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ABSTRACT

State-of-the-art Neural Radiance Fields (NeRFs) still struggle in novel view syn-
thesis for complex scenes, producing inconsistent geometry among multi-view
observations, which is manifested into foggy “floaters” typically found hovering
within the volumetric representation. This paper introduces Clean-NeRF to im-
prove NeRF reconstruction quality by directly addressing the geometry inconsis-
tency problem. Analogous to natural image statistics, we first perform empirical
studies on NeRF ray profiles to derive the natural ray statistics prior, which is
employed in our novel ray rectification transformer capable of limiting the density
only to have positive values in applicable regions, typically around the first inter-
section between the ray and object surface. Moreover, Clean-NeRF automatically
detects and models view-dependent appearances to prevent them from interfering
with density estimation. Codes will be released.

1 INTRODUCTION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) have seminal contribution in the fields
of novel view synthesis (Barron et al., 2021; Müller et al., 2022; Chen et al., 2022; Tancik
et al., 2023), AR/VR (Zhang et al., 2021a; Li et al., 2022; Wang et al., 2022; Attal et al.,
2023), digital human (Zhao et al., 2022; Işık et al., 2023; Kirschstein et al., 2023), and 3D
content generation (Chan et al., 2022; Poole et al., 2023; Lin et al., 2022). To date, unfortu-
nately, NeRF and its many variants encounter challenges when the reconstructed scene lacks view
consistency and has distractors such as objects that are transitory or have specular appearances.

OursNeRF

Figure 1: Foggy vs Clear NeRF. Our Clean-NeRF
avoids foggy “floaters”. Below are density profiles
along a given ray from vanilla NeRF and our approach.

(Although NeRF typically conditions radi-
ance colors on viewing directions, it can
often model view-dependent effects such
as specularity incorrectly due to insuffi-
cient input observations.) Such distractors
in the input observations give rise to ambi-
guity, resulting in a “foggy” density field
as shown in Fig. 1.

To address these issues, some approaches
utilize semantic segmentation models to
mask out distractors (Rematas et al.,
2022; Tancik et al., 2022). Dynamic
NeRFs (Pumarola et al., 2021; Zhang
et al., 2021a; Park et al., 2021; Wu et al.,
2022) can to some extent interpret distrac-
tors as dynamics within the scene. NeRF-
W (Martin-Brualla et al., 2021) explains
photometric and environmental variations
between images by learning a shared ap-
pearance representation. (Sabour et al.,
2023) and (Goli et al., 2023) estimate ro-
bustness or uncertainty and down-weight
photometrically-inconsistent observations during optimization. NeRFbuster (Warburg et al., 2023)
leveraged a local 3D diffusion geometric prior to encouraging plausible geometry.
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In contrast to previous approaches, we propose to rectify NeRF representations from the aspects of
geometry and appearance. On one hand, we introduce a ray rectification transformer that utilizes
an MAE-like strategy to learn priors about ray profiles, capable of eliminating unreasonable density
emergence along each ray. On the other hand, we extend the vanilla NeRF radiance color estimation
module to account for view-inconsistent observations. In this way, we manage to disentangle view-
dependent and view-independent appearances.

Experiments verify that our proposed Clean-NeRF can effectively get rid of floater artifacts. In
summary, our contributions include the following:

• We propose a ray rectification transformer with an MAE-like training strategy to learn ray
profiles and eliminate incorrect densities along rays.

• We disentangle view-independent and view-dependent appearances during NeRF training
to eliminate the interference caused by view-inconsistent observations.

• Extensive experiments and ablations verify the effectiveness of our core designs and results
in improvements over the vanilla NeRF and other state-of-the-art alternatives.

2 RELATED WORKS

Neural Representations. Recent advancements in coordinate-based neural representations, also
known as neural fields, have significantly propelled the neural processing capabilities for 3D data and
multi-view 2D images (Sitzmann et al., 2019; Mescheder et al., 2019; Park et al., 2019; Mildenhall
et al., 2020). The seminal work NeRFs debut in (Mildenhall et al., 2020) has achieved unprecedented
effects in novel view synthesis by modeling the underlying 3D scene as a continuous volumetric field
of color and density using multi-layer perceptrons (MLPs). Subsequent research has broadened the
capabilities of NeRF models in various respects, encompassing the acceleration of training and
inference (Yu et al., 2021; Fridovich-Keil et al., 2022; Chen et al., 2022; Müller et al., 2022; Chen
et al., 2023), the modeling of dynamic scenes (Zhang et al., 2021a; Park et al., 2021; Pumarola
et al., 2021; Tretschk et al., 2021), and the improvement of scene understanding (Zhi et al., 2021;
Kobayashi et al., 2022; Liu et al., 2022; Fan et al., 2023; Kerr et al., 2023). the relaxation of stringent
camera calibration requirements (Lin et al., 2021; Meng et al., 2021; Bian et al., 2023), Despite
tremendous progress, NeRFs demand hundreds of input images and fall short in synthesizing novel
views under conditions of sparse observations, curtailing their prospective applications in real-world
scenarios.

Reflectance Decomposition. To acquire reflectance data, sophisticated devices have traditionally
been necessary to sample the light-view space (Kang et al., 2018; Matusik et al., 2003; Nielsen
et al., 2015). Subsequent research has proposed practical techniques for acquiring spatially varying
BRDFs, such as those presented in (Kang et al., 2018; Matusik et al., 2003; Nielsen et al., 2015;
Nam et al., 2018). More recently, deep learning methods have made it possible to acquire BRDF
information from a single flash image (Li et al., 2018b;a; Deschaintre et al., 2018).

In the context of NeRF, highly reflective objects can pose challenges in the reconstruction and re-
lighting process. Previous works have attempted to address this issue by decomposing appearance
into scene lighting and materials, but these methods assume known lighting (Bi et al., 2020; Srini-
vasan et al., 2021) or no self-occlusion (Boss et al., 2021a;b; Zhang et al., 2021b). Ref-NeRF (Verbin
et al., 2022) uses a representation of reflected radiance and structures this function using a collection
of spatially-varying scene properties to reproduce the appearance of glossy surfaces. Despite these
advances, Ref-NeRF requires accurate normal vectors and outgoing radiance estimation, which is
difficult to obtain for sparse input views. In addition, effectively addressing the view-dependent
appearance problem in the context of large scenes and sparse observations remains a challenge. To
address this issue, we propose a simple yet effective decomposition method to eliminate its interfer-
ence without the need to estimate surface normals or outgoing radiance.

Intrinsic Image Decomposition. Barrow and Tenenbaum introduced intrinsic images as a valu-
able intermediate representation for scenes (Barrow et al., 1978), assuming that an image can be
expressed as the pointwise product of the object’s true colors or reflectance and the shading on that
object. This can be represented as I = R · S,where I , R, and S denote the image, the reflectance,
and the shading, respectively.
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Early optimization-based works addressed the problem of separating an image into its reflectance
and illumination components by assuming that large image gradients correspond to reflectance
changes and small gradients to lighting changes (Land & McCann, 1971; Horn, 1974). Incorpora-
tion of additional priors improves the accuracy and robustness, such as reflectance sparsity (Rother
et al., 2011; Shen & Yeo, 2011), low-rank reflectance (Adrien et al., 2009) and distribution differ-
ence in gradient domain (Bi et al., 2015; Li & Brown, 2014). Deep learning methods (Fan et al.,
2018; Yu & Smith, 2019; Zhu et al., 2022; Li & Snavely, 2018a;b) have emerged to perform intrin-
sic image decomposition, estimating the reflectance and shading on labeled training data. Notably
and differently, in intrinsic image decomposition, where shadows and highlights are separated as
high-frequency components, these components may still be separated as view-independent in our
Clean-NeRF as long as they are consistent across all input views, e.g., a static shadow is consistently
observed across all views. Thus, intrinsic image decomposition is inappropriate (both overkill and
inadequate) to the “vi-vd” decomposition of Clean-NeRF. IntrinsicNeRF (Ye et al., 2023) introduces
intrinsic decomposition to the NeRF-based neural rendering method, which allows for editable novel
view synthesis in room-scale scenes. Compared with our simple and effective appearance decom-
position, IntrinsicNeRF requires dense inputs (900 images for their indoor Replica scene), which
assumes the NeRF reconstruction is accurate.

3 METHOD
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Figure 2: Vanilla NeRF and Clean-NeRF architec-
tures. We propose a “vi-vd” appearance decomposi-
tion based on spherical harmonics (SHs) to account to
view-inconsistent appearances, with a ray rectification
transformer to refine ray profiles.

In this section, we propose Clean-NeRF
to address the floater artifacts caused by
view-inconsistent observations effectively.
In Sec. 3.1, we introduce the overall ar-
chitecture of Clean-NeRF compared to the
vanilla NeRF. Sec. 3.2 describes our ray
rectification transformer with an MAE-
like training strategy to learn ray profiles
and eliminate incorrect densities along
rays. Sec. 3.3 describes our principled
implementation for decomposing an ap-
pearance into view-dependent (“vd”) and
view-independent (“vi”) components.

3.1 OVERALL ARCHITECTURE

Fig. 2 compares vanilla NeRF (Mildenhall
et al., 2020) and our model, both taking
a sampled spatial coordinate point x =
(x, y, z) and direction d = (θ, ϕ) as input
and output the volume density and color.
Vanilla NeRF uses a spatial MLP to esti-
mate volume density σ at position x. Then
the directional MLP takes as input the di-
rection d as well as spatial feature b to
estimate a view-dependent output color c.
In Clean-NeRF architecture, we also use
the spatial MLP and the directional MLP
to output an initial estimation of density σ0 and color c0, similar to the vanilla NeRF. The initial
estimation of color corresponding to ray r(t) = o+ td can be evaluated from σ0 and c0:

Ĉ0 =

K∑
k=1

T̂0(tk)α(σ0(tk)δk)c0(tk), (1)

where T̂0(tk) = exp
(
−
∑k−1

k′=1
σ0(tk)δ(tk)

)
, α (x) = 1− exp(−x), and δp = tk+1 − tk. Without

requiring additional inputs, Clean-NeRF differs from vanilla NeRF in that while making the initial
estimation, we also predict the view-independent color component cvi with the spatial MLP and the
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Figure 3: 1) We use an MAE-like training method to learn the prior about ray profiles. 2) We use
paired coarse-fine ray profiles to fine-tune the network. 3) During NeRF training, we use a ray
rectification transformer to correct the density distribution of the rays.

view-dependent color component cvd with the directional MLP. We supervise these estimations by
performing an SH-based decomposition of the initial color estimation c0, as described in Sec. 3.3.
The directional MLP also estimates a view-dependent factor γ and we obtain a final color estimation
c by:

c = γcvi + (1− γ)cvd. (2)
Note that cvi captures the overall scene color while cvd captures the color variations due to changes
in viewing angle. By blending these two components with the factor γ, we can synthesize a faithful
color of the underlying 3D scene, even from a limited number of input views. To better eliminate
the floating artifacts, we propose a ray correction transformer to correct the initial density estimation
and obtain the final density estimation σ, as described in Sec. 3.2. The final estimation of color
corresponding to ray r(t) = o+ td is then computed as

Ĉ =

K∑
k=1

T̂ (tk)α(σ(tk)δk)c(tk), (3)

where T̂ (tk) = exp
(
−
∑k−1

k′=1
σ(tk)δ(tk)

)
, α (x) = 1 − exp(−x), and δp = tk+1 − tk. We train

the network using photometric loss based on both the initial and the final estimations

Lpho =
∑
r∈R

(∥∥∥Ĉ0(r)−C(r)
∥∥∥2
2
+
∥∥∥Ĉ(r)−C(r)

∥∥∥2
2

)
. (4)

3.2 RAY RECTIFICATION TRANSFORMER

Clean-NeRF is consistent with standard NeRF in that an initial density estimation, denoted as σ0,
is generated for volume rendering with the initial color estimation c0. We propose a geometry
correction strategy for the final rendering that simultaneously refines the density estimation while
better handling unsightly floater artifacts.

Density priors through masked autoencoders. Masked autoencoders (MAE) have shown them-
selves as scalable self-supervised learners. Inspired by their success, we learn a transformer model
FΘ to capture NeRF ray geometry priors, where Θ denotes learnable parameters. Specifically, we
first perform NeRF reconstruction on numerous scenes, each with sufficient input observations. This
process generates a set of ray profiles {σi} for training our model. To train a geometry correction
module FΘ, we first perform MAE pre-training. Specifically, the training loss is:

LMAE =

N∑
i=1

∥FΘ(miσi)− σi∥22 (5)

where m is a random binary mask that hides a portion of the density values, thus requiring the model
to predict them.
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Ray rectification Transformer With self-supervised pretraining, we generate paired coarse and
fine rays to fine-tune this model, enabling it to predict fine rays from coarse rays. Specifically, we
train two versions of NeRF for the same scene: a fine version of NeRF trained on all images, and
a coarse version of NeRF trained on only one-fifth of the images. By rendering from the same
viewpoint, these two opposing NeRFs can generate paired training data samples {σi,coarse, σi,fine}.
We then fine-tune this model using:

Lcorr =

M∑
i=1

∥FΘ(σi,coarse)− σi,fine∥22 (6)

Forward Ray tracing

𝜎

0

(a) (b) (c) (d) (e)

Figure 4: An example traced ray’s density pro-
file. Peaks in region (a) and region (e) appear
as floating artifacts and would interfere with the
rendering process.

3.3 APPEARANCE DECOMPOSITION

To guide our vi-vd decomposition, we utilize
Spherical harmonics (SHs) which are widely
used as a low-dimensional representation for
spherical functions, and have been used to
model Lambertian surfaces (Ramamoorthi &
Hanrahan, 2001; Basri & Jacobs, 2003) as well
as glossy surfaces (Sloan et al., 2002). To use
SH functions to model a given function, we
query the SH functions Y m

ℓ : S2 7→ R at
a viewing angle d and then fit the estimation
c0 by finding the corresponding coefficients.
We use low-degree SH functions to compute
ideal values of view-independent color compo-
nents, and high-degree SH functions for view-
dependent components. In this subsection, we
will perform all of our calculations at an arbi-
trary position x in space, and therefore we will
omit the symbol x from our notation.

We use y(d) ∈ RL to represent the set of SH
function values at the viewing angle d:

y(d) =
[
Y 0
0 (d), Y

−1
1 (d), Y 0

1 (d), Y
1
1 (d), . . . , Y

ℓmax
ℓmax

(d)
]⊤

,

(7)
where L = (ℓmax + 1)2. To ensure clarity, we will use c : S2 7→ R to represent one of the
three channels of c0 at a given position x (also cvi and cvd), noting the derivation should be readily
extended to all three channels. We begin by sampling a set of N viewing angles di, 1 ≤ i ≤ N ⊂ S2.
The colors of all the sample directions are represented using a vector s ∈ RN :

s = [c(d1) c(d2) . . . c(dN−1) c(dN )]
⊤ (8)

The coefficients to be determined are represented by a vector k ∈ RL. To find the optimal coeffi-
cients that fit the view-dependent color estimation, we solve the following optimization problem:

min
k∈RL

∥s−Yk∥22, (9)

where
Y = [y(d1) y(d2) . . . y(dN−1) y(dN )] . (10)

This is a standard linear regression problem, where we seek to find the values of the coefficient
vector k which minimizes the least squares error between the vector s and the linear combination
of the columns of Y, weighted by the coefficients in k. Using the normal equation, the solution is
given by:

k∗ = (Y⊤Y)−1Y⊤s (11)

We can use the solution coefficients k∗ as weights to linearly combine SH functions. Retaining
the low-degree SH functions allows us to capture the view-independent appearance of the scene.
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Conversely, including high-degree SH functions leads to a high-frequency view-dependent residue.
To differentiate between the two, we denote the low-degree and high-degree functions as Llow and
Lhigh, respectively. To compute ideal values for the view-independent component, we can use the
solution coefficients and apply the following equation:

c̃vi =

Llow∑
i=1

1

4πr2

∫∫
S2
k∗i yi(d) sin θdθdϕ, (12)

where we take the mean value around the S2 surface. In our implementation, we approximate it by

c̃vi =

Llow∑
i=1

N∑
i=1

k∗i yi(di), (13)

This value is then used to guide the output of the view-independent color component cvi from the
spatial MLP using a regularizer. Specifically, we use the following equation to compute the vi-
regularizer loss Lvi:

Lvi = (cvi − c̃vi)
2. (14)

We apply the following equation to compute optimal values for the view-dependent component:

c̃vd(d) =

L∑
i=Lhigh

k∗i yi(d). (15)

Incorporating the computed value to guide the output of the view-dependent color residue cvd from
the directional MLP using the vd-regularizer loss:

Lvd =

∥∥∥∥∥∥∥
cvd(d1)

...
cvd(dN)

−

 c̃vd(d1)
...

c̃vd(dN)


∥∥∥∥∥∥∥
2

2

. (16)

As aforementioned we consider a given position x in the space, while in actual implementation we
take the ℓ2-norm among all the positions in a sampled batch for Eqn. 14 and Eqn. 16.

(a) (b) (c)

(d) (e) (f)

Figure 5: Appearance Decomposition. (a, d) For ob-
ject surfaces with strong view-dependent effects, vanilla
NeRF often gets disrupted, resulting in poor reconstruc-
tion quality. We propose decomposing appearance into (b)
view-independent and (c) view-dependent components dur-
ing NeRF training and incorporating geometry-related pri-
ors to improve reconstruction quality. Our approach shows
the ability to (e) render the view-independent component of
the scene and (f) more accurate recovery of the scene.

Refer to Fig. 4 again: peaks in region
(a) and region (e) appear as floating
artifacts and would interfere with the
rendering process, and so they are
discarded. Notably, multiple salient
peaks may exist corresponding to
other surface points along the ray,
such as region (d), e.g., correspond-
ing to the two slices of toast inter-
sected by the pertinent ray in the pre-
vious figure. If the salient peak (d) is
further from the ray origin but lower
than (b), as Fig. 4 shows, the cor-
responding surface point is occluded
by (b), which can be safely detected
by backward pass while occlusion-
correct rendering is unaffected, as
peak (d) is lower. Otherwise, sup-
pose the peak (d) is higher (e.g., the
toast further back is higher), then the
peak in (b) should have been clamped
to reveal the true geometry (d) as the
first salient peak as seen from the ray
origin.
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Ground Truth OursTensoRF Nerfbusters

Figure 6: Qualitative evaluation of Clean-NeRF on Shiny Blender dataset. We render the view-
independent component image, and the final color image combining both view-independent and
view-dependent components to compare with the ground truth.

Method PSNR(↑) SSIM(↑) LPIPS(↓)

NeRF 15.19 0.475 0.592
TensoRF 16.35 0.571 0.533

Nerfbuster 20.94 0.596 0.406
Ours 21.05 0.642 0.313

Table 1: Quantitative comparison. We compare our proposed Clean-NeRF with representative
NeRF-based methods. best second-best

4 RESULTS

In this section, we provide comparisons with previous state-of-the-art NeRF-based methods and
evaluation of our main technical components, both qualitatively and quantitatively. We run our
proposed Clean-NeRF on NeRF 360 (Mildenhall et al., 2020), a challenging real dataset of photo-
realistic outdoor scenes, and compare our approach with other methods in the same field. We use
the given accurate camera poses from the dataset. We train our Clean-NeRF for 500K iterations to
guarantee convergence on a single NVIDIA GeForce RTX 3090 Ti GPU. All the shown cases and
reported metrics are from held-out views. We report three error metrics, including peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM) (Wang et al., 2004), mean absolute
error (MAE), and learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018).

Comparison on Challenging Outdoor Scenes We compare Clean-NeRF with TensoRF (Chen
et al., 2022) and Nerfbuster (Warburg et al., 2023), which are representative NeRF-based meth-
ods and strong baselines for large-scale scenes. As shown in Fig. 6 and Tab 1, our method recovers
intricate details of objects in the outdoor scene.
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View-independent
ComponentGround Truth Color View-independent

ComponentGround Truth Color

Figure 7: Qualitative evaluation of Clean-NeRF on Shiny Blender dataset. We render the view-
independent component image, and the final color image combining both view-independent and
view-dependent components to compare with the ground truth.

Ground Truth w/ appearance decomposition (Ours)w/o appearance decomposition

Figure 8: Qualitative evaluation on appearance decomposition. Without appearance decomposi-
tion, our model fails to recover the glossy objects such as the glass, the floor, and the plant.

Appearance Decomposition on Glossy Objects To verify Clean-NeRF’s ability to decompose ob-
ject appearances into the corresponding view-independent and view-dependent components, we
evaluate Clean-NeRF on and render the view-independent component image and color image with
both view-independent and view-dependent components (Fig. 7). The Shiny Blender dataset con-
tains different glossy objects rendered in Blender under conditions similar to typical NeRF datasets,
to verify our model’s ability to handle challenging material properties by proper decomposition of
observed appearance into the corresponding view-independent and view-dependent components.

Ablation Study on our Architecture Design We qualitatively and quantitatively evaluate the main
components of Clean-NeRF on Hypersim, a Fig. 8 shows that without appearance decomposition,
NeRF struggles to recover the glossy floor and plants.

5 DISCUSSION AND LIMITATIONS

Our method assumes fixed lighting conditions and no semi-transparent objects in a scene. In ad-
dition, we observe that, when we deal with sparse inputs and the specular highlights of a point
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appear in most of the inputs, such highlights may be regarded as view-independent colors, since our
method does not make any assumption about the surface properties and colors. Below, we discuss
some important questions related to our work:

Why are there floaters in sparse but not in dense inputs? In vanilla NeRF, observation errors are
backpropagated according to Eqn. 1, which are backpropagated equally to density and color along
a given ray without any prior. With dense inputs, the strong geometry constraint from other view
points can correct the density errors along a ray, and thus the view dependent observations will be
correctly backpropagated to the color component. In contrast, when the number of inputs is limited,
the network cannot resolve the ambiguity that the view dependent observations are caused by change
of colors, or by the semi-transparent occluders, i.e., floaters. Since errors are backpropagated equally
to both density and color along a ray, generating floaters is more preferable by Eqn. 1.

What are the benefits of vi- and vd- color decomposition? Such decomposition can stabilize the
solution by reducing the ambiguity in handling view-dependent observations as residual errors in
cvd, while keeping the cvi stable across multiple views, thus leading to a reconstruction of higher
quality. Additionally, in downstream tasks such as NeRF object detection (Hu et al., 2023) and
segmentation (Ren et al., 2022), one may have to estimate the color of voxel features that is inde-
pendent of viewpoints. Our cvi can provide such voxel feature extraction for free without additional
computations.

Why is the decomposition in Eqn. 2 correct? Eqn. 2 can be considered as a simplified BRDF model,
e.g., a simplified Phong model with diffuse and specular components but without normal and light.
Although not entirely physically correct, this formulation can handle most view-dependent obser-
vations in the real world without resorting to estimating surface normals and incoming lighting
conditions, thus providing a fast and easy way to optimize. According to our experiments, this
formulation is generally applicable, and the resulting decomposition is reasonably accurate.
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