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ABSTRACT

Graphs are widely used to model relational data. As graphs are getting larger and
larger in real-world scenarios, there is a trend to store and compute subgraphs
in multiple local systems. For example, recently proposed subgraph federated
learning methods train Graph Neural Networks (GNNs) distributively on local
subgraphs and aggregate GNN parameters with a central server. However, existing
methods have the following limitations: (1) The links between local subgraphs
are missing in subgraph federated learning. This could severely damage the per-
formance of GNNs that follow message-passing paradigms to update node/edge
features. (2) Most existing methods overlook the subgraph heterogeneity issue,
brought by subgraphs being from different parts of the whole graph. To address the
aforementioned challenges, we propose a scalable Federated Graph Transformer
(FedGT) in the paper. Firstly, we design a hybrid attention scheme to reduce the
complexity of the Graph Transformer to linear while ensuring a global receptive
field with theoretical bounds. Specifically, each node attends to the sampled local
neighbors and a set of curated global nodes to learn both local and global infor-
mation and be robust to missing links. The global nodes are dynamically updated
during training with an online clustering algorithm to capture the data distribution
of the corresponding local subgraph. Secondly, FedGT computes clients’ similarity
based on the aligned global nodes with optimal transport. The similarity is then
used to perform weighted averaging for personalized aggregation, which well
addresses the data heterogeneity problem. Finally, extensive experimental results
on 6 datasets and 2 subgraph settings demonstrate the superiority of FedGT.

1 INTRODUCTION

Many real-world relational data can be represented as graphs, such as social networks (Fan et al.,
2019), molecule graphs (Satorras et al., 2021), and commercial trading networks (Xu et al., 2021).
Due to the ever-growing size of graph (Hu et al., 2020a) and stricter privacy constraints such as GDPR
(Voigt & Von dem Bussche, 2017), it becomes more practical to collect and store sensitive graph
data in local systems instead in a central server. For example, banks may have their own relational
databases to track commercial relationships between companies and customers. In such scenarios, it
is desirable to collaboratively train a powerful and generalizable graph mining model for business,
e.g., loan prediction with distributed subgraphs while not sharing private data. To this end, subgraph
federated learning (Zhang et al., 2021; Wu et al., 2021; 2022a; Xie et al., 2022; He et al., 2021)
has been recently explored to resolve the information-silo problem and has shown its advantage in
enhancing the performance and generalizability of local graph mining models such as Graph Neural
Networks (GNNs) (Wu et al., 2020; Zhou et al., 2020).

However, subgraph federated learning has brought unique challenges. Firstly, different from federated
learning in other domains such as CV and NLP, where data samples of images and texts are isolated
and independent, nodes in graphs are connected and correlated. Therefore, there are potentially
missing links/edges between subgraphs that are not captured by any client (illustrated in Figure
1), leading to severe information loss or bias. This becomes even worse when GNNs are used as
graph mining models because most GNNs follow a message-passing scheme that aggregates node
embeddings along edges (Gilmer et al., 2017; Hamilton et al., 2017a). To tackle this problem, existing
works try to recover missing neighborhood information with neighborhood generator (Zhang et al.,
2021; Peng et al., 2022) or share node embeddings of local subgraphs among clients (Chen et al.,
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2021). However, these solutions either struggle to fully recover the missing links or bring risk to data
privacy protection.

Another important challenge in subgraph federated learning is data heterogeneity which is also
illustrated in Figure 1. Some subgraphs may have overlapping nodes or similar label distributions
(e.g., client subgraph 2&3 in Figure 1). On the contrary, some subgraphs may be completely disjoint
and have quite different properties (e.g., client subgraph 1&3 in Figure 1). Such a phenomenon
is quite common in the real world since the data of clients may come from different domains and
comprise different parts of the whole graph. However, most of the existing methods (Zhang et al.,
2021; Wu et al., 2021; He et al., 2021) fail to consider the data heterogeneity issue and may lead
to sub-optimal performance for each client. More examples and discussions of the challenges in
subgraph federated learning are included in the Appendix. B.

To address the aforementioned challenges, we propose a scalable Federated Graph Transformer
(FedGT) in this paper. Firstly, in contrast to GNNs that follow message-passing schemes and focus on
local neighborhoods, Graph Transformer has a global receptive field to learn long-range dependencies
and is therefore more robust to missing links. However, the quadratic computational cost of the
vanilla transformer architecture inhibits its direct application in the subgraph FL setting. In FedGT, a
novel hybrid attention scheme is proposed to bring the computational cost to linear with theoretically
bounded approximation error. Specifically, in the computation of clients, each node attends to the
sampled neighbors in the local subgraph and a set of curated global nodes representing the global
context. The global nodes are dynamically updated during the training of FedGT with an online
clustering algorithm and serve the role of supplementing missing information in the hybrid attention.
Secondly, to tackle the data heterogeneity issue, FedGT leverages a personalized aggregation scheme
that performs weighted averaging based on the estimated similarity matrix between clients. The
similarity is calculated based on global nodes from different clients since they can reflect their
corresponding data distribution of local subgraphs. Since there are no fixed orders in the set of
global nodes, we apply optimal transport to align two sets of global nodes before calculating clients’
similarity. To further protect the privacy of local clients, we also apply local differential privacy
(LDP) techniques. Finally, extensive experiments on 6 datasets and 2 subgraph settings demonstrate
that FedGT can achieve state-of-the-art performance.

2 RELATED WORK

2.1 FEDERATED LEARNING AND FEDERATED GRAPH LEARNING

Federated Learning (FL) (McMahan et al., 2017a; Yang et al., 2019; Arivazhagan et al., 2019; T Dinh
et al., 2020; Fallah et al., 2020; Beaussart et al., 2021) is an emerging collaborative learning paradigm
over decentralized data. Specifically, multiple clients (e.g., edge data centers, banks, companies)
jointly learn a machine learning model (i.e., global model) without sharing their local private data
with the cloud server or other clients. However, different from the commonly studied image and text
data in FL, graph-structure data is correlated and brings unique challenges to FL such as missing
cross-client links. Therefore, exploring federated graph learning approaches that tackle the unique
challenges of graph data is required.

Federated Graph Learning (FGL) (Wang et al., 2022) can be classified into graph and subgraph FL
according to the types of graph tasks. Graph FL methods (Xie et al., 2021b; He et al., 2022) assume
that different clients have completely disjoint graphs (e.g., molecular graphs), which is similar to
common federated learning tasks on CV (e.g., federated image classification). For example, GCFL+
(Xie et al., 2021b) proposes a graph clustered federated learning framework to deal with the data
heterogeneity in graph FL. It dynamically bi-partitions a set of clients based on the gradients of
GNNs. On the contrary, in subgraph FL (Zhang et al., 2021; Wu et al., 2021; 2022a; Peng et al.,
2022; He et al., 2021; Baek et al., 2023), each local client holds a subgraph that belongs to the whole
large graph (e.g., social network). The subgraphs are correlated and there may be missing links
across clients. To tackle the unique challenges in subgraph FL, FedSage+ and FedNI (Zhang et al.,
2021; Peng et al., 2022) utilize neighbor generators to recover missing cross-client links and neighbor
nodes. However, they only focus on immediate neighbors and can hardly recover all the missing
information. On the other hand, FedGraph (He et al., 2021) augments local data by requesting node
information from other clients, which may compromise data privacy constraints. In this paper, we
focus on the subgraph FL for node classification. Unlike existing GNN-based methods, our method
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tackles the problem from a completely different perspective by leveraging powerful and scalable
Graph Transformer architectures.

2.2 GRAPH NEURAL NETWORK AND GRAPH TRANSFORMER

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017a; Han et al., 2021;
Zhang et al., 2019; Bojchevski et al., 2020; Jin et al., 2020) are widely used in a series of graph-
related tasks such as node classification and link prediction. Typically, GNNs follow a message-
passing scheme that iteratively updates the node representations by aggregating representations from
neighboring nodes. However, GNNs are known to have shortcomings such as over-smoothing (Chen
et al., 2020) and over-squashing (Topping et al., 2021), which are further exacerbated in the subgraph
FL setting where cross-client links are missing.

In recent years, Graph Transformer (Ying et al., 2021; Kreuzer et al., 2021) has shown its superiority
in graph representation learning. Most works of Graph Transformer focus on graph classification on
small graphs (Ying et al., 2021; Kreuzer et al., 2021), where each node is regarded as a token and
special positional encodings are designed to encode structural information. For instance, Graphormer
(Ying et al., 2021) uses centrality, edge, and hop-based encodings and achieves state-of-the-art
performance on molecular property prediction tasks. However, the all-pair nodes attention scheme
has a quadratic complexity and is hard to scale to large graphs. Recently, some works attempt to
alleviate the quadratic computational cost and build scalable Graph Transformers based on node
sampling or linear approximation (Dwivedi & Bresson, 2020; Zhang et al., 2020; Zhao et al., 2021;
Wu et al., 2022b; Zhang et al., 2022; Rampášek et al., 2022; Chen et al., 2023). However, most of
these methods sacrifice the advantage of global attention in the Transformer architecture and can
hardly extend to the more challenging subgraph FL setting due to issues such as data heterogeneity.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Node Classification. We first introduce node classification in the centralized setting. Consider an
unweighted graph G = (A,X) where A ∈ Rn×n represents the symmetric adjacency matrix with
n nodes, and X ∈ Rn×p is the attribute matrix of p attributes per node. The element Aij in the
adjacency matrix equals 1 if there exists an edge between node vi and node vj , otherwise Aij = 0.
The label of node vi is yi. In the semi-supervised node classification problem, the classifier (e.g.,
GNN, graph transformer) has the knowledge of G = (A,X) and a subset of node labels. The goal is
to predict the labels of the other unlabeled nodes by learning a classifier.

Subgraph Federated Learning. In subgraph FL, there is a central server S coordinating the training
process, and a set of local clients {C1, C2 . . . CM} taking part in the training. M is the number of
clients. Each local client stores a subgraph Gi = (Ai, Xi) of the global graph G with ni nodes. Two
subgraphs from different clients might have overlaps or are completely disjoint. Note that there might
be edges between two subgraphs in the whole graph but are not stored in any client (missing links).
The central server S only maintains a graph mining model but stores no graph data. Each client Ci

cannot directly query or retrieve data from other clients due to privacy constraints.

Training Goal. The goal of subgraph federated learning is to leverage isolated subgraph data
stored in distributed clients and collaboratively learn node classifiers F without sharing raw graph
data. Considering the potential data heterogeneity between clients, we aim to train personalized
classifiers F(θi) for each client. Formally, the training goal is to find the optimal set of parameters
{θ∗1 , · · · , θ∗M} that minimizes the average of the client losses:

{θ∗1 , · · · , θ∗M} = argmin

M∑
i

Li(F(θi)), Li(F(θi)) =
1

ni

ni∑
j

l(F(vj ; θi), yj), (1)

where Li(F(θi)) is the i-th client loss, l(·, ·) denotes the cross-entropy loss and yj is the node label.
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Figure 1: The framework of FedGT. We use a case with three clients for illustration and omit the
model details of Client 2 for simplicity. The node colors indicate the node labels.

3.2 TRANSFORMER ARCHITECTURE

In Graph Transformer, each node is regarded as a token. Note that we also concatenate the positional
encoding vectors with the input node features to supplement positional information. The Transformer
architecture consists of a series of Transformer layers (Vaswani et al., 2017). Each Transformer layer
has two parts: a multi-head self-attention (MHA) module and a position-wise feed-forward network
(FFN). Let Hb = [h1, · · · ,hb]

⊤ ∈ Rb×d denote the input to the self-attention module where d is
the hidden dimension, hi ∈ Rd×1 is the i-th hidden representation, and b is the length of input. The
MHA module firstly projects the input Hb to query-, key-, value-spaces, denoted as Q,K,V, using
three learnable matrices WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV :

Q = HbWQ, K = HbWK , V = HbWV . (2)

Then, in each head i ∈ {1, 2, . . . , h} (h is the total number of heads), the scaled dot-product attention
mechanism is applied to the corresponding {Qi,Ki,Vi} :

headi = Softmax

(
QiK

T
i√

dK

)
Vi. (3)

Finally, the outputs from different heads are further concatenated and transformed to obtain the final
output of MHA:

MHA(H) = Concat (head1, . . . , headh)WO, (4)
where WO ∈ Rd×d. In this work, we employ dK = dV = d/h for the hidden dimensions of Q,K,

and V. Let L be the total number of transformer layers and H
(l)
b be the set of input representations at

the l-th layer. The transformer layer is formally characterized as:

H′(l−1)
b = MHA(LN(H

(l−1)
b )) +H

(l−1)
b (5)

H
(l)
b = FFN(LN(H′(l−1)

b )) +H′(l−1)
b , (0 ≤ l < L), (6)

where layer normalizations (LN) are applied before the MHA and FFN blocks (Xiong et al., 2020).
The attention in Equation. 3 brings quadratic computational complexity to the vanilla transformer.

4 FEDGT

In this section, we first show the scalable graph transformer with linear computational complexity
to tackle the missing link issue in Sec. 4.1. Then we show the personalized aggregation to address
data heterogeneity in Sec. 4.2. Furthermore, we demonstrate the local differential privacy in Sec. 4.3.
Finally, we theoretically analyze the approximation error of the global attention in Sec.4.4. Figure 1
illustrates the framework of FedGT. Algorithm. 2 and 3 in Appendix. A show the pseudo codes.

4.1 SCALABLE GRAPH TRANSFORMER

The quadratic computational cost of the vanilla transformer inhibits its direct applications on large-
scale graphs. Especially in federated learning scenarios where clients may have limited computational
budgets. Here, we propose a scalable Graph Transformer with a hybrid attention scheme:
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Local Attention. Previous works (Zhao et al., 2021; Zhang et al., 2022) show that local information
is quite important for node classification. Therefore, for each center node, we randomly sample ns

neighboring nodes for attention. There are several choices for the node sampling strategy such as
Personalized Page Rank (PPR) (Zhang et al., 2020), GraphSage (Zhao et al., 2021), and attribute
similarity (Zhang et al., 2022). We use PPR as the default sampling strategy for its superior empirical
performance and explore other strategies in Appendix E.4. Specifically, the Personalized PageRank
(Page et al., 1999) matrix is calculated as: PPR = ν(I − (1− ν)Ai)

−1, where factor ν ∈ [0, 1] (set
to 0.15 in experiments), I is the identity matrix and Ai denotes the column-normalized adjacency
matrix of client i. The PPR matrix can reflect the intimacy between nodes and we use it as the
sampling probability to sample nodes for local attention. It was shown in recent works (Rampášek
et al., 2022; Kreuzer et al., 2021) that positional encodings (PE) are one of the most important factors
in improving the performance of graph Transformers. In FedGT, we adopt the popular Laplacian
positional encoding (Rampášek et al., 2022): the PE vectors are concatenated with the node features
to supplement the positional information.

Algorithm 1 Online Clustering for Global Nodes
Input: node batch Hb, momentum γ, global
nodes µ, count of data per cluster c
Output: Updated global nodes µ

1: P = FindNearest(Hb, µ)
2: µ← c · µ · γ + P⊤Hb · (1− γ)
3: c← c · γ + P⊤1 · (1− γ)
4: µ← µ/c

Global Attention. To preserve the advantage of
the global receptive field, we propose to use a
set of curated global nodes to approximate the
global context of the corresponding subgraph. Sec-
tion. 4.4 theoretically analyzes the approximation
error. Inspired by online deep clustering (Zhan
et al., 2020), we propose to dynamically update
the global nodes during the training of FedGT. Al-
gorithm 1 shows the pseudo-codes of updating
global nodes with a batch of input representations
Hb. γ is the hyperparameter of momentum to stabilize the updating process. FindNearest(·, ·) finds
the nearest global node in Euclidean space and P is the assignment matrix. The global nodes µ can
be regarded as the cluster centroids of node representations and reflect the overall data distribution of
the corresponding local subgraph.

Overall, during the forward pass of the graph transformer in FedGT, each node will only attend to
ns sampled neighboring nodes and ng global nodes. Such a hybrid attention scheme reduces the
complexity from O(n2) to O(n(ng + ns)). Since ng and ns are small constants, we obtain a linear
computational complexity in FedGT.

Comparison with GNN-based methods. Most GNNs follow a message-passing paradigm that is
likely to make false predictions with altered or missing links (Xu et al., 2019a). In contrast, the global
nodes in FedGT capture the global context and get further augmented with personalized aggregation
(Sec. 4.2), which can supplement the missing information. Sec. 5 shows that the hybrid attention in
FedGT is robust to missing links and effectively alleviates the performance degradation.

4.2 PERSONALIZED AGGREGATION

Data heterogeneity is quite common in subgraph FL since local subgraphs are from different parts of
the whole graph. Therefore, it is suboptimal to train a single global model for all the clients. Instead,
in FedGT, we propose a personalized aggregation scheme where model parameters with similar data
distribution are assigned with larger weights in the weighted averaging for each client. However,
one key question is how to measure the similarity between clients under the privacy constraint. One
straightforward method is to calculate the cosine similarity between local model updates. However,
the similarity measured in high-dimensional parameter space is not accurate due to the curse of
dimensionality (Bellman, 1966), and the large parameter size brings computational burdens. Instead,
here we propose to estimate client similarity based on global nodes because global nodes can reflect
the corresponding local data distribution and have limited dimension sizes. As there are no fixed
orders in the global nodes, we calculate the similarity between clients Si,j similar to optimal transport
(Villani, 2009):

Si,j = max
π

1

ng

ng∑
k

cos(µi,k, µj,π(k)), (7)

where π is a bijective mapping: [ng] → [ng] and cos(·, ·) calculates the cosine similarity between
two embedding vectors. Computing Equation. 7 is based on solving a matching problem and needs
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the Hungarian algorithm with O(n3
g) complexity (Jonker & Volgenant, 1987). Note that there are

also some approximation algorithms (Cuturi, 2013; Fan et al., 2017) whose complexities are O(n2
g).

Since in FedGT, ng is fixed as a small constant (e.g., 10), we still use the Hungarian matching to
calculate Equation. 7 which does not introduce much overhead. With the similarities, we perform
weighted averaging of the updated local models as:

θ̂i =

M∑
j

αij · θj , αij =
exp(τ · Si,j)∑
k exp(τ · Si,k)

, (8)

where αij is the normalized similarity between clients i and j, and θ̂i is the personalized weighted
model parameter to send to client i. τ is a hyperparameter for scaling the unnormalized similarity
score. Increasing τ will put more weight on parameters with higher similarities. Besides the
model parameters, the global nodes from each client are also aggregated with personalized weighted
averaging. Specifically, the global nodes are first aligned with optimal transport and then averaged
similar to Equation. 8. In this way, the global nodes not only preserve the information of the local
subgraph but can further incorporate information from other clients with similar data distributions.

4.3 LOCAL DIFFERENTIAL PRIVACY

Since the uploaded model parameters and the representations of global nodes may contain private
information of clients, we further propose to use Local Differential Privacy (LDP) (Yang et al., 2020;
Arachchige et al., 2019) to protect clients’ privacy. Formally, denote the input vector of model
parameters or representations as g, the LDP mechanism asM, and the clipping threshold as δ, we
have:M(g) = clip(g, δ) + n, where n ∼ Laplace(0, λ) is the Laplace noise with 0 mean and noise
strength λ. Previous works (Wu et al., 2021; Qi et al., 2020) show that the upper bound of the privacy
budget ϵ is 2δ

λ , which indicates that a smaller privacy budget ϵ can be achieved by using a smaller
clipping threshold δ or a larger noise strength λ. However, the classification accuracy of trained
models will be negatively affected if the privacy budget is too small. Therefore, we should choose the
hyperparameters of LDP appropriately to balance the model’s performance and privacy protection.

4.4 THEORETICAL ANALYSIS OF GLOBAL ATTENTION

In FedGT, we propose to use global nodes to approximate information in the whole subgraph. Here
we analyze the approximation error theoretically. For simplicity, we omit the local attention here. For
ease of expression, we first define the attention score function and the output of a self-attention layer.
Definition 1. Here, let H ∈ Rni×d be the node representation of the whole subgraph, where ni

denotes the number of nodes in the subgraph. Hb ∈ Rb×d denote a batch of input nodes for
self-attention. We assume the positional encodings are already fused into node representations for
simplicity. WQ,WK , and WV ∈ Rd×d′

are the weight matrices. The attention score function is:

A(H) ≜ Softmax(HbWQ(HWK)⊤). (9)
The output of a self-attention layer is:

O(H) ≜ A(H)HWV . (10)

Theorem 1. Suppose the attention score function (A(·)) is Lipschitz continuous with constant C. Let
µ ∈ Rng×d denote the representations of global nodes. P ∈ Rni×ng is the assignment matrix to
recover H i.e., H ≈ Pµ. Specifically, each row of P is a one-hot vector indicating the global node
that the node is assigned to. We assume nodes are equally distributed to the global nodes. Formally,
we have the following inequality:

∥O(µ)−O(H)∥F ≤ C · σ · (2 + σ)∥H∥2F · ∥WV ∥F , (11)

where σ ≜ ∥H− Pµ∥F /∥H∥F is the approximation error rate and ∥ · ∥F is the Frobenius Norm.

Proof. Our idea is to bound the difference between the original and the approximate output with the
approximation error rate and Lipschitz constant. Appendix C shows our detailed proof.

Theorem. 1 indicates that we can obtain the results of self-attention with a bounded error by only
computing attention with ng global nodes. Moreover, the error could be minimized if the global
nodes well capture the node distributions of the whole subgraph (i.e., smaller σ).
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Table 1: Node classification results of different methods in the non-overlapping setting. We report the means
and standard deviations over three different runs (%). The best results are bolded.

Cora CiteSeer Pubmed All
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.
Local 80.10 ± 0.76 77.43 ± 0.49 72.75 ± 0.89 70.10 ± 0.25 68.77 ± 0.35 64.51 ± 0.28 85.30 ± 0.24 84.88 ± 0.32 82.66 ± 0.65 -

FedAvg 79.63 ± 4.37 72.06 ± 2.18 69.50 ± 3.58 70.24 ± 0.47 68.32 ± 2.59 65.12 ± 2.15 84.87 ± 0.41 78.92 ± 0.39 78.21 ± 0.25 -
FedPer 81.33 ± 1.24 78.76 ± 0.25 78.24 ± 0.36 70.36 ± 0.34 70.31 ± 0.36 66.95 ± 0.46 85.88 ± 0.25 85.62 ± 0.23 84.90 ± 0.37 -
GCFL+ 80.36 ± 0.57 78.37 ± 0.89 77.19 ± 1.30 70.52 ± 0.64 69.71 ± 0.79 66.80 ± 0.95 85.77 ± 0.38 84.94 ± 0.35 84.10 ± 0.43 -
FedSage+ 80.09 ± 1.28 74.07 ± 1.46 72.68 ± 0.95 70.94 ± 0.21 69.03 ± 0.59 65.20 ± 0.73 86.03 ± 0.28 82.89 ± 0.37 79.71 ± 0.35 -
FED-PUB 83.72 ± 0.18 81.45 ± 0.12 81.10 ± 0.64 72.40 ± 0.26 71.83 ± 0.61 66.89 ± 0.14 86.81 ± 0.12 86.09 ± 0.17 84.66 ± 0.54 -
Gophormer 80.20 ± 3.66 74.34 ± 2.46 72.05 ± 3.41 71.22 ± 0.47 69.24 ± 0.60 65.91 ± 1.17 86.23 ± 0.42 82.31 ± 0.46 80.44 ± 0.57 -
GraphGPS 81.46 ± 0.70 75.12 ± 1.85 73.63 ± 4.19 71.19 ± 0.84 69.54 ± 0.70 65.19 ± 1.26 86.39 ± 0.30 83.40 ± 0.57 80.93 ± 0.52 -

FedGT (Ours) 84.41 ± 0.45 81.49 ± 0.41 81.25 ± 0.58 72.95 ± 0.83 71.98 ± 0.70 69.60 ± 0.45 87.21 ± 0.14 86.65 ± 0.15 85.79 ± 0.28 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.
Local 89.18 ± 0.15 88.25 ± 0.21 84.34 ± 0.28 91.85 ± 0.12 89.56 ± 0.09 85.83 ± 0.17 66.87 ± 0.09 66.03 ± 0.14 65.43 ± 0.21 78.55

FedAvg 88.03 ± 1.68 81.82 ± 1.71 78.19 ± 0.86 89.26 ± 1.80 85.31 ± 1.67 82.59 ± 1.18 66.24 ± 0.45 64.09 ± 0.83 62.47 ± 1.19 75.82
FedPer 88.94 ± 0.25 88.26 ± 0.17 87.85 ± 0.29 91.30 ± 0.33 89.97 ± 0.27 88.30 ± 0.18 67.02 ± 0.19 66.02 ± 0.27 65.25 ± 0.31 79.66
GCFL+ 89.07 ± 0.45 88.74 ± 0.49 87.81 ± 0.36 90.78 ± 0.69 90.22 ± 0.85 89.23 ± 1.07 66.97 ± 0.11 66.38 ± 0.14 65.30 ± 0.34 79.63
FedSage+ 89.78 ± 0.71 84.39 ± 1.06 79.75 ± 0.90 90.89 ± 0.44 86.82 ± 0.78 83.10 ± 0.70 66.91 ± 0.12 65.30 ± 0.13 62.63 ± 0.24 77.23
FED-PUB 90.25 ± 0.07 89.73 ± 0.16 88.20 ± 0.18 93.20 ± 0.15 92.46 ± 0.19 90.59 ± 0.35 67.62 ± 0.11 66.35 ± 0.16 63.90 ± 0.27 80.96
Gophormer 88.41 ± 1.21 83.10 ± 0.79 80.33 ± 0.84 91.34 ± 0.28 86.05 ± 0.51 83.62 ± 0.30 67.31 ± 0.24 66.32 ± 0.35 62.15 ± 0.32 77.25
GraphGPS 89.12 ± 0.23 84.53 ± 0.28 81.80 ± 0.17 91.45 ± 0.70 87.43 ± 1.06 83.32 ± 1.42 67.58 ± 0.19 66.15 ± 0.28 62.90 ± 0.33 77.84

FedGT (Ours) 90.78 ± 0.08 90.59 ± 0.09 90.22 ± 0.14 93.48 ± 0.18 93.17 ± 0.24 92.20 ± 0.16 68.15 ± 0.06 67.79 ± 0.11 67.53 ± 0.15 81.96

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Following previous works (Zhang et al., 2021; Baek et al., 2023), we construct the
distributed subgraphs from benchmark datasets by partitioning them into the number of clients,
each of which has a subgraph that is part of the original graph. Specifically, we use six datasets
in experiments: Cora, CiteSeer, Pubmed, and ogbn-arxiv are citation graphs (Sen et al., 2008; Hu
et al., 2020b); Amazon-Computer and Amazon-Photo are product graphs (McAuley et al., 2015;
Shchur et al., 2018). We use the METIS (Karypis & Kumar, 1995) as the default graph partitioning
algorithm, which can specify the number of subgraphs. Specifically, METIS firstly coarsens the
original graph into coarsened graphs with maximal matching methods (Karypis & Kumar, 1998).
It then computes a minimum edge-cut partition on the coarsened graph. Finally, the subgraphs are
obtained by projecting the partitioned coarsened graph back to the original graph. We also consider
Louvain partitioning (Blondel et al., 2008) in Appendix E.

Inspired by real-world applications, we further consider two subgraph settings. In the 1) non-
overlapping setting, there is no overlapped nodes between subgraphs. For example, for a period, the
local resident-location relationship graph is only stored in one city’s database. We directly use the
outputs from the METIS since it provides the non-overlapping partitioned subgraphs. We consider
5/10/20 clients (subgraphs) in this setting. In the 2) overlapping setting, there are overlapped nodes
between subgraphs. For example, the same custormer may have multiple accounts at different banks.
We randomly sample the subgraphs multiple times from the partitioned graph. Specifically, we first
divide the original graph into 2/6/10 disjoint subgraphs with METIS for 10/30/50 clients settings.
After that, for each partitioned subgraph from METIS, we randomly sample half of the nodes and
the associated edges as one subgraph for 5 times. Therefore, the generated subgraphs belonging to
the same METIS partition have overlapped nodes and form cluster structures. Note that due to the
different subgraph sampling manners, the numbers of clients are different in the two settings.

For dataset splitting, 20%/40%/40% nodes from each subgraph are randomly sampled for training,
validation, and testing except for the ogbn-arxiv dataset. This is because the ogbn-arxiv dataset has a
relatively larger number of nodes as shown in Table .3. Therefore, we randomly sample 5% nodes for
training, the remaining half of the nodes for validation, and the other nodes for testing.

Baselines. FedGT is compared with popular FL frameworks (FedAvg (McMahan et al., 2017b),
FedPer (Arivazhagan et al., 2019)), FGL methods (GCFL+ (Xie et al., 2021a), FedSage+ (Zhang
et al., 2021), FED-PUB (Baek et al., 2023)), and graph transformers (Gophormer (Zhao et al.,
2021), GraphGPS (Rampášek et al., 2022)) extended to the subgraph FL setting for comprehensive
evaluations. We also train FedGT locally without sharing model parameters for reference (Local).
More baseline details are in Appendix. D.

Implementation Details. For the classifier model in FedAvg, FedPer, GCFL+, and FedSage+, we
use GraphSage (Hamilton et al., 2017b) with two layers and the mean aggregator following previous
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Table 2: Node classification results of different methods in the overlapping setting. We report the means and
standard deviations over three different runs (%). The best results are bolded.

Cora CiteSeer Pubmed All
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients Avg.
Local 78.14 ± 0.15 73.60 ± 0.18 69.87 ± 0.40 68.94 ± 0.29 66.13 ± 0.49 63.70 ± 0.92 84.90 ± 0.05 83.27 ± 0.24 80.88 ± 0.19 -

FedAvg 78.55 ± 0.49 69.56 ± 0.79 65.19 ± 3.88 68.73 ± 0.46 65.02 ± 0.59 63.85 ± 1.31 84.66 ± 0.11 80.62 ± 0.46 80.18 ± 0.50 -
FedPer 78.84 ± 0.32 73.46 ± 0.43 72.54 ± 0.52 70.42 ± 0.26 65.09 ± 0.48 64.04 ± 0.46 85.76 ± 0.14 83.45 ± 0.15 81.90 ± 0.23 -
GCFL+ 78.60 ± 0.25 73.41 ± 0.36 73.13 ± 0.87 69.80 ± 0.34 65.17 ± 0.32 64.71 ± 0.67 85.08 ± 0.21 83.77 ± 0.17 80.95 ± 0.22 -
FedSage+ 79.01 ± 0.30 72.20 ± 0.76 66.52 ± 1.37 70.09 ± 0.26 66.71 ± 0.18 64.89 ± 0.25 86.07 ± 0.06 83.26 ± 0.08 80.48 ± 0.20 -
FED-PUB 79.65 ± 0.17 75.42 ± 0.48 73.13 ± 0.29 70.43 ± 0.27 67.41 ± 0.36 65.13 ± 0.40 85.60 ± 0.10 85.19 ± 0.15 84.26 ± 0.19 -
Gophormer 78.74 ± 0.42 73.41 ± 0.77 68.30 ± 0.46 69.53 ± 0.21 65.89 ± 0.45 63.15 ± 0.63 85.47 ± 0.06 82.14 ± 0.25 80.85 ± 0.13 -
GraphGPS 79.40 ± 0.46 75.42 ± 0.75 69.07 ± 2.16 69.95 ± 0.30 65.77 ± 0.47 62.54 ± 0.59 85.49 ± 0.17 82.73 ± 0.16 80.50 ± 0.33 -

FedGT (Ours) 81.73 ± 0.26 77.94 ± 0.56 76.20 ± 0.39 72.40 ± 0.45 68.86 ± 0.33 67.71 ± 0.67 86.90 ± 0.14 86.15 ± 0.18 84.95 ± 0.17 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients Avg.
Local 89.17 ± 0.09 85.77 ± 0.13 81.40 ± 0.05 91.65 ± 0.15 86.20 ± 0.16 84.71 ± 0.09 66.95 ± 0.05 64.62 ± 0.07 62.89 ± 0.06 76.82

FedAvg 87.65 ± 0.28 77.56 ± 0.71 76.41 ± 0.95 89.90 ± 0.06 81.42 ± 0.15 76.98 ± 0.68 66.86 ± 0.04 62.15 ± 0.12 60.81 ± 0.27 74.23
FedPer 89.52 ± 0.05 86.79 ± 0.16 85.64 ± 0.19 90.23 ± 0.24 90.05 ± 0.19 88.37 ± 0.18 67.21 ± 0.08 65.00 ± 0.37 62.19 ± 0.46 77.76
GCFL+ 88.65 ± 0.13 86.52 ± 0.12 84.30 ± 0.25 91.42 ± 0.14 90.12 ± 0.15 88.67 ± 0.11 67.10 ± 0.08 64.33 ± 0.17 62.87 ± 0.10 77.70
FedSage+ 88.61 ± 0.18 80.24 ± 0.30 78.92 ± 0.27 90.26 ± 0.45 82.57 ± 0.34 78.52 ± 0.20 67.38 ± 0.13 64.89 ± 0.09 62.28 ± 0.14 75.72
FED-PUB 89.94 ± 0.09 89.10 ± 0.07 88.34 ± 0.15 92.78 ± 0.06 91.14 ± 0.09 90.45 ± 0.17 64.20 ± 0.08 62.97 ± 0.14 61.85 ± 0.15 78.72
Gophormer 89.03 ± 0.10 82.89 ± 0.48 80.45 ± 0.76 91.74 ± 0.08 84.20 ± 0.74 79.16 ± 1.56 67.42 ± 0.06 64.98 ± 0.30 62.55 ± 0.23 76.11
GraphGPS 89.55 ± 0.21 83.97 ± 0.26 81.06 ± 0.47 91.97 ± 0.10 84.11 ± 0.27 81.59 ± 1.85 67.27 ± 0.21 63.96 ± 0.09 62.71 ± 0.15 76.50

FedGT (Ours) 90.76 ± 0.10 89.98 ± 0.15 89.04 ± 0.12 93.19 ± 0.15 92.03 ± 0.14 91.37 ± 0.20 68.78 ± 0.13 67.92 ± 0.11 65.78 ± 0.26 80.63

work (Zhang et al., 2021). The number of nodes sampled in each layer of GraphSage is 5. The first
layer is regarded as the base layer in FedPer. For FED-PUB, we use two layers of GCN (Kipf &
Welling, 2017) following the original paper (Baek et al., 2023). We use Gophormer and GraphGPS
with 2 layers and 4 attention heads as their backbone models and extend them to FL with the FedAvg
framework. More implementation details of FedGT and FL training are shown in Appendix.D.

5.2 EXPERIMENTAL RESULTS.

Main Results. We show the average node classification results in non-overlapping and overlapping
settings in Table 1 and 2. Generally, FedGT consistently overperforms all the baseline methods in both
settings. Specifically, we have the following observations and insights: 1) All model performance
deteriorates when the number of clients increases. This is because the size of local data decreases
and the number of missing links increases (see Appendix E.5) with a larger number of clients.
The data heterogeneity issue also becomes more severe (see Appendix E.6). It is therefore more
challenging to train local models and collaboratively learn generalizable models with other clients. 2)
Generally, the non-overlapping setting is more challenging than overlapping with the same number
of clients. This is mainly because subgraphs in the non-overlapping setting are completely disjoint
and more heterogeneous. Moreover, the non-overlapping setting has less number of nodes due
to the experimental designs. 3) The methods based on graph transformers (i.e., Gophormer and
GraphGPS) are indeed powerful and can achieve competitive node classification results in FGL. For
instance, GraphGPS achieves 81.46 % on the Cora dataset, and with 5 clients (the highest accuracy
besides FedGT). However, they all fail to consider the heterogeneity of clients and can hardly work in
settings with a larger number of clients (e.g., GraphGPS drops to 73.63 % with 20 clients). The same
circumstance occurs to FedSage+ and FedAvg. 4) FedGT leverages the advantage of a hybrid graph
attention framework and personalized aggregation and can achieve consistent improvement over
baselines. For example, the classification accuracy of FedGT only decreases from 90.78% to 90.22%
when the number of clients increases from 5 to 20 on Amazon-Computer (the number of missing
links increases by 54,878 and the data heterogeneity increases to 0.759), indicating its robustness
to missing links and data heterogeneity. Moreover, FedGT also overperforms its variant that only
trains models locally (Local), which shows the ability of FedGT to effectively leverage distributed
subgraph data for joint performance improvement. Finally, Figure 5 and 6 in the Appendix E.1 show
the convergence plots. FedGT can converge more rapidly than the other baselines.

Effectiveness of Similarity Estimation. Here we show whether FedGT can accurately identify
clients with similar data distributions in personalized aggregation. We regard two clients with similar
data distributions if they have similar label distributions, i.e., higher cosine similarity between label
distribution vectors. In Figure 2(a), we show the heatmaps of pairwise label distribution similarity
(cosine similarity) over 20 clients in the overlapping setting. There are clearly four clusters by the
interval of five in the diagonal and the last two form a larger cluster. In Figure 2(b) and (c), we
show the normalized similarity (i.e., αij in Equation. 8) of FedGT and FedGT w/o optimal transport
where we directly calculate cosine similarity without aligning. We observe that Figure 2(b) can well
capture the four clusters and identify the less-obvious larger cluster, verifying the effectiveness of our
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Figure 2: Similarity Heatmaps in the overlapping setting on Cora. (a) measures the cosine similarity
of label distributions. (b) and (c) shows the normalized similarity in FedGT and FedGT w/o optimal
transport (OT); (d) shows the normalized cosine similarity of local model updates at round 30.
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Figure 3: Hyperparameter analysis in the non-overlapping setting (10 clients) on Cora. (a), (b), (c),
and (d) show the influence of the number of layers L, global nodes ng , sampled nodes ns, and scaling
hyperparameter τ . (e) and (f) explore the influence of δ and λ in LDP. We apply LDP only to the
uploaded global nodes (e) or both the global nodes and local model updates (f).

similarity estimation scheme based on the global nodes. In contrast, the cluster structure in Figure
2(c) becomes blurred and noisy, showing the necessity of optimal transport for aligning global nodes.
In Figure 2(d), we further show the normalized cosine similarity of local model updates, which can
not reflect any cluster structures and each client only has high similarity to itself. We conjecture it is
due to the high dimension of the parameter space and the randomness of stochastic gradient descent.
Moreover, using label distribution similarity may lead to additional privacy risks (see Appendix F).

Hyperparameter Analysis. We vary several important hyperparameters in Figure 3 to show their
influence on FedGT. Generally, FedGT is robust to the choice of hyperparameters. In Figure 3(a), we
observe that the performance increases at the beginning with the increase of L due to the improved
model capability. However, the performance slightly decreases when L becomes 4 or 5, possibly
suffering from over-fitting. Figure 3(b) and (c) show the influence of ng and ns. Generally, FedGT
has better performance with larger ng and ns. Figure 3(d) indicates that choosing an appropriate τ
can balance the weight of local model and other clients’ models and help improve the performance.

Trade-off between Privacy and Accuracy. In Figure 3(e) and (f), we explore the influence of δ and
λ in LDP. The influence on privacy budget ϵ is shown in Appendix E.8. Generally, larger λ values and
smaller δ values result in better privacy protection, while also leading to a larger performance decline,
especially when LDP is applied on both local model updates and global nodes. Therefore, we need to
select λ and δ appropriately to achieve a balance between privacy protection and model performance.

Ablation Studies and Complexity Analysis. The ablations studies demonstrating the effectiveness
of proposed modules in FedGT and more complexity analysis are shown in Appendix.E.

6 CONCLUSION

To tackle the challenges in subgraph FL (missing links and data heterogeneity), a novel scalable
Federated Graph Transformer (FedGT) is proposed in this paper. The linear-complexity hybrid
attention scheme enables FedGT to capture both local and global information and be robust to
missing links. Personalized aggregation based on the similarity of global nodes from different clients
is leveraged to deal with data heterogeneity. Local differential privacy is further used to protect data
privacy. Finally, experiments on various subgraph FL settings show the superiority of FedGT. We
discuss the limitations and future works in the Appendix. H.
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A ALGORITHMS OF FEDGT

In Algorithm. 2 and 3, we show the pseudo-codes for the clients and server in FedGT.

Algorithm 2 FedGT Client Algorithm
1: Input: number of local epochs E, learning rate η, local model Fi, loss function Li

2: Function InitClient()
3: Calculate PPR matrix and Positional Encoding.

4: Function RunClient(θ̂i, µ̂i)
5: θi ← θ̂i, µi ← µ̂i.
6: for each local epoch e from 1 to E do
7: θi ← θi − η∇Li(Fi(θi)).
8: Update global node µi with Algorithm. 1.
9: end for

10: ∆θi = θi − θ̂i; apply LDP to ∆θi, µi.
11: return ∆θi, µi

Algorithm 3 FedGT Server Algorithm
1: Input: Total rounds R, number of clients M , scaling factor τ .
2: Function RunServer()
3: initialize θ̂(1) and µ̂(1)

4: for r = 1, 2, · · · , R do
5: for client i ∈ {1, 2, · · · ,M} in parallel do
6: if r = 1 then
7: InitClient().
8: ∆θi, µ

(r+1)
i ← RunClient(θ̂(r), µ̂(r)).

9: θ
(r)
i ← θ̂(r) +∆θi.

10: else
11: Calculate Si,j with Equation. 7.
12: θ̂

(r)
i ←

∑M
j=0

exp(τ ·Si,j)∑M
k=0 exp(τ ·Si,k)

θ
(r)
j .

13: Obtain µ̂
(r)
i with aligning and weighted averaging.

14: ∆θi, µ
(r+1)
i ← RunClient(θ̂(r)i , µ̂

(r)
i ).

15: θ
(r+1)
i ← θ̂

(r+1)
i +∆θi

16: end if
17: end for
18: end for

B MORE DISCUSSIONS OF CHALLENGES IN SUBGRAPH FL

Subgraph federated learning has brought unique challenges. Firstly, different from federated learning
in other domains such as CV and NLP, where data samples of images and texts are isolated and
independent, nodes in graphs are connected and correlated. Therefore, there are potentially missing
links/edges between subgraphs that are not captured by any client, leading to information loss or bias.
This becomes even worse when GNNs are used as graph mining models because most GNNs follow a
message-passing scheme that aggregates node embeddings along edges (Gilmer et al., 2017; Hamilton
et al., 2017a). For example, Figure 4(a) shows an illustration of missing links between subgraphs.
Figure 4(b) shows the constructed rooted tree of the example center node by a 2-layer GNN on
the local subgraph and the global graph. In the message-passing process, the node embeddings are
aggregated bottom-to-up and finally the embedding of the center node is used for its node label
prediction. Due to the missing link issue, the rooted tree on the local graph is biased and GNN is
prone to make a false prediction (dark green instead of blue) in such a situation.
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Figure 4: (a) An illustration of subgraph federated Learning. There are three clients (subgraphs)
and the color of each node indicates its label. Two main challenges are missing links and data
heterogeneity. (b) The rooted tree on the local subgraph is biased due to the missing links, and the
GNN is prone to make a false prediction based on the local subgraph.

C PROOF OF THEOREM 1

Theorem 1. Suppose the attention score function (A(·)) is Lipschitz continuous with constant C. Let
µ ∈ Rng×d denote the representations of global nodes. P ∈ Rni×ng is the assignment matrix to
recover H i.e., H ≈ Pµ. Specifically, each row of P is a one-hot vector indicating the global node
that the node is assigned to. We assume nodes are equally distributed to the global nodes. Formally,
we have the following inequality:

∥O(µ)−O(H)∥F ≤ C · σ · (2 + σ)∥H∥2F · ∥WV ∥F , (12)

where σ ≜ ∥H− Pµ∥F /∥H∥F is the approximation error rate and ∥ · ∥F is the Frobenius Norm of
matrices.

Proof. We first show that O(Pµ) = O(µ) as below:

O(Pµ) = A(Pµ)PµWV (13)

= Softmax(HbWQ(PµWK)⊤)PµWV (14)

= Softmax(HbWQ(µWK)⊤ + log(1ni
P ))µWV (15)

= Softmax(HbWQ(µWK)⊤)µWV (16)
= O(µ) (17)

where the first two equations are based on the definitions of A(·) and O(·). The third equation is
based on the calculation mechanism of Softmax. The fourth equation uses the assumption that each
global node is assigned with the same number of nodes i.e., 1ni

P = ni/ng · 1ng
. Here, 1 denotes a

vector with 1 in each entry and the specific subscript denotes its dimension. Moreover, the above
equation holds because the self-attention layer is, by definition, a permutation-invariant operator.
Then we have:

∥O(µ)−O(H)∥F = ∥O(Pµ)−O(H)∥F (18)
= ∥A(Pµ)PµWV −A(H)HWV ∥F (19)
≤ ∥A(Pµ)Pµ−A(H)H∥F ∥WV ∥F (20)

For the left term of the last line, with triangle inequality, we have:

∥A(Pµ)Pµ−A(H)H∥F (21)
= ∥A(Pµ)Pµ−A(H)Pµ+A(H)Pµ−A(H)H∥F (22)
≤ ∥A(Pµ)Pµ−A(H)Pµ∥F + ∥A(H)Pµ−A(H)H∥F (23)
≤ ∥A(Pµ)−A(H)∥F ∥Pµ∥F + ∥A(H)∥F ∥Pµ−H∥F (24)

Based on the assumption that the attention score function (A(·)) is Lipschitz continuous with constant
C, we have:

∥A(Pµ)−A(H)∥F ≤ C∥Pµ−H∥F ≤ C · σ∥H∥F . (25)
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Moreover, we have:

∥Pµ∥F = ∥Pµ−H+H∥F ≤ ∥Pµ−H∥F + ∥H∥F ≤ (1 + σ)∥H∥F , (26)

which is based on the triangle inequality and the definition of approximation error rate. ∥A(H)∥F
can also be bounded by C∥H∥F with the Lipschitz continuity assumption. Finally, we have:

∥O(µ)−O(H)∥F (27)
≤ (∥A(Pµ)−A(H)∥F ∥Pµ∥F + ∥A(H)∥F ∥Pµ−H∥F )∥WV ∥F (28)

≤ C · σ · (2 + σ)∥H∥2F · ∥WV ∥F . (29)

D MORE DETAILS OF EXPERIMENTAL SETTINGS

D.1 DATASET STATISTICS

Table 3: Dataset statistics
Datasets Nodes Edges Classes Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
PubMed 19,717 44,324 3 500

Amazon-Computer 13,752 491,722 10 767
Amazon-Photo 7,650 238,162 8 745

ogbn-arxiv 169,343 2,315,598 40 128

D.2 BASELINES

• FedAvg (McMahan et al., 2017b) aggregates the uploaded models with respect to the number
of training samples.

• FedPer (Arivazhagan et al., 2019) is a personalized FL baseline, which only shares the base
layers while training personalized classification layers locally for each client.

• GCFL+ (Xie et al., 2021a) is a graph-level clustered FL framework to deal with data
heterogeneity. tasks. Specifically, it iteratively bi-partitions clients into two disjoint client
groups based on their gradient similarities. Then, the model weights are only shared
between grouped clients having similar gradients to deal with data heterogeneity. Note
that the clustering scheme in our FedGT is quite different from GCFL+: In FedGT, we use
online clustering to update the representations of global nodes in each client; the server of
GCFL+ uses bi-partitioning to cluster clients. GCFL+ was originally designed for graph
classification and we adapt it to our setting here.

• FedSage+ (Zhang et al., 2021) trains a missing neighbor generator along with the classifier
to deal with missing links. Each client first receives node representations from other clients
and then calculates the corresponding gradients. The gradients are sent back to other clients
to train the graph generators.

• FED-PUB(Baek et al., 2023) is personalized subgraph-level FL baseline. FED-PUB utilizes
functional embeddings of the local GNNs using random graphs as inputs to compute
similarities between them and use the similarities to perform weighted averaging for server-
side aggregation. Furthermore, it learns a personalized sparse mask at each client to select
and update only the subgraph-relevant subset of the aggregated parameters.

• Gophormer (Zhao et al., 2021) is a scalable graph transformer that samples nodes for
attention with GraphSage(Hamilton et al., 2017b). We extend it to the subgraph FL setting
with FedAvg.

• GraphGPS (Rampášek et al., 2022) is a powerful graph transformer framework. We use
GIN(Xu et al., 2019b), Performer (Choromanski et al., 2021), and Laplacian positional
encoding as the corresponding modules. We extend it to the subgraph FL setting with
FedAvg.
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Figure 5: The average testing accuracy in the non-overlapping setting with 10 clients over 100 rounds.
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Figure 6: The average testing accuracy in the overlapping setting with 30 clients over 100 rounds.

D.3 IMPLEMENTATION DETAILS

For the classifier model in FedAvg, FedPer, GCFL+, and FedSage+, we use GraphSage (Hamilton
et al., 2017b) with two layers and the mean aggregator following previous work (Zhang et al., 2021).
The number of nodes sampled in each layer of GraphSage is 5. The first layer is regarded as the base
layer in FedPer. For FED-PUB, we use two layers of Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) following the original paper (Baek et al., 2023). We use Gophormer and GraphGPS
with 2 layers and 4 attention heads as their backbone models and extend them to FL with the FedAvg
framework. For the other hyperparameter settings of baselines, we use the default settings in their
original papers. The code of FedGT will be made public upon paper acceptance.

In our FedGT, we set the scaling hyperparameter τ as 5. ns and ng are set as 16 and 10 respectively.
The momentum hyperparameter γ in Algorithm. 1 is set as 0.9. The number of layers L is set as 2
and the number of attention heads is set as 4. The dimension of Laplacian position encoding is 8 in
the default setting. Since LDP is not applied to the local model updates in all the other baselines. In
the default setting, we apply LDP with δ = 0.002 and λ = 0.001 only to the uploaded global nodes for
a fair comparison.

In FL training, considering the dataset size, we perform 100 communication rounds with 1 local
training epoch for Cora, Citeseer, and PubMed. We set the number of communication rounds and
local training epochs as 200 and 2 respectively for the other datasets. For all models, the hidden
dimension is 128. We use a batch size of 64, and an Adam (Kingma & Ba, 2014) optimizer with a
learning rate of 0.001 and weight decay 5e − 4 for local training. All clients participate in the FL
training in each round. For evaluation, we calculate the node classification accuracy on subgraphs
at the client side and then average all clients over three different runs with random seeds. The test
accuracy for all the models is reported at their best validation epoch. We implement all experiments
with Python (3.9.13) and Pytorch (1.12.1) on an NVIDIA Tesla V100 GPU.

E MORE EXPERIMENTAL RESULTS

Here we show more experimental results and data statistics.

E.1 TESTING ACCURACY CURVES

Figure 5 and 6 show the convergence plots. FedGT can converge more rapidly than the other baselines.

E.2 MORE PARTITIONING METHODS

Besides the METIS graph partitioning algorithm used in the main text, we also try another popular
graph partitioning method Louvain (Blondel et al., 2008) to evaluate FedGT (Table 4). Following
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(Zhang et al., 2021), we find hierarchical graph clusters on each dataset with the Louvain algorithm
(Blondel et al., 2008) and use the clustering results with 10 clusters of similar sizes to obtain subgraphs
for clients. The training/validation/testing ratio is 60%/20%/20% according to (Zhang et al., 2021). In
Table 4, we observe that our FedGT can also outperform baseline methods in the Louvain partitioning
setting, showing its effectiveness and generalizability.

Table 4: Node classification results with the Louvain graph partitioning algorithms and 10 clients. We
report the means and standard deviations over three different runs (%). The best results are bolded.

Model Cora CiteSeer PubMed

FedAvg 86.15±0.60 71.24±0.35 86.87±0.12
FedPer 86.73±0.22 73.90±0.62 87.51±0.11
GCFL+ 86.45±0.37 73.84±0.24 87.60±0.34

FedSage+ 86.34±0.42 73.95±0.29 87.45±0.18
FED-PUB 86.78±0.20 74.03±0.31 87.40±0.26
Gophormer 86.02±0.28 72.76±0.40 86.92±0.43
GraphGPS 86.10±0.53 72.55±0.68 86.57±0.21

FedGT 87.29±0.25 74.21±0.37 87.95±0.09

E.3 COMPUTATIONAL AND COMMUNICATION COST.

In Table 5, we compare the computational and communication cost of FedGT with baselines. The
computational cost records the average time to finish an FL round and the communication cost
measures the total size of transmitted parameters between clients and the server in a round. Overall,
the computational and communication overhead of FedGT is acceptable, considering its consistent
performance improvement compared with baseline methods. The computational and communication
cost of FedGT can be further optimized with model compression and acceleration methods such as
parameter quantization (Deng et al., 2020), which we left for future exploration.

Table 5: Communication and Computational cost comparisons with baselines. Non-overlapping
setting with 5 clients on the Cora dataset is used here.

Model Communication Cost (%) Computational Cost (%)

FedAvg 100.0 100.0
FedPer 86.5 96.2
GCFL+ 100.0 107.4

FedSage+ 284.8 162.9
FED-PUB 89.6 127.8
Gophormer 152.9 118.7
GraphGPS 231.5 146.1

FedGT 154.1 126.3

E.4 INFLUENCE OF NODE SAMPLING STRATEGIES

Figure 7 compares three node sampling strategies for FedGT in the non-overlapping setting. The
sampling depth in GraphSAGE is set to 2 and we calculate the cosine similarity of node features in
Attribute Similarity. For each sampling strategy, we sample the same number of nodes (ns = 16) for
a fair comparison. Specifically, ns nodes are randomly sampled in GraphSAGE’s sampled node pool
and the calculated Attribute Similarity is regarded as the sampling probability to sample ns nodes.
We can observe that FedGT is robust to the choice of sampling strategies and PPR has an advantage
over the other two strategies. Therefore, we use PPR to sample nodes for local attention in FedGT in
the default setting.

E.5 NUMBER OF MISSING LINKS

In Table 6 and 7, we show the total number of missing links in the non-overlapping and overlapping
settings with different numbers of clients. We can observe that there are more missing links with
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Figure 7: Influence of node sampling strategies.

the increased number of clients, which leads to more severe information loss in subgraph federated
learning. We also note that the overlapping setting has more missing links than the non-overlapping
setting with the same number of clients, e.g., 10 clients. This is mainly due to the node sampling
procedure in the overlapping setting. Some links in the partitioned graph are not sampled and included
in any client.

Table 6: Total number of missing links with different numbers of clients (non-overlapping).
Dataset 5 clients 10 clients 20 clients

Cora 403 615 853
CiteSeer 105 304 424
PubMed 3,388 5,969 8,254

Amazon-Computer 34,578 65,098 89,456
Amazon-Photo 28,928 22,434 33,572

ogbn-arxiv 130,428 246,669 290,249

Table 7: Total number of missing links with respect to the number of clients (overlapping).
Dataset 10 clients 30 clients 50 clients

Cora 1,391 1,567 1,733
CiteSeer 922 1,043 1,160
PubMed 11,890 13,630 15,060

Amazon-Computer 66,562 95,530 107,740
Amazon-Photo 11,197 37,207 45,219

ogbn-arxiv 291,656 392,895 457,954

E.6 DATA HETEROGENEITY

Table 8 and 9 shows the data heterogeneity with different numbers of clients in non-overlapping and
overlapping settings. To measure the data heterogeneity, we calculate the average cosine distances of
label distributions between all pairs of subgraphs. We can observe that a larger number of clients
leads to more severe data heterogeneity and the non-overlapping setting is more heterogeneous than
the overlapping setting.

E.7 TIME COST OF PREPROCESSING

Table 10 shows the average time of preprocessing including calculating the PPR matrix and positional
encoding for each client on different datasets. The time cost is acceptable considering the PPR matrix
and positional encoding only need to be computed once before training.

E.8 PRIVACY BUDGET OF LDP
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Table 8: Data heterogeneity measured by the average cosine distance of the label distributions
between all pairs of subgraphs in the non-overlapping setting.

Dataset 5 clients 10 clients 20 clients

Cora 0.574 0.638 0.689
CiteSeer 0.527 0.566 0.576
PubMed 0.345 0.362 0.400

Amazon-Computer 0.544 0.616 0.654
Amazon-Photo 0.664 0.718 0.759

ogbn-arxiv 0.593 0.683 0.724

Table 9: Data heterogeneity measured by the average cosine distance of the label distributions
between all pairs of subgraphs in the overlapping setting.

Dataset 10 clients 30 clients 50 clients

Cora 0.291 0.549 0.643
CiteSeer 0.338 0.537 0.566
PubMed 0.238 0.370 0.382

Amazon-Computer 0.368 0.570 0.618
Amazon-Photo 0.308 0.689 0.721

ogbn-arxiv 0.427 0.654 0.687
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Figure 8: Privacy budget ϵ of the LDP.

In local differential privacy, denote the input vec-
tor of model parameters or representations as g, the
LDP mechanism as M, and the clipping threshold
as δ, we have: M(g) = clip(g, δ) + n, where n ∼
Laplace(0, λ) is the Laplace noise with 0 mean and
noise strength λ. Figure 8 shows the privacy budget
ϵ of the LDP module, which is calculated by ϵ = 2δ

λ
following previous works (Wu et al., 2021; Qi et al.,
2020). We can observe that larger λ and smaller δ lead
to stricter privacy protection (smaller ϵ).

E.9 ABLATION STUDIES

To analyze the contribution of each module, we conduct ablation studies by removing the global
attention module and personalized aggregation module respectively in FedGT. As shown in Figure 9,
we observe that the performance of FedGT obviously overperforms its two variants, demonstrating
the effectiveness of the designed modules. Moreover, the benefits brought by each module may vary
across different datasets. In particular, personalized aggregation is more important on smaller datasets
such as Cora and CiteSeer. This may be explained by the fact that clients lack local training data and
can only boost performance by identifying relevant clients for joint training. On the contrary, FedGT
benefits more from global attention on larger datasets such as ogbn-arxiv. This may be because global
attention helps capture the long-range dependencies on these large graphs.

E.10 T-SNE VISUALIZATION OF GLOBAL NODES.

In Figure 9, we select two clients in the non-overlapping setting and visualize the node embeddings
as well as the global nodes. We observe that the node embeddings form clusters and the global nodes
can occupy the centers of clusters in each client. Therefore, the global nodes can effectively capture
the data distribution of the corresponding local subgraph.

E.11 UNBALANCED PARTITION SETTINGS

Here, we further explore scenarios in which clients have a varying number of nodes, with some having
significantly more and others noticeably fewer. We create such a setting based on the non-overlapping
setting with 10 clients. For each client, we randomly subsample 10% to 100% of the original nodes.
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Table 10: The average time (seconds) of preprocessing including calculating the PPR matrix and
positional encoding for each client in the non-overlapping setting.

Dataset 5 clients 10 clients 20 clients

Cora 0.24 0.07 0.03
CiteSeer 0.17 0.08 0.02
PubMed 5.36 2.17 0.76

Amazon-Computer 3.94 1.43 0.16
Amazon-Photo 6.31 1.52 0.39

ogbn-arxiv 96.98 53.14 29.65
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Figure 9: (a) t-SNE visualization of the node embeddings (dots) and global node (stars) on the Cora
dataset and in the non-overlapping setting (10 clients). Different colors indicate different two clients.
(b) compares FedGT with its two variants in the non-overlapping setting with 10 clients.

The number of nodes for each client in the default setting (uniform) and the unbalanced setting
are shown in Figure. 10. We show the corresponding node classification results in Table. 11. We
compare FedGT with the runner-up baseline FED-PUB and observe that our FedGT is robust to the
distribution shift and can achieve better results than competitive baselines.

Table 11: Node classification results with the default/unbalanced settings and 10 clients. We report
the means and standard deviations over three different runs (%). The best results of each setting are
bolded.

Model Cora CiteSeer PubMed Computer Photo ogbn-arxiv

FED-PUB (default) 81.45±0.12 71.83±0.61 86.09±0.17 89.73±0.16 92.46±0.19 66.35±0.16
FedGT (default) 81.49±0.41 71.98±0.70 86.65±0.15 90.59±0.09 93.17±0.24 67.79±0.11

FED-PUB (unbalanced) 73.51±0.40 64.32±0.81 79.44±0.56 85.69±0.48 84.87±0.42 62.46±0.25
FedGT (unbalanced) 76.46±0.35 66.72±0.77 83.29±0.48 86.47±0.55 86.74±0.36 65.03±0.36

F MORE DISCUSSIONS ON SIMILARITY ESTIMATION

In FedGT, we do not directly use label distribution similarity since uploading label distribution may
lead to an additional risk of privacy breach. For example, a group of banks may collaboratively train
fraud/anomaly account detection models using subgraph federated learning. In such a case, label
distributions can reflect the percentage of fraud/anomaly accounts of the bank and may undermine the
bank’s reputation if the percentage is large. The privacy issue on sharing label distributions becomes
more severe in class imbalance and heterogeneous scenarios. For example, let’s assume that most of
the nodes in the global graph have label 0 and only several minority nodes have label 1. Then, the
server can know which clients have minority nodes by examining the uploaded label distributions,
which directly undermines users’ privacy.

On the contrary, the global nodes are highly condensed vectors, which can hardly be used to
infer private information. Moreover, privacy protection is further guaranteed by applying the local
differential privacy scheme.
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Figure 10: The number of nodes for each data in the default setting (uniform) and the unbalanced
setting.

Table 12: Results of FedGT with different similarity estimation methods for personalized aggregation
(%). The overlapping setting and the Cora dataset are used here.

Dataset 10 clients 30 clients 50 clients

FedAvg 77.82 71.40 68.79
Local update 78.36 74.71 70.58

Label distribution 81.79 77.45 75.67
FedGT w/o optimal transport 79.80 76.19 75.16

FedGT 81.73 77.84 76.20

To further explore the influence of similarity estimation, we compare the experimental results with
different similarity estimation methods in the overlapping setting on Cora in Table 12. These methods
include the similarity of local updates, label distributions, and the global nodes used in FedGT. We
also show the results of FedGT using FedAvg as the aggregation scheme for reference.

In Table 12, we observe that FedGT can achieve better results than Label distribution in scenarios
with a larger number of clients. It is probably due to the reason that FedGT can dynamically adjust
the similarity matrix along with model training, which is more important in cases with less local data.
Specifically, at the beginning of FL training, the weighted averaging in FedGT is similar to FedAvg
due to the random initialization of global nodes, which helps clients firstly collaboratively learn a
general model with distributed data. With the training of FL, the similarity matrix of FedGT gradually
forms clusters, which helps train personalized models for each client. On the contrary, the similarity
matrix of label distribution is fixed and cannot adjust according to the training of FL. Therefore, the
personalized aggregation based on the similarity of aligned global nodes is more suitable for FedGT.

G COMPLEXITY ANALYSIS OF FEDGT

Algorithm. 2 and 3 show the pseudo algorithms of FedGT. As for clients, the PPR matrix and
positional encoding only need to be computed once before training and will not bring much burden
(Appendix E.7). The proposed Graph Transformer has a linear computational cost of O(n(ng + ns)).
In the server, the extra overhead mainly comes from similarity computation O(n3

g), which is discussed
in Section 4.2. Besides transmitting model updates, the transmission of global nodes brings an
extra cost of O(ngd), which is also acceptable since ng and d are small constants. Overall, the
computational and communication overhead of FedGT is acceptable.

H LIMITATIONS AND FUTURE WORKS

There are several potential directions to further improve our work. Firstly, FedGT tackles the missing
links issue implicitly with the powerful graph transformer architecture. We have empirically verified
that FedGT is robust to missing links (e.g., the classification accuracy only drops from 90.78% to
90.22% when the number of clients increases from 5 to 20 and the number of missing links increases
by 54,878 on Amazon-Computer). In the future, we may combine explicit missing link recovery
methods to further address the missing link challenge. Another limitation of FedGT is that only
data heterogeneity between subgraphs/clients is considered. We are aware that there are also data
heterogeneity problems within the subgraph. In the future, we will consider the data heterogeneity
within subgraphs in our model design. Finally, we plan to explore other positional encodings (PE)
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in the future. To summarize, we believe our FedGT has shown promising results in tackling the
challenges in subgraph FL. We will further improve our work to benefit the broad community.
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