
Under review as a conference paper at ICLR 2023

LEARNING CONTROL LYAPUNOV FUNCTIONS FOR
HIGH-DIMENSIONAL UNKNOWN SYSTEMS USING
GUIDED ITERATIVE STATE SPACE EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing stable controllers in complex, high-dimensional systems with unknown
dynamics is a critical problem when we deploy robots in the real world. Prior
works use learning-based control Lyapunov functions (CLFs) or adaptive con-
trol to derive such controllers, but they suffer from two significant challenges:
scalability and model transparency. This paper proposes a general framework to
jointly learn the local dynamics, a stable controller, and the corresponding CLF
in high-dimensional unknown systems. Our approach, GIE-CLF, does not need
any knowledge of the environment, such as the dynamics, reward functions, etc,
and can scale up to high dimensional systems using only local knowledge of the
dynamics inside a trusted tunnel instead of global knowledge required by other
methods. We provide theoretical guarantees for our framework and demonstrate
it on highly complex systems including a high-fidelity F-16 jet aircraft model that
has a 16-dimensional state space and a 4-dimensional input space. Experimental
results show that GIE-CLF significantly outperforms prior works in reinforcement
learning and imitation learning. We also show that our algorithm can also be ex-
tended to learn other control certificate functions for unknown systems.

1 INTRODUCTION

Designing guaranteed stable controllers for dynamical systems that potentially have unknown dy-
namics is crucial for deploying robots in real-world scenarios, and Lyapunov-based control design
is the key to finding such controllers and providing stability guarantees (Parrilo, 2000). Recent
years have seen increasing research efforts to develop methods to automatically construct Lyapunov
functions and control Lyapunov functions (CLFs) for systems with varying complexities (Giesl &
Hafstein, 2015). However, existing methods face two significant challenges: scalability and model
transparency. Classical optimization-based control design finds both the controllers and the cor-
responding Lyapunov functions through solving a sequence of Semi-definite programming (SDP)
problems (Ahmadi & Majumdar, 2016; Parrilo, 2000; Majumdar et al., 2013), but it is difficult for
them to scale up to high-dimensional systems (Lofberg, 2009) and they are known to have numerical
issues (Permenter & Parrilo, 2018), including strict feasibility and numerical reliability issues. Al-
though recent years have seen studies on scalable SDP solvers (Yurtsever et al., 2021), they rely on
assumptions like the sparsity of the decision matrix. Moreover, the above methods need the dynam-
ics of the system as ordinary differential equations (ODEs) to be known, which limits their scope of
application. Computationally efficient methods such as sample-based Lyapunov function synthesis
can scale better to higher dimensional systems; however, they can only find Lyapunov functions for
scenarios where a stable controller is already known, providing little insight to engineers attempting
to synthesize a stable controller.

In recent years, using Neural Networks (NNs) to represent Lyapunov functions has become increas-
ingly popular (Dawson et al., 2022a; Chang et al., 2019; Dawson et al., 2022b). The effectiveness of
deep learning tools for NNs can relieve limitations on the dimensionality of the systems for which
one can find a CLF. However, these methods require a precise ODE model of the system to be
specified a priori, which can be unrealistic for practical systems. For example, the F-16 fighter jet
model (Heidlauf et al., 2018) we study in this paper is represented as a mixture of look-up tables,
block diagrams, and C programs. It is very difficult to use an ODE to describe the entire system.

1

Under review as a conference paper at ICLR 2023

For systems without precise mathematical descriptions, researchers have tried to first use system
identification, e.g. learning the ODE model using NNs, and then find a controller together with Lya-
punov functions (Dai et al., 2021). However, fitting a high-dimensional dynamical system as a single
NN needs a massive amount of training samples to cover the entire state space, and usually those
surrogate NN models can have large prediction errors in space where few samples exist.

For high-dimensional systems, we argue that it is both unnecessary and infeasible to collect data on
transitions in all regions of the state space, since only a small subset of that state space is reachable
for the agent. As a result, having a model of the system over the entire state space is excessive and
unnecessary, if not impossible. Instead, we can learn a model only in this small reachable subspace,
then learn a CLF and a corresponding controller that continuously expands this subspace towards
the goal. It is non-trivial to construct such a subspace. Therefore, we make a weak assumption
that some imperfect and potentially unstable demonstrations are available as an initial guidance on
exploring the possible reachable states, and as an initialization of the controller. Such an assumption
is realistic as engineers can use existing methods such as PID (Bennett, 1996), model predictive
control (Camacho & Alba, 2013), and even hand-crafted controllers such as the one implemented
in the F-16 model (Heidlauf et al., 2018) or human demonstrations (Bain & Sammut, 1995). Such
controllers often generate unsatisfactory demonstrations because their performance is restricted by
the hand-tuned parameters, linearization of the systems, and human limitations. However, our goal
is to learn a guaranteed stable controller using the imperfect controller as the initial guidance.

To this end, we propose a novel framework, Learning Control Lyapunov Functions using Guided
Iterative State Space Exploration (GIE-CLF), to jointly learn the dynamics in the reachable subspace
and a stable controller with the corresponding CLF for high-dimensional unknown systems. In each
iteration, we learn the dynamics in the reachable subspace using previous experience, jointly update
the CLF and the controller, and do constrained exploration to expand the subspace towards the goal.
After convergence, our learned controller is guaranteed to be stable with a valid CLF as a certificate.
As a result, our dynamics are learned in the reachable subspace and the closed-loop systems are
guaranteed to reach the goal without leaving the reachable subspace (see Theorem 2). The main
contributions of the paper can be summarized as:

• We propose a novel framework, GIE-CLF, to jointly learn the dynamics in the reachable subspace
and a stable controller with the corresponding CLF for high-dimensional unknown systems.

• Theoretical results show that the learned CLF satisfies the CLF conditions in the reachable sub-
space, and the learned controller is guaranteed to be stable.

• We conduct experiments on benchmarks including inverted pendulum, neural lander (Shi et al.,
2019), and the F-16 model (Heidlauf et al., 2018) with 2 tasks. Our results suggest that our learned
controller behaves better than other RL and IL algorithms in terms of stabilizing the systems while
reducing the number of samples by an order of magnitude.

2 RELATED WORK

Control Lyapunov Functions Our work builds on the widely used Lyapunov theory for stability
guarantees. More specifically, if we can find a CLF for a system, it is sufficient to provide formal
guarantees of the stability of the closed-loop system with some corresponding control inputs. The
majority of classical CLF-based controllers rely on hand-craft CLFs (Choi et al., 2020; Castaneda
et al., 2021), or SoS-based SDP (Parrilo, 2000; Majumdar et al., 2013; Ahmadi & Majumdar, 2016),
but these approach need known dynamics and are hard to generalize to high-dimensional systems.
One promising line of work in learning certificates (Qin et al., 2021b; Saveriano & Lee, 2019;
Tsukamoto & Chung, 2020; Sun et al., 2021) uses neural networks as function approximators to
learn the Lyapunov Functions (Richards et al., 2018; Abate et al., 2020; 2021; Gaby et al., 2021)
or the CLF and the controller simultaneously (Chang et al., 2019; Dawson et al., 2022b; Mehrjou
et al., 2021; Zinage & Bakolas, 2022). Most of these works randomly sample states in the whole
state space, and do supervised learning to enforce the CLF conditions. These works either assume
having knowledge of the dynamics, or fit the dynamics of the entire state space, so they are hard
to generalize to high-dimensional real-world scenarios where the number of samples needed is too
high to be feasible. Compared with these approaches, our algorithm has the capability to work in
environments with totally unknown dynamics, and does not suffer from the curse of dimensionality
caused by sampling states in the entire state space.

2

Under review as a conference paper at ICLR 2023

Reinforcement Learning Reinforcement learning (RL) has shown great power to deal with prob-
lems without any knowledge of the dynamics (Schulman et al., 2015; 2017; Haarnoja et al., 2018).
However, it is hard for them to have strong guarantees on properties like stability. In addition, the
hand-craft reward functions needed by RL algorithms and the sample inefficiency also impede them
to generalize to complex environments. The most recent works in the field of learning for con-
trol tend to solve this problem by adding certificates in the RL process (Berkenkamp et al., 2017;
Chow et al., 2018; Cheng et al., 2019; Han et al., 2020; Chang & Gao, 2021; Zhao et al., 2021; Qin
et al., 2021a). However, they all have limitations that make them unsuitable to solve the problem
we consider in this paper. For example, Berkenkamp et al. (2017) needs a handcrafted certificate
function as a prior, which is not considered in our problem setting. Han et al. (2020) and Chang
& Gao (2021) focuses on using CLF to guide the RL exploration instead of making strong stability
guarantees, by adding the CLF-related terms to the RL loss. As opposed to these approaches, our
algorithm learns the CLF from scratch without any prior knowledge, and we provide a structured
way to design loss function instead of using reward functions. In addition, the system controlled by
our learned controller is guaranteed to be stable by the learned CLF.

Imitation Learning Our work is also related to imitation learning (IL) since we both use demon-
strations. However, classical IL algorithms like behavioral cloning (BC) (Pomerleau, 1991; Bain &
Sammut, 1995; Schaal, 1999; Argall et al., 2009; Ross et al., 2011), inverse reinforcement learning
(IRL) (Abbeel & Ng, 2004; Ramachandran & Amir, 2007; Ziebart et al., 2008), and adversarial
learning (Ho & Ermon, 2016; Finn et al., 2016; Fu et al., 2018; Henderson et al., 2018) focus on re-
covering the exact policy of the demonstrations thus behaving badly given imperfect demonstrations.
A recent line of work on learning from suboptimal demonstrations provide a possible route to learn a
policy that surpasses the demonstrations, but they either require different kind of manually-labelled
supervisions, e.g., rankings (Brown et al., 2019; Zhang et al., 2021), weights of demonstrations (Wu
et al., 2019; Cao & Sadigh, 2021), or have additional assumptions about the environment (Brown
et al., 2020; Chen et al., 2021), the demonstrations (Tangkaratt et al., 2020; 2021), or the training
process (Novoseller et al., 2020). Moreover, neither of them can provide certificates on the learned
policy. Another line of work learns certificates from demonstrations (Robey et al., 2020; Chou
et al., 2020; Boffi et al., 2021; Ravanbakhsh & Sankaranarayanan, 2019), but they need additional
assumptions like known dynamics, perfect demonstrations, or the ability to query the demonstrator.
To move further, our approach uses CLF as natural guidance of the exploration process, and does
not require any further supervision or assumptions on either demonstrations or environments.

3 PROBLEM SETTING AND PRELIMINARIES

We consider deterministic continuous-time, unknown dynamical system ẋ = h(x, u), where x ∈
X ⊆ Rnx is the state, u ∈ U ⊆ Rnu is the control input, and h : X × U → X is the unknown
dynamics. We assume that h(x, u) is Lipschitz continuous like (Berkenkamp et al., 2017). We aim
to find a control policy u = π(x), π : X → U , such that from initial states x(0) ∈ X0, following
the policy π, we are guaranteed to reach the goal xgoal, i.e., ∀x(t) satisfying ẋ = h(x, π(x)) and
x(0) ∈ X0, we have with tolerance δ, limt→∞ ∥x(t)− xgoal∥ ≤ δ.

We assume that we are given a set of demonstration trajectories D = {ξ1, ..., ξnD
} generated by a

demonstrator d following policy πd. Unlike the assumption in classical imitation learning works,
where the demonstrations are optimal, our demonstrations can be suboptimal and unstable.

Lyapunov theory is widely used to guarantee the stability of control systems, and CLFs provide
further guidance for controller synthesis by defining a set of stabilizing control inputs at a given
point in the state space. Following Dawson et al. (2022b), we provide the definition of CLF as:
Definition 1. (Control Lyapunov Functions) Given a closed-loop system ẋ = h(x, u) and a goal
point xgoal ∈ X , suppose there exists a continuously differentiable function V (x) : X → R, some
constant λ > 0, such that:

V (xgoal) = 0 (1a)
V (x) > 0, ∀ x ∈ X \ xgoal (1b)

inf
u

{
∂V (x)

∂x
h(x, u) + λV (x)

}
≤ 0, ∀ x ∈ X \ xgoal (1c)

Then V (x) is a valid CLF for the system.

3

Under review as a conference paper at ICLR 2023

Moreover, if we can find a valid CLF V (x), we can have the following proposition for the stability
of the system:

Proposition 1. (CLF for Stability) If V (x) is a CLF for system ẋ = h(x, u), then start-
ing from x(0) ∈ X , the system is stable at xgoal with any control input u ∈ K(x) ={
u|∂V (x)

∂x h(x, u) + λV (x) ≤ 0
}

, i.e., u ∈ K(x) =⇒ limt→∞ x(t) = xgoal.

Remark 1. In practice, we don’t have to show that the CLF conditions (1) are satisfied in the whole
state space to prove the stability. Starting from x(0) ∈ X0, if we can prove that the CLF conditions
are satisfied inside a subset of the state space G ⊂ X and show that following some control policy
π, x(t) ∈ G,∀t, then it is sufficient to prove the stability.

4 GIE-CLF

Here we propose our algorithm, Learning Control Lyapunov Functions using Guided Iterative State
Space Exploration (GIE-CLF), which jointly learns the dynamics in the reachable states and a stable
controller with the corresponding CLF. Given imperfect demonstrations D, we first use imitation
learning to learn an initial controller πinit(x) and fit a local model ĥα(x, u) which has a small error
within the reachable region H of the demonstrations. Then we jointly learn a controller and the
corresponding CLF valid inside the region H. During the training, the divergence of the learned
controller and the controller from the last iteration πlast(x) and the initial controller πinit(x) is
limited so that the agent cannot go far from H. Once we have the learned controller, we apply the
controller in the environment to drive us closer to the goal point while collecting data that is added
to the demonstrations. We repeat this process for several iterations to enlarge the region H towards
the goal. After convergence, the goal will be inside region H, and our controller is guaranteed to
reach the goal. We will further introduce the theoretical guarantees of GIE-CLF in Section 5.

Learning from Demonstrations Our framework starts from learning an initial policy and an initial
dynamics model from imperfect and sometimes unstable demonstrations D. To learn an initial
policy πinit(x), we can adopt any off-the-shelf IL algorithms. In our implementation, we use the
simplest: BC. The initial policy is unstable because it directly recovers the unstable behavior of the
demonstrations. To learn the dynamics model, we parameterize the dynamics as ĥα(x, u) : X×U →
X , which is a discrete neural network approximation of the real dynamics:

x(t+ 1)− x(t) = ĥα(x(t), u(t)) (2)

where ĥα(x) : X → Rnx and is a neural network parameterized by α. The dynamics model can be
trained with gradient decent algorithms (Kingma & Ba, 2014) using the following loss:

Ldyn(α) =
1

N

∑
x(t),u(t),x(t+1)∈D

∥∥∥x(t+ 1)− x(t)− ĥα(x(t), u(t))
∥∥∥2 + µdyn(∥α∥2) (3)

with weight-decay coefficient µdyn ≥ 0 to prevent over-fitting. {(x(t), u(t), x(t+1)} are transitions
sampled from demonstrations D, and N is the number of samples. Since all the training data are
drawn from demonstrations, the learned dynamics model is only accurate with in a tunnel H ⊆
Rnx×nu around the demonstrations. We call H the trusted tunnel, which is defined as with radius γ,
H = {(x, u)|∃(x̄, ū) ∈ D, ∥(x, u)− (x̄, ū)∥ ≤ γ}.

Learning the CLF and the Controller Once we have learned the initial policy πinit(x) and the
local dynamics model ĥα(x, u), a controller and the corresponding CLF can be trained inside tunnel
H. We parameterize the CLF using Vθ(x) = x⊤S⊤Sx + pNN(x)

⊤pNN(x), where S ∈ Rnx×nx

is a matrix of parameters, pNN(x) : Rnx → Rnx is a neural network, and θ represents for all
the parameters. With this formulation, Vθ(x) is positive definite by construction. The first term in
Vθ(x) is a quadratic term to capture the linear part of the nonlinear dynamics since quadratics is the
form of CLF in linear systems. The second term is used to model the residue of the CLF which
is not quadratic. The controller is also parameterized with a neural network πϕ(x) : Rnx → Rnu

with parameters ϕ. The desired CLF and the corresponding controller should go towards the goal
without going far away from the tunnel H. So ideally, Vθ(x) and πϕ(x) should be the solution of

4

Under review as a conference paper at ICLR 2023

(a) Iteration 0 (b) Iteration 2 (c) Iteration 6 (d) Iteration 12

Figure 1: Trajectories generated by GIE-CLF in different iterations in inverted pendulum environ-
ment. The counters show the learned CLF. The orange trajectories are generated by the learned
controller in current iteration. The light orange dots are the demonstrations generated by the con-
trollers in previous iterations, which also indicate the trusted tunnel H. The black dot is the goal
point.

the optimization problem:
min E [dist((x, πϕ(x)),H)] (4a)
s.t. Vθ(xgoal) = 0 (4b)

∂Vθ(x)

∂x

ĥα(x, πϕ(x))

dt
+ λVθ(x) ≤ 0, ∀x ∈ H (4c)

where the objective is the expected distance of the points on a controlled trajectory to the trusted
tunnel H, and dt is the simulation time step. Condition (4c) is a widely used discrete version of
condition (1c) (Berkenkamp et al., 2017; Dawson et al., 2022b;a; Chang et al., 2019; Chang &
Gao, 2021). In the experiments, we can only simulate the environments in a discrete way, so it is
reasonable to use the discrete version. We do not include the condition (1b) because it is already
satisfied by the construction of Vθ(x). We solve problem (4) via self-supervised learning (Dawson
et al., 2022a). For conditions (4b) and (4c), we introduce the loss:

LCLF = Vθ(xgoal)
2 +

ηpos
N

∑
x∈D

max

[
ϵ+

∂Vθ(x)

∂x

ĥα(x, πϕ(x))

dt
+ λVθ(x), 0

]
(5)

where ηpos is a positive tuning parameter, dt is the time step, and ϵ > 0 is a parameter that makes the
learned CLF more robust w.r.t. the error of the dynamics model. The function of ϵ will be further
discussed in Section 5. Both of the terms in loss (5) are zero if the conditions (4b) and (4c) are
satisfied inside H. For objective (4a), we introduce the loss Lctrl =

1
N

∑
x∈D ∥πϕ(x)− πinit(x)∥2.

We train the CLF Vθ(x) and the controller πϕ(x) by minimizing the loss LCLF + ηctrlLctrl with
gradient decent methods, where ηctrl is a tuning parameter. If we converge to LCLF = 0, the CLF
will be valid inside H, and the controller will drive us closer to the goal than the initial controller.

Exploration and Iterative Update After the controller is trained for a fixed number of iterations
in the last step, we denote it as πlast and execute it in the environment to collect more transition
data. These data are added to our demonstrations D to enlarge the trusted tunnel H. One can find
the proof of the enlargement of H in Lemma 1 in the appendix. Then, we repeat the process to
learn the dynamics model ĥα(x, u), the CLF Vθ(x), and the controller πϕ(x) with the larger set of
demonstrations D. To further limit the exploration region of πϕ(x), we add the term of the difference
between the current controller πϕ(x) and the converged controller in the last iteration πlast in loss
Lctrl, i.e. we modify Lctrl to be Lctrl = 1

N

∑
x∈D ∥πϕ(x)− πinit(x)∥2 + ∥πϕ(x)− πlast(x)∥2.

Finally, after several iterations, the goal will be inside the tunnel H, and then our controller πϕ(x)
will be guaranteed to reach the goal. We show the process in an inverted pendulum environment in
Figure 1. In Figure 1(a), since the demonstrations are imperfect, our initial controller πinit cannot
reach the goal. Figure 1(b) and Figure 1(c) show that after several iterations, we expand the trusted
tunnel H (the light orange dots) towards the goal and the learned controller gets closer and closer to
the goal. After convergence (Figure 1(d)), our controller is guaranteed to reach the goal.

5 THEORETICAL GUARANTEES

To show the theoretical guarantees of GIE-CLF, we introduce the following theorems. We provide
detailed proofs in Appendix A.

5

Under review as a conference paper at ICLR 2023

Theorem 1. (Correctness of the Learned CLF) Suppose the ground truth environment dynamics
h(x, u) is Lipschitz continuous with constantLh. Let dt be the time step and ω be the maximum error
of the learned dynamics on the training data, i.e. ∥ĥ(x̄, ū)−h(x̄, ū)dt∥ ≤ ω,∀(x̄, ū) ∈ D. Let H be
the trusted tunnel around the training data D with radius γ, i.e. H = {(x, u)|∃(x̄, ū) ∈ D, ∥(x, u)−
(x̄, ū)∥ ≤ γ}. Assume that the learned CLF Vθ(x) is Lipschitz continuous with constant LV , and
the learned controller πϕ(x) is Lipschitz continuous with constant Lπ . Let ϵ ≥ LV (γLh(1+Lπ) +
λγ + ω

dt) + ϵ′ during the CLF training, where ϵ′ is a small positive number, then if the first term of
the loss LCLF converges to 0 and the second term of the loss LCLF is smaller or equal than ϵ′ > 0

on the training points, i.e. ∂Vθ(x)
∂x

ĥ(x,πϕ(x))
dt + λVθ(x) + ϵ ≤ ϵ′,∀x ∈ D, we have

∂Vθ(x)

∂x
h(x, πϕ(x)) + λVθ(x) ≤ 0,∀x ∈ H (6)

In practice, ϵ′ is often a small number (approximately 10−2), and we will provide the details of the
training losses in Appendix B.2. Theorem 1 shows the learned CLF satisfies the CLF conditions
inside H, therefore, by Lyapunov theories, the learned controller will drive us closer to the goal.
ϵ controls the robustness of the learned CLF w.r.t. the Lipschitz constant of the environment, the
radius of the trusted tunnel, and the error of the learned dynamics, which can be tuned. Larger ϵ
makes the learned CLF more robust, but it can also make the training harder, requiring larger neural
networks and longer training time. To limit the Lipschitz constant of the neural networks LV and
Lπ , we add spectral normalization (Miyato et al., 2018) to each layer in the neural networks.

Theorem 2. (Convergence Guarantee of GIE-CLF) Let π(x) be the converged controller of GIE-
CLF, and assume that we sample dense enough in the set of initial states X0, then π(x) can reach
the goal, i.e., let x(t) be the trajectory generated by π(x) with x(0) ∈ X0, we have

lim
t→∞

∥x(t)− xgoal∥ = 0 (7)

Theorem 2 provides the guarantee of our controller to be stable. It also shows the capability of our
algorithm to find a stable controller.

6 EXPERIMENTS

We conduct experiments in four environments including the inverted pendulum, neural lander (Shi
et al., 2019), and the F-16 jet aircraft model (Heidlauf et al., 2018) with two tasks: ground collision
avoidance system (GCAS) and tracking. For each environment, we collect imperfect and unstable
demonstrations using nominal controllers such as LQR (Kwakernaak, 1969) or PID (Bennett, 1996)
with noise, to simulate the imperfect demonstrations given by some bad controllers or non-expert
humans. In the first two environments, we collect 20 trajectories as demonstrations, and in the F-16
environments, we collect 40 of them. In our experiments, we aim to answer the following questions:

1. How does GIE-CLF compare with other algorithms in the case of goal reaching?
2. Can the sampling method in GIE-CLF increase the sampling efficiency?
3. Can GIE-CLF generalize to high dimensional systems?

We provide additional implementation details, descriptions of the environments, videos of the be-
havior of demonstrations and the algorithms, and more results in Appendix B.

Baselines We compare GIE-CLF with the most relevant works in our problem setting including
the state-of-the-art reinforcement learning algorithm PPO (Schulman et al., 2017), standard imita-
tion learning algorithm AIRL (Fu et al., 2018), and algorithms of imitation learning from suboptimal
demonstrations D-REX (Brown et al., 2020) and SSRR (Chen et al., 2021). For PPO, since it needs
reward functions, we hand-craft reward functions in each environment for it. For the imitation learn-
ing algorithms AIRL, D-REX and SSRR, we let them learn directly from the demonstrations. Other
relevant approaches including 2IWIL (Wu et al., 2019), IC-GAIL (Wu et al., 2019), CAIL (Zhang
et al., 2021), and DPS (Novoseller et al., 2020) need different kinds of additional supervision, which
is not implementable under the assumptions in our setting, so we do not include them. For a fairer
comparison, we initialize all the algorithms with the policy learned from the demonstrations using
BC. Compared with these baselines, our algorithm has one additional assumption that we have the

6

Under review as a conference paper at ICLR 2023

0 1
Number of Samples 1e5

1400

1600

1800

2000

R
ew

ar
d

0 1 2
Number of Samples 1e6

1400

1600

1800

2000

(a) Inverted Pendulum

0 1 2
Number of Samples 1e5

5000

6000

7000

8000

9000

R
ew

ar
d

0 2 4
Number of Samples 1e6

5000

6000

7000

8000

9000

(b) Neural Lander

0 2 4
Number of Samples 1e5

400

600

800

R
ew

ar
d

0 1 2
Number of Samples 1e6

400

600

800

(c) F-16 GCAS

0 2 4
Number of Samples1e5

250

0

250

500

R
ew

ar
d

0.0 0.5 1.0
Number of Samples1e7

250

0

250

500

(d) F-16 Tracking

GIE-CLF PPO AIRL D-REX SSRR

Figure 2: The expected return of GIE-CLF and baselines with respect to the number of samples. The
dashed red line shows the converged reward of GIE-CLF. In the right of each subplots, we show the
whole curve of the expected return w.r.t. the number of samples, and since our GIE-CLF converges
too fast compared with other algorithms, we zoom in the region inside the dashed rectangle and
show this region in the left. The triangle on the x-axis shows the number of samples needed by
GIE-CLF to converge. GIE-CLF converges after sampling only 160, 240, 960, 1120 trajectories in
environments (a)-(d). The reward at 0 number of samples is the reward of demonstrations.

knowledge of the desired goal point. However, we believe the comparison is fair because compared
with PPO we do not need the reward function, and compared with AIRL we do not need optimal
demonstrations. It is true that we need more information than D-REX and SSRR, but the perfor-
mance increase of GIE-CLF is large which worth the additional information.

6.1 ENVIRONMENTS

Inverted Pendulum Inverted pendulum is a standard environment for testing control algorithms.
The demonstrations are collected by a biased LQR controller with noises which makes the inverted
pendulum vibrate at a non-goal point to simulate human demonstrations. For the reward function
needed by the RL algorithms, we use r(x) = 2.0− |θ|.
Neural Lander Neural lander (Shi et al., 2019) is a widely used benchmark for systems with
unknown disturbance. The state space is 6D including the 3D position and the 3D velocity, with 3D
linear acceleration as the control input. The goal is to stabilize the neural lander at a point near the
ground. The dynamics include a neural network trained to approximate the aerodynamics ground
effect, which is highly nonlinear and unknown. We use a PID controller to collect demonstrations,
which oscillates and cannot reach the goal point because of the strong ground effect. For the reward
function, we use 10 minus the norm of the velocity and the distance to the goal.

F-16 F-16 (Heidlauf et al., 2018; Djeumou et al., 2021) is a fixed-wing fighter model, with 16D state
space and 4D control inputs. The dynamics is complex and cannot be described as ODEs. Instead,
the authors of the F-16 model provide a look-up table to describe the aerodynamics. We introduce
two tasks in this environment: ground collision avoidance system (GCAS) and waypoint tracking.
In GCAS, the F-16 starts at a posture with the head pointing at the ground. The goal is to pull up
the fighter, avoid colliding with the ground, and fly smoothly at a height between 800 ft and 1200 ft.
We are provided with a nominal controller as the demonstrator which can only pull up the fighter at

7

Under review as a conference paper at ICLR 2023

1400 1600 1800
Reward of Demonstrations

1250

1500

1750

2000

R
ew

ar
d

of
 C

on
tro

lle
rs

(a) Varying Optimality

0

1

2

3

D
is

ta
nc

es

1e 2

(b) Inverted Pendulum

0.5

0.6

0.7

0.8

D
is

ta
nc

es

(c) Neural Lander

2000

2200

2400

2600

D
is

ta
nc

es

(d) F-16 GCAS
0

500

1000

1500

2000

2500

D
is

ta
nc

es

(e) F-16 Tracking

GIE-CLF PPO AIRL D-REX SSRRCLF-sample CLF-dense

Figure 3: Ablations Studies. (a) The converged reward of learned controllers w.r.t. the reward of
the demonstrations. (b-e) Comparison of GIE-CLF with CLF-sample and CLF-dense. In Inverted
Pendulum, Neural Lander, and F-16 Tracking, we report the minimum distance to the goal of each
algorithm. In F-16 GCA environment, we report the minimum dropping distance of each algorithm.

about 300 ft. For the reward function, we use r(x) = 2 − 0.001(h − 1200) when h > 1200, and
r(x) = 1 − 0.001(800 − h) when h < 800, where h is the height of the fighter. In the tracking
environment, the goal for the fighter is to reach a goal point. The demonstrator can drive the F-16 to
a point that is near the goal. As the reward function, the F-16 will be punished by the distance to the
goal point at each step, and it can receive a bonus after reaching the goal.

6.2 RESULTS

We train each algorithm in each environment 5 times with different random seeds, and at each eval-
uation point during the training, we test the controllers 5 times. In Figure 2, we show the expected
rewards and standard deviations of different algorithms with respect to the number of samples used
in the training process. In all the environments, GIE-CLF achieves the highest reward, because it
has the ability to explore the environment guided by the learned CLF, and can learn a controller
that is guaranteed goal-reaching. PPO does not perform well because it lacks stability guarantees of
the learned controller, and its performance depends on the hand-crafted reward function. PPO is a
policy gradient method, which does not directly optimize for the Bellman equation, and there is no
indicator about how stable the solution of PPO is. However, our algorithm explicitly learns the CLF
to provide stability guarantees. In addition, the reward function usually tells the RL agent where the
goal is, but our learned CLF can further tell the agent how to get to the goal, which is much more in-
formative. For the imitation learning algorithms, AIRL learns the same policy as the demonstrations
and cannot make any improvements. D-REX and SSRR are guided by rankings, which is weaker
and less natural guidance compared with our CLF guidance. Therefore, they cannot achieve the
same performance as GIE-CLF, and they even behave worse than AIRL in complex systems. From
Figure 2, we can also observe that GIE-CLF converges very fast, using about one order of mag-
nitude fewer samples than RL and IL algorithms. This proves our argument that the CLF-guided
exploration explores only the necessary regions in the state space and thus improving the sample
efficiency. From the inverted pendulum to the F-16 Tracking environment, as the complexity of the
environment increases, the gap between GIE-CLF and other algorithms becomes larger and larger.
This result demonstrates the capability of GIE-CLF to deal with high dimensional systems.

6.3 ABLATION STUDIES

We do ablation experiments to show the influence of optimality of the demonstrations. We use the
inverted pendulum environment, and collect demonstrations with different levels of optimality by
adding directed noise in the demonstrator controllers. For each noise level, we train each algorithm
3 times with different random seeds and test each converged controller 20 times. The results are
shown in Figure 3(a). We observe that GIE-CLF outperforms other algorithms with demonstrations
at different levels of optimality. In addition, we do not observe a significant performance drop of
GIE-CLF as the demonstrations become worse. This is because the quality of the demonstrations
only influences the convergence speed of GIE-CLF, instead of the learned controller. No matter how
bad the demonstrations are, GIE-CLF will finally find a goal-reaching controller. PPO’s behavior is

8

Under review as a conference paper at ICLR 2023

also consistent since the reward function remains unchanged, but it performs worse than GIE-CLF.
Other imitation learning algorithms, however, have a performance drop as the demonstrations get
worse, because they all by some means depend on the quality of demonstrations.

To show the sampling efficiency and the generalization ability of GIE-CLF, we design another two
baselines CLF-sample and CLF-dense. There is a stronger assumption for them, that they can sample
transitions from any states in the state space, which is unrealistic in the real world. For these two
algorithms, we follow the same training process as GIE-CLF, but instead of collecting samples of
transitions by applying the current controller in each iteration, we directly sample transitions from
the whole state space before training, and let them be the training set of the dynamics. CLF-sample
uses the same number of samples as GIE-CLF, while CLF-dense uses the same number of samples
as the RL and IL algorithms, which is much more than GIE-CLF. We train the algorithms in our four
environments. For Inverted Pendulum, Neural Lander, and F-16 Tracking environments, we report
the minimum distance of these algorithms to the goal. For F-16 GCA environment, since every
controller will pass the goal region (height between 800ft and 1200ft), we compare the minimum
dropping distance instead. As shown in Figure 3 (b)-(e), GIE-CLF outperforms these two baselines.
This shows the strong sampling efficiency of GIE-CLF. In addition, although CLF-dense uses much
more samples than CLF-sample, its performance still does not increase a lot. This proves that naively
increasing the number of samples cannot solve the problem.

7 EXTENSIONS

0 1 2
Number of Samples 1e5

1000

1500

2000

R
ew

ar
d

0 2 4
Number of Samples 1e6

1000

1500

2000

GIE-CLF PPO AIRL D-REX SSRR

Figure 4: The expected return w.r.t. the number
of samples in Dubins car path tracking environ-
ment.

Our framework is general since it can be directly
applied to learn other certificates in environ-
ments with unknown dynamics. For example,
Control Contraction Matrices (CCMs) are dif-
ferential analogues Lyapunov functions (prov-
ing stability in the tangent state space), and can
also be learned with a similar framework and
theoretical guarantees. We change the learn-
ing CLF part to learning CCM algorithms (Sun
et al., 2021; Chou et al., 2021), and use the same
framework to jointly learn the local dynamics,
CCM, and the tracking controller. We test our
algorithm in a Dubins car path tracking environ-
ment, and as shown in Figure 4, our algorithm
outperforms all the RL and IL baselines. We will
further discuss the extensions in Appendix D.

8 CONCLUSION

Summary We propose a general learning framework, GIE-CLF, for learning guaranteed stable con-
trollers in high-dimensional environments with unknown dynamics. GIE-CLF iteratively learns the
local dynamics to form the trusted tunnel, and jointly learns a CLF and a controller that expands the
trusted tunnel towards the goal. Once the goal is inside the trusted tunnel, GIE-CLF is guaranteed
to be goal-reaching. We provide theoretical guarantees on the stability of GIE-CLF and show that
the learned controller outperforms baselines in various environments. We also show that the same
framework can be applied to learn other certificates in environments with unknown dynamics.

Limitations and Future Work Our framework is limited in a few ways: We need some imperfect
demonstrations for initialization in high-dimensional systems. Without the demonstrations, GIE-
CLF may take a long time to expand the trusted tunnel to the goal. In addition, we need to have
Lipschitz assumptions with the dynamics and to sample dense enough in the initial set of states to
derive the theoretical guarantees. If the dynamics are not Lipschitz continuous or the dimensions of
the state space is too high that we cannot sample dense enough even in the initial set, it will be hard
to learn a valid CLF inside the trusted tunnel. Finally, if we want strong guarantee of the learned
controller, we need to do NN verification using falsification tools (Gao et al., 2012). However, we
do not include that part because these tools cannot scale to large NN like the ones we consider in
this paper. We leave these limitations to future work. We will discuss more in Appendix C.

9

Under review as a conference paper at ICLR 2023

9 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the information of the environments and the baselines in both
Section 6 and Appendix B. In addition, we provide the implementation details including the net-
work structures, hyper-parameters, and the dynamics of environments in Appendix B. Moreover, we
provide numerical results in Appendix B. We also provide the video of the learned controllers and
the source code in the supplementary materials. For all the theoretical guarantees we introduce in
Section 5, we provide proofs in Appendix A.

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

Alessandro Abate, Daniele Ahmed, Alec Edwards, Mirco Giacobbe, and Andrea Peruffo. Fossil: a
software tool for the formal synthesis of lyapunov functions and barrier certificates using neural
networks. In Proceedings of the 24th International Conference on Hybrid Systems: Computation
and Control, pp. 1–11, 2021.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Amir Ali Ahmadi and Anirudha Majumdar. Some applications of polynomial optimization in oper-
ations research and real-time decision making. Optimization Letters, 10(4):709–729, 2016.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Stuart Bennett. A brief history of automatic control. IEEE Control Systems Magazine, 16(3):17–25,
1996.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing sys-
tems, 30, 2017.

Ruxandra Bobiti and Mircea Lazar. Automated-sampling-based stability verification and doa es-
timation for nonlinear systems. IEEE Transactions on Automatic Control, 63(11):3659–3674,
2018.

Nicholas Boffi, Stephen Tu, Nikolai Matni, Jean-Jacques Slotine, and Vikas Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning, pp. 1341–1350. PMLR, 2021.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330–359. PMLR,
2020.

Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science &
business media, 2013.

Zhangjie Cao and Dorsa Sadigh. Learning from imperfect demonstrations from agents with varying
dynamics. IEEE Robotics and Automation Letters, 6(3):5231–5238, 2021.

Fernando Castaneda, Jason J Choi, Bike Zhang, Claire J Tomlin, and Koushil Sreenath. Gaussian
process-based min-norm stabilizing controller for control-affine systems with uncertain input ef-
fects and dynamics. In 2021 American Control Conference (ACC), pp. 3683–3690. IEEE, 2021.

10

Under review as a conference paper at ICLR 2023

Ya-Chien Chang and Sicun Gao. Stabilizing neural control using self-learned almost lyapunov
critics. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1803–
1809. IEEE, 2021.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural infor-
mation processing systems, 32, 2019.

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via
self-supervised reward regression. In Conference on Robot Learning, pp. 1262–1277. PMLR,
2021.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3387–3395, 2019.

Jason Choi, Fernando Castañeda, Claire J Tomlin, and Koushil Sreenath. Reinforcement learning
for safety-critical control under model uncertainty, using control lyapunov functions and control
barrier functions. In Robotics: Science and Systems (RSS), 2020.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Uncertainty-aware constraint learning for adap-
tive safe motion planning from demonstrations. In Conference on Robot Learning, 2020.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Model error propagation via learned con-
traction metrics for safe feedback motion planning of unknown systems. arXiv preprint
arXiv:2104.08695, 2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing sys-
tems, 31, 2018.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-stable neural-
network control. arXiv preprint arXiv:2109.14152, 2021.

Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned certificates: A survey of
neural lyapunov, barrier, and contraction methods. arXiv preprint arXiv:2202.11762, 2022a.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust
neural lyapunov-barrier functions. In Conference on Robot Learning, pp. 1724–1735. PMLR,
2022b.

Franck Djeumou, Aditya Zutshi, and Ufuk Topcu. On-the-fly, data-driven reachability analysis and
control of unknown systems: an f-16 aircraft case study. In Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, pp. 1–2, 2021.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Nathan Gaby, Fumin Zhang, and Xiaojing Ye. Lyapunov-net: A deep neural network architecture
for lyapunov function approximation. arXiv preprint arXiv:2109.13359, 2021.

Sicun Gao, Jeremy Avigad, and Edmund M Clarke. δ-complete decision procedures for satisfiability
over the reals. In International Joint Conference on Automated Reasoning, pp. 286–300. Springer,
2012.

Peter Giesl and Sigurdur Hafstein. Review on computational methods for lyapunov functions. Dis-
crete & Continuous Dynamical Systems-B, 20(8):2291, 2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

11

Under review as a conference paper at ICLR 2023

Minghao Han, Lixian Zhang, Jun Wang, and Wei Pan. Actor-critic reinforcement learning for control
with stability guarantee. IEEE Robotics and Automation Letters, 5(4):6217–6224, 2020.

Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges in f-
16 ground collision avoidance and other automated maneuvers. In ARCH@ ADHS, pp. 208–217,
2018.

Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, and Doina Precup.
Optiongan: Learning joint reward-policy options using generative adversarial inverse reinforce-
ment learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Huibert Kwakernaak. Linear optimal control systems, volume 1072. 1969.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural networks. Foundations and Trends® in
Optimization, 4(3-4):244–404, 2021.

Shenyu Liu, Daniel Liberzon, and Vadim Zharnitsky. Almost lyapunov functions for nonlinear
systems. Automatica, 113:108758, 2020.

Johan Lofberg. Pre-and post-processing sum-of-squares programs in practice. IEEE transactions
on automatic control, 54(5):1007–1011, 2009.

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories with
sums of squares programming. In 2013 IEEE International Conference on Robotics and Automa-
tion, pp. 4054–4061. IEEE, 2013.

Ian R Manchester and Jean-Jacques E Slotine. Control contraction metrics: Convex and intrinsic
criteria for nonlinear feedback design. IEEE Transactions on Automatic Control, 62(6):3046–
3053, 2017.

Arash Mehrjou, Mohammad Ghavamzadeh, and Bernhard Schölkopf. Neural lyapunov redesign.
Proceedings of Machine Learning Research vol, 144:1–24, 2021.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 1029–1038. PMLR, 2020.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robust-
ness and optimization. California Institute of Technology, 2000.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent sdps via approx-
imations of the psd cone. Mathematical Programming, 171(1):1–54, 2018.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral computation, 3(1):88–97, 1991.

Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 8682–8692. PMLR, 2021a.

12

Under review as a conference paper at ICLR 2023

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In International Conference on Learning
Representations, 2021b.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Proceedings of
the 20th international joint conference on Artifical intelligence, pp. 2586–2591, 2007.

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from coun-
terexamples and demonstrations. Autonomous Robots, 43(2):275–307, 2019.

Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network: Adap-
tive stability certification for safe learning of dynamical systems. In Conference on Robot Learn-
ing, pp. 466–476. PMLR, 2018.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724. IEEE, 2020.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Matteo Saveriano and Dongheui Lee. Learning barrier functions for constrained motion planning
with dynamical systems. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 112–119. IEEE, 2019.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233–242, 1999.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 International Conference on Robotics and Automation (ICRA),
pp. 9784–9790. IEEE, 2019.

Dawei Sun, Susmit Jha, and Chuchu Fan. Learning certified control using contraction metric. In
Conference on Robot Learning, pp. 1519–1539. PMLR, 2021.

Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama. Variational imitation
learning with diverse-quality demonstrations. In International Conference on Machine Learning,
pp. 9407–9417. PMLR, 2020.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning
from noisy demonstrations. In AISTATS, 2021.

Hiroyasu Tsukamoto and Soon-Jo Chung. Neural contraction metrics for robust estimation and
control: A convex optimization approach. IEEE Control Systems Letters, 5(1):211–216, 2020.

Steven Wang, Sam Toyer, Adam Gleave, and Scott Emmons. The imitation library
for imitation learning and inverse reinforcement learning. https://github.com/
HumanCompatibleAI/imitation, 2020.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/HumanCompatibleAI/imitation
https://github.com/HumanCompatibleAI/imitation

Under review as a conference paper at ICLR 2023

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imi-
tation learning from imperfect demonstration. In International Conference on Machine Learning,
pp. 6818–6827. PMLR, 2019.

Alp Yurtsever, Joel A Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021.

Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learn-
ing from demonstrations with varying optimality. Advances in Neural Information Processing
Systems, 34, 2021.

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement
learning. In 5th Annual Conference on Robot Learning, 2021.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd national conference on Artificial intelligence-
Volume 3, pp. 1433–1438, 2008.

Vrushabh Zinage and Efstathios Bakolas. Neural koopman lyapunov control. arXiv preprint
arXiv:2201.05098, 2022.

14

Under review as a conference paper at ICLR 2023

A PROOFS

In this section, we provide proofs of the theorems introduced in Section 5.

Theorem 1. (Correctness of the Learned CLF) Suppose the ground truth environment dynamics
h(x, u) is Lipschitz continuous with constantLh. Let dt be the time step and ω be the maximum error
of the learned dynamics on the training data, i.e. ∥ĥ(x̄, ū)−h(x̄, ū)dt∥ ≤ ω,∀(x̄, ū) ∈ D. Let H be
the trusted tunnel around the training data D with radius γ, i.e. H = {(x, u)|∃(x̄, ū) ∈ D, ∥(x, u)−
(x̄, ū)∥ ≤ γ}. Assume that the learned CLF Vθ(x) is Lipschitz continuous with constant LV , and
the learned controller πϕ(x) is Lipschitz continuous with constant Lπ . Let ϵ ≥ LV (γLh(1+Lπ) +
λγ + ω

dt) + ϵ′ during the CLF training, where ϵ′ is a small positive number, then if the first term of
the loss LCLF converges to 0 and the second term of the loss LCLF is smaller or equal than ϵ′ > 0

on the training points, i.e. ∂Vθ(x)
∂x

ĥ(x,πϕ(x))
dt + λVθ(x) + ϵ ≤ ϵ′,∀x ∈ D, we have

∂Vθ(x)

∂x
h(x, πϕ(x)) + λVθ(x) ≤ 0,∀x ∈ H (8)

Proof. For ∀x̄ ∈ D, we have

∂Vθ(x̄)

∂x

ĥ(x̄, πϕ(x̄))

dt
+ λVθ(x̄)

=
∂Vθ(x̄)

∂x

ĥ(x̄, πϕ(x̄))− h(x̄, πϕ(x̄))dt+ h(x̄, πϕ(x̄))dt

dt
+ λVθ(x̄)

=
∂Vθ(x̄)

∂x

ĥ(x̄, πϕ(x̄))− h(x̄, πϕ(x̄))dt

dt
+
∂Vθ(x̄)

∂x
h(x̄, πϕ(x̄)) + λVθ(x̄)

≥ −LV
ω

dt
+
∂Vθ(x̄)

∂x
h(x̄, πϕ(x̄)) + λVθ(x̄)

(9)

The inequality is the Cauchy-Schwartz Inequality with the fact that Vθ(x) is Lipschitz continuous so

it also has bounded gradient LV . After the convergence of the training, we have ∂Vθ(x̄)
∂x

ĥ(x̄,πϕ(x̄))
dt +

λVθ(x̄) ≤ −ϵ+ ϵ′,∀x̄ ∈ D. Substitute this in Equation (9), we have

−LV
ω

dt
+
∂Vθ(x̄)

∂x
h(x̄, πϕ(x̄)) + λVθ(x̄) ≤ −ϵ+ ϵ′ (10)

Therefore,

∂Vθ(x̄)

∂x
h(x̄, πϕ(x̄)) + λVθ(x̄) ≤ LV

ω

dt
− ϵ+ ϵ′ ≤ −LV γ(Lh(1 + Lπ) + λ), ∀x̄ ∈ D (11)

Then, for ∀x ∈ H, we have

∂Vθ(x)

∂x
h(x, πϕ(x)) + λVθ(x)

=
∂Vθ(x)

∂x
(h(x, πϕ(x))− h(x̄, πϕ(x̄)) + h(x̄, πϕ(x̄))) + λVθ(x)

=
∂Vθ(x)

∂x
(h(x, πϕ(x))− h(x̄, πϕ(x̄))) +

∂Vθ(x)

∂x
h(x̄, πϕ(x̄)) + λ(Vθ(x)− Vθ(x̄)) + λVθ(x̄)

≤ LV (h(x, πϕ(x))− h(x̄, πϕ(x̄))) + λLV γ +
∂Vθ(x)

∂x
h(x̄, πϕ(x̄)) + λVθ(x̄)

(12)
where x̄ ∈ D is the nearest training data of x. The inequality is from the Lipschitz continuity of
Vθ(x) and the definition of the trusted tunnel H. From the Lipschitz continuity of the dynamics
h(x, u) and the learned controller πϕ(x), we have

h(x, πϕ(x))− h(x̄, πϕ(x̄)) ≤ Lh∥(x, πϕ(x))− (x̄, πϕ(x̄))∥ = Lh∥(x− x̄, πϕ(x)− πϕ(x̄))∥
≤ Lh∥x− x̄∥+ ∥πϕ(x)− πϕ(x̄)∥ ≤ (1 + Lπ)γLh

(13)

15

Under review as a conference paper at ICLR 2023

where the second inequality is the triangle inequality, and the first and the third inequality uses the
Lipschitz continuity of h(x, u) and πϕ(x), and the definition of the trusted tunnel H. Substitute
Equation (11) and Equation (13) to Equation (12), we have

∂Vθ(x)

∂x
h(x, πϕ(x)) + λVθ(x)

≤ LV Lhγ(1 + Lπ) + λLV γ − LV γ(Lh(1 + Lπ) + λ)

= 0, ∀x ∈ H

(14)

Theorem 2. (Convergence Guarantee of GIE-CLF) Let π(x) be the converged controller of GIE-
CLF, and assume that we sample dense enough in the set of initial states X0, then π(x) can reach
the goal, i.e., let x(t) be the trajectory generated by π(x) with x(0) ∈ X0, we have

lim
t→∞

∥x(t)− xgoal∥ = 0 (15)

Proof. The proof follows the following several lemmas.

Lemma 1. Let Hτ be the trusted tunnel of the τ -th iteration. Then we have Hτ ⫋ Hτ+1 when
xgoal ̸∈ Hτ .

Proof. The assumption that we sample dense enough in the set of initial states X0 makes sure that
our Monte Carlo estimation of the trusted tunnel H is correct. (This may not be strict, and we will
further discuss about it in Appendix C.2). By the construction of the trusted tunnel H, we have
Hτ ⊆ Hτ+1, because we collect more data by executing controller πτ in the environment, which
will enlarge the set of demonstrations D. Since H is defined as the tunnel around D with error γ,
we can conclude that H becomes larger or stays the same size after each iteration, i.e., Hτ ⊆ Hτ+1.
Using Theorem 1, we know that the CLF conditions are satisfied in Hτ with controller πτ , and in
Hτ+1 with controller πτ+1. By Lyapunov theories, when xgoal ̸∈ Hτ , we have Vθ(x) > 0,∀x ∈
Hτ , so V̇θ(x) < 0,∀x ∈ Hτ . Therefore, the controller will converge exponentially towards the
point V (x) = 0, which is xgoal. Since xgoal ̸∈ Hτ , we can conclude that the controller will finally
leave Hτ . Once the controller leaves Hτ , it will collect demonstrations that is not in Hτ , which will
enlarge the trusted tunnel H, so Hτ ⫋ Hτ+1.

Lemma 2. Let Vτ (x) be the learned Lyapunov function at the τ -th iteration. Then
min

x∈Hτ+1

Vτ (x) ≤ min
x∈Hτ

Vτ (x) (16)

and the equality holds if and only if xgoal ∈ Hτ .

Proof. Using Lemma 1, we know that Hτ ⊆ Hτ+1, so the inequality holds. When xgoal ∈ Hτ ,
we have minx∈Hτ+1

Vτ (x) = minx∈Hτ
Vτ (x) = V (xgoal) = 0, so the sufficient condition holds.

For the necessary condition, we prove its inverse negative proposition, that minx∈Hτ+1
Vτ (x) <

minx∈Hτ Vτ (x) if xgoal ̸∈ H. This is obvious since Hτ+1 is generated from Hτ by exploring
towards the direction that Vτ (x) decreases.

Lemma 3. If xgoal ∈ Hτ , our learned controller πτ can reach the goal.

Proof. Note that by construction, H is the reachable set of the controller πτ starting from x(0) ∈ X0.
Also, by Theorem 1, the CLF conditions are satisfied inside Hτ with V (xgoal) = 0. Therefore, by
Lyapunov theories, πτ can reach the goal.

Combining the above lemmas, we can conclude that H will grow in each iteration towards the
goal, and once it contains xgoal, our learned controller is goal-reaching. Therefore, our converged
controller can reach the goal.

B EXPERIMENTS

In this section, we provide additional experimental details and results. We provide the code of our
experiments in the file ‘gie-clf.zip’ in the supplementary materials.

16

Under review as a conference paper at ICLR 2023

B.1 EXPERIMENTAL DETAILS

Here we introduce the details of the experiments, including the implementation details of GIE-CLF
and the baselines, choice of hyper-parameters, and detailed introductions of environments. The
experiments are run on a 64-core AMD 3990X CPU @ 3.60GHz and four NVIDIA RTX A4000
GPUs (one GPU for each training job).

B.1.1 IMPLEMENTATION DETAILS

Implementation of GIE-CLF Our framework contains three models: the dynamics model
ĥα(x, u), the CLF Vθ(x) = x⊤S⊤Sx + pNN(x)

⊤pNN(x), and the controller πϕ(x). ĥα(x, u),
pNN(x), and πϕ(x) are all neural networks with two hidden layers with size 128 and Tanh as the
activation function. S ∈ Rnx×nx is a matrix of parameters. To limit the Lipschitz constant of the
learned models LV and Lπ , we add spectral normalization (Miyato et al., 2018) to each layer in the
neural networks. We implement our algorithm in the PyTorch framework (Paszke et al., 2019) based
on the rCLBF repository1 (Dawson et al., 2022b). During training, we use ADAM (Kingma & Ba,
2014) as the optimizer to optimize the parameters of the neural networks. The loss function used in
training the controller and the CLF is

L = ηgoalLgoal + ηposLpos + ηctrlLctrl (17)

where ηgoal, ηpos, ηctrl are tuning parameters, which we will further introduce in Appendix B.1.2,
and

Lgoal = Vθ(xgoal)
2

Lpos =
1

N

∑
x∈D

max

[
ϵ+

∂Vθ(x)

∂x

ĥα,β(x, πϕ(x))

dt
+ λVθ(x), 0

]

Lctrl =
1

N

∑
x∈D

∥πϕ(x)− πinit(x)∥2 + ∥πϕ(x)− πlast(x)∥2

(18)

Implementation of the baselines We implement PPO based on the open-source python pack-
age stablebaselines32 (Raffin et al., 2021), AIRL based on the open-source python package Imita-
tion3 (Wang et al., 2020), and D-REX and SSRR based on their official implementations 45, with
some adjustments based on the CAIL repository 6 (Zhang et al., 2021). All the neural networks in
the baselines, including the actor, the critic, the discriminator, and the reward module, have two hid-
den layers with size 128 and Tanh as the activation function. We use ADAM (Kingma & Ba, 2014)
as the optimizer with learning rate 3× 10−4 to optimize the parameters of the neural networks.

B.1.2 CHOICE OF HYPER-PARAMETERS

In our framework, the hyper-parameters include the Lyapunov convergence rate λ, the robust param-
eter ϵ, the weights of the losses ηgoal, ηpos, ηctrl, and the parameters used in training including the
learning rate and the weight decay coefficient µdyn. λ controls the convergence rate of the learned
controller. Larger λ enables the controller to reach the goal faster, but it also makes the training
harder. In our implementation, we choose λ = 1.0. ϵ controls the robustness of the learned CLF
w.r.t. the Lipschitz constant of the environment, the radius of the trusted tunnel, and the error of the
learned dynamics, but it also makes the training harder. We choose ϵ = 1.0 for the inverted pen-
dulum and the neural lander environments, and ϵ = 2.0 for the F-16 environments. The weights of
the losses control the importance of each loss term. Generally, in a simple environment, we tend to
use large ηgoal and ηpos with small ηctrl, so that the radius of the trusted tunnel can be large and the
controller can explore more regions in each iteration, which makes the convergence of our algorithm
faster. In a complex environment, however, we tend to use small ηgoal and ηpos with large ηctrl. This

1https://github.com/MIT-REALM/neural clbf (BSD-3-Clause license)
2https://github.com/DLR-RM/stable-baselines3 (MIT license)
3https://github.com/HumanCompatibleAI/imitation (MIT license)
4https://github.com/dsbrown1331/CoRL2019-DREX (MIT license)
5https://github.com/CORE-Robotics-Lab/SSRR
6https://github.com/Stanford-ILIAD/Confidence-Aware-Imitation-Learning (MIT license)

17

Under review as a conference paper at ICLR 2023

will limit the divergence between the updated controller and the reference controllers (initial con-
troller and the controller learned in the last iteration) so that the radius of the trusted tunnel won’t be
so large that the learned CLF is no longer valid. We will further introduce the choice of the weights
in Appendix B.1.3. The learning rate controls the convergence rate of the training. Large learning
rates can make the training faster, but it may also make the training unstable and miss the minimum.
We let the learning rate be 3 × 10−4. For the weight decay coefficient µdyn, we let it be 10−3 to
make the learned dynamics model smooth, without deviating too much from the origin mean square
error loss.

B.1.3 ENVIRONMENTS

Inverted Pendulum Inverted pendulum is a standard environment for testing control algorithms.
The state of the inverted pendulum is x = [θ, θ̇]⊤, where θ is the angle of the pendulum to the straight
up location, and the control input is the torque. The dynamics is given by ẋ = f(x) + g(x)u, with

f(x) =

[
θ̇

gθ
L − bθ̇

mL2

]
g(x) =

[
1

mL2

] (19)

where g = 9.80665 is the gravitational acceleration, m = 1 is the mass, L = 1 is the length, and
b = 0.01 is the damping. We define the goal point at xgoal = [0, 0]⊤. The simulating time step is
0.01.

We set the initial state with θ ∈ [−0.2, 0.2] and θ̇ ∈ [−0.2, 0.2]. For the demonstrations, we solve
the LQR controller with Q = I2 and R = 1, where In is the n-dimensional identity matrix, and add
standard deviation 0.1 and bias 4.0 to the solution to make it unstable. We collect 20 trajectories
for the demonstrations, where each trajectory has 1000 time steps. For hyper-parameters in the loss
function (19), we use ηgoal = 10.0, ηpos = 10.0, ηctrl = 1.0.

Neural Lander Neural lander (Shi et al., 2019) is a widely used benchmark for systems with
unknown disturbance. The state of the Neural Lander is x = [px, py, pz, vx, vy, vz]

⊤, with control
input u = [fx, fy, fz]

⊤. px, py, pz are the 3D displacements, vx, vy, vz are the 3D velocities, and
fx, fy, fz are the 3D forces. The dynamics is given by ẋ = f(x) + g(x)u, with

f(x) =

[
vx, vy, vz,

Fa1

m
,
Fa2

m
,
Fa3

m
− g′

]⊤

g(x) =


0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m


(20)

where g′ = 9.81 is the gravitational acceleration, m = 1.47 is the mass, and Fa is the learned
dynamics of the ground effect, represented as a 4-layer neural network. We define the goal point at
xgoal = [0, 0, 0.5, 0, 0, 0]⊤. The simulating time step is 0.01.

We set the initial state with px, py ∈ [−2, 2], pz ∈ [1, 2], and vx, vy, vz = 0. For the demonstrations,
we use a PD controller

u =

[−8px − vx
−8py − vy

−8pz − vz +mg′

]
(21)

We collect 20 trajectories for the demonstrations, where each trajectory has 1000 time steps. For
hyper-parameters in the loss function (19), we use ηgoal = 100.0, ηpos = 50.0, ηctrl = 1.0.

F-16 Ground Collision Avoidance System (GCAS) F-16 (Heidlauf et al., 2018)7 is a fixed-wing
fighter model. Its state space is 16D including air speed v, angle of attack α, angle of sideslip β,

7https://github.com/stanleybak/AeroBenchVVPython (GPL-3.0 license)

18

Under review as a conference paper at ICLR 2023

Method Inverted Pendulum Neural Lander F-16 GCAS F-16 Tracking

GIE-CLF 1986.84± 2.31 9607.81± 75.66 798.48± 59.41 399.80± 271.54
PPO 1932.63± 58.98 8057.52± 794.97 465.56± 161.59 −29.00± 0.22
AIRL 1556.76± 172.55 8496.47± 354.62 618.39± 188.15 263.74± 229.44

D-REX 1607.71± 171.85 6814.79± 1846.51 452.72± 124.36 −127.24± 214.49
SSRR 1963.60± 37.85 8204.53± 823.13 367.60± 142.50 −38.57± 19.18
Demo 1594.23± 57.72 8536.57± 95.93 698.61± 40.31 176.35± 477.94

Table 1: Converged rewards and standard deviations of GIE-CLF and the baselines in the four
environments

Method Inverted Pendulum Neural Lander F-16 GCAS F-16 Tracking

GIE-CLF 172 252 492 572
PPO 2000 5000 2000 10000
AIRL 2000 5000 2000 10000

D-REX 2000 5000 2000 10000
SSRR 2000 5000 2000 10000

Table 2: Number of samples (k) used for GIE-CLF and the baselines in the four environments

roll angle ϕ, pitch angle θ, yaw angle ψ, roll rate P , pitch rate Q, yaw rate R, northward horizontal
displacement pn, eastward horizontal displacement pe, altitude h, engine thrust dynamics lag pow,
and three internal integrator states. The control input is 4D including acceleration at z direction,
stability roll rate, side acceleration + raw rate, and the throttle command. The dynamics are complex
and cannot be described as ODEs, so the authors of the F-16 model provide a look-up table to
describe the aerodynamics. The look-up table is an approximation of the Lipschitz real dynamics,
and also since we simulate the system in a discrete way in the experiments, the look-up table does
not violate our assumptions about the real dynamics. We define the goal point at h = 1000. The
simulating time step is 0.02.

We set the initial state with v ∈ [520, 560], α = 0.037, β = 0, ϕ = 0, θ = −1.4π, ψ = 0.8π,
P ∈ [−5, 5], Q ∈ [−1, 1], R ∈ [−1, 1], pn = 0, pe = 0, h ∈ [2600, 3000], pow ∈ [4, 5]. For
the demonstrations, we use the controller provided with the model. We collect 40 trajectories for
the demonstrations, where each trajectory has 500 time steps. For hyper-parameters in the loss
function (19), we use ηgoal = 100.0, ηpos = 50.0, ηctrl = 50.0.

F-16 Tracking The F-16 Tracking environment uses the same model as the F-16 GCAS envi-
ronment. We define the goal point at [pn, pe, h] = [7500, 5000, 1500], and ψ = arctan pn

pe
. The

simulating time step is 0.02.

We set the initial state with v ∈ [520, 560], α = 0.037, β = 0, ϕ ∈ [−0.1, 0.1], θ ∈ [−0.1, 0.1],
ψ ∈ [−0.1, 0.1], P ∈ [−0.5, 0.5], Q ∈ [−0.5, 0.5], R ∈ [−0.5, 0.5], pn = 0, pe = 0, h = 1500,
pow ∈ [4, 5]. For the demonstrations, we use the controller provided with the model. We collect 40
trajectories for the demonstrations, where each trajectory has 500 time steps. For hyper-parameters
in the loss function (19), we use ηgoal = 100.0, ηpos = 50.0, ηctrl = 1000.0.

B.2 MORE RESULTS

Numerical Comparison We provide the numerical comparison of the converged rewards and the
number of samples of GIE-CLF and the baselines in Table 1 and Table 2, corresponding to Fig-
ure 2 in the main text. We can observe that GIE-CLF outperforms all the baseline methods in all
environments, and the number of samples GIE-CLF used is about one order of magnitude less than
the baselines. We also provide the numerical results of the ablation studies in Table 3 correspond-
ing to Figure 3(a) in the main text. It is clear that the performance of GIE-CLF is consistently
the best with demonstrations with different optimality, without significant performance drop as the
demonstrations become worse.

19

Under review as a conference paper at ICLR 2023

Demonstrations 1837 1773 1688 1594

GIE-CLF 1995.63± 2.69 1995.38± 3.71 1995.00± 3.16 1995.52± 3.05
PPO 1958.74± 2.15 1949.79± 8.93 1978.03± 1.52 1943.27± 5.75
AIRL 1831.78± 47.37 1875.50± 23.55 1616.20± 4.62 1604.92± 5.97

D-REX 1888.75± 3.61 1772.05± 8.98 1831.68± 6.50 1646.63± 6.56
SSRR 1981.96± 0.65 1970.13± 0.84 1952.56± 1.34 1982.67± 0.61

Demonstrations 1498 1400 1302

GIE-CLF 1995.28± 2.81 1995.41± 3.12 1992.91± 3.22
PPO 1962.92± 2.80 1952.21± 2.34 1916.23± 2.95
AIRL 1399.69± 11.65 1578.24± 11.39 1154.61± 7.45

D-REX 1620.61± 12.01 1649.49± 6.22 1053.79± 3.22
SSRR 1952.05± 1.73 1756.77± 62.98 1944.05± 5.48

Table 3: Converged reward of GIE-CLF and the baselines in the inverted pendulum environment
with demonstrations with different optimality.

Method Inverted Pendulum Neural Lander F-16 GCAS F-16 Tracking

GIE-CLF 0.0014± 0.0012 0.50± 0.01 2202.10± 219.26 310.54± 124.44
PPO 0.032± 0.035 1.09± 0.36 2450.37± 351.60 8267.63± 5.61
AIRL 0.19± 0.01 0.73± 0.06 2558.85± 201.13 550.84± 83.90

D-REX 0.23± 0.12 0.87± 0.36 2738.22± 83.67 4809.76± 2184.88
SSRR 0.040± 0.034 1.03± 0.31 2269.20± 824.33 8060.87± 410.69

CLF-sample 0.015± 0.013 0.72± 0.07 2404.74± 255.45 1874.60± 266.85
CLF-dense 0.0088± 0.0113 0.68± 0.08 2346.28± 139.02 1517.89± 494.08

Table 4: Comparison of GIE-CLF with baselines. In Inverted Pendulum, Neural Lander, and F-16
Tracking, we report the minimum distance to the goal of each algorithm. In F-16 GCA environment,
we report the minimum dropping distance of each algorithm.

Minimum Distance to the Goal In the main text, we compared the expected rewards of GIE-
CLF and the baselines w.r.t. the number of samples. Here we use another metric to further show
the efficacy of GIE-CLF. Like Figure 3 in the main text, we compare the minimum distance to the
goal in Inverted Pendulum, Neural Lander, and F-16 Tracking environments, and in F-16 GCAS
environment, since every controller will pass the goal region (height between 800ft and 1200ft), we
compare the minimum dropping distance instead. The results are shown in Table 4. We can observe
that GIE-CLF outperforms all the baselines in all environments.

Training Losses In the theoretical results we provide, we make an assumption that the training
losses of the framework should be small. The loss LCLF is defined as:

LCLF = Vθ(xgoal)
2 +

ηpos
N

∑
x∈D

max

[
ϵ+

∂Vθ(x)

∂x

ĥα(x, πϕ(x))

dt
+ λVθ(x), 0

]
(22)

We call the first term ”Loss goal” and the second term ”Loss descent”. In Figure 5, we show the
curves of the two loss terms w.r.t. the training iterations. We can observe that in all environments,
”Loss goal” converges to about 10−3 and ”Loss descent” converges to about 10−2, which supports
the assumptions we make in the theoretical results. In addition, because we use the PyTorch (Paszke
et al., 2019) framework, which often initialize the neural networks to output 0 with 0 input, the initial
”Loss goal” is very close to 0, and it remains low during the training process.

Videos for Learned Controllers We show the videos of the learned policies of the experiments
in the file ‘experiments.mp4’ in the supplementary materials.

20

Under review as a conference paper at ICLR 2023

0 20000 40000
Iteration

10 7

10 5

10 3

Lo
ss

 g
oa

l

0 20000 40000
Iteration

10 1

100

Lo
ss

 d
es

ce
nt

(a) Inverted Pendulum

0 25000 50000
Iteration

10 6

10 3

100

Lo
ss

 g
oa

l

0 25000 50000
Iteration

10 5

10 3

10 1

101

Lo
ss

 d
es

ce
nt

(b) Neural Lander

0 50000 100000
Iteration

10 8

10 6

10 4

10 2

Lo
ss

 g
oa

l

0 50000 100000
Iteration

10 2

100

102

104

Lo
ss

 d
es

ce
nt

(c) F-16 GCAS

0 100000
Iteration

10 3

101

105

109

Lo
ss

 g
oa

l

0 100000
Iteration

10 4

10 1

102

105

Lo
ss

 d
es

ce
nt

(d) F-16 Tracking

Figure 5: The training loss of GIE-CLF w.r.t. the training iterations.

C DISCUSSIONS

C.1 VERIFICATION OF THE LEARNED CLFS

Our focus of the paper is to use the learned CLF to guide the exploration and synthesize feedback
controllers for high-dimensional unknown systems. The experimental results show that the learned
controllers are goal-reaching, and we find that the learned CLF satisfies the conditions in the majority
of the trusted tunnel. However, we do not claim that our learned CLF is exhaustively verified.
Although the theories we provide show that the learned CLF is valid under some assumptions, these
assumptions may not be completely satisfied in experiments. For example, the loss LCLF may not be
zero, and the trusted tunnel may have a large error, etc. If we want to verify the learned CLF is valid
in the whole trusted tunnel, additional verification tools are needed, including SMT solvers (Gao
et al., 2012; Chang et al., 2019), Lipschitz-informed sampling methods (Bobiti & Lazar, 2018), etc.
However, these verification tools are known to have poor scalability, and scalable verification for the
learned CLFs remains an open problem.

C.2 CONSTRUCTION OF THE REACHABLE SETS

In our approach, we use Monte Carlo method to approximate the reachable states of the learned
controller to construct the trusted tunnel. However, this is not strict, since it is impossible to sample
all the states in the initial set, and the discretization of the time can also cause issues. To formally
construct the reachable set, we need additional neural network reachability analysis (Liu et al., 2021)
tools, but they are hard to be used in high-dimensional systems because of their high computational
complexity. Neural network reachability analysis in high-dimensional complex environments is still
an open problem.

C.3 POSSIBLE FUTURE DIRECTIONS

Our algorithm can also benefit from the verification tools. For instance, neural network reachability
analysis enables us to approximate the reachable set better than the Monte Carlo method we used,
and SMT solvers allow us to find counterexamples to augment the training data to make our learned
CLF converge faster. In addition, almost Lyapunov functions (Liu et al., 2020) show that the system

21

Under review as a conference paper at ICLR 2023

can still be stable even if the Lyapunov conditions do not hold everywhere. We are excited to explore
these possible improvements in our future work.

D DETAILS ABOUT THE EXTENSIONS

D.1 LEARNING CONTROL CONTRACTION MATRICES WITH UNKNOWN DYNAMICS

In Section 7 in the main text, we introduced that our algorithm can also be directly applied to learn
Control Contraction Matrices (CCMs) in environments with unknown dynamics. Here we provide
more details.

We consider the control-affine systems

ẋ = f(x) + g(x)u (23)

where x ∈ X ⊆ Rnx is the state, u ∈ U ⊆ Rnu is the control input. The tracking problem we
consider is to design a controller u = π(x, x∗, u∗), such that the controlled trajectory x(t) can track
any target trajectory x∗(t) generated by some reference control u∗(t) when x(0) is near x∗(0).

CCMs are widely used to provide contraction guarantees for tracking controllers. A fundamental
theorem in CCM theory (Manchester & Slotine, 2017) says that if there exists a metric M(x) and a
constant λ > 0, such that

g⊤⊥

(
−∂fW (x) + ∂f(x)

∂x W (x)

∧

+ 2λW (x)

)
g⊥ ≺ 0 (24a)

g⊤⊥

(
∂gjW (x)− ∂gj(x)

∂x W (x)

∧)
g⊥ = 0, j = 1, ..., nu (24b)

where g⊥(x) is an annihilator matrix of g(x) satisfying g⊤⊥(x)g(x) = 0, W (x) = M(x)−1 is the
dual metric, gj is the j-th column of matrix g, and for a matrix P , P̂ = P + P⊤, then there exists
a controller u = π(x, x∗, u∗), such that the controlled trajectory x(t) will converge to the reference
trajectory x∗(t) exponentially. Such controller can be find by satisfying the following condition:

Ṁ +M(A+ gK)
∧

+ 2λM ≺ 0 (25)

where A = ∂f
∂x +

∑nu

i=1 u
i ∂gi
∂x , ui is the i-th element of the vector u, and K = ∂u

∂x .

We use a similar framework as GIE-CLF to learn the CCM in unknown systems. Since CCM theories
require the environment dynamics to be control-affine, we change the model of the dynamics to be
ĥα,β(x, u) = fα(x) + gβ(x)u, where fα(x) : Rnx → Rnx and gβ(x) : Rnx → Rnx × Rnu

are neural networks with parameters α and β. Given imperfect demonstrations, we still first use
imitation learning to learn an initial controller πinit(x, x∗, u∗), and fit the local model ĥα,β(x, u). In
order to find g⊥(x), we need the learned gβ(x) to be sparse so that we can hand-craft g⊥(x) for it,
so we add the Lasso regression term in the loss Ldyn:

Ldyn(α, β) =
1

N

∑
x(t),u(t),x(t+1)∈D

∥∥∥x(t+ 1)− x(t)− ĥα,β(x(t), u(t))
∥∥∥2

+ µdyn(∥α∥2 + ∥β∥2 + ∥β∥1)
(26)

where ∥β∥1 is the 1-norm of β. Then, we jointly learn the controller and the corresponding CCM
inside H. We parameterize the controller and the dual metric using neural networks πϕ(x, x∗, u∗)
and Wθ(x) with parameters ϕ and θ, and train them by replacing the CLF loss LCLF in the main
text with the following loss:

LCCM =
1

N

∑
(x,x∗,u∗)∈D

LPD(−C1(x; θ)) +

nu∑
j=1

∥Cj
2(x; θ)∥F + LPD(−Cu(x, x

∗, u∗;ϕ))


(27)

where C1(x; θ), C2(x; θ), and Cu(x, x
∗, u∗;ϕ) are the LHS of Equation (24a), Equation (24b), and

Equation (25), respectively. ∥ · ∥F is the Frobenius norm. LPD is the loss function to make its input

22

Under review as a conference paper at ICLR 2023

Method Converged Reward Number of Samples (k) Mean Tracking Error

Ours 1966.91± 15.42 252 0.0228 ± 0.0073
PPO 1547.52± 74.74 5000 0.597± 0.157
AIRL 1517.81± 119.11 5000 0.494± 0.255

D-REX 653.46± 114.71 5000 0.701± 0.166
SSRR 1334.08± 155.85 5000 0.476± 0.214

Table 5: Converged Reward, Number of Samples, and Tracking Error of our algorithm and baselines
in the Dubins car path tracking environment

positive definite. In our implementation, we use LPD(·) = 1
N

∑
ReLU(λ(·)), where λ(·) is the

eigenvalues. Note that θ is not a parameter of Cu since we only use Cu to find the controller. For
more detailed discussions of the loss functions, one can refer to Sun et al. (2021) and Chou et al.
(2021). Once we have the learned controller, we apply it in the environment to collect more data
and enlarge the trusted tunnel H, following the same process of GIE-CLF. We repeat this process
several times until convergence.

D.2 EXPERIMENTAL DETAILS OF CCM

D.2.1 IMPLEMENTATION DETAILS

We implement our algorithm using the PyTorch framework (Paszke et al., 2019) based on the CCM
repository 8 (Sun et al., 2021). The neural networks in the dynamics model fα(x) and gβ(x) have
two hidden layers with size 128 and Tanh as the activation function. We parameterize our controller
using

πϕ(x, x
∗, u∗) = ω2(x, x

∗) · tanh (ω1(x, x
∗) · (x− x∗)) + u∗ (28)

where ω1(x, x
∗) and ω2(x, x

∗) are two neural networks with two hidden layers with size 128 and
Tanh as the activation function. Therefore, we have x = x∗ =⇒ u = u∗ by construction. We
model the dual metric using

Wθ(x) = C(x)⊤C(x) + ωI (29)

where C(x) ∈ Rnx×nx is a neural networks with two hidden layers with size 128 and Tanh as
the activation function, I is the identity matrix and ω is the minimum eigenvalue. By construction,
W (x) is symmetric. We use ADAM as the optimizer with learning rate 3 × 10−4 to optimize
the parameters. For the hyper-parameters, we set the convergence rate of CCM λ = 0.5, and the
minimum eigenvalue ω = 0.1.

D.2.2 ENVIRONMENT

We test our algorithm in a Dubins car path tracking environment. The state of the Dubins car is
x = [px, py, ψ, v]

⊤, where px, py are the position of the car, ψ is the heading, and v is the velocity.
The control input is u = [ω, a]⊤ where ω is the angular acceleration and a is the longitudinal
acceleration. The dynamics is given by ẋ = f(x) + g(x)u, with

f(x) = [v cosψ, v sinψ, 0, 0]⊤

g(x) =

 0 0
0 0
1 0
0 1

 (30)

We set the initial state with px, py ∈ [−0.2, 0.2], ψ ∈ [−0.5, 0.5], and v ∈ [0, 0.2]. For the demon-
strations, we use the LQR controller solved with the error dynamics. We collect 20 trajectories for
the demonstrations with randomly generated reference paths, where each trajectory has 1000 time
steps. For the reward function, we use r(x) = 2 − ∥(px, py) − (p∗x, p

∗
y)∥, where (p∗x, p

∗
y) is the

position on the reference path.

8https://github.com/MIT-REALM/ccm

23

Under review as a conference paper at ICLR 2023

D.2.3 NUMERICAL RESULTS

In Section 7 in the main text, we compare the expected reward of our algorithm and the baselines.
Here we provide more detailed numerical results. In Table 5, we show the converged reward, the
number of samples used in training, and the mean tracking error of our algorithm and the baselines.
We can observe that our algorithm achieves the highest reward and the lowest mean tracking error,
with a large gap compared with other algorithms. In addition, the samples we used in training are
more than one order of magnitude less than other algorithms.

24

	Introduction
	Related Work
	Problem Setting and Preliminaries
	GIE-CLF
	Theoretical Guarantees
	Experiments
	Environments
	Results
	Ablation Studies

	Extensions
	Conclusion
	Reproducibility Statement
	Proofs
	Experiments
	Experimental Details
	Implementation Details
	Choice of Hyper-parameters
	Environments

	More Results

	Discussions
	Verification of the Learned CLFs
	Construction of the Reachable Sets
	Possible Future Directions

	Details about the Extensions
	Learning Control Contraction Matrices with Unknown Dynamics
	Experimental Details of CCM
	Implementation Details
	Environment
	Numerical Results

