthetic datasets for Devana-
gari, English, Arabic and Mayan scripts to train
and evaluate our diffusion models. All images are
grayscale (128 × 128 unless specified), with cen-
tered black glyphs on white backgrounds and no
additional augmentations unless noted.

We rendered over 80 Devanagari characters—
including vowels, consonants, and ligatures—
across 305 Unicode-compliant fonts (Singh, 2025),
yielding approximately 24,000 images. To study
resolution effects, we created a 256 × 256 high-
resolution subset for selected characters across
many fonts. This version preserved finer stroke de-
tails but required reduced batch sizes or epochs due
to memory constraints. The full 128px dataset has
been released publicly.

5.2 English
For English, we used a large-scale dataset contain-
ing stylized grayscale images rendered from over
85,000 unique fonts collected online. Each charac-
ter (e.g., ’A’, ’b’, ’5’) is organized into separate ZIP
archives, each containing thousands of 128 × 128
images with consistent formatting.

To evaluate performance on a minimal subset,
we trained diffusion models specifically on the low-
ercase letter “g,” sampling 100 images from the
dataset. . We found that 100 images and 100
epochs provided a strong baseline, with additional

training steps tested to explore convergence behav-
ior.

5.3 Mayan
Two datasets were created using Mayan glyphs
(MayaGlyphs.org, 2025). The first contained 100
augmented images of a single glyph (“mam,”
meaning grandfather), with variations including ro-
tation, noise, and positional shifts. The second
included 105 images across five different glyphs,
with each class augmented to 20 samples via trans-
formations such as additive noise, line thickness
variation, and off-center alignment to simulate nat-
uralistic variation.

Figure 2: Five mayan glyphs used for training, with
’mam’ (center ) employed for single-glyph training.

5.4 Arabic

Figure 3: Sample images from our Arabic dataset for
the letters faa ,(ف) qaaf ,(ق) and meem .(م)

We constructed a dataset focusing on three Ara-
bic letters: faa ,ف) U+0641), qaaf ,ق) U+0642),
and meem ,م) U+0645), using a mix of handwrit-
ten and synthetic glyphs. For each letter, we col-
lected 90 handwritten samples from the HMBD-v1
dataset (Balaha et al., 2021) and generated 10 syn-
thetic images using four open-source TTFs: Noto
Naskh Arabic, Amiri, Lateef, and Harmattan.

All images were grayscale, center-cropped, and
resized to 128 × 128 pixels, resulting in 100 im-
ages per character (300 total). The full dataset is
publicly available at (Shrivastava, 2025)

Combined Datasets
To evaluate unified conditional diffusion models
across scripts, we designed two combined datasets.
All images were grayscale 128×128 px. Character
and script labels were encoded via T5 embeddings
(see Section 6).



Dataset C1: Uniform Synthetic Glyphs (Three
Scripts)
This experiment used 1500 synthetic glyphs (100
per character) from five characters in each of three
scripts. English (500): A, B, W, D, G., Devana-
gari (500): क (ka), ल (la), ॐ (om), ग (ga), म (ma),
and Arabic (500): faa ,(ف) qaaf ,(ق) ghayn ,(غ)
laam ,(ل) meem .(م) All glyphs were generated us-
ing a single Noto-family font per script to ensure
typographic uniformity.

Dataset C2: Diverse Source Glyphs (Four
Scripts)
C2 aggregated data from earlier experiments, to-
taling 1000 images across four scripts. English
(300): A, B, G – 100 images each from varied fonts
(see English dataset section). Devanagari (300):
क (ka), ल (la), ग (ga) – 100 images each from
diverse fonts (see Section 5). Arabic (300): faa,
qaaf, meem – 90 handwritten + 10 augmented syn-
thetic images per letter (see Section 5.4). Mayan
(100): The glyph “mam,” with 100 augmented
samples. C2 introduces greater intra-script diver-
sity and mixed real/synthetic content, in contrast
to the uniform synthetic nature of C1.

6 Experimental Setup

We evaluated an unconditional Denoising Diffu-
sion Probabilistic Model (DDPM) (Ho et al., 2020)
with a U-Net backbone on Devanagari character
generation. The model was trained to recover clean
images from noise without using class labels or
prompts—learning each character purely from its
visual structure.

Training followed the standard DDPM proce-
dure with T = 1000 diffusion steps and a linear
noise schedule. Models were trained for up to 300
epochs, with early stopping based on convergence.

Training Hyperparameters
For single-character tasks (e.g., “la”), we used 305
training images and trained for 300 epochs ( 90K
steps). For larger datasets (e.g., multi-character
or 256px images), 100 epochs sufficed due to the
greater data volume. We used a batch size of 32
for 128px images, and 16 for 256px to fit memory
constraints. All models were trained using Adam
(Kingma and Ba, 2014) with learning rate 1×10−4

and default β values (β1 = 0.9, β2 = 0.999),
minimizing MSE loss between predicted and tar-
get noise.

Sampling was performed using the standard
DDPM procedure over 1000 steps.

Mayan We conducted two primary experiments
using the diffusion model.

Experiment 1 We trained the model using 100
images for 1 alphabet for two different durations,
100 epochs, a short training run to establish a base-
line. 800 epochs, a long training run to observe
convergence behavior.

Figure 4: Generated glyph outputs for the Mayan char-
acter ”mam” (meaning ”grandfather”) after 800 epochs
of training.

Experiment 2 We used the 105 augmented im-
ages representing five distinct alphabets to train the
same model for 800 epochs. The aim was to eval-
uate whether data diversity through augmentation
could compensate for the limited size of the dataset.

Figure 5: Generated glyph outputs for 5 Mayan charac-
ters after 800 epochs of training.

Arabic Script Experiments

To evaluate diffusion model performance on Ara-
bic, we conducted two focused experiments using
the letter faa .(ف) Both used the U-Net DDPM
setup and hyperparameters outlined earlier.

AR1: Learning Progression. A model was
trained for 800 epochs on 100 images (90 handwrit-
ten samples from HMBD-v1 (Balaha et al., 2021)
and 10 synthetic glyphs). The synthetic images,
kept unaugmented, served as canonical references.
Outputs were evaluated at epochs 100, 200, 300,
500, and 800.

AR2: Effect of Minor Dataset Increase. To
assess sensitivity to training set size, we trained
a second model for 200 epochs using 110 images
(adding 10 handwritten samples to AR1’s dataset).
Outputs were compared at epochs 100, 150, and
200 using MSE and KL divergence metrics.



Experimental Setup for Combined Conditional
Models
We also trained conditional diffusion models
on combined multi-script datasets using the
‘UNet2DConditionModel‘ from Hugging Face
Diffusers (HuggingFace, 2023; von Platen et al.,
2022). These models were conditioned on script
and character information via text embeddings.

Model Architecture
The model operated on 128 × 128 grayscale
images (‘in_channels=1‘, ‘out_channels=1‘)
with four downsampling and upsampling stages
(‘block_out_channels = (128, 256, 512, 512)‘, ‘lay-
ers_per_block = 2‘). Textual conditioning was en-
abled via cross-attention layers (‘CrossAttnDown-
Block2D‘, ‘CrossAttnUpBlock2D‘), with embed-
dings passed using ‘addition_embed_type=”text”‘
and ‘cross_attention_dim=512‘ (matching the
T5-small encoder).

Text Conditioning with T5
For conditional generation, we encoded charac-
ter labels (e.g., “A”, क, ,ف “MAM”) using the
‘google-t5/t5-small‘ model (Raffel et al., 2020).
These embeddings guided the U-Net via cross-
attention during denoising.

Training: Experiment C1 (Uniform Glyphs).
The model was trained on the C1 dataset (1500
synthetic glyphs across three scripts and five char-
acters per script; see Section 5.4) for 200 epochs.
We used DDPM training with a DDPMScheduler,
AdamW optimizer, and a cosine LR schedule with
warmup.

Training: Experiment C2 (Diverse Glyphs).
Using the same architecture, we trained on the C2
dataset (1000 glyphs from four scripts with real and
synthetic samples; see Section 5.4) for 800 epochs.
Checkpoints were saved every 25 epochs to moni-
tor progression and cross-script learning.

Unless otherwise noted, hyperparameters (batch
size, learning rate, optimizer) matched those in the
unconditional model setup. For inference, we used
the DPM Solver Multistep Scheduler.

7 Results and Analysis

7.1 Devanagari
To assess whether diffusion models can learn to
generate high-fidelity Devanagari characters, we
trained on 305 images of the character “la” (la) ren-
dered in different fonts. The model consistently

Figure 6: Progressive generation of the Devanagari
character ”ल” via diffusion.

produced accurate outputs capturing the core struc-
ture of “la,” including the horizontal header line
and relative proportions of its components. Gen-
erated samples appeared as plausible variations
rather than replicas of any one font, indicating suc-
cessful generalization across styles.

A common observation was the emergence of
averaged glyphs—outputs exhibited intermediate
stylistic features (e.g., line thickness) reflective
of training data diversity. This regression-to-the-
mean behavior is consistent with known properties
of generative models and suggests that diffusion
models interpolate between seen styles rather than
inventing new ones.

Effect of Dataset Size
We evaluated how the number of training examples
per character affects generation quality. With only
10 images of क (ka), the model captured the basic
shape but showed inconsistencies—some outputs
overfit to specific fonts, while others lacked detail.
Increasing the dataset to 50 or 100 images signif-
icantly improved quality, with 100 samples yield-
ing clean and consistent glyphs without excessive
training. In contrast, longer training on very small
datasets led to memorization rather than general-
ization. These results indicate that data diversity is
more important than epoch count for stable learn-
ing, with diminishing returns beyond a few hun-
dred fonts.

Effect of Image Resolution

Figure 7: Denoising progression for the Devanagari
character क at 128×128 resolution shows limited gen-
eralization and blurred outputs due to training on only
5 images.

We compared models trained on 128× 128 and
256 × 256 Devanagari images to assess resolu-
tion impact. While 256px offers finer detail, it in-



creases model complexity and data needs. Without
sufficient data, it yielded marginal or worse results,
highlighting limited benefits in low-data settings.

Figure 8: Improved generation of क at 256×256 resolu-
tion with clearer strokes, enabled by training on a larger
dataset.

Effect of Image Resolution
While 256px models captured finer details, qual-
ity gains over 128px were marginal—especially
with limited data, where outputs were often fuzzier
and less consistent. With 100–300 samples, 256px
models improved visually but remained struc-
turally similar to 128px. Upsampling 128px gener-
ations yielded comparable results, suggesting that
higher resolution offers only incremental benefits
without additional data or model capacity.

English
We used the same model architecture on different
fonts of the letter “g” in the English language to
experiment with dataset size and the number of
epochs. Figure 9 shows a few of the fonts used in
the training dataset:

The goal was to check what is the smallest
dataset size and the smallest number of epochs re-
quired to train a model that can generate the let-
ter “g” with high fidelity. First we attempted to
train the model with a dataset size of 100 images
(128x128 px) for 100 epochs. The results of this
experiment are shown in Figure 10.

The model was not able to learn the shape of let-
ter “g”. Since 100 images did not yield a good re-
sult, reducing the dataset size or number of epochs
would not have improved the results further. In sub-
sequent experiments, the dataset size was kept the
same at 100 images, and epochs were increased to

Figure 9: Samples from the ”g” dataset used in training
the diffusion model. Total 100 images of different fonts
were used.

Figure 10: Results of the diffusion model trained with
100 images for 100 epochs.

Figure 11: Results of the diffusion model trained with
100 images for 200 epochs.

200. The results of this experiments is shown in
Figures 11.

Training for 200 epochs showed notable im-
provement over 100, enabling the model to cap-
ture the basic structure of the English character
“g,” though edge roughness persisted. Extending
training to 300 and 600 epochs (Figures 12 and 13)
further improved output quality, with 600 epochs
yielding high-fidelity, well-defined glyphs. These
results demonstrate that, even with a fixed dataset
size, longer training enhances generation quality.
The English dataset’s font diversity also aided
generalization, unlike the more limited Devana-
gari dataset, which may require additional data
or epochs to achieve similar fidelity—highlighting
the role of dataset diversity in learning efficiency
and output quality.

Mayan
In Experiment 1, training for 800 epochs on 100
original glyphs yielded clear outputs resembling
authentic symbols. In Experiment 2, despite high
number of epochs for training, outputs remained
noisy. This suggests that model needs more runs
and data diversity (5 characters) increased the cost
of training.

Arabic
Experiments with Arabic script, primarily on faa
,(ف) revealed distinct learning dynamics and high-
lighted the script’s sensitivity to training duration

Figure 12: Results of the diffusion model trained with
100 images for 300 epochs.



Figure 13: Results of the diffusion model trained with
100 images for 600 epochs

and dataset composition.
Qualitative Learning Progression (Experi-

ment AR1). Generation of faa (ف) from the
100-image dataset (90 HMBD-v1 handwritten, 10
canonical synthetic) showed slow but steady re-
finement over 800 epochs (Figure 17). Initially,
at 100 epochs, outputs were predominantly noise
with no discernible character structure. The main
circular body and tail began forming correctly at
300 epochs. Continued training to 500 epochs im-
proved stroke coherence. However, consistent gen-
eration of a well-formed faa ,(ف) including its vi-
tal dot, was only achieved after approximately 800
epochs. This extended training underscores the
learning challenge for this character, particularly
the late emergence of the nuqta, suggesting that
fine, semantically critical details require extensive
training or more targeted data.

Effect of Minor Dataset Size Increase (Ex-
periment AR2). Experiment AR2 examined
the impact of increasing the faa (ف) dataset to
110 images (100 HMBD-v1, 10 synthetic), with
the model trained for 200 epochs and compared
against AR1 at early stages (100, 150, and 200
epochs). Qualitatively, the 110-image dataset pro-
duced visibly clearer and better-formed glyphs at
these checkpoints than the 100-image set (Fig-
ure 14). For instance, at 200 epochs, AR2 glyphs
showed improved definition and reduced noise.
This was corroborated by Mean Squared Error
(MSE) loss and Kullback-Leibler (KL) divergence
metrics, which indicated a more favorable training
trajectory for the larger dataset. This aligns with
findings for Devanagari and RQ2, reinforcing that
even minor data increases can enhance learning ef-
ficiency and output quality.

Figure 14: Qualitative comparison for faa (ف) genera-
tion at 200 epochs. Left: Trained on 100 images (Exp.
AR1). Right: Trained on 110 images (Exp. AR2). The
additional 10 handwritten samples improve clarity.

Results and Analysis of Combined Conditional
Experiments
Our combined multi-script experiments, which uti-
lized a conditional diffusion model architecture
with T5 textual embeddings, aimed to assess the
model’s ability to generate characters from multi-
ple scripts simultaneously under different data con-
ditions.

Experiment C1: Uniform Synthetic Glyphs
(Three Scripts). Training the conditional model
on the C1 dataset (1500 uniform synthetic images
across English, Devanagari, and Arabic; 5 charac-
ters each) for 200 epochs provided initial insights
into cross-script learning with minimal intra-script
font variance. By 200 epochs, the model success-
fully generated four of the five specified English
characters (A, B, D, G) with good fidelity, indicat-
ing that English, was learned most readily (repre-
sentative samples in Figure 15, top row). A signifi-
cant observation was the tendency for both Devana-
gari and Arabic characters to converge towards the
Devanagari letter ॐ (om).(Figure 15, middle and
bottom rows).

This outcome suggests that even with textual
conditioning, certain visually dominant or perhaps
more easily representable characters in the shared
latent space (like ॐ (om) in this dataset) can over-
power the generation for other characters from dif-
ferent scripts, especially with relatively short train-
ing (200 epochs) and a dataset composed entirely
of clean, uniform synthetic glyphs.

Figure 15: Sample outputs from Experiment C1 for
prompted English (top), Arabic (middle), and Devana-
gari (bottom) characters.

Experiment C2: Diverse Source Glyphs
(Four Scripts). Experiment C2 involved training
the same conditional architecture for an extended
800 epochs on a more challenging dataset of 1000
images from diverse sources. The details are in
Section 5.4). Key observations (referencing Fig-
ure 16) include:

• English: The three target characters (A, B,
G) were consistently generated with high fi-



delity, reinforcing English as the most readily
learned script by this model configuration.

• Devanagari (Hindi): Results were mixed. The
character क (ka) was generated accurately.
However, other targeted Devanagari charac-
ters, such as ल (la) and ग (ga), often failed
to generalize correctly, frequently collapsing
to forms resembling क (ka) or other simpler
Devanagari structures, even after 800 epochs.

• Arabic: Showed notable improvement com-
pared to the C1 outcomes and its own behav-
ior at earlier epochs in C2. The characters faa
and qaaf were generated with good structural
accuracy and clear distinction from Devana-
gari forms by 800 epochs. However, the char-
acter meem (م) still exhibited a tendency to
be misshapen or to converge towards forms
with features reminiscent of the Devanagari
क (ka).

• Mayan: The single ‘mam‘ glyph demon-
strated promising, albeit partial, generation.
Outputs often captured key structural compo-
nents or resembled ”half a face” of the target
glyph. This indicates the model was learn-
ing some complex features but struggled with
complete reconstruction, likely due to the ex-
treme low-resource nature (100 examples of
one intricate glyph) and high visual complex-
ity, even within an 800-epoch combined train-
ing run.

The C2 results suggest that while the conditional
model can handle significant data diversity, chal-
lenges such as script-feature overlap (e.g., between
certain Arabic and Devanagari characters), insuffi-
cient or less distinct representation for some char-
acters within a script (e.g., some Devanagari char-
acters beyond क), and extreme data scarcity for
complex logographies (Mayan) remain significant
hurdles. Textual conditioning clearly aids in direct-
ing generation, but the model’s learned visual fea-
ture space can still exhibit confusions, especially
when characters from different scripts share under-
lying visual primitives.

8 Discussion
Our findings from both individual script training
and the combined multi-script conditional diffu-
sion modeling help us answer our research ques-
tions RQ1, RQ2 and RQ3. We observe that diffu-
sion models can generate high quality characters.

Figure 16: Sample outputs from Experiment C2 (di-
verse source glyphs, 800 epochs). Top row: English
(A, B, G). Second row: Arabic (faa, qaaf, meem).
Third row: Devanagari (ka, la, ga). Bottom right:
Mayan (‘mam‘). Note the varied success, with good
English, improved Arabic faa/qaaf, but challenges for
some Devanagari characters and Arabic meem, and par-
tial Mayan generation.

Figure 17: Character generation across scripts (Devana-
gari, Arabic, Mayan, English) at increasing training
stages (100–800 epochs/samples). Outputs improve in
clarity and accuracy over time, with simpler scripts con-
verging faster and complex ones like Mayan requiring
more training for structural fidelity.

Furthermore we also see observe the influence of
data characteristics and training paradigms (RQ2),
and demonstrate their potential as tools for com-
parative analysis of script learnability (RQ3). This
research also highlights key challenges in achiev-
ing robust, universal multilingual generation, par-
ticularly when employing unified architectures. A
visual summary of comparative generation quality
is presented in Figure 17.

RQ1: Feasibility of High-Quality Symbol
Generation. The U-Net based diffusion model
architecture, when trained on individual scripts,
generally demonstrated its capability to learn and
generate high-quality representations of both al-
phabetic (English; elements of Devanagari, Ara-
bic) and more complex logographic characters
(Mayan ‘mam‘ glyph; Devanagari conjuncts; com-
plete Arabic letter forms). High-fidelity generation
was observed for characters such as English ’g’, De-
vanagari ला (la), Arabic faa ,(ف) and the Mayan
‘mam‘ glyph, contingent upon sufficient training
epochs (typically 500-800, varying by script) and
appropriate datasets (see results in Section 7.1 and
corresponding individual script result sections).



This confirms that a common diffusion architec-
ture can, in principle, adapt to a wide range of
symbol structures. The conditional models in com-
bined experiments (C1, C2) further supported this
by producing recognizable, script-specific charac-
ters when prompted, although generation quality
and stability were notably dependent on the spe-
cific script and dataset composition within the com-
bined training (Section 7.1).

RQ2: Impact of Data Characteristics and
Training. Dataset properties and training dura-
tion significantly influenced generation quality and
learning efficiency. Data Size: Increased data
volumes correlated with improved results. This
was evident in Devanagari experiments and for
Arabic faa (ف) (Experiment AR2), where a mod-
est addition of 10 handwritten samples enhanced
glyph clarity and training metrics at earlier epochs.
These observations show the benefit of larger
datasets for refining character generation, particu-
larly with variable handwritten or stylistically di-
verse script data. Data Composition (Source and
Diversity): The nature of training data directly im-
pacted character generation quality. For Devana-
gari, diverse synthetic fonts yielded good quality
and an ”average” stylistic output. Similar obser-
vations were also made when running experiment
AR2. Increasing the dataset size by 10 images re-
sulted in higher quality image generation Training
Duration: Longer training consistently improved
quality for individual scripts, up to practical lim-
its. Scripts involving more complex characters or
those with scarcer data, such as Arabic and Mayan,
particularly benefited from extended training. The
observed progressive refinement (e.g., from noise
to detailed structure for Arabic faa) is characteris-
tic of diffusion model learning. Image Resolution:
Devanagari experiments (128px vs. 256px) sug-
gested that higher resolution did not substantially
improve perceived quality without a corresponding
increase in data, implying that for simpler glyphs
or in low-data scenarios, 128px resolution offers
an effective balance of detail and learnability.

RQ3: Diffusion Models for Cross-Script
Comparison and Challenges in Unified Archi-
tectures.

The varied learning trajectories across scripts
highlight diffusion models as effective tools for
comparing script learnability. English was learned
with the greatest ease, followed by Devanagari,
aided by diverse synthetic fonts. Arabic posed chal-
lenges in rendering diacritics and handling hand-

written variability, while Mayan glyphs—due to
their logographic complexity and data scarcity—
were the hardest to model. Conditional experi-
ments (C1 and C2) revealed challenges in building
a universal symbol generator, with T5-based condi-
tioning showing promise but also exposing issues
like script confusion and feature entanglement. Ro-
bust multilingual generation likely requires more
balanced, script-specific datasets and refined con-
ditioning or architectural strategies to promote fea-
ture disentanglement. Future work should explore
targeted data augmentation and conditioning tech-
niques to address these limitations and better un-
derstand symbol-specific learning difficulty.

In summary, diffusion models are effective gen-
erative tools for individual scripts. However, cre-
ating a single, unified multilingual model that
performs optimally across diverse and potentially
overlapping scripts introduces significant data and
modeling challenges. Our study provides a founda-
tion for future research aimed at developing more
robust and versatile multilingual systems.

9 Conclusion

Diffusion models can generate multilingual char-
acters effectively with sufficient data and train-
ing. Attention layers help capture global character
structure. However, resolution scaling and data di-
versity remain limiting factors.

Limitations

This study has several limitations that con-
strain generalizability and cross-script perfor-
mance. First, while Arabic results are presented,
the script lacks the same level of Unicode diver-
sity and font standardization as English. For En-
glish, we had access to a wide variety of fonts and
Unicode-compliant data, whereas for other scripts
such as Devanagari and Arabic, font diversity and
character coverage were limited.

Mayan glyphs present an even greater challenge.
Unlike modern scripts, they lack standardized dig-
ital resources and font libraries. Identifying a reli-
able dataset was difficult, and the resulting small
training set restricted the model’s ability to learn
detailed logographic patterns.

Our experiments also did not include noisy or
handwritten inputs, which limits applicability to
real-world tasks such as OCR or degraded script re-
construction. Including such data would be crucial
for improving robustness and generalization across



writing styles.
Finally, diffusion models are computationally

demanding. Although we utilized a Colab A100 in-
stance with 80 GB RAM, our initial training sched-
ule of 100 epochs proved insufficient. Extend-
ing training to 800 epochs improved performance
but limited the scope for broader experimentation.
Building a more generalizable, multilingual diffu-
sion model would require larger datasets and ac-
cess to more powerful hardware.

Ethical Considerations
This work involves modeling scripts with cultural,
religious, or historical significance, such as De-
vanagari and Mayan -requiring sensitivity to poten-
tial misuse or misrepresentation. The generative
nature of the model raises concerns around forgery
and counterfeit reproduction, especially for official
or sacred texts. However, all data used in this study
is synthetically generated, and no personally iden-
tifiable or private information was involved.
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