
Plan-Seq-Learn: Language Model Guided RL for
Solving Long Horizon Robotics Tasks

Anonymous Author(s)
Affiliation
Address
email

Abstract: Large Language Models (LLMs) are highly capable of performing1

planning for long-horizon robotics tasks, yet existing methods require access to2

a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating).3

However, LLM planning does not address how to design or learn those behaviors,4

which remains challenging particularly in long-horizon settings. Furthermore,5

for many tasks of interest, the robot needs to be able to adjust its behavior in a6

fine-grained manner, requiring the agent to be capable of modifying low-level7

control actions. Can we instead use the internet-scale knowledge from LLMs for8

high-level policies, guiding reinforcement learning (RL) policies to efficiently solve9

robotic control tasks online without requiring a pre-determined set of skills? In this10

paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion11

planning to bridge the gap between abstract language and learned low-level control12

for solving long-horizon robotics tasks from scratch. We demonstrate that PSL is13

capable of solving 20+ challenging single and multi-stage robotics tasks on four14

benchmarks at success rates of over 80% from raw visual input, out-performing15

language-based, classical, and end-to-end approaches. Video results and code at16

https://planseqlearn.github.io/.17

1 Introduction18

In recent years, the field of robot learning has witnessed a significant transformation with the19

emergence of Large Language Models (LLMs) as a mechanism for injecting internet-scale knowledge20

into robotics. One paradigm that has been particularly effective is LLM planning over a predefined21

set of skills [1, 2, 3, 4], producing strong results across a wide range of robotics tasks. These works22

assume the availability of a pre-defined skill library that abstracts away the robotic control problem.23

They instead focus on designing methods to select the right sequence skills to solve a given task.24

However, for robotics tasks involving contact-rich robotic manipulation (Fig. 1), such skills are25

often not available, require significant engineering effort to design or train a-priori or are simply not26

expressive enough to address the task. How can we move beyond pre-built skill libraries and enable27

the application of language models to general purpose robotics tasks with as few assumptions as28

possible? Robotic systems need to be capable of online improvement over low-level control policies29

while being able to plan over long horizons.30

End-to-end reinforcement learning (RL) is one paradigm that can produce complex low-level control31

strategies on robots with minimal assumptions [5, 6, 7, 8, 9, 10, 11]. However, RL methods are32

traditionally limited to the short horizon regime due to the significant challenge of exploration in33

RL, especially in high-dimensional continuous action spaces characteristic of robotics tasks. RL34

methods struggle with longer-horizon tasks in which high-level reasoning and low-level control35

must be learned simultaneously; effectively decomposing tasks into sub-sequences and accurately36

achieving them is challenging in general [12, 13].37

Our key insight is that LLMs and RL have complementary strengths and weaknesses. Language38

models can leverage internet scale knowledge to break down long-horizon tasks [1, 14] into achievable39

sub-goals, but lack a mechanism to produce low-level robot control strategies [15], while RL can40

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://planseqlearn.github.io/

LLM Silver Nut
Grasp[] Silver Peg

Place[] Gold Nut
Grasp[] Gold Peg

Place[]

Seq: Pose Estimation + Motion Planning Learn: Low-level control via RL

Plan: LLM Task Planning

1 2 3 4

Oreset O1 O2 O3 O4

[.17,-.1,1]

Figure 1: Long horizon task visualization. We visualize PSL solving the NutAssembly task, in which the goal
is to put both nuts on their respective pegs. After predicting the high-level plan using an LLM, PSL computes a
target robot pose, achieves it using motion planning and then learns interaction via RL (third row).

discover complex control behaviors on robots but struggles to simultaneously perform long-term41

reasoning [16]. However, directly combining the two paradigms, for example, via training a language42

conditioned policy to solve a new task, does not address the exploration problem. The RL agent must43

now simultaneously learn language semantics and low-level control. Ideally, the RL agent should44

be able to follow the guidance of the LLM, enabling it to learn to efficiently solve each predicted45

sub-task online. How can we connect the abstract language space of an LLM with the low-level46

control space of the RL agent in order to address the long-horizon robot control problem?47

In this work, we propose a learning method to solve long-horizon robotics tasks by tracking language48

model plans using motion planning and learned low-level control. Our approach, called Plan-Seq-49

Learn (PSL), is a modular framework in which a high-level language plan given by an LLM (Plan) is50

interpreted and executed using motion planning (Seq), enabling the RL policy (Learn) to rapidly51

learn short-horizon control strategies to solve the overall task. This decomposition enables us to52

effectively leverage the complementary strengths of each module: language models for abstract53

planning, vision-based motion planning for task plan tracking as well as achieving robot states and RL54

policies for learning low-level control. Furthermore, we improve learning speed and training stability55

by sharing the learned RL policy across all stages of the task, using local observations for efficient56

generalization, and introducing a simple, yet scalable curriculum learning strategy for tracking the57

language model plan. To our knowledge, ours is the first work enabling language guided RL agents58

to efficiently learn low-level control strategies for long-horizon robotics tasks.59

Our contributions are: 1) A novel method for long-horizon robot learning that tightly integrates large60

language models for high-level planning, motion planning for skill sequencing and RL for learning61

low-level robot control strategies; 2) Strategies for efficient policy learning from high-level plans,62

which include policy observation space design for locality, shared policy network and reward function63

structures, and curricula for stage-wise policy training; 3) An extensive experimental evaluation64

demonstrating that PSL can solve 20+ long-horizon robotics tasks, outperforming SOTA baselines65

across four benchmark suites at success rates of over 80% purely from visual input. PSL produces66

agents that solve challenging long-horizon tasks such as NutAssembly at over 95% success rate.67

2 Plan-Seq-Learn68

In this section, we describe our method for solving long-horizon robotics tasks, PSL, outlined in Fig. 2.69

Given a text description of the task, our method breaks up the task into meaningful sub-sequences70

(Plan), uses vision and motion planning to translate sub-sequences into initialization regions (Seq)71

from which we can efficiently train local control policies using RL (Learn).72

2.1 Related Work73

LLMs have been applied to RL and robotics in a wide variety of ways, from planning [1, 2, 14, 3, 4,74

17, 18, 19], reward definition [20, 21], generating quadrupedal contact-points [22], producing tasks75

2

πθ

Learning Module

Termination Condition
(e.g. grasp)

Olocal
t

at

Motion Planner

Sequencing Module

Sequence next component of plan

Pose Estimation

Oglobal
depth

Oglobal
rgb

Planning Module LLM

Region 1
Condition 1[] Region n

Condition n
{ Region N

Condition N[]… …
}[]

High-level Plan

[-.11,.13,.83]

Figure 2: Method overview. PSL decomposes tasks into a list of regions and stage termination conditions
using an LLM (top), sequences the plan using motion planning (left) and learns control policies using RL (right).

for policy learning [23, 24] and controlling simulation-based trajectory generators to produce diverse76

tasks [25]. Our work instead focuses on the online learning setting and aims to leverage language77

model driven planning to guide RL agents to solve new robotics tasks in a sample efficient manner.78

BOSS Zhang et al. [26] is closest to our overall method; this concurrent work also leverages LLM79

guidance to learn new skills via RL. Crucially, their method depends on the existence of a skill library80

and learns skills that are combination of high-level actions. Our method instead efficiently learns81

low-level robot control skills without depending on a pre-defined skill library, by taking advantage of82

motion planning to track an LLM plan. We include a more detailed description of the related work83

including connections to classical planning literature as well as integrated planning and learning84

methods in Appendix H.85

2.2 Problem Setup86

We consider Partially Observed Markov Decision Processes (POMDP) of the form87

(S,A, T ,R, p0,O, pO, γ). S is the set of environment states, A is the set of actions, T (s′ | s, a) is88

the transition probability distribution,R(s, a, s′) is the reward function, p0 is the distribution over the89

initial state s0 ∼ p0, O is the set of observations, pO is the distribution over observations conditioned90

on the state O ∼ pO(O|s) and γ is the discount factor. In our case, the observation space is the set of91

all RGB-D (RGB and depth) images. The reward function is defined by the environment. The agent’s92

goal is to maximize the expected sum of rewards over the trajectory, E [
∑

t γ
tR(st, at, st+1)]. In our93

work, we consider POMDPs that describe an embodied robot agent interacting with a scene. We94

assume that a text description of the task, gl, is provided to the agent in natural language.95

2.3 Overview96

To solve long-horizon robotics tasks, we need a module capable of bridging the gap between zero-shot97

language model planning and learned low-level control. Observe that many tasks of interest can98

be decomposed into alternating phases of contact-free motion and contact-rich interaction. One99

first approaches a target region and then performs interaction behavior, prior to moving to the next100

sub-task. Contact-free motion generation is exactly the motion planning problem. For estimating101

the position of the target region, we note that state-of-the-art vision models are capable of accurate102

language-conditioned state estimation [27, 28, 29, 30, 31, 32]. As a result, we propose a Sequencing103

Module which uses off-the-shelf vision models to estimate target robot states from the language plan104

and then achieves these states using a motion planner. From such states, we train interaction policies105

that optimize the task reward using RL. See Alg. 1 and Fig. 2 for an overview of our method.106

2.4 Planning Module: Zero-Shot High-level Planning107

Long-horizon tasks can be broken into a series of stages to execute. Rather than discovering these108

stages using interaction or using a task planner [33] that may require privileged information about the109

3

environment, we use language models to produce natural language plans zero shot without access110

to the environment. Specifically, given a task description gl by a human, we prompt an LLM to111

produce a plan. Designing the plan granularity and scope are crucial; we need plans that can be112

interpreted by the Sequencing Module, a vision-based system that produces and achieves robot poses113

using motion planning. As a result, the LLM predicts a target region (a natural language label of an114

object/receptacle in the scene, e.g. “silver peg”) which can be translated into a target pose to achieve115

at the beginning of each stage of the plan.116

When the RL policy is executing a step of the plan, we propose to add a stage termination condition117

(e.g. grasped, placed, etc.) to know the stage is complete and to move onto the next stage. These118

stage termination conditions are estimated using vision. We describe the stage termination conditions119

in greater detail in Sec. 2.6 and Appendix D. The LLM prompt consists of the task description gl,120

the list of supported stage termination conditions (which we hold constant across all environments)121

and additional prompting strings for output formatting. We format the language plans as follows:122

(“Region 1”, “Termination Condition 1”), ... (“Region N”, “Termination Condition N”), assuming the123

LLM predicts N stages. Below, we include an example prompt and plan for the Nut Assembly task.124

Prompt: Stage termination conditions: (grasp, place). Task description: The silver nut goes on
the silver peg and the gold nut goes on the gold peg. Give me a simple plan to solve the task
using only the stage termination conditions. Make sure the plan follows the formatting specified
below and make sure to take into account object geometry. Formatting of output: a list in which
each element looks like: (<object/region>, <operator>). Don’t output anything else.
Plan: [(“silver nut”,“grasp”), (“silver peg”, “place”), (“gold nut”, “grasp”), (“gold peg”,
“place”)]

While any language model can be used to perform this planning process, we found that of a variety of125

publicly available LLMs (via weights or API), only GPT-4 [34] was capable of producing correct126

plans across all the tasks we consider. We provide additional details in Appendix D and example127

prompts in Appendix G.128

2.5 Sequencing Module: Vision-based Plan Tracking129

Given a high-level language plan, we now wish to step through the plan and enable a learned RL policy130

to solve the task, using off-the-shelf vision to produce target poses for a motion planning system to131

achieve. At stage X of the high-level plan, the Sequencing Module takes in the corresponding step132

high-level plan (“Region Y”, “Termination Condition Z”) as well as the current global observation of133

the scene Oglobal (RGB-D view(s) that cover the whole scene), predicts a target robot pose qtarget134

and then reaches the robot pose using motion planning.135

Vision and Estimation: Using a text label of the target region of interest from the high-level plan136

and observation Oglobal, we need to compute a target robot state qtarget for the motion planner to137

achieve. In principle, we can train an RL policy to solve this task (learn a policy πv to map Oglobal to138

qtarget) given the environment reward function. However, observe that the 3D position of the target139

region is a reasonable estimate of the optimal policy π∗
v for this task: intuitively, we wish to initialize140

the robot nearby to the region of interest so it can efficiently learn interaction. Thus, we can bypass141

learning a policy for this step by leveraging a vision model to estimate the 3D coordinates of the142

target region. We opt to use Segment Anything [27] to perform segmentation, as it is capable of143

recognizing a wide array of objects, and use calibrated depth images to estimate the coordinates of144

the target region. We convert the estimated region pose into a target robot pose qtarget for motion145

planning using inverse kinematics.146

Motion Planning: Given a robot start configuration q0 and a robot goal configuration qtarget147

of a robot, the motion planning module aims to find a trajectory of way-points τ that form a148

collision-free path between q0 and qtarget. For manipulation tasks, for example, q represents the149

joint angles of a robot arm. We can use motion planning to solve this problem directly, such as150

search-based planning [35], sampling-based planning [36] or trajectory optimization [37]. In our151

4

implementation, we use AIT* [38], a sampling-based planner, due to its minimal setup requirements152

(only collision-checking) and favorable performance on planning. For implementation details, please153

see Appendix D.154

Overall, the Sequencing Module functions as the connective tissue between language and control155

by moving the robot to regions of interest in the plan, enabling the RL agent to quickly learn156

short-horizon interaction behaviors to solve the task.157

2.6 Learning Module: Efficiently Learning Local Control158

Once the agent steps through the plan and achieves states near target regions of interest, it needs to159

train an RL policy πθ to learn low-level control for solving the task. We train πθ using DRQ-v2 [39],160

a SOTA visual model-free RL algorithm, to produce low-level control actions (joint control or end-161

effector control) from images. Furthermore, we propose three modifications to the learning pipeline162

in order to further improve learning speed and stability.163

First, we train a single RL policy across all stages, stepping through the language plan via the164

Sequencing Module, to optimize the task reward function. The alternative, training a separate policy165

per stage, would require designing stage specific reward functions per task. Instead, our design166

enables the agent to solve the task using a single reward function by sharing the policy and value167

functions across stages. This simplifies the training setup and allowing the agent to account for future168

decisions as well as inaccuracies in the Sequencing Module. For example, if πθ is initialized at a169

sub-optimal position relative to the target region, πθ can adapt its behavior according to its value170

function, which is trained to model the full task return E [
∑

t γ
tR(st, at, st+1)].171

Second, instead of executing πθ for a fixed number of steps per stage Hl, we predict a stage172

termination condition using the language model and evaluate the condition at every time-step to173

test if a stage is complete, otherwise it times out after Hl steps. This process functions as a form174

of curriculum learning: only once a stage is completed is the agent allowed to progress to the next175

stage of the plan. As we ablate in Sec. 4, stage termination conditions enable the agent to learn176

more performant policies by preventing dithering behavior at each stage. For the tasks we consider,177

stage termination conditions involve checking for grasping or placement. As an example, in the nut178

assembly task shown in Fig. 1, once πθ places the silver nut on the silver peg, the placement condition179

triggers and the Sequencing Module moves the arm to near the gold peg.180

Finally, as opposed to training the policy using the global view of the scene (Oglobal), we train using181

local observations Olocal, which can only observe the scene in a small region around the robot (e.g.182

wrist camera views for robotic manipulation). This design choice affords several unique properties183

that we validate in Appendix C, namely: 1) improved learning efficiency and speed, 2) ease of184

chaining pre-trained policies. Our policies are capable of leveraging local views because of the185

decomposition in PSL: the RL policy simply has to learn interaction behaviors in a small region, it186

has no need for a global view of the scene, in contrast to an end-to-end RL agent that would need to187

see a global view of the scene to know where to go to solve a task. For additional details in regarding188

the structure and training process of the Learning Module, see Appendix D.189

3 Experimental Setup190

3.1 Tasks191

We conduct experiments on single and multi-stage robotics tasks across four simulated environment192

suites (Meta-World, Obstructed Suite, Kitchen and Robosuite) which contain obstructed settings,193

contact-rich setups, and sparse rewards (Fig. F.1). See Appendix F for additional details.194

Meta-World: [40] is an RL benchmark with a rich source of tasks. From Meta-World, we select195

four long-horizon tasks: MW-Disassemble (removing a nut from a peg), MW-BinPick (picking and196

placing a cube), MW-Assembly (picking and placing a nut on peg), MW-Hammer (grasp a hammer and197

hitting a nail).198

199

ObstructedSuite: Yamada et al. [41] contains tasks that evaluate our agent’s ability to200

plan, move and interact with the environment in the presence of obstacles. It consists of three tasks:201

5

OS-Lift (lift a cube in a tall box), OS-Push (push a block surrounded by walls), and OS-Assembly202

(avoiding obstacles to place table leg at target).203

204

Kitchen: [42, 43] tests two aspects of our agent: its ability to handle sparse terminal re-205

wards and its long-horizon manipulation capabilities. The single-stage kitchen tasks include206

K-Slide (push slide cabinet to the right), K-Kettle (place kettle on back stove), K-Burner (turn207

burner knob), K-Light (flick light switch to ”on”), and K-Microwave (open microwave door). The208

multi-stage Kitchen tasks denote the number of stages in the name and include combinations of the209

aforementioned single tasks.210

211

Robosuite: [44] contains a wide array of robotic manipulation tasks ranging from single212

stage (RS-Lift - lift a cube, RS-Door - open a door) to multi-stage (RS-NutRound,RS-NutSquare,213

RS-NutAssembly - pick-place nut(s) onto target peg(s) and RS-Bread, RS-Cereal, RS-Milk,214

RS-Can, RS-CerealMilk, RS-CanBread - pick-place object(s) into appropriate bin(s)). Unlike the215

other environment suites, which simplify aspects of the low-level control, Robosuite emphasizes216

realism and fidelity to real-world control, enabling us to highlight the potential of our method to be217

applied to real systems.218

3.2 Baselines219

We compare against two types of baselines, methods that learn from data and methods that perform220

offline planning. We include additional details in Appendix D.221

Learning Methods. E2E: [39] DRQ-v2 is a SOTA model-free visual RL algorithm also used to train222

our low-level control policy. RAPS: [45] is a hierarchical RL method that modifies the action space223

of the agent with engineered subroutines (primitives). RAPS greatly accelerates learning speed, but224

is limited in expressivity due to its action space, unlike PSL. MoPA-RL: [41] is similar to PSL in its225

integration of motion planning and RL but differs in that it does not leverage a task planner; it uses226

the RL agent to decide when and where to call the motion planner. In initial experiments, we found227

that MoPA-RL failed to learn with visual input; we instead use reported numbers from the paper from228

experiments using privileged state information on the Obstructed Suite of tasks.229

Planning Methods.TAMP: [46] is a classical baseline that uses a privileged view of the world to230

perform joint high-level (task planning) and low-level planning (motion planning with primitives)231

for solving long-horizon robotics tasks. SayCan: a re-implementation of SayCan [1] using publicly232

available LLMs that performs LLM planning with a fixed set of pre-defined skills. Following the233

SayCan paper, we specify a skill library consisting of object picking and placing behaviors using234

pose-estimation, motion-planning and heuristic action primitives. We do not learn the pick skill as235

done in SayCan because our setup does not contain a separate set of train and evaluation environments.236

In this work, we evaluate the single-task RL regime in which the agent is tested with held out poses,237

not held out environments.238

3.3 Experiment details239

We evaluate all methods aside from TAMP and MoPA-RL (which use privileged simulator infor-240

mation) using visual input. SayCan and PSL use Oglobal and Olocal. For E2E and RAPS, we241

provide the learner access to a single global fixed view observation from Oglobal for simplicity and242

speed of execution, as we did not find meaningful performance improvement in these baselines by243

incorporating additional camera views. We measure performance in terms of task success rate with244

respect to the number of trials (episodes). We do so to provide a fair metric for evaluating a variety of245

different low-level control implementations across PSL, RAPS, and E2E. Each method is trained for246

10K episodes total. We train on each task using the default reward function without modification. For247

each method, we run 7 seeds on every task and average across 10 evaluations.248

4 Results249

We begin by evaluating PSL on a variety of single stage tasks across Robosuite, Meta-World, Kitchen250

and ObstructedSuite. Next, we scale our evaluation to the long-horizon regime in which we show that251

6

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Can

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite NutAssembly Round

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

MW-Disassemble

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Bin Picking

E2E RAPS MoPA-RL PSL (Ours)

Figure 3: Sample Efficiency Results. We plot task success rate as a function of the number of trials. PSL
improves on the sample efficiency of the baselines across each task in Robosuite, Kitchen, Meta-World, and
Obstructed Suite. PSL is able to do so because it initializes the RL policy near the region of interest (as predicted
by the Plan and Sequence Modules) and leverages local observations to efficiently learn interaction. Additional
learning curves in Appendix C.

RS-Bread RS-Can RS-Milk RS-Cereal RS-NutRound RS-NutSquare

E2E .52 ± .49 0.32 ± .44 .02 ± .04 0.0 ± 0.0 .06 ± .13 0.02 ± .045
RAPS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
TAMP 0.9 ± .01 1.0 ± 0.0 .85 ± .06 1.0 ± 0.0 0.4 ± 0.3 .35 ± .2
SayCan .93 ± .09 1.0 ± 0.0 0.9 ± .05 .63 ± .09 .56 ± .25 .27 ± .21

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .98 ± .04 .97 ± .02

Table 1: Robosuite Two Stage Results. Performance is measured in terms of success rate on two-stage (2
planner actions) tasks. SayCan is competitive with PSL on pick-place style tasks, but SayCan’s performance
drops considerably (86.5% to 41.5% on average) on contact-rich tasks involving assembling nuts due to
cascading failures. Online learning methods (E2E and RAPS) make little progress on the long-horizon tasks in
Robosuite. On the other hand, PSL is able to solve each task with at least 97% success rate.

PSL can leverage LLM task planning to efficiently solve multi-stage tasks. We include additional252

experiments, ablations and analyses in Appendix C.253

PSL accelerates learning efficiency on a wide array of single-stage benchmark tasks. For254

single-stage manipulation, (in which the LLM predicts only a single step in the plan), the Sequencing255

Module motion plans to the specified region, then hands off control to the RL agent to complete the256

task. In this setting, we solely evaluate the learning methods since the planning problem is trivial257

(only one step). We observe improvements in learning efficiency (with respect to number of trials) as258

well as final performance in comparison to the learning baselines E2E, RAPS and MoPA-RL, across259

11 tasks in Robosuite, Meta-World, Kitchen and ObstructedSuite (Fig. 3, left). For all learning curves,260

please see the Appendix C. PSL especially performs well on sparse reward tasks, such as in Kitchen,261

for which a key challenge is figuring out which object to manipulate and where it is. Additionally, we262

observe qualitatively meaningful behavior using PSL: PSL learns to use the gripper to grasp and turn263

the burner knob, unlike E2E or RAPS which end up using other joints to flick the burner to the right264

position.265

PSL efficiently solves tasks with obstructions by leveraging motion planning. We now consider266

three tasks from the Obstructed Suite in order to highlight PSL’s effectiveness at learning control267

in the presence of obstacles. As we observe in Fig. 3 and Fig. C.2, PSL is able to do so efficiently,268

solving each task within 5K episodes, while E2E fails to make progress. PSL is able to do so because269

the Sequencing Module handles the obstacle avoidance implicitly via motion planning and initializes270

the RL policy in advantageous regions near the target object. In contrast, E2E spends a significant271

amount of time attempting to reach the object in spite of the obstacles, failing to learn the task. While272

MoPA-RL is also able to solve many of the tasks, it requires more trials than PSL even though it273

operates over privileged state input, as the agent must simultaneously learn when and where to motion274

plan as well as how to manipulate the object.275

7

RS-CerealMilk RS-CanBread RS-NutAssembly K-MS-3 K-MS-4 K-MS-5
Stages 4 4 4 3 4 5

E2E 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RAPS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 .89 ± 0.1 0.3 ± .15 0.0 ± 0.0
TAMP .71 ± .05 .72 ± .25 0.2 ± 0.3 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
SayCan .73 ± .05 .63 ± .21 .23 ± .21 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PSL .85 ± .21 0.9 ± 0.2 .96 ± .08 1.0 ± 0.0 .67 ± .22 .67 ± .22

Table 2: Multistage (Long-horizon) results. Performance is measured in terms of mean task success rate
at convergence. PSL is the consistently solves each task, outperforming planning methods by over 70% on
challenging contact-intensive tasks such as NutAssembly.

PSL enables visuomotor policies to learn long-horizon behaviors with up to 5 stages. Two-stage276

results across Robosuite and Meta-World are shown in Table 1 and Table C.3, with learning curves277

in Fig. 3 (right) and Fig. C.3. On the Robosuite tasks, E2E and RAPS fail to make progress: while278

they learn to reach the object, they fail to consistently grasp it, let alone learn to place it in the target279

location. On the Meta-World tasks, the learning baselines perform well on most tasks, achieving280

similar performance to PSL due to shaped rewards, simplified low-level control (no orientation281

changes) and small pose variations. However, PSL is significantly more sample-efficient than E2E282

and RAPS as shown in Fig. C.3. TAMP and SayCan are able to achieve high performance across each283

PickPlace variant of the Robosuite tasks (93.75%, 86.5% averaged across tasks), as the manipulation284

skills do not require significant contact-rich interaction, reducing failure skill failure rates. Cascading285

failures still occur due to the baselines’ open-loop nature of execution, imperfect state estimation286

(SayCan), planner stochasticity (TAMP). Only PSL is able to achieve perfect performance across287

each task, avoiding cascading failures by learning from online interaction.288

On multi-stage tasks (involving 3-5 stages), we find that TAMP and SayCan performance drops289

significantly in comparison to PSL (61%, 51% vs. 90% averaged across tasks). For multiple stages,290

the cascading failure problem becomes all the more problematic, causing all three baselines to fail at291

intermediate stages, while PSL is able to learn to adapt to imperfect Sequencing Module behavior via292

RL. See Table 2 for a detailed breakdown of the results.293

PSL solves contact-rich, long-horizon control tasks such as NutAssembly. In these experi-294

ments, we show that PSL can learn to solve contact-rich tasks (RS-NutRound, RS-NutSquare,295

RS-NutAssembly) that pose significant challenges for classical methods and LLMs with pre-trained296

skills due to the difficulty of designing manipulation behaviors under continuous contact. By learning297

an interaction policy whose purpose is to produce locally correct contact-rich behavior, we find298

that PSL is effective at performing contact-rich manipulation over long horizons (Table 1, Table 2),299

outperforming SayCan by a wide margin (97% vs. 35% averaged across tasks). Our decomposition300

into contact-free motion generation and contact-rich interaction decouples the what (target nut) and301

where (peg) from the how (precision grasp and contact-rich place), allowing the RL agent to simply302

focus on the aspect of the problem that is challenging to estimate a-priori: how to interact with the303

objects in the appropriate manner.304

5 Conclusions305

In this work, we propose PSL, a method that integrates the long-horizon reasoning capabilities of306

language models with the dexterity of learned RL policies via a skill sequencing module. At the heart307

of our method lies the decomposition of robotics tasks into sequential phases of contact-free motion308

generation (using language model planning) and environment interaction. We solve these phases using309

motion planning (informed by visual pose-estimation) and model-free RL respectively, an approach310

which we validate via an extensive experimental evaluation. We outperform state-of-the-art methods311

for end-to-end RL, hierarchical RL, classical planning and LLM planning on over 20 challenging312

vision-based control tasks across four benchmark environment suites. In the future, this work could313

be extended to improving a pre-existing robot skill library over time using RL, enabling an agent to314

perform planning with an ever increasing repertoire of skills that can be refined at a low-level. PSL315

can also be applied to sim2real transfer, since the policies we train in this work use local observations,316

they are more amenable to sim2real transfer [11].317

8

References318

[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,319

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic320

affordances. arXiv preprint arXiv:2204.01691, 2022.321

[2] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and322

A. Garg. Progprompt: Generating situated robot task plans using large language models. In323

2023 IEEE International Conference on Robotics and Automation (ICRA), pages 11523–11530.324

IEEE, 2023.325

[3] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,326

Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language327

models. arXiv preprint arXiv:2207.05608, 2022.328

[4] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and329

T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv330

preprint arXiv:2305.05658, 2023.331

[5] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,332

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint333

arXiv:1910.07113, 2019.334

[6] A. Herzog*, K. Rao*, K. Hausman*, Y. Lu*, P. Wohlhart*, M. Yan, J. Lin, M. G. Arenas, T. Xiao,335

D. Kappler, D. Ho, J. Rettinghouse, Y. Chebotar, K.-H. Lee, K. Gopalakrishnan, R. Julian, A. Li,336

C. K. Fu, B. Wei, S. Ramesh, K. Holden, K. Kleiven, D. Rendleman, S. Kirmani, J. Bingham,337

J. Weisz, Y. Xu, W. Lu, M. Bennice, C. Fong, D. Do, J. Lam, N. Brown, M. Kalakrishnan,338

J. Ibarz, P. Pastor, and S. Levine. Deep rl at scale: Sorting waste in office buildings with a fleet339

of mobile manipulators. In arXiv preprint arXiv:2305.03270, 2023.340

[7] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,341

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand342

manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.343

[8] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-344

ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic345

manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.346

[9] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and347

K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv348

preprint arXiv:2104.08212, 2021.349

[10] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand350

dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.351

[11] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains352

using egocentric vision. In Conference on Robot Learning, pages 403–415. PMLR, 2023.353

[12] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal354

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.355

[13] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in356

neural information processing systems, 10, 1997.357

[14] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:358

Extracting actionable knowledge for embodied agents. In International Conference on Machine359

Learning, pages 9118–9147. PMLR, 2022.360

[15] Y.-J. Wang, B. Zhang, J. Chen, and K. Sreenath. Prompt a robot to walk with large language361

models. arXiv preprint arXiv:2309.09969, 2023.362

9

[16] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.363

Advances in neural information processing systems, 31, 2018.364

[17] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+ p: Empowering365

large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,366

2023.367

[18] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. Sayplan: Ground-368

ing large language models using 3d scene graphs for scalable task planning. arXiv preprint369

arXiv:2307.06135, 2023.370

[19] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language371

instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.372

[20] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. arXiv373

preprint arXiv:2303.00001, 2023.374

[21] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. Gonzalez Arenas, H.-T. Lewis Chiang,375

T. Erez, L. Hasenclever, J. Humplik, B. Ichter, T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess,376

D. Sadigh, J. Tan, Y. Tassa, and F. Xia. Language to rewards for robotic skill synthesis. Arxiv377

preprint arXiv:2306.08647, 2023.378

[22] Y. Tang, W. Yu, J. Tan, H. Zen, A. Faust, and T. Harada. Saytap: Language to quadrupedal379

locomotion. arXiv preprint arXiv:2306.07580, 2023.380

[23] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas.381

Guiding pretraining in reinforcement learning with large language models. arXiv preprint382

arXiv:2302.06692, 2023.383

[24] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, P. Dominey, and P.-Y. Oudeyer.384

Language as a cognitive tool to imagine goals in curiosity driven exploration. Advances in385

Neural Information Processing Systems, 33:3761–3774, 2020.386

[25] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill387

acquisition. In Proceedings of the 2023 Conference on Robot Learning, 2023.388

[26] J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun, and J. J. Lim. Bootstrap389

your own skills: Learning to solve new tasks with large language model guidance. Conference390

on Robot Learning, 2023.391

[27] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.392

Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.393

[28] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes394

using image-level supervision. In Computer Vision–ECCV 2022: 17th European Conference,395

Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IX, pages 350–368. Springer, 2022.396

[29] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding397

dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint398

arXiv:2303.05499, 2023.399

[30] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as a400

versatile representation for robotics. 2023.401

[31] Y. Ye, X. Li, A. Gupta, S. De Mello, S. Birchfield, J. Song, S. Tulsiani, and S. Liu. Affordance402

diffusion: Synthesizing hand-object interactions. In Proceedings of the IEEE/CVF Conference403

on Computer Vision and Pattern Recognition, pages 22479–22489, 2023.404

10

[32] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,405

M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render &406

compare. arXiv preprint arXiv:2212.06870, 2022.407

[33] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to408

problem solving. Artificial intelligence, 2(3-4):189–208, 1971.409

[34] R. OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.410

[35] B. Cohen, S. Chitta, and M. Likhachev. Search-based planning for manipulation with motion411

primitives. In International Conference on Robotics and Automation, 2010.412

[36] J. J. Kuffner Jr. and S. M. LaValle. RRT-Connect: An efficient approach to single-query path413

planning. In IEEE International Conference on Robotics and Automation (ICRA), 2000.414

[37] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding locally optimal,415

collision-free trajectories with sequential convex optimization. In Robotics: science and systems,416

volume 9, pages 1–10. Berlin, Germany, 2013.417

[38] M. P. Strub and J. D. Gammell. Adaptively informed trees (ait): Fast asymptotically optimal418

path planning through adaptive heuristics. In 2020 IEEE International Conference on Robotics419

and Automation (ICRA), pages 3191–3198. IEEE, 2020.420

[39] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved421

data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.422

[40] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A423

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on424

robot learning, pages 1094–1100. PMLR, 2020.425

[41] J. Yamada, Y. Lee, G. Salhotra, K. Pertsch, M. Pflueger, G. Sukhatme, J. Lim, and P. En-426

glert. Motion planner augmented reinforcement learning for robot manipulation in obstructed427

environments. In Conference on Robot Learning, pages 589–603. PMLR, 2021.428

[42] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving429

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,430

2019.431

[43] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven432

reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.433

[44] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany, and Y. Zhu. robo-434

suite: A modular simulation framework and benchmark for robot learning. arXiv preprint435

arXiv:2009.12293, 2020.436

[45] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning437

via parameterized action primitives. Advances in Neural Information Processing Systems, 34:438

21847–21859, 2021.439

[46] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Pddlstream: Integrating symbolic planners440

and blackbox samplers via optimistic adaptive planning. In Proceedings of the International441

Conference on Automated Planning and Scheduling, volume 30, pages 440–448, 2020.442

[47] A. Fishman, A. Murali, C. Eppner, B. Peele, B. Boots, and D. Fox. Motion policy networks.443

arXiv preprint arXiv:2210.12209, 2022.444

[48] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,445

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv446

preprint arXiv:2302.13971, 2023.447

11

[49] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,448

P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv449

preprint arXiv:2307.09288, 2023.450

[50] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,451

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural452

information processing systems, 33:1877–1901, 2020.453

[51] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent454

imagination. arXiv preprint arXiv:1912.01603, 2019.455

[52] M. Dalal, A. Mandlekar, C. Garrett, A. Handa, R. Salakhutdinov, and D. Fox. Imitating task456

and motion planning with visuomotor transformers. 2023.457

[53] A. Mandlekar, C. Garret, D. Xu, and D. Fox. Human-in-the-loop task and motion planning for458

imitation learning. Conference on Robot Learning, 2023.459

[54] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012460

IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,461

2012.462

[55] O. Khatib. A unified approach for motion and force control of robot manipulators: The463

operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.464

[56] R. P. Paul. Robot manipulators: mathematics, programming, and control: the computer control465

of robot manipulators. Richard Paul, 1981.466

[57] D. E. Whitney. The mathematics of coordinated control of prosthetic arms and manipulators.467

1972.468

[58] M. Vukobratović and V. Potkonjak. Dynamics of manipulation robots: theory and application.469

Springer, 1982.470

[59] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes, M. Wüthrich, V. Berenz, S. Schaal,471

N. Ratliff, and J. Bohg. Real-time perception meets reactive motion generation. IEEE Robotics472

and Automation Letters, 3(3):1864–1871, 2018.473

[60] R. R. Murphy. Introduction to AI robotics. MIT press, 2019.474

[61] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion strategies475

for robots. The International Journal of Robotics Research, 3(1):3–24, 1984.476

[62] R. H. Taylor, M. T. Mason, and K. Y. Goldberg. Sensor-based manipulation planning as a game477

with nature. In Fourth International Symposium on Robotics Research, pages 421–429, 1987.478

[63] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE Robotics479

& Automation Magazine, 11(4):110–122, 2004.480

[64] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-P´erez.481

Integrated Task and Motion Planning. Annual review of control, robotics, and autonomous482

systems, 4, 2021.483

[65] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger,484

J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust grasp485

planning using a multi-armed bandit model with correlated rewards. In IEEE International486

Conference on Robotics and Automation (ICRA), pages 1957–1964. IEEE, 2016.487

[66] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object488

manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,489

pages 2901–2910, 2019.490

12

[67] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof491

grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and492

Automation (ICRA), pages 13438–13444. IEEE, 2021.493

[68] M. T. Mason. Mechanics of robotic manipulation. MIT press, 2001.494

[69] D. E. Whitney. Mechanical assemblies: their design, manufacture, and role in product develop-495

ment, volume 1. Oxford university press New York, 2004.496

[70] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. The497

International Journal of Robotics Research, 32(9-10):1194–1227, 2013.498

[71] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in499

belief space for partially observable task and motion problems. In 2020 IEEE International500

Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.501

[72] M. A. Lee, C. Florensa, J. Tremblay, N. Ratliff, A. Garg, F. Ramos, and D. Fox. Guided502

uncertainty-aware policy optimization: Combining learning and model-based strategies for503

sample-efficient policy learning. In 2020 IEEE International Conference on Robotics and504

Automation (ICRA), pages 7505–7512. IEEE, 2020.505

[73] S. Cheng and D. Xu. Guided skill learning and abstraction for long-horizon manipulation. arXiv506

preprint arXiv:2210.12631, 2022.507

[74] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Lever-508

aging motion generation in reinforcement learning for mobile manipulation. arXiv preprint509

arXiv:2008.07792, 2020.510

[75] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic511

manipulation. IEEE Robotics and Automation Letters, 7(2):1612–1619, 2022.512

[76] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning513

for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference514

on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.515

[77] I.-C. A. Liu, S. Uppal, G. S. Sukhatme, J. J. Lim, P. Englert, and Y. Lee. Distilling motion516

planner augmented policies into visual control policies for robot manipulation. In Conference517

on Robot Learning, pages 641–650. PMLR, 2022.518

13

Appendix519

A Table of Contents520

• Ethics, Impacts and Limitations Statement (Appendix B): Statement addressing potential521

ethics concerns and impacts as well as limitations of our method.522

• Additional Experiments (Appendix C): Additional ablations and analyses as well as523

learning curves for single-stage tasks and Meta-World.524

• PSL Implementation Details (Appendix D): Full details on how PSL is implemented,525

specifically the Sequencing Module.526

• Baseline Implementation Details (Appendix E): Full details regarding baseline implements527

(E2E, RAPS, MoPA-RL, TAMP, SayCan)528

• Tasks (Appendix F): Visualizations of each task as well as descriptions of each environment529

suite.530

• LLM Prompts and Plans (Appendix G): Prompts that we use for our method as well as531

generated plans by the LLM.532

• Related Work (Appendix H): Complete description of the related work.533

14

B Ethics, Impacts and Limitations534

B.1 Ethical Considerations535

There exist potential ethical concerns from the use of large-scale language models trained on internet-536

scale data. These models have been trained on vast corpi that may contain harmful content and537

implicit or even explicit biases expressed by internet users and may be capable of generating such538

content when queried. However, these issues are not specific to our work, rather they are inherent to539

LLMs trained at scale and other works that use LLMs face a similar ethical concern. Furthermore,540

we note that our research only makes use of LLMs to guide the behavior of a robot at a coarse level -541

specifying where a robot should go and how to leave the area. Our LLM prompting scheme ensures542

that this is all that is outputted from the LLM. Such outputs leave little scope for abuse, the LLM543

is not capable of performing the low-level control itself, which is learned through a task reward544

independently.545

B.2 Broader Impacts546

Our research on guiding RL agents to solve long-horizon tasks using LLMs has potential for both547

positive and negative impacts. PSL draws connections between work on language modeling, motion548

planning and reinforcement learning for low-level control, which could lead to advancements in549

learning for robotics. PSL reduces the engineering burden on the human, instead of manually550

specifying/pre-training a library of behaviors, only a reward function and task description need be551

specified. More broadly, enabling robots to autonomously solve challenging robotics tasks increase552

the likelihood of robots one day being able to complete labor intensive work in dangerous situations.553

However, with increased automation, there are risks of potential job loss. Furthermore, with increased554

robot capabilities, there is a risk of misuse by bad actors, for which appropriate safeguards should be555

designed.556

B.3 Limitations557

There are several limitations of PSL which leave scope for future work. 1) We impose a specific558

structure on the language plans and task solution (go to location X, interact there, so on). While this559

assumption covers a broad set of tasks as well illustrate in our experimental evaluation, tasks that560

involve interacting with multiple objects simultaneously or continuous switching between interaction561

and movement in a fluid manner may not be directly applicable. Future work can explore integrating562

a more expressive plan structure with the Sequencing Module. 2) Use of motion-planning makes563

application to dynamic tasks challenging. To that end, research on motion-planner distillation, such564

as Motion Policy Networks [47] could enable much faster, reactive behavior. 3) Although the RL565

agent is capable of adapting pose estimation errors, in the current formulation, there is not much the566

Learning Module can do if the high-level plan itself is entirely incorrect, or if the Sequencing module567

misinterprets the language instruction and moves the robot to the wrong object. One extension to568

address this limitation would be to fine-tune the Plan and Seq Modules online using RL as well, to569

adapt the large models to the specific environment and reward function.570

15

C Additional Experiments571

We perform additional analyses of PSL in this section.572

σ = 0 σ = 0.01 σ = 0.025 σ = 0.1 σ = 0.5

SayCan 1.0 ± 0.0 .93 ± .05 .27 ± .12 0.0 ± 0.0 0.0 ± 0.0
PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .75 ± .07 0.0 ± 0.0

Table C.1: Noisy Pose Ablation Results. We add noise sampled from N (0, σ) to the pose estimates and
evaluate SayCan and PSL. PSL is able to handle noisy poses by training online with RL, only observing
performance degradation beyond σ = 0.1.

PSL leverages stage termination conditions to learn faster. While the target object sequence is573

necessary for PSL to plan to the right location at the right time, in this experiment we evaluate if574

knowledge of the stage termination conditions is necessary. Specifically, on the RS-Can task, we575

evaluate the use of stage termination condition checks in PSL to trigger the next step in the plan versus576

simply using a timeout of 25 steps. We find that it is in fact critical to use stage termination condition577

checks to enable the agent to effectively sequence the plan; use of a timeout results in dithering578

behavior which slows down learning. After 10K episodes we observe a performance improvement of579

31% (100% vs. 69%) by including plan stage termination conditions in our pipeline.580

PSL produces policies that are robust to noisy pose estimates. In real world settings, there is often581

noise in pose estimation due to noisy depth values, imperfect camera calibration or even network582

prediction errors. Ideally, the agent should be adapt to such potential failure modes: open-loop583

planning methods such as TAMP and SayCan are not well-suited to do so because they do not584

improve online. In this experiment we evaluate the PSL’s ability to handle noisy/inaccurate poses585

by leveraging online interaction via RL. On the RS-Can task, we add zero-mean Gaussian noise to586

the pose, with σ ∈ 0.01, 0.025, .1, .5 and report our results in Table. C.1. While SayCan struggles587

to handle σ > 0.01, PSL is able to learn with noisy poses at σ = .1, at the cost of slower learning588

performance. Neither method performs well at σ = 0.5, however at that point the poses are not near589

the object and the effect is similar to resetting to a random robot pose in the workspace every episode.590

0 1000 2000 3000 4000 5000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

RS-Can Camera Ablation

PSL-Fixed PSL-Wrist (Ours) PSL-Wrist+Fixed

Figure C.1: Camera View Learning Performance Ablation. wrist camera views clearly accelerate
learning performance, converging to near 100% performance 4x faster than using fixed-view and 3x
faster than using wrist+fixed-view observations.

Effect of camera view on policy learning performance: As discussed in Sec. 2, for PSL we use591

local observations to improve learning performance and generalization to new poses. We validate592

this claim on the Robosuite Can task, in which we hypothesize that the local wrist camera view will593

accelerate policy learning performance. This is because the image of the can will be independent of594

the can’s position in general since the Sequencing Module will initialize the RL agent as close to the595

can as possible. As observed in Fig. C.1, this is indeed the case - PSL learns 4x faster than using a596

fixed view camera in terms of the number of trials. We additionally test if combining wrist and fixed597

view inputs (a common paradigm in robot learning) can alleviate the issue, however PSL with wrist598

cam is still 3x faster at solving the task.599

16

Effect of camera view on chaining pre-trained policies: In this ablation, we illustrate another600

important effect of using local views, such as wrist cameras: ease of chaining pre-trained policies.601

Since we leverage motion planning to sequence between policy executions, chaining pre-trained602

policies is relatively straightforward: simply execute the Sequencing Module to reach the first region603

of interest, execute the first pre-trained policy till its stage termination condition is triggered, then604

call the Sequencing Module on the next region, and so on. However, to do so, it is also crucial that605

the observations do not change significantly, so that the inputs to the pre-trained policies are not606

out of distribution (OOD). If we use a fixed, global view of the scene, the overall scene will change607

as multiple policies are executed, resulting in future policy executions failing due to OOD inputs.608

In Table C.2, we observe this exact phenomenon, in which any version of PSL that is provided a609

fixed-view input fails to chain pre-trained policies effectively, while PSL with local (wrist) views610

only is able to chain pre-trained policies on every task, up to 5 stages.611

K-Single-Task K-MS-3 K-MS-4 K-MS-5

PSL-Wrist 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
PSL-Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PSL-Wrist+Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table C.2: Chaining Pre-trained Policies Ablation. PSL can leverage local views (wrist cameras) to chain
together multiple pre-trained policies via motion-planning using the Sequencing Module. While PSL with each
camera input is able to produce a capable single-task policy, chaining only works with wrist camera observations
as the observations are kept in-distribution.

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Door

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Slide Cabinet

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Kettle

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Light Switch

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Top Left Burner

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate
MW-Disassemble

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Push

E2E RAPS MoPA-RL PSL (Ours)

Figure C.2: Single Stage Results. We plot task success rate as a function of the number of trials. PSL improves
on the efficiency of the baselines across single-stage tasks (plan length of 1) in Robosuite, Kitchen, Meta-World,
and Obstructed Suite, achieving an asymptotic success rate of 100% on all 11 tasks.

17

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Hammer

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Bin Picking

E2E RAPS MoPA-RL PSL (Ours)

Figure C.3: Meta-World Two Stage Learning Curves. We plot task success rate as a function of the number
of trials. PSL learns faster than the baselines by employing high-level planning to accelerate RL performance.

MW-BinPick MW-Assembly MW-Hammer

E2E 1.0 ± 0.0 0.4 ± 0.5 0.0 ± 1.0
RAPS 0.0 ± 0.0 0.3 ± .25 1.0 ± 0.0
TAMP 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0
SayCan 1.0 ± 0.0 0.5 ± .08 1.0 ± 0.0

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table C.3: Metaworld Two Stage Results. While the baselines perform well on most of the tasks, only PSL
is able to consistently solve every task. This is because the LLM planning and Sequencing modules ease the
learning burden for the RL policy, enabling it to learn contact-rich, long-horizon behaviors.

18

D PSL Implementation Details612

Algorithm 1 Plan-Seq-Learn Overview

Require: LLM, Pose Estimator P, task description gl, Motion Planner MP, low-level horizon Hl

Planning Module
High-level plan P ← Prompt(LLM, gl)
for p ∈ P do
Sequencing Module

target region (t), termination condition← p

Compute pose qtarget = P (Oglobal
t , t)

Achieve pose MP(qtarget, O
global
t)

Learning Module
for i = 1, ...,Hl do

Get action at ∼ πθ(O
local
t)

Get next state Olocal
t+1 ∼ p(|st, at).

Store (Olocal
t , at, O

local
t+1 , r) intoR

update πθ using RL
if stage termination condition then

break
end if

end for
end for

D.1 Planning Module613

Given a task description gl, we prompt an LLM using the format described in Sec. 2.4 to produce614

a language plan. We experimented with a variety of publicly available and closed-source LLMs615

including LLAMA [48], LLAMA-2 [49], GPT-3 [50], Chat-GPT, and GPT-4 [34]. In initial exper-616

iments, we found that GPT-based models performed best, and GPT-4 in particularly most closely617

adhered to the prompt and produced the most accurate plans. As a result, in our experiments, we618

use GPT-4 as the LLM planner for all tasks. We sample from the model with temperature 0 for619

determinism. Sometimes, the LLM hallucinates non-existent stage termination conditions or objects.620

As a result, we add a pre-processing step in which we delete components of the plan that contain621

such hallucinations.622

D.2 Sequencing Module623

The input to the Sequencing Module is Oglobal. In our experiments, we use two camera views,624

Oglobal
1 and Oglobal

2 , which are RGB-D calibrated camera views of the scene, to obtain unoccluded625

views of the scene. We additionally provide the current robot configuration, which is joint angles for626

robot arms: qjoint and the target region label around which the RL policy must perform environment627

interaction. From this information, the module must solve for a collision free path to a region near the628

target. This problem can be addressed by classical motion planning. We take advantage of sampling-629

based motion planning due to its minimal setup requirements (only collision-checking) and favorable630

performance on planning. In order to run the motion planner, we require a collision checker, which we631

implement using point-clouds. To compute the target object position, we use predicted segmentation632

along with calibrated depth, as opposed to a dedicated pose estimation network, primarily because633

state of the art segmentation models [27, 28] have significant zero-shot capabilities across objects.634

Projection: In this step, we project the depth map from each global view of the scene, Oglobal
1 and635

Oglobal
2 into a point-cloud PCglobal using their associated camera matrices Kglobal

1 and Kglobal
2 . We636

perform the following processing steps to clean up PCglobal: 1) cropping to remove all points outside637

the workspace 2) voxel down-sampling with a size of 0.005 m3 to reduce the overall size of PCglobal638

3) outlier removal, which prunes points that are farther from their 20 neighboring points than the639

average in the point-cloud as shown in Fig. D.1.640

19

Algorithm 2 PSL Implementation
Require: LLM, task description gl, Motion Planner MP, low-level horizon Hl, segmentation model S , RGB-D

global cameras, RGB wrist camera, Camera Matrix Kglobal

1: initialize RL: πθ , replay bufferR
Planning Module

2: High-level plan P ← Prompt(LLM, gl)
3: for episode 1...N do
4: for p ∈ P do

Sequencing Module
5: target region (t), termination condition← p

6: PCglobal = Projection(Oglobal
1 , Oglobal

2 , Kglobal)
7: Mrobot,Mobj = Segmentation(Oglobal

1 , Oglobal
2 , robot, object)

8: PCrobot , PCobject = Mrobot ∗ PCglobal, Mobj ∗ PCscene

9: PCscene = PCglobal − PCrobot

10: eetarget = mean(PCobj)
11: qtarget = IK(eetarget)
12: MotionPlan(MP, qtarget, PCscene)

Learning Module
13: for i = 1, ..., h low-level steps do
14: Get action at ∼ πθ(O

local
t)

15: Get next state Olocal
t+1 ∼ p(|st, at).

16: Store (Olocal
t , at, O

local
t+1 , r) intoR

17: Sample (Olocal
k , at, O

local
k+1 , r) ∼ R ▷ k = random index

18: update πθ using RL
19: if post-condition then
20: break
21: end if
22: end for
23: end for
24: end for

Mrobot

Target: can

Oglobal
rgb

qtarget

Motion Planner (AIT*)

Mobj

Inverse KinematicseetargetSegmentation (SAM)

PCglobal

qjoint

Projection

Oglobal
depth

Figure D.1: Sequencing Module. Inputs to the Sequencing Module are two calibrated RGB-D fixed views,
Oglobal, the proprioception qjoint and the target object. It performs visual motion planning to the target object
by computing a scene point-cloud (PCglobal), segmenting the target object (Mobj) to estimate its pose (qtarget),
segmenting the robot (Mrobot) to remove it from PCglobal and motion planning using AIT*.

Segmentation: We compute masks for the robot (Mrobot) and the target object (Mobj) by using a641

segmentation model (SAM [27]) S which segments the scene based on RGB input. We reduce noise642

in the masks by filling holes, computing contiguous mask clusters and selecting the largest mask. We643

use Mrobot to remove the robot from PCglobal, in order to perform collision checking of the robot644

against the scene. Additionally, we use Mobj along with PCglobal to compute the object point-cloud645

PCobj , which we average to obtain an estimate of object position, which is the target position for the646

motion planner. For the manipulation tasks we consider in the paper, this is the target end-effector647

pose of the robot, eetarget.648

20

Visual Motion Planning: Given the target end-effector pose eetarget, we use inverse kinematics649

(IK) to compute qtarget and pass qjoint, qtarget, PCglobal into a joint-space motion planner. To that650

end, we use a sampling-based motion planner, AIT* [38], to perform motion planning. In order to651

implement collision checking from vision, for a sampled joint-configuration qsample, we compute652

the corresponding position of the robot mesh and compute the occupancy of each point in the scene653

point-cloud against the robot mesh. If the object is detected as grasped, then we additionally remove654

the object from the scene pointcloud, compute its convex hull and use the signed distance function655

of the joint robot-object mesh for collision checking. As a result, the Sequencing Module operates656

entirely over visual input, and achieves a pose near the region of interest before handing off control to657

the local RL policy. We emphasize that the Sequencing Module does not need to be perfect, it merely658

needs to produce a reasonable initialization for the Learning Module.659

D.3 Learning Module660

D.3.1 Stage Termination Details661

As described in Section 2, we use stage termination conditions to determine when the Learning662

Module should hand control back to the Sequencing Module to continue to the next stage in the663

plan. For the tasks we consider, these stage termination conditions amount to checking for a grasp664

or placement for the target object in the stage. For example, for RS-NutRound, the plan for the first665

stage is (grasp, nut) and the plan for the second stage is (place, peg). Placements are straightforward666

to check: simply evaluate if the object being manipulated is within a small region near the target667

object. This can be computed using the estimated pose of the two objects (current and target). Grasps668

are more challenging to estimate and we employ a two stage pipeline to detecting a grasp. First, we669

estimate the object pose and then evaluate if the z value has increased from when the stage began.670

Second, in order to ensure the object is not simply tossed in the air, we check if the robot’s gripper is671

tightly caging the object. We do so by collision checking the object point-cloud against the gripper672

mesh. We use the same collision checking procedure as outlined in Sec 2 for checking collision673

between the scene point-cloud and robot mesh.674

D.3.2 Training Details675

For all tasks, we use the reward function defined by the environment, which may be dense or sparse676

depending on the task. We find that for PSL, it is crucial to use an action-repeat of 1, in general we677

found that increasing this harmed performance, in contrast to the E2E baseline which performs best678

with an action repeat of 2. For training policies using DRQ-v2, we use the default hyper-parameters679

from the paper, held constant across all tasks. We train policies using 84x84 images. We use the680

”medium” difficult exploration schedule defined in [39], which anneals the exploration σ from 1.0 to681

0.1 over the course of 500K environment steps. Due to memory concerns, instead of using a replay682

buffer size of 1M as done in Yarats et al. [39], ours is of size 750K across each task. Finally, for path683

length, we use the standard benchmark path length for E2E and MoPA-RL, 5 per stage for RAPS684

following Dalal et al. [45], and 25 per stage for PSL.685

21

E Baseline Implementation Details686

E.1 RAPS687

For this baseline, we simply take the results from the RAPS [45] paper as is, which use Dreamer [51]688

and sparse rewards. In initial experiments, we attempted to combine RAPS with DRQ-v2 [39]689

and found that Dreamer performed better, which is consistent with RAPS+Dreamer having the690

best results in Dalal et al. [45]. We additionally tried to run RAPS with dense rewards, but found691

that the method performed significantly worse. One potential reason for this is that it is not clear692

exactly how to aggregate the dense rewards across primitive executions - we tried simply taking the693

dense reward after executing a primitive as well as simply summing the rewards of intermediate694

primitive executions. Both performed worse than training RAPS with sparse rewards. Note that PSL695

outperforms RAPS even when both methods have only access to sparse rewards, e.g. the Kitchen696

environments. We observe clear benefits over RAPS on the single-stage (Fig. C.2) and multi-stage697

(Table 2) tasks.698

E.2 MoPA-RL699

As described in the main paper, we take the results from MoPA-RL [41] as is on the Obstructed Suite700

of tasks. Those results were run from state-based input and leveraged the simulator for collision701

checking. We do so as we were unable to successfully combine MoPA-RL with DRQ-v2 based on702

the publicly released implementations of both methods.703

E.3 TAMP704

We use PDDLStream [46] as the TAMP algorithm of choice as it has been shown to have strong705

planning performance on long-horizon manipulation tasks in Robosuite [52, 53]. The PDDLStream706

planning framework models the TAMP domain and uses the adaptive algorithm, a sampling based707

algorithm, to plan. This TAMP method uses samplers for grasp generation, placement sampling,708

inverse kinematics, and motion planning, making performance stochastic. Hence we average per-709

formance across 50 evaluations to reduce variance. We adapt the authors TAMP implementation710

(from [52, 53]) for our tasks. Note this method uses privileged access to the simulator, leveraging711

knowledge about the task (which must be explicitly specified in a problem file), the scene (from the712

domain file and access to collision checking) and 3D geometry of the environment objects.713

E.4 SayCan714

As described in the main paper, we re-implement SayCan Ahn et al. [1] using GPT-4 (the same715

LLM we use in our methdo) and manually engineered pick/place skills that use pose-estimation716

and motion-planning. Following our Sequencing module: 1) we build a 3D scene point-cloud using717

camera calibration and depth images 2) we perform vision-based pose estimation using segmentation718

along with the scene point cloud and 3) we run motion planning using collision queries from the719

3D point-cloud, which is used for collision queries. Finally, we use heuristically engineered pick720

and place primitives to perform interaction behavior which we describe as follows. We note that for721

our tasks of interest, the pick motion can be represented as a top-grasp. Once we position the robot722

near the object; we then simply lower the robot arm till the end-effector (not the grippers) come in723

contact with the object. We then close the gripper to execute the grasp. For place, we follow the724

implementation of Ahn et al. [1] and lower the held object until contact with a surface, then release725

(open the gripper) and lift the robot arm. We set the affordance function for both skills to 1, following726

the design in Ahn et al. [1] for motion planned skills.727

For LLM planning, we specify the following prompt:728

Given the following library of robot skills: ... Task description: ... Make sure to take into account
object geometry. Formatting of output: a list of robot skills. Don’t output anything else.

22

This prompt is the same as our prompt except we specify the robot skill library in terms of object729

centric behaviors, instead of stage termination conditions.730

Given the following library of robot skills: ... Task description: ... Give me a simple plan to
solve the task using only the provided skill library. Make sure the plan follows the formatting
specified below and make sure to take into account object geometry. Formatting of output: a list
of robot skills. Don’t output anything else.

Robosuite731

Skill Library: pick can, pick milk, pick cereal, pick bread slice, pick silver nut, pick gold nut,
put can on/in X, put milk on/in X, put cereal on/in X, put bread slide on/in X, put silver nut on/in
X, put gold nut on/in X, grasp door handle, turn door handle, pick cube

Kitchen732

Skill Library: grasp vertical door handle for slide cabinet, move left, move right, grasp hinge
cabinet, grasp top left burner with red tip, rotate top left burner with red tip 90 degree clockwise,
rotate top left burner with red tip 90 degrees counterclockwise, push light switch knob left, push
light switch knob right, grasp kettle, lift kettle, place kettle on/in X, grasp microwave handle,
pull microwave handle

Metaworld:733

Skill Library: grasp cube, place cube on/in X, grasp hammer, place hammer, hit nail with
hammer, grasp wrench, lift wrench

Obstructed-Suite734

Skill Library: grasp can, place can in bin, insert table leg in X, move table leg, grasp cube,
place cube on table, push cube

23

F Tasks735

(a) MW-Hammer (b) MW-Assembly (c) MW-Disassemble (d) MW-Bin-Picking

(e) OS-Lift (f) OS-Assembly (g) OS-Push (h) K-Slide

(i) K-Kettle (j) K-Microwave (k) K-Burner (l) K-Light

(m) RS-Lift (n) RS-Door (o) RS-NutRound (p) RS-NutSquare

(q) RS-NutAssembly (r) RS-Can (s) RS-Cereal (t) RS-Milk

(u) RS-Bread (v) RS-CanBread (w) RS-CerealMilk

Figure F.1: Task Visualizations. PSL is able to solve all tasks with at least 80% success rate from purely visual
input.

24

We discuss each of the environment suites that we evaluate using PSL. All environments are simulated736

using the MuJoCo simulator [54].737

1. Meta-World (Row 1 of Fig. F.1). Meta-World, introduced by Yu et al. [40], aims to offer738

a standardized suite for multi-task and meta-learning methods. The benchmark consists739

of 50 separate manipulation tasks with a Sawyer robot, well-shaped reward functions,740

involve manipulating a single object to a randomized goal position, or multiple objects to a741

deterministic goal position. We evaluate on the single-task, multi-goal, v2 variants of the742

Meta-World environments. All environments use end-effector position control - a 3DOF743

arm action space along with gripper control - orientation is fixed. In our evaluation we use744

the default environment task rewards, a fixed camera view for the baselines and a wrist745

camera for our local policies. We refer the reader to the Meta-World paper for additional746

details regarding the environment suite.747

2. Obstructed Suite (Rows 1-2 of Fig. F.1). The Obstructed Suite of tasks introduced by Ya-748

mada et al. [41] are a challenging set of tasks requiring a Sawyer arm to perform obstacle749

avoidance while solving the task. The OS-Lift task requires the agent to pick up a can750

that is inside a tall box, requiring it to reach over the walls to grab the object and then lift751

it without making contact with the edges of the bin. The OS-Push environment tasks the752

agent with push a block to the goal in the present of a bin that forces the agent to adjust its753

motion in order to avoid being blocked by its upper joints. Finally, the OS-Assembly task754

involves moving the robot arm to a precise placement location while avoiding obstacles, then755

performing the table leg placement. Note that we evaluate our method on these environments756

from visual input, a more challenging setting than the one considered by Yamada et al. [41].757

3. Kitchen (Rows 2-3 of Fig. F.1). The Kitchen manipulation suite introduced in the Relay758

Policy Learning paper [42] and maintained in D4RL [43] is a set of challenging, sparse759

reward, joint-controlled manipulation tasks in a single kitchen. The tasks require the ability760

to explore efficiently whilst also being able to chain skills across long temporal horizons,761

to achieve behaviors such as opening the microwave, moving the kettle, flicking the light762

switch, turning the burner, and finally sliding the cabinet door (K-MS-5). Aside from the763

single-stage tasks described in Section 3, we evaluate on three multi-stage tasks which764

require chaining the single-stage tasks in a particular order. K-MS-3 involves moving the765

kettle, flicking the light switch and turning the burner, while K-MS-4 is the same as K-MS-3,766

but the agent must first open the microwave door then execute the rest of the tasks.767

4. Robosuite (Rows 3-6 of Fig. F.1). The Robosuite benchmark from Zhu et al. [44] contains768

challenging, long-horizon manipulation tasks involving pick-place and nut assembly, as well769

as simpler tasks that involve lifting a cube and opening a door. The rewards are coarsely770

defined in terms of distances to targets as well as grasp/placement conditions, which, in771

fact, are straightforward to implement in the real world as well using pose estimation. This772

stands in contrast to Meta-World which spends considerable engineering effort defining773

well-shaped dense rewards often by taking advantage of object geometry. As a result,774

learning-based methods struggle to make any progress on Robosuite tasks that involve more775

than a single-stage - optimizing the reward function tends to leave the agent a local minima.776

The suite also contains a well-tuned, realistic Operation Space Control [55] implementation777

that we leverage to train policies in end-effector space.778

25

G LLM Prompts and Plans779

In this section, we list the LLM prompts per task.780

Overall prompt structure:781

Stage termination conditions: (grasp, place). Task description: ... Give me a simple plan to solve
the task using only the stage termination conditions. Make sure the plan follows the formatting
specified below and make sure to take into account object geometry. Formatting of output: a list
in which each element looks like: (<object/region>, <operator>). Don’t output anything else.

G.1 Robosuite782

RS-PickPlaceCan:783

Task Description can goes into bin 1.
Plan: [(“can”, “grasp”), (“bin 1”, “place”)])

RS-PickPlaceCereal:784

Task Description: cereal goes into bin 3.
Plan: [(“cereal”, “grasp”), (“bin 3”, “place”)])

RS-PickPlaceMilk:785

Task Description: milk goes into bin 2.
Plan: [(“milk”, “grasp”), (“bin 2”, “place”)])

RS-PickPlaceBread:786

Task Description: bread slice goes into bin 4.
Plan: [(“bread slice”, “grasp”), (“bin 4”, ”place”)])

RS-PickPlaceCanBread:787

Task Description: can goes into bin 1, bread slice in bin 4.
Plan: [(“can”, “grasp”), (“bin 1”, “place”), (“bread slice”, ”grasp”), (“bin 4”, ”place”)])

RS-PickPlaceCerealMilk:788

Task Description: milk goes into in bin 2, cereal in bin 3.
Plan: [(“cereal”, “grasp”), (“bin 3”, “place”), (“milk”, “grasp”), (“bin 2”, “place”)])

RS-NutAssembly:789

Task Description: The silver nut goes on the silver peg and the gold nut goes on the gold peg.
Plan: [(“silver nut”, “grasp”), (“silver peg”, “place”),(“gold nut”, “grasp”), (“gold peg”,
“place”)]

26

RS-NutAssemblySquare:790

Task Description: The gold nut goes on the gold peg.
Plan: [(“gold nut”, “grasp”), (“gold peg”, “place”)]

RS-NutAssemblyRound:791

Task Description: The silver nut goes on the silver peg.
Plan: [(“silver nut”, “grasp”), (“silver peg”, “place”)]

RS-Lift:792

Task Description: lift the red cube.
Plan: [(“red cube”, ”grasp”)]

RS-Door:793

Task Description: open the door.
Plan: [(“door handle”, “grasp”)]

G.2 Meta-World794

MW-Assembly:795

Task Description: put the green wrench on the maroon peg.
Plan: [(“green wrench”, “grasp”), (“maroon peg”, “place”)]

MW-Disassemble:796

Task Description: remove the green wrench from the peg.
Plan: [(“green wrench”, “grasp”)]

MW-Hammer:797

Task Description: use the red hammer to push in the nail.
Plan: [(“red hammer”, “grasp”), (“nail”, “push”)]

MW-Bin-Picking:798

Task Description: move the cube in the red bin into the blue bin.
Plan: [(“cube in red bin”, “grasp”), (“blue bin”, “place”)]

G.3 Kitchen799

Kitchen-Microwave:800

27

Task Description: open the microwave door.
Plan: [(“microwave door handle”, “grasp”)]

Kitchen-Slide801

Task Description: use the rightmost vertical bar to slide open the door.
Plan: [(“rightmost vertical bar”, “grasp”)]

Kitchen-Light802

Task Description: use the round knob to turn on the light.
Plan: [(“knob”, “grasp”)]

Kitchen-Burner803

Task Description: turn the top left burner with the red tip.
Plan: [(“top left burner with the red tip”, “grasp”)]

Kitchen-Kettle804

Task Description: move the kettle forward.
Plan: [(“kettle”, “grasp”)]

G.4 Obstructed Suite805

OS-Lift:806

Task Description: lift red can from wooden bin.
Plan: [(“red can’, “grasp”)]

OS-Assembly:807

Task Description: move the table leg, which is already in your hand, into the empty hole.
Plan: [(“empty hole’, “place”)]

OS-Push:808

Task Description: push the red block onto the green circle.
Plan: [(“red block”, “grasp”)]

28

H Related Work809

Classical Approaches to Long Horizon Robotics: Historically, robotics tasks have been approached810

via the Sense-Plan-Act (SPA) pipeline [56, 57, 58, 59, 60], which requires comprehensive under-811

standing of the environment (sense), a model of the world (plan), and a low-level controller (act).812

Traditional approaches range from manipulation planning [61, 62], grasp analysis [63], and Task813

and Motion Planning (TAMP) [64], to modern variants incorporating learned vision [65, 66, 67].814

Planning algorithms enable long horizon decision making over complex and high-dimensional action815

spaces. However, these approaches can struggle with contact-rich interactions [68, 69], experience816

cascading errors due to imperfect state estimation [70], and require significant manual engineering817

and systems effort to setup [71]. Our method leverages learning at each component of the pipeline818

to sidestep these issues: it handles contact-rich interactions using RL, avoids cascading failures by819

learning online, and sidesteps manual engineering effort by leveraging pre-trained models for vision820

and language.821

Planning and Reinforcement Learning: Recent work has explored the integration of motion plan-822

ning and RL to combine the advantages of both paradigms [72, 41, 73, 74, 75, 76, 77]. GUAPO Lee823

et al. [72] is similar to the Seq-Learn components of our method, yet their system considers the824

single-stage regime and is focused on keeping the RL agent in areas of low pose-estimator uncertainty.825

Our method instead considers long-horizon tasks by encouraging the RL agent to follow a high-level826

plan given by an LLM using vision-based motion planning. MoPA-RL [41] also bears resemblance827

to our method, yet it opts to learn when to use the motion planner via RL, requiring the RL agent to828

discover the right decomposition of planner vs. control actions on its own. Furthermore, roll-outs829

of trajectories using MoPA can result in the RL agent choosing to motion plan multiple times in830

sequence, which is inefficient - one motion planner action is sufficient to reach any position in space.831

In our method, we instead explicitly decompose tasks into sequences of contact-free reaching (motion832

planner) and contact-rich environment interaction (RL).833

Language Models for RL and Robotics LLMs have been applied to RL and robotics in a wide variety834

of ways, from planning [1, 2, 14, 3, 4, 17, 18, 19], reward definition [20, 21], generating quadrupedal835

contact-points [22], producing tasks for policy learning [23, 24] and controlling simulation-based836

trajectory generators to produce diverse tasks [25]. Our work instead focuses on the online learning837

setting and aims to leverage language model driven planning to guide RL agents to solve new robotics838

tasks in a sample efficient manner. BOSS Zhang et al. [26] is closest to our overall method; this839

concurrent work also leverages LLM guidance to learn new skills via RL. Crucially, their method840

depends on the existence of a skill library and learns skills that are combination of high-level actions.841

Our method instead efficiently learns low-level robot control skills without depending on a pre-defined842

skill library, by taking advantage of motion planning to track an LLM plan.843

29

	1 Introduction
	2 Plan-Seq-Learn
	2.1 Related Work
	2.2 Problem Setup
	2.3 Overview
	2.4 Planning Module: Zero-Shot High-level Planning
	2.5 Sequencing Module: Vision-based Plan Tracking
	2.6 Learning Module: Efficiently Learning Local Control

	3 Experimental Setup
	3.1 Tasks
	3.2 Baselines
	3.3 Experiment details

	4 Results
	5 Conclusions
	A Table of Contents
	B Ethics, Impacts and Limitations
	B.1 Ethical Considerations
	B.2 Broader Impacts
	B.3 Limitations

	C Additional Experiments
	D PSL Implementation Details
	D.1 Planning Module
	D.2 Sequencing Module
	D.3 Learning Module
	D.3.1 Stage Termination Details
	D.3.2 Training Details

	E Baseline Implementation Details
	E.1 RAPS
	E.2 MoPA-RL
	E.3 TAMP
	E.4 SayCan

	F Tasks
	G LLM Prompts and Plans
	G.1 Robosuite
	G.2 Meta-World
	G.3 Kitchen
	G.4 Obstructed Suite

	H Related Work

