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ABSTRACT

Membership Inference Attacks (MIAs) pose a critical privacy threat by enabling
adversaries to determine whether a specific sample was included in a model’s
training dataset. Despite extensive research on MIAs, systematic comparisons
between generative and discriminative classifiers remain limited. This work ad-
dresses this gap by first providing theoretical motivation for why generative clas-
sifiers exhibit heightened susceptibility to MIAs, then validating these insights
through comprehensive empirical evaluation. Our study encompasses discrimi-
native, generative, and pseudo-generative text classifiers across varying training
data volumes, evaluated on nine benchmark datasets. Employing a diverse array
of MIA strategies, we consistently demonstrate that fully generative classifiers
which explicitly model the joint likelihood P (X,Y ) are most vulnerable to mem-
bership leakage. Furthermore, we observe that the canonical inference approach
commonly used in generative classifiers significantly amplifies this privacy risk.
These findings reveal a fundamental utility-privacy trade-off inherent in classi-
fier design, underscoring the critical need for caution when deploying generative
classifiers in privacy-sensitive applications. Our results motivate future research
directions in developing privacy-preserving generative classifiers that can main-
tain utility while mitigating membership inference vulnerabilities 1.

1 INTRODUCTION

Text Classification (TC) is a fundamental task in Natural Language Processing (NLP), serving as the
backbone for numerous applications including sentiment analysis, topic detection, intent classifica-
tion, and document categorization (Yogatama et al., 2017; Castagnos et al., 2022; Roychowdhury
et al., 2024; Kasa et al., 2024; Pattisapu et al., 2025). As machine learning models have become in-
creasingly sophisticated and widely deployed, concerns about their privacy implications have grown
substantially. One of the most critical privacy vulnerabilities is the Membership Inference Attack
(MIA), where an adversary attempts to determine whether a specific data point was included in a
model’s training set (Shokri et al., 2017). MIAs represent a fundamental threat to data privacy by
exploiting differential model behaviors on training versus non-training data to infer membership in
the training set (Shokri et al., 2017; Carlini et al., 2019; Shejwalkar et al., 2021; Song et al., 2022;
Song & Mittal, 2021; Feng et al., 2025). The implications are particularly severe for sensitive per-
sonal data, potentially violating privacy expectations and regulatory requirements. Recent surveys
have highlighted the growing sophistication of these attacks (Amit et al., 2024; Feng et al., 2025).

The majority of MIA research in TC has concentrated on discriminative models like BERT (De-
vlin et al., 2019), which directly model P (Y |X) and learn decision boundaries without explicitly
modeling data distributions (Zheng et al., 2023; Kasa et al., 2025). Studies have revealed how fac-
tors such as overfitting, model capacity, and training data size influence attack success rates (Amit
et al., 2024). Despite this discriminative focus, there has been renewed interest in generative classi-
fiers for TC (Li et al., 2025). Unlike discriminative models, generative classifiers explicitly model
the joint distribution P (X,Y ) = P (X|Y )P (Y ), offering compelling advantages such as: superior
performance in low-data regimes (Kasa et al., 2025; Yogatama et al., 2017), reduced susceptibil-

1Code available at https://anonymous.4open.science/r/privacy-attacks-gendisc-classifiers-143E
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ity to spurious correlations (Li et al., 2025), and principled uncertainty estimates via Bayes’ rule
(Bouguila, 2011). The renaissance of generative classifiers in TC has been particularly bolstered
through scalable model architectures including autoregressive models (Radford et al., 2018), dis-
crete diffusion models (Lou et al., 2024), and generative masked language models (Wang & Cho,
2019b).

However, the very characteristics that make generative classifiers attractive explicit modeling of data
distributions and superior performance with limited data raise important privacy questions. While
MIAs have been extensively studied for discriminative models, a significant gap exists in under-
standing how different classification paradigms compare in their vulnerability to such attacks. In
this work, we present the first large-scale, systematic analysis of the vulnerability of transformer-
based text classifiers to MIAs across a spectrum of modeling paradigms. Following Kasa et al.
(2025), we consider three broad categories: (1) discriminative models such as encoder-style mod-
els DISC, which model the conditional distribution P (Y |X); (2) fully generative models that
explicitly model P (X,Y ), such as autoregressive (AR) or discrete diffusion models (DIFF); and
(3) pseudo-generative models, such as Masked Language Models MLM, and pseudo-autoregressive
P-AR models, where the label is appended at the end of the input sequence.

Contributions. To our knowledge, this work provides the first systematic study of membership
inference risk for generative text classifiers, combining theory, controlled toy settings, and large-
scale transformer-based experiments.

(1) Theory under a single-shadow black-box framework. We formalize membership inference
for generative vs. discriminative classifiers in a black-box setting with either probabilities or logits
exposed. Our bounds decompose the optimal attack advantage into leakage from the marginal P (X)
and the conditional P (Y | X), clarify when logits (joint scores) can strictly dominate probabilities
(conditionals). Using a simulation setting with tunable dimension, sample size, and class separation,
we show that generative classifiers leak more through log-joint scores than discriminative posteriors
do—quantitatively aligning with our theoretical predictions about marginal vs. conditional channels.

(2) First systematic analysis for MIA in text classification. Across multiple datasets and five model
paradigms (discriminative, fully generative: AR and discrete diffusion, and pseudo-generative), we
provide a head-to-head evaluation of MIA vulnerability under matched training protocols. We iso-
late the effects of (i) architectural factorization (AR vs. p-AR), (ii) output interface (logits vs. prob-
abilities), and (iii) data size. We find that fully generative models are consistently more vulnerable,
with the strongest leakage observed when logits from K-pass scoring are exposed.

(3) Empirical analysis and practical guidance. We show that different architectures yield distinct
privacy–utility trade-offs, with generative models offering better low-sample accuracy and robust-
ness benefits at the cost of higher leakage, while pseudo-generative models emerge as more privacy-
conscious alternatives at higher data regmies. Building on these results, we provide actionable
guidance on API exposure (favoring probabilities over logits), model choice, and training practices
for privacy-sensitive deployments.

2 RELATED WORK AND BACKGROUND

Generative vs. discriminative classifiers. Classic analyses compare generative and discrimina-
tive learning on efficiency and asymptotics: discriminative models achieve lower asymptotic er-
ror, while generative models converge faster in low-data regimes (Efron, 1975; Ng & Jordan,
2001; Liang & Jordan, 2008). In text classification, recent work has renewed interest in genera-
tive classifiers that model P (X,Y ) = P (X | Y )P (Y ), reporting advantages in calibration, un-
certainty estimation, robustness to spurious correlations, and performance under limited data (Yo-
gatama et al., 2017; Zheng et al., 2023; Li et al., 2025; Kasa et al., 2025). Modern instantiations
of generative classifiers in TC include autoregressive (AR) label-prefix classifiers (Radford et al.,
2018), discrete diffusion models (Lou et al., 2024), and generative uses of masked LMs (Wang
& Cho, 2019b). A practical drawback is that fully generative label-prefix AR classifiers typically
require K-pass inference—one forward pass per label yi to score logP (x, yi)—whereas discrim-
inative models compute P (Y | X) in a single pass; conversely, the generative formulation natu-
rally supports Bayes-rule posteriors and principled uncertainty quantification via the decomposition
P (Y | X) ∝ P (X | Y )P (Y ) (Bouguila, 2011). We investigate the generative text classifiers dis-
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cussed in Li et al. (2025); Kasa et al. (2025) compare them with the well studied BERT-style encoder
classifiers in this work.

Membership inference background. MIAs exploit differences in a model’s behavior on train
vs. non-train points. Shokri et al. (2017) introduced the multi–shadow-model paradigm for train-
ing an attack classifier on output vectors. Salem et al. (2018b) showed this can be simplified to
single-shadow or even no-shadow attacks using confidence/loss statistics, and we adopt the single-
shadow assumption in our theoretical setup by modeling a proxy Q alongside the target P and
reasoning about induced score laws (PS , QS). Yeom et al. (2018) established that overfitting is not
the sole driver of MIAs: they connect attack advantage to generalization error via a loss-threshold
attack and show that influence of individual examples can cause leakage even when generaliza-
tion error is small. Complementary systematization in ML-as-a-Service highlights how API expo-
sure (labels/top-k/probabilities), shadow alignment, and data mismatch shape attack efficacy (Truex
et al., 2018).

Scope and assumptions. We study black-box adversaries that query the classifier and observe
either probabilities or pre-softmax logits (when available); white-box access to parameters/gradients
is out of scope. Also prior works (Sablayrolles et al., 2019; Salem et al., 2018a; Huang et al.,
2024) have shown that white-box access offers limited additional advantage both theoretically and
empirically. For fully generative label-prefix models, we assume K-pass inference is the canonical
deployment mode; we analyze both logit- and probability-based attack surfaces and relate them to
joint vs. conditional scoring used later in our theory. See Appendix A for an expanded survey,
additional NLP-specific MIAs, and a detailed taxonomy of threat models.

3 MOTIVATION

Before discussing MIA attacks on on benchmark datasets, we first develop a theoretical account of
how membership vulnerability manifests in generative classifiers, identify factors that exacerbate
leakage (e.g., marginal memorization and weak conditional generalization), and formally compare
what is revealed by joint vs. conditional exposures. We then instantiate these results in a controlled
toy setting with a known data-generating process, showing that the empirical behavior of standard
attacks mirrors the theoretical predictions.

3.1 PRELIMINARIES AND NOTATION

Let Ω denote the universe of all datapoints, where each datapoint z ∈ Ω can be decomposed into
a feature–label pair (x, y) with x ∈ X (features) and y ∈ Y (labels). We consider two generative
classifiers: P : the target model, which induces a joint probability distribution P (X,Y ) and Q: the
shadow model, trained independently on population data (Salem et al., 2018b), which induces its
own probability distribution Q(X,Y ) which the attacker uses to determine sample membership.
We are interested in quantifying the difference between P and Q in terms of their induced joint
distributions over (X,Y ), which captures susceptibility to MIA. Let an attack signal be any mea-
surable function S = S(p̂(X,Y )) of the model output (e.g., logits (log p̂(x, y′))y′∈Y , probabilities
p̂(· | x) = softmax(log p̂(x, ·)), or a scalar score log p̂(x, yi)) which is exposed to the client and
the attacker tries to come up with an optimal decision φ rule based on the signal S to determine
the membership. Given any attack signal S, let PS := L(S | P ) and QS := L(S | Q) denote the
pushforward laws under the target/shadow distributions. Intuitively, these are the score distributions
the attacker tunes their threshold on: in our empirical evaluation (cf. §5), the standard MIA AUROC
is measured by sweeping a decision threshold that gives full weight to members under P versus non-
members under Q. For any (possibly randomized) decision rule φ : range(S)→ [0, 1], the achieved
membership advantage Advφ(S) := EP

[
φ(S)

]
− EQ

[
φ(S)

]
is always upper-bounded by the

total-variation distance between the pushforwards, and the latter cannot exceed the TV between the
original joint distributions,

Advφ(S) ≤ TV
(
PS , QS

)
≤ TV

(
P,Q

)
= sup

A∈F
|P (A)−Q(A)| = 1

2

∫
Ω

∣∣p(ω)− q(ω)
∣∣ dµ(ω)

3
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where we assume P and Q are defined on the same measurable space (Ω,F) and p and q denote
densities of P and Q with respect to a common dominating measure µ (this is done for ease of
mathematical exposition).

It is well known that TV(P,Q) equals the maximum distinguishing advantage of any binary hypoth-
esis test between P and Q, and in the first result, we show that in the case of generative classifiers,
this can be cleanly bounded using a generative and discriminative component.

Lemma 3.1 (Two-way decomposition: upper and lower bounds). For the score-optimal attacker
observing the feature-label pair (X,Y ) (equivalently, any sufficient statistic), the optimal advantage
equals TV(PXY , QXY ) and satisfies∣∣ TV(PX , QX) − Ex∼PX

TV
(
PY |X=x, QY |X=x

) ∣∣ ≤ TV(PXY , QXY ) ≤ (3.1)

TV(PX , QX) + Ex∼PX
TV

(
PY |X=x, QY |X=x

)
.

By Pinsker, any observable signal S obeys

Adv(S) ≤ TV(PXY , QXY ) ≤
√

1
2 KL

(
PX∥QX

)
+

√
1
2 Ex∼PX

KL
(
PY |X=x∥QY |X=x

)
.

Discussion. Lemma 3.1 cleanly separates membership leakage of a generative classifier into a
marginal term KLX (learning P (X)) and a conditional term KLY |X (learning P (Y | X)), matching
the spirit of the bound already introduced in §3.1 (Theorem 1). This makes precise why modeling
P (X) can increase MIA risk. (See App. B for the proof and for a KL-formulation mirroring §3.1.)

Lemma 3.2 (Joint ⪰ Conditional under full-vector exposure). Let the model expose the per-class
joint score vector Sjoint(x) =

(
log p̂(x, y)

)
y∈Y and the conditional score vector Scond(x) =

(
p̂(y |

x)
)
y∈Y = softmax

(
Sjoint(x)

)
. Then for any membership game,

Adv
(
Sjoint

)
≥ Adv

(
Scond

)
,

with equality iff the per-x additive normalizer log p̂(X) is P -a.s. equal under P and Q (i.e., it
carries no marginal signal about membership).

Discussion. Lemma 3.2 says that when logits proportional to log p̂(x, y) are exposed, passing to
posteriors cannot increase advantage (data-processing). Intuitively, softmax removes the shared
− log p̂(x) term and therefore discards whatever membership signal is present in P (X).

Theorem 3.3 (Scalar joint can dominate conditional under systematic marginal skew). Consider
binary classification. Suppose the attacker receives either (i) a scalar joint score Sscal

joint(X,Y ) :=

log p̂(X,Y ) or (ii) a conditional score Scond(X,Y ) := p̂(Y | X). Assume the member vs. non-
member conditionals satisfy the bounded likelihood-ratio condition: there exist constants 0 < α ≤
β < ∞ such that for PX -a.e. x and both labels y,

α ≤ P (y | x)
Q(y | x)

≤ β.

Then there exists c = c(α, β) ∈ (0, 1] such that

Adv
(
Sscal
joint

)
> Adv

(
Scond

)
whenever cKLX > KLY |X .

An explicit choice is c(α, β) =
log β − logα

1 + log β − logα
.

Discussion. Theorem 3.3 addresses the practically important case where only a single generative
score is exposed (e.g., log-likelihood for the observed label, or a label-agnostic scalar derived from
the joint). Unlike Lemma 3.2, scalar joint and conditional are not deterministic transforms of each
other; nonetheless, whenever the marginal skew KLX dominates the conditional skew KLY |X
(“systematic marginal skew”) and conditionals are not wildly different between P and Q, the scalar
joint channel is provably more susceptible.
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Implications. (i) Exposing logits of a generative model (full vector) is always at least as risky
as exposing posteriors. (ii) Even if only a single generative score is exposed, sufficiently strong
marginal memorization makes the generative channel strictly more vulnerable than conditional out-
puts. (iii) The decomposition in Lemma 3.1 explains our empirical hierarchy: models that must
learn P (X) (fully generative) leak through the marginal term in addition to the conditional term,
inflating MIA advantage. (iv) Our framework is fully general, not limited to text classification. The
decompositions in Lemma 3.1 and the dominance results in Lemma 3.2 & Theorem 3.3 apply to
any generative–discriminative classifier pair because they rely only on model-induced score distri-
butions, independent of modality or architecture and therefore extend to images, audio, tabular data,
or any supervised domain.

3.2 TOY ILLUSTRATION: CONTROLLED ANALYSIS OF MIA VULNERABILITY

To validate our theoretical insights on the heightened vulnerability of generative classifiers, we con-
duct a controlled synthetic experiment that teases out key factors behind membership inference such
as accuracy, signal/noise ratio, dimensionality, etc. Following Li et al. (2025), we use a toy setup of
linear classifiers on linearly separable data, which strips away confounders, letting us directly study
how marginal vs. conditional learning drives leakage before moving to complex real-world models.

Experimental Setup. We design a synthetic binary classification task where each input x ∈ Rd con-
sists of two components: x = [xcore, xnoise]. The core feature xcore ∼ N (y ·µ, σ2) correlates directly
with the binary label y ∈ {−1,+1}, where µ controls class separation. The remaining d− 1 coordi-
nates are independent standard Gaussian noise. We systematically vary key parameters: dimension-
ality d ∈ {16, 64, 256}, training size ntrain ∈ {50, 200}, class separation µ ∈ {0.05, 0.10, . . . , 0.50},
and class balance w ∈ {0.1, 0.3, 0.5}. We compare the discriminative Logistic Regression (LR) with
the generative Linear Discriminant Analysis (LDA), evaluating three membership inference scores:
max-probability for both models, and log-joint likelihood for LDA.

Notation (attack scores). LR/prob denotes the max-probability (confidence) score from LR,
LDA/prob is the same max-probability score computed from LDA posteriors p̂LDA(y | x); and
LDA/log-joint is the LDA log-joint score. All three are label-agnostic membership scores.

sprob(x) = max
y∈{−1,+1}

p̂LR(y | x), slogjoint(x) = max
y

{logP (y) + logN (x | µy,Σ)}.

MIA evaluation (AUROC). For a given score s(·) and trained model, we compute scores on training
samples (members) and on an i.i.d. test set (non-members). Treating members as positives and non-
members as negatives, we sweep a threshold on s(·) to obtain the ROC curve and report its area
(AUROC), the standard practice for membership inference. We aggregate results over 5 random
seeds and plot mean curves with shaded std. deviation bands. Here we present the plots and analysis
for the balanced case of w = 0.5. For the imbalanced cases, the same is deferred to Appendix G.

Figures 1 reveals several critical findings that support our theoretical predictions: (a) In the low-
sample regime, LDA is markedly more sample-efficient than LR: for d ∈ {16, 64}, the accuracy
achieved by LR with ntrain = 200 is already matched (or exceeded) by LDA with ntrain = 50; this
accuracy gap widens as d increases (smaller n/d). (b) Comparing LDA’s two scores, the joint score
(LDA/log-joint) consistently yields larger membership susceptibility than the posterior max-
probability (LDA/prob), with the gap growing as d increases or n/d decreases, underscoring the
additional risk from exposing joint/likelihood values. (c) Comparing discriminative and generative
posteriors, at small µ LR/probexhibits lower susceptibility than LDA/prob; as µ grows, LR/prob’s
susceptibility rises sharply with margin and can meet or exceed LDA/prob, whereas LDA/proboften
flattens or slightly decreases while LDA/log-jointremains high—consistent with likelihood domi-
nating at larger separations. Apart from a single benign regime (balanced w = 0.5, large µ, low d),
LDA/log-jointexceeds LR/prob in susceptibility. (d) Increasing dimensionality d at fixed n lowers
accuracy and increases membership advantage; in parallel, the across-seed standard deviation of
both accuracy and AUROC narrows, yielding more consistent (but worse) accuracy and stronger,
more stable membership signals in high dimensions.

The superior sample-efficiency of LDA is in part tied to the parameteric assumptions of LDA being
satisfied by the data on which it is being fit. In order to tease out this we introduce a misspecification
specifically a Huber-ϵ contamination Huber (1992) during the data geeneration process. The de-
tailed plots are given in Appendix G.5. We notice that contamination reverses the generative LDA’s

5
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Figure 1: Membership inference vulnerability increases with model confidence and dimension-
ality. Top row: test accuracy vs. core separation µ. Bottom row: membership inference advantage
(AUROC) vs. µ. Columns correspond to d ∈ {16, 64, 256}. Colors denote model types and in-
ference methods: Logistic Regression max-probability (blue), LDA max-probability (orange), LDA
log-joint (green). Markers indicate training size ntrain ∈ {50, 200, 2000}. Results averaged over 5
seeds with ±1.96× SEM bands.

clean-data sample-efficiency edge in accuracy — LR is typically better—because a few large-norm
replacements strongly distort shared-covariance estimation even with shrinkage. However, exposing
density scale remains risky: LDA/log-joint is the most susceptible membership score across most
regimes we tested, particularly at high d and small n. These controlled experiments provide concrete
evidence that generative classifiers face fundamental privacy disadvantages, with the risk being par-
ticularly acute when exposing joint likelihood values or operating in high-dimensional, low-sample
regimes.

4 EXPERIMENTAL SETUP

We evaluate privacy vulnerabilities in text classification by training multiple classifiers across
datasets and subjecting them to diverse membership inference attacks (MIAs). Following Li et al.
(2025); Kasa et al. (2025), we study three main classifier families:

Discriminative (DISC/ENC): Standard BERT-style encoders modeling P (Y |X) using linear head
on top of [CLS] token to directly map text X to label Y . There’s no explicit memorization signal
in this modeling approach.

Fully Generative: Models that capture the joint distribution P (X,Y ) through:

(i) Label-Prefix Autoregressive (AR) models generate text x conditioned on a label prefix (e.g.,
Positive: The film was a masterpiece.). Classification is performed via logits us-
ing likelihood estimation, argmaxl∈K logP (x, yl), in a K-pass fashion (K = number of labels).
Such models may be more vulnerable to MIAs since logits expose information about P (X). Al-
ternatively, applying a softmax yields probabilities: softmax

(
logP (x, yl)

)
= P (x, yl)/P (x) =

P (yl|x), where the shared denominator P (x) cancels across classes.

(ii) Discrete Diffusion Models (DIFF) are trained on (X,Y ) pairs with a denoising objective. Fol-
lowing Lou et al. (2024), noise gradually corrupts the input sequence to pure [MASK] tokens in the
forward process, with original input reconstruction in the reverse process. At inference, the model
predicts y from [MASK], conditional on x. We use Diffusion Weighted Denoising Score Entropy

6
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(DWDSE) for logits, providing an upper bound on log-likelihood: − log pθ0(x) ≤ LDWDSE(x)
under the ELBO.

Pseudo-Generative: This category represents a middle ground between discriminative and fully
generative approaches. We explore using Masked Language Models (MLM) trained for reconstruct-
ing masked tokens bi-directionally rather than full causal modeling. These model the pseudo-joint
likelihood rather than the true joint P (X,Y ) (Wang & Cho, 2019a).

All models utilize transformer-based architectures and are trained from scratch to avoid confounding
effects from pre-training. Following Kasa et al. (2024), we evaluate three model size configurations:
small (1 layer, 1 head), medium (6 layers, 6 heads), and large (12 layers, 12 heads). To enable fair
comparison, we maintain comparable parameter counts across all architectures within each size con-
figuration. Implementation details including model sizes and training hyperparameters are provided
in Appendix B.

Attack Methodology: We examine two main classes of MIAs:(a) Threshold-Based attacks derive
simple metrics from model outputs: (i) Max Probability: max(P (y|x)), (ii) Entropy: H(P (y|x)) =
−
∑

i pi log pi, and (iii) Log-Loss using cross-entropy on the true label. (b) Model-Based attacks
train an explicit attack model by querying the target classifier with member and non-member sam-
ples, representing each using the model’s output probability or logits vector concatenated with
ground-truth labels, and training a Gradient Boosting Model (GBM-logits / GBM-probs) to
predict membership status. Detailed attack implementations are provided in Appendix B. Although
there exists more sophisticated attacks (Shejwalkar et al., 2021; Song et al., 2022; Amit et al., 2024)
(details in Appendix A.2), as will see in §5 that these basic attacks do a good job of revealing the
differential vulnerability of generative and discriminative classifiers on TC.

Dataset Details: Our evaluation spans nine public text classification benchmarks : AG News Zhang
et al. (2015), Emotion Saravia et al. (2018), Stanford Sentiment Treebank (SST2 & SST5) Socher
et al. (2013), Multiclass Sentiment Analysis, Twitter Financial News Sentiment, IMDb Maas
et al. (2011), and Hate Speech Offensive Davidson et al. (2017), covering diverse domains from
sentiment analysis to topic classification. All models are trained from scratch using AdamW opti-
mizer with early stopping to prevent overfitting, following Li et al. (2025) and Kasa et al. (2025).
We measure attack success using Area Under the ROC Curve (AUROC), where 1.0 indicates perfect
attack and 0.5 indicates random guessing. Dataset characteristics are provided in Appendix B.

5 RESULTS & DISCUSSIONS

Building on our theoretical analysis and synthetic experiments with LDA and LR (Section 3.2),
we present comprehensive empirical evidence from real-world text classification scenarios. Our
analysis examines: (1) privacy vulnerabilities across discriminative, fully generative, and pseudo-
generative architectures, with patterns aligning with our controlled findings, (2) impact of model
output representations (logits versus probabilities) on membership inference risk, and (3) how dif-
ferent approaches to modeling P (X,Y ) affect the privacy-utility trade-off. Through experiments on
nine diverse datasets, we establish concrete relationships between architectural choices and privacy
vulnerabilities, while identifying promising directions for privacy-preserving text classification.

Figure 2 shows that fully generative models (DIFF, GEN) are consistently more vulnerable to MIAs
than discriminative (DISC) and pseudo-generative (MLM) models across five datasets. For clarity,
only GBM-logits and GBM-probs are shown; other attacks follow the same trend (see Sec-
tion F). Medium models behave similarly, while small AR are least susceptible, consistent with Kasa
et al. (2025), who show these models behave nearly randomly. Full results across all datasets and
model sizes are in Section F. Additionally, we also report True Positive Rate (TPR)@False Positive
Rate (FPR)=0.1 (see Table 11) on a representative dataset (AG News) using a 12-layer model com-
paring DISC and AR. Consistent with AUROC findings, we again observe that AR exhibit higher
susceptibility across all attack types, even under stricter low-FPR operating points.

These findings confirm our hypothesis: modeling P (X,Y ) forces generative models to capture both
P (Y |X) and P (X), amplifying memorization risk compared to purely discriminative objectives.

Vulnerability does not vary monotonically with training size (Figure 2, Table 7), consistent with
Amit et al. (2024). Early stopping dampens overfitting in low-data regimes, masking expected
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Figure 2: [Best viewed in color] MIA success rate (AUROC) compared across full-size model architectures
with varying training dataset sizes. We evaluate fully generative classifiers (AR, DIFF), a discriminative clas-
sifier (DISC), and pseudo-generative models (MLM). The top row displays attack performance using model
logits, while the bottom row shows results using output probabilities. Higher AUROC values indicate in-
creased privacy vulnerability. Results averaged across 5 random seeds.

trends. Removing early stopping (training 20 epochs on AGNews) restores the expected pattern:
susceptibility decreases with larger training sets (refer Table 8 in Appendix F).

We also the study how the MIA vulnerability changes with the representation of a class in the
training sample in Appendix D and find that vulnerability difference between majority and minority
classes (i.e. the classes with the highest and lowest representation in the training split) is high for
DISC,MLM paradigms and it is relatively less pronounced for the generaive AR, DIFF paradigms.

Logits as a High-Bandwidth Privacy Leakage Channel: Our experiments show that member-
ship inference attacks (MIA) using pre-softmax logits consistently outperform those based on post-
softmax probabilities. As shown in Figure 2, logit-based attacks (top row) achieve higher AUC
across all models and datasets than probability-based ones (bottom row). This aligns with prior
work Shokri et al. (2017) and arises because logits preserve raw confidence scores, whereas softmax
projects them onto a probability simplex, compressing information and reducing the attack surface.

The implications are significant: exposing logits through APIs even for calibration or temperature
scaling greatly heightens privacy risk. Given that many ML APIs and frameworks expose logits
by default Finlayson et al. (2024), practitioners should either restrict outputs to probabilities or add
privacy-preserving safeguards when logits must be shared.

Attack DISC GEN MLM DIFF

Max Probability 0.56 ± 0.05 0.67 ± 0.13 0.55 ± 0.06 0.51 ± 0.13
Entropy 0.56 ± 0.05 0.63 ± 0.12 0.55 ± 0.06 0.60 ± 0.09
Log-Loss 0.60 ± 0.06 0.76 ± 0.13 0.55 ± 0.08 0.65 ± 0.13
GBM-Probs 0.62 ± 0.08 0.81 ± 0.13 0.56 ± 0.07 0.76 ± 0.16

Table 1: MIAs performance (AUROC) across different
model architectures, averaged over all datasets for models
with 12 layers trained on full data. Higher values indicate
greater privacy vulnerability, with the highest values in each
column shown in bold.

The success of membership infer-
ence attacks also depends on the at-
tack strategy’s sophistication and the
adversary’s access to auxiliary in-
formation. Table 1 reports results
for both threshold-based and model-
based attacks (refer Section 4), fo-
cusing on probability-based methods
since many attacks are incompati-
ble with logits. These results illus-
trate the attack efficacy hierarchy, i.e.
threshold-based attacks relying on output probabilities (Max Probability, Entropy) yield modest suc-
cess, while incorporating ground-truth labels via Log-Loss improves performance. The most effec-
tive attack, a Gradient Boosting Model (GBM) trained on probability vectors and label information,
notably excels for AR and DIFF models. We also find that model size exacerbates the privacy vul-
nerability in generative classifiers (refer to Appendix E), similar to previous findings on DISC (Amit
et al., 2024). These findings underscore the urgent need for privacy defenses that remain effective
across diverse adversarial capabilities and information access levels.

The Impact of Factorization: Decomposing Leakage in P (X,Y ): In (Kasa et al., 2025), the
authors argue that fully generative models perform best in low-data regimes and should be pre-
ferred over discriminative models. However, our earlier results reveal that AR models exhibit signifi-
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cantly higher vulnerability to MIAs compared to DISC. To address this, we investigate an alternative
modeling paradigm that reduces MIA risk without sacrificing classification performance. Pseudo-
Autoregressive (P-AR) models tackle this challenge by appending the label at the end of the input
sequence, instead of modeling P (X|Y ) by pre-pending the label token,. Although this approach
does not strictly capture P (X|Y ), recent work (Li et al., 2025) shows that label-appending often
achieves better in-distribution accuracy than label-prepending. At inference, we can either use a K-
pass run like AR to score each label and take the argmax, or a 1-pass run by selecting the predicted
label from the final token’s distribution (this is the canonical approach for P-AR). As evident from
Table 2 (averaged across datasets) P-AR poses much lesser MIA risk compared to AR. However,
P-AR-kpass exhibits similar vulnerability again similar to fully generative case. A few attacks
are not stated here as they are qualitatively similar to Log-Loss.

To explain this phenomenon, we next examine how different factorizations of the joint distribution
P (X,Y ) influence privacy leakage. (Label-Prefix) AR are trained to generate the text X condi-
tioned on a label prefix Y , thereby factorizing the joint distribution as P (X,Y ) = P (Y )P (X|Y ).
Its primary focus is on learning the class-conditional data distribution. However, (Label-Suffix)
P-AR are trained to generate the full sequence (X,Y ), with the label appended at the end. This
architecture implicitly factorizes the joint distribution as P (X,Y ) = P (X)P (Y |X) requiring high-
fidelity modeling of P (X). While still generative, its final step of predicting Y |X , after generat-
ing all of X , mirrors a discriminative task (which is also why this falls under pseudo-generative
paradigm).

Attack AR P-AR P-AR-kpass

Log-Loss 0.66 ± 0.05 0.56 ± 0.06 0.57 ± 0.06
GBM 0.77 ± 0.08 0.55 ± 0.05 0.95 ± 0.04

Table 2: MIA performance (AUROC) com-
paring Autoregressive (AR) and Pseudo-
Autoregressive (P-AR) models for large model
size. The lowest susceptibility for an attack is
highlighted in blue.

P-AR AR

Dataset P (X) P (X, Y ) P (X) P (X, Y )

SST-5 0.8185 0.8445 0.6204 0.6285
HateSpeech 0.8355 0.8771 0.4419 0.4256
Emotion 0.8872 0.9617 0.4780 0.4850
AGNews 0.6230 0.6299 0.2400 0.2492
IMDb 0.8379 0.8354 0.5232 0.5234

Table 3: JSD between training and test distribu-
tions (here Y : Ylabel). Higher values indicate
greater data leakage.

The output probabilities from P-AR correspond to P (Y |X), which inherently leaks less informa-
tion about sample membership than AR. The latter is more vulnerable because it effectively exposes
P (Y,X), a generative quantity, rather than the purely discriminative P (Y |X). However, changing
the label position does not magically remove MIA risk. As Table 3 demonstrates, P-AR still ex-
hibits substantial memorization—evidenced by elevated Jensen–Shannon Divergence (JSD) when
we compare train/test distributions of P (X) and P (X,Y ). Crucially, these statistics are not ex-
posed to an attacker when they interact with a P-AR model, since P-AR only reveals P (Y | X). By
contrast, AR and P-AR-kpass make joint/generative quantities (e.g., P (X,Y )) available, thereby
exposing that memorization and increasing vulnerability. In short: label-suffix modeling can reduce
the observable attack surface, but it does not eliminate underlying sample memorization. This dis-
tinction underlies our recommendation of (label-suffix) (P-AR) models in 1-pass fashion as a safer
alternative to AR in terms of MIA vulnerability, complementing earlier conclusions made by Kasa
et al. (2025) from an accuracy stand point.

Privacy-Utility Trade-Off: We show that different architectures yield distinct privacy–utility
trade-offs (refer to Appendix H), with our comprehensive analysis revealing that DISC models
achieve the best overall utility performance while maintaining good privacy protection , and MLM
strategies provide superior privacy protection with steadily improving utility as model size increases.
Conversely, we find that DIFF models, despite achieving competitive utility, exhibit severe privacy
vulnerabilities with attack success rates exceeding 95%, while AR models demonstrate concerning
behavior where utility gains come at dramatic privacy costs, with attack success rates increasing as
model complexity grows. Building on these results, we provide actionable guidance recommend-
ing DISC strategies with 6-12 layers for general applications, MLM strategies for privacy-critical
systems, and cautioning against DIFF models in privacy-sensitive deployments due to their consis-
tently high vulnerability to membership inference attacks.

Effects of Common Mitigation Strategies: Beyond proposing P-AR as a safer alternative to AR
above, we also uncover new insights on how techniques like logit clipping and temperature scaling

9
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(Hintersdorf et al., 2021) affect MIA vulnerability in our generative vs. discriminative framework.
(a) From Table 9: clipping has little effect on discriminative models—both AUROC and F1 re-
main stable. For fully generative models, clipping reduces vulnerability (especially for logit-based
attacks) but consistently harms utility, with F1 degrading as clipping strengthens. Thus, clipping
shrinks vulnerability without addressing structural leakage and at a clear utility cost. (b) From Ta-
ble 10: temperature scaling is less effective than clipping at reducing vulnerability in generative
models, but it preserves utility, as F1 remains steady. GBM (Logits) vulnerability is unaffected
because temperature simply rescales logits linearly, preserving their separability.

Comparison Under Same Computational Budget: The significant difference in inference re-
quirement - where discriminative (DISC) models need only a single inference call for all logits ver-
sus generative (AR) models requiring one call per label - necessitates an investigation into whether
this cost disparity biases observed comparisons of MIA vulnerability. To address this, we conducted
an additional experiment, fixing the compute budget by varying the number of inference passes
(ninfer) up to 4096 for both model types (12-layer models trained on 4096 samples on AG News)
and reporting mean AUROC with standard deviations. Our central finding from Table 12 is that
the generative classifier demonstrates substantially higher MIA vulnerability even at the absolute
lowest tested compute budget (ninfer = 128), clearly surpassing the DISC model’s vulnerability at
any compute level; these results unequivocally show that the increased susceptibility of generative
classifiers is not a byproduct of increased attack surface but rather a structural privacy disadvantage
inherent in modeling the joint likelihood P (X,Y ).

Impact of Pre-Trained Models: While our main experiments use models trained from scratch
to isolate the effects of pre-training corpora, to be rigorous in our experimental methodology, we
additionally evaluate two standard pre-trained models: BERT-base-uncased and GPT-2-small, each
with roughly 110M parameters and released around the same time, ensuring a fair cross-paradigm
comparison. These models were fine-tuned on the classification task using standard discriminative
(encoder) and generative (AR) approaches, consistent with the rest of the paper. Even with pre-
trained models, the generative GPT-2 classifier remains substantially more vulnerable to MIA attacks
than the discriminative BERT encoder. Table 13 presents representative results on the AG News
dataset. These findings reinforce our core conclusion: the increased susceptibility of generative
classifiers is not merely an artifact of training from scratch but a structural consequence of modeling
P (X,Y ) and exposing joint-likelihood signals. Pretraining does not mitigate this vulnerability;
GPT-2’s susceptibility remains consistently higher across all dataset sizes.

6 CONCLUSION AND FUTURE WORK

This work presented the first systematic study of MIAs in generative text classifiers, combining the-
oretical analysis, controlled toy settings, and large-scale experiments. Our framework clarified how
leakage arises from both the marginal P (X) and conditional P (Y |X), with simulations confirm-
ing that generative classifiers leak more information through log-joint scores than discriminative
posteriors. Empirically, we compared discriminative(DISC), fully generative (AR, DIFF), and
pseudo-generative models(MLM, P-AR) across nine benchmarks. We found that fully generative
models are consistently more vulnerable to MIAs, with the strongest leakage observed when log-
its are exposed. We further showed how factorization (AR vs. P-AR), output interface (logits vs.
probabilities), and training data size shape vulnerability, highlighting distinct privacy–utility trade-
offs. Notably, pseudo-generative models emerged as a safer alternative, reducing observable leak-
age while maintaining competitive utility. We also provides actionable guidance: Given that several
widely used commercial (OpenAI GPT-4o, Gemini Vertex) and open-source systems such as Text
Generation Inference (TGI) do expose token-level likelihoods, we should restrict API outputs to
probabilities, use generative models cautiously in sensitive settings, and favor pseudo-generative
approaches when balancing privacy and utility. Future work should explore architectural and train-
ing modifications to retain the benefits of generative modeling while mitigating these risks. Our
findings can potentially generalize to any modeling paradigm that models the joint density, includ-
ing instruction-tuned LLMs, Multimodal generative systems, etc., which we leave for exploration in
future work.
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A EXTENDED RELATED WORK AND BACKGROUND

A.1 GENERATIVE VS. DISCRIMINATIVE CLASSIFIERS: FOUNDATIONS TO THE
TRANSFORMER ERA

Foundational theory contrasts generative and discriminative estimation: under correct modeling as-
sumptions, discriminative learners achieve lower asymptotic error, while generative learners exhibit
faster convergence with limited data (Efron, 1975; Ng & Jordan, 2001; Liang & Jordan, 2008).
Hybrid approaches attempted to combine strengths (Raina et al., 2003), and modern analyses re-
visit these trade-offs at scale, emphasizing calibration/uncertainty and bias–variance decompositions
(Zheng et al., 2023).

In text classification (TC), generative models have seen a resurgence with transformers. Early RNN-
based generative classifiers reported robustness to distribution shifts and favorable low-data behavior
(Yogatama et al., 2017). Contemporary generative classifiers instantiate P (X,Y ) via (i) label-prefix
AR scoring of logP (x, y) across labels (Radford et al., 2018); (ii) discrete diffusion with likelihood-
surrogates/ELBO-style criteria (Lou et al., 2024); and (iii) generative uses of masked LMs (Wang
& Cho, 2019b). Empirically, recent works document improved sample efficiency, calibration, and
reduced shortcut reliance for generative TC (Kasa et al., 2025; Li et al., 2025; Jaini et al., 2024).
A practical consideration is K-pass inference: fully generative label-prefix AR classifiers evaluate
one forward pass per label to obtain logP (x, yi), in contrast to single-pass discriminative models
computing P (Y | X). On the other hand, generative formulations support principled uncertainty
via Bayes rule,

P (Y | X) =
P (X | Y )P (Y )

P (X)
,

and enable likelihood-based diagnostics and priors (Bouguila, 2011). We also consider pseudo-
generative factorizations (e.g., label-suffix/MLM variants) that use a single forward pass for classi-
fication while still leveraging generative training signals.

A.2 MEMBERSHIP INFERENCE ATTACKS (MIAS)

From multi-shadow to minimal-shadow. Shokri et al. (2017) introduced the shadow-model
paradigm: train multiple proxies that mimic the target, collect outputs on member/non-member
samples, and train an attack classifier. Salem et al. (2018b) showed that effective MIAs often re-
quire far less attacker infrastructure: a single shadow model—or even no shadow at all—can suffice
using confidence-/loss-based statistics. In this paper, we adopt the single-shadow assumption in
our theoretical analysis: we posit a proxy Q trained similarly to the target P and develop decision
rules using the induced score laws (PS , QS) that arise from logits or probabilities.

Crucially, while our theoretical analysis assumes a single shadow model availability, our empirical
evaluations do not rely on shadow models at all. As is now common in recent MIA work, including
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(Yeom et al., 2018; Carlini et al., 2019; Shejwalkar et al., 2021; Song & Mittal, 2021), we directly
compare the model’s outputs on training samples (members) and test samples (non-members) and
compute AUROC. This approach measures the true separability of member vs. non-member score
distributions and does not introduce additional approximation noise from training surrogate models.
Because our attacks operate directly on the target model’s outputs, using multiple shadow models
would not change the AUROC-based conclusions: the observed leakage stems from structural dif-
ferences between modeling P (X) and P (Y |X), not from the number of shadow models available
to the attacker.

Finally, from a practical standpoint, our study trains over 2,900 models across architectures, datasets,
and data-size settings. Training additional shadow models for every configuration would signifi-
cantly multiply computational cost without changing the scientific conclusions. Our theory requires
only one reference distribution Q in order to compare the induced score laws PS and QS ; training
multiple shadow models would approximate the same population distribution and therefore does not
alter our decomposition or the resulting bounds.

Overfitting vs. influence. Yeom et al. (2018) connect membership advantage to generalization
error with a simple loss-threshold attack, but crucially point out that influence of specific samples
can yield leakage even when generalization error is small; thus overfitting is sufficient but not nec-
essary for MIAs. This perspective complements broader observations that memorization and model
capacity correlate with vulnerability, while regularization and early stopping can attenuate leakage.

Systematization and API exposure. MIAs have been systematized for ML-as-a-Service (MLaaS)
by examining how output exposure (labels only, top-k, full probability vectors), shadow alignment,
and data distribution mismatch affect success (Truex et al., 2018). Subsequent evaluations find that
strong black-box attacks based on confidence/entropy/loss can rival more complex settings (Song
& Mittal, 2021), and NLP-specific studies report that simple threshold attacks can be surprisingly
competitive in text classification, with user-level leakage sometimes exceeding sample-level leakage
(Shejwalkar et al., 2021).

A.3 THREAT MODELS, OUTPUTS, AND OUR SCOPE

Threat models. We distinguish black-box adversaries (query access to outputs only), gray-box
(limited internals such as losses or activations), and white-box (parameters/gradients). Our study
focuses on black-box MIAs where the API exposes either (i) post-softmax probabilities P (Y | X)
or (ii) pre-softmax logits that, in fully generative label-prefix AR classifiers, are proportional to
joint scores logP (X,Y ). For label-prefix AR models we assume K-pass inference is the canonical
deployment mode.

Outputs and leakage channels. Probability vectors emphasize the conditional P (Y | X), while
logits in label-prefix AR expose additive joint components logP (X,Y ) over labels. We analyze
both surfaces empirically and theoretically by comparing attack performance built from signals S
with induced laws (PS , QS) under the target P and shadow Q.

Scope summary. We restrict attention to black-box attackers with output access (probabilities
or logits), assume the availability of ground-truth labels for attack training/selection, and treat
inference cost as negligible for fairness across architectures. White-box attacks, knowledge-
distillation/trajectory-based attacks, and defenses like DP-SGD are out of scope for this paper,
though we discuss them qualitatively where relevant in the main text.

B EXPERIMENTAL METHODOLOGY

B.1 TRAINING PROTOCOL

Follwong the Li et al. (2025); Kasa et al. (2024), we adopt the bert-base-uncased2 architec-
ture as the backbone for both DISC and MLM experiments, trained from scratch without pretrained

2https://huggingface.co/google-bert/bert-base-uncased

15

https://huggingface.co/google-bert/bert-base-uncased


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Config DISC P-AR AR MLM DIFF

(1L,1H) 1–2 2–4 2–4 1–4 1–4
(6L,6H) 1–3 3–7 3–7 3–7 2–6
(12L,12H) 2–5 5–10 5–10 5–10 5–12

Table 4: Training time (hrs) ranges across datasets for each configuration and approach.

weights. This model has ∼110M parameters, with 12 encoder layers, 12 attention heads, and hid-
den size 768. All experiments were repeated with 5 random seeds, reporting mean and standard
deviation in the main paper.

For DISC experiments, we performed a grid search over learning rates {1e-5, 2e-5, 3e-5, 4e-5,
5e-5}, batch sizes {32, 64, 128, 256}, and a fixed sequence length of 512. Training ran for 30
epochs on all datasets without early stopping. MLM experiments used the same search space but
were trained for 200 epochs due to the added difficulty of masked token prediction. Introducing
early stopping often led to worse checkpoints, since validation loss typically decreased slowly even
after long plateaus.

For AR and P-AR we used the GPT-2 base3 (137M parameters), trained as causal LMs to minimize
next-token prediction loss on concatenated input–label sequences. A grid search was conducted with
the same hyperparameter ranges, and models were trained up to 100 epochs with early stopping
(patience 10).

Our DIFF experiments used the Diffusion Transformer Peebles & Xie (2023), essentially a vanilla
transformer encoder augmented with time-conditioned embeddings, yielding ∼160M parameters.
To control for model size, we also scaled Encoder/MLM models to 160M parameters by adding
layers, but performance did not improve, so we retained original sizes. For diffusion-specific set-
tings, we used batch size 64, learning rate 3e-4, 200K iterations, and a geometric noise schedule
spanning 10−4 to 20 Lou et al. (2024). The absorbing transition matrix was:

Qabsorb =


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
1 1 · · · 0


All experiments were trained on eight NVIDIA A100 GPUs. Training times (in hours) for full-data
runs are shown in Table 4.

Inference latency varies substantially across methods (Table 5). ENC and MLM are fastest, requiring
a single forward pass. AR requires |K| passes, which can be parallelized but increases compute.
DIFF is slowest, taking ∼20–100× longer than ENC/MLM due to iterative denoising. For instance,
on an A100 with batch size 1024 and sequence length 128, ENC/MLM run in 0.03s (3.3M params)
to 1.3s (120M params), whereas DIFF takes 16–25s.

Model Size Parameters DISC MLM AR DIFF

Small 3.3M 0.027 0.027 0.058 16.2
Medium 30.3M 0.292 0.292 0.510 20.52
Large 120.4M 1.260 1.260 2.070 24.8

Table 5: Model Size vs. Inference Latency (avg wall-clock time per batch in seconds).

B.2 ATTACK IMPLEMENTATION DETAILS

For model-based attacks, we employ a Gradient Boosting Classifier with 100 estimators, maximum
depth of 3, and learning rate of 0.1. The attack model’s input features comprise the target model’s
output probability vector concatenated with one-hot encoded ground truth labels. Threshold-based
attacks use raw model outputs with optimal thresholds determined on a validation set.

3https://huggingface.co/openai-community/gpt2
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B.3 DATASET CHARACTERISTICS

Dataset Examples Classes Avg. Tokens Label Distribution (%)

(Train / Test) Train Test Train Test

IMDb 25,000 / 25,000 2 313.9 306.8 0-1: 50.0 each 0-1: 50.0 each
AG News 120,000 / 7,600 4 53.2 52.8 0–3: 25.0 each 0–3: 25.0 each

Emotion 16,000 / 2,000 6 22.3 21.9 0: 29.2, 1: 33.5, 2: 8.2,
3: 13.5, 4: 12.1, 5: 3.6

0: 27.5, 1: 35.2, 2: 8.9,
3: 13.8, 4: 10.6, 5: 4.1

HateSpeech 22,783 / 2,000 3 30.0 30.2 0: 5.8, 1: 77.5, 2: 16.7 0: 5.5, 1: 76.6, 2: 17.9
MultiClass Sentiment 31,232 / 5,205 3 26.6 26.9 0: 29.2, 1: 37.3, 2: 33.6 0: 29.2, 1: 37.0, 2: 33.8
Rotten Tomatoes 8,530 / 1,066 2 27.4 27.3 0-1: 50.0 each 0-1: 50.0 each
SST2 6,920 / 872 2 25.2 25.5 0: 47.8, 1: 52.2 0: 49.1, 1: 50.9

SST5 8,544 / 1,101 5 25.0 25.2 0: 12.8, 1: 26.0, 2: 19.0,
3: 27.2, 4: 15.1

0: 12.6, 1: 26.3, 2: 20.8,
3: 25.3, 4: 15.0

Twitter 9,543 / 2,388 3 27.6 27.9 0: 15.1, 1: 20.2, 2: 64.7 0: 14.5, 1: 19.9, 2: 65.6

Table 6: Dataset statistics showing training and test split sizes, number of classes, mean token length,
and label distribution percentages.

C APPENDIX B: PROOFS FOR SECTION 3

C.1 PRELIMINARIES AND NOTATION

Let Z denote the universe of all datapoints, where each datapoint z ∈ Z can be decomposed into
a feature–label pair (x, y) with x ∈ X (features) and y ∈ Y (labels). We assume there exists an
underlying population distribution π over Z from which samples are drawn.

We consider two models:

• P : the target model (running in production), which induces a joint score distribution
P (X,Y ).

• Q: the shadow model, trained independently on population data, which induces its own
score distribution Q(X,Y ) which the attacker uses to determine sample membership.

We are interested in quantifying the difference between P and Q in terms of their induced joint
distributions over (X,Y ), which captures susceptibility to membership inference attacks (MIA).

C.2 TOTAL VARIATION DISTANCE: DEFINITION

For two probability distributions P and Q on the same measurable space (Ω,F), the total variation
distance is defined as

TV(P,Q) = sup
A∈F

|P (A)−Q(A)|. (C.1)

An equivalent variational form is

TV(P,Q) = 1
2

∫
Ω

∣∣p(ω)− q(ω)
∣∣ dµ(ω), (C.2)

where p and q denote densities of P and Q with respect to a common dominating measure µ.

It is well known that TV(P,Q) equals the maximum distinguishing advantage of any binary hypoth-
esis test between P and Q, and therefore equals the maximum achievable membership inference
advantage (MIA∗ = TV (PXY , QXY )).

C.3 DECOMPOSITION INTO MARGINAL AND CONDITIONAL TERMS

Writing distributions over (X,Y ) using Bayes’ Rule as

P (x, y) = P (x)P (y | x), Q(x, y) = Q(x)Q(y | x),
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the total variation distance between P and Q is

TV(PXY , QXY ) =
1
2

∫
X×Y

∣∣∣P (x)P (y | x)−Q(x)Q(y | x)
∣∣∣dxdy. (C.3)

We expand by adding and subtracting the cross term P (x)Q(y | x):∣∣∣P (x)P (y | x)−Q(x)Q(y | x)
∣∣∣

=
∣∣∣P (x)P (y | x)− P (x)Q(y | x) + P (x)Q(y | x)−Q(x)Q(y | x)

∣∣∣. (C.4)

Applying the triangle inequalities yields both lower and upper bounds.

C.4 LOWER BOUND VIA REVERSE TRIANGLE INEQUALITY

Using the reverse triangle inequality |a+ b| ≥
∣∣|b| − |a|

∣∣, we obtain

TV(PXY , QXY ) ≥ 1
2

∣∣∣∣∣
∫
X×Y

(
P (x)Q(y | x)−Q(x)Q(y | x)

)
dxdy− (C.5)

∫
X×Y

(
P (x)P (y | x)− P (x)Q(y | x)

)
dxdy

∣∣∣∣∣.
Evaluating the two terms separately:

1. For the first integral (difference of marginals with Q(y | x) fixed):∫
X×Y

(
P (x)Q(y | x)−Q(x)Q(y | x)

)
dxdy =

∫
X
(P (x)−Q(x))

(∫
Y
Q(y | x)dy

)
dx.

Since
∫
Y Q(y | x)dy = 1, this simplifies to∫

X
(P (x)−Q(x))dx = 2TV(PX , QX).

2. For the second integral (difference of conditionals at fixed P (x)):∫
X×Y

(
P (x)P (y | x)− P (x)Q(y | x)

)
dxdy =

∫
X
P (x)

∫
Y

(
P (y | x)−Q(y | x)

)
dy dx.

The inner integral is exactly 2TV(P (· | x), Q(· | x)). Hence

= 2

∫
X
P (x) TV(P (· | x), Q(· | x)) dx = 2 Ex∼PX

[
TV

(
P (Y | x), Q(Y | x)

)]
Combining, we obtain the lower bound:

TV(PXY , QXY ) ≥
∣∣∣TV(PX , QX)− Ex∼PX

[
TV

(
P (Y | x), Q(Y | x)

)]∣∣∣. (C.6)

C.5 UPPER BOUND VIA FORWARD TRIANGLE INEQUALITY

Applying the forward triangle inequality |a+ b| ≤ |a|+ |b| to equation C.4, we obtain

TV(PXY , QXY ) ≤ 1
2

∫
X×Y

(
|P (x)P (y | x)− P (x)Q(y | x)|+ |P (x)Q(y | x)−Q(x)Q(y | x)|

)
dxdy.

(C.7)

Evaluating as before, this becomes

TV(PXY , QXY ) ≤ TV(PX , QX) +

∫
X
P (x) TV(P (· | x), Q(· | x))dx (C.8)
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C.6 DECOMPOSITION VIA PINSKER’S INEQUALITY

Pinsker’s inequality states that for any two distributions R,S,

TV(R,S) ≤
√

1
2 DKL(R ∥S).

Applying this to equation C.8 yields

TV(PXY , QXY ) ≤
√

1
2DKL(PX ∥QX) +

∫
X
P (x)

√
1
2DKL(P (· | x) ∥Q(· | x)) dx (C.9)

We can re-write the first term as expectation similar to lower-bound derivation yielding

TV(PXY , QXY ) ≤
√

1
2DKL(PX ∥QX) + Ex∼PX

[√
1
2DKL(P (· | x) ∥Q(· | x))

]
(C.10)

C.7 INTERPRETATION

Both the lower bound (Eq. C.6) and upper bound (Eq. C.10) decomposes the MIA∗ into two con-
tributing terms:

• Input Memorization Term: The first term quantifies the leakage from the model mem-
orizing the distribution of the training inputs themselves (TV(PX , QX) in Eq. C.6 and√

1
2DKL(PX ∥QX) in C.10). This vulnerability exists because a generative model’s ob-

jective function explicitly requires it to learn P (X). Hence this number will always be
greater than the discriminative/conditional term. Thus we can safely remove the mod sign
from Eq. C.6 and conclude higher the degree of memorization, stricter the lower bound
+ more relaxed the upper bound, indicating higher susceptibility to MIA for generative
models.

• Conditional Memorization term: This second term (DKL or TV over P (.|x), Q(.|x))
quantifies the leakage from the model overfitting the mapping from inputs to labels. This
vulnerability exists for both generative and discriminative models.

C.8 PROOFS FOR JOINT LEAKAGE VS CONDITIONAL LEAKAGE

Proof of Lemma 3.2. Define the measurable map g : R|Y| →∆|Y|−1 by g(u) = softmax(u). By
construction Scond = g

(
Sjoint

)
deterministically. Let Pj := L(Sjoint | P ) and Qj := L(Sjoint | Q),

and similarly Pc := L(Scond | P ), Qc := L(Scond | Q). By the data-processing inequality (DPI)
for f -divergences (in particular, for total variation),

TV(Pj, Qj) ≥ TV
(
g#Pj, g#Qj

)
= TV(Pc, Qc) = Adv

(
Scond

)
.

Since Adv(Sjoint) = TV(Pj, Qj), the claimed inequality follows. For equality, DPI is tight iff g
is sufficient for discriminating Pj vs. Qj, i.e., iff Sjoint carries no information about membership
beyond Scond. Because g removes exactly the per-x additive offset − log p̂(X), tightness occurs iff
that offset has the same law under P and Q (no marginal signal).

Proof of Theorem 3.3. Throughout we assume the attacker queries the same target model score in
both worlds; i.e., S = g(p̂(X,Y )) for a fixed measurable g, and pushes PXY and QXY forward
through the same g. (This matches the setting in Lemma 3.2 and ensures DPI applies.)

Notation. Let

Z := Sscal
joint(X,Y ) = log p̂(X,Y ) = a(X)+b(X,Y ), a(X) := log p̂(X), b(X,Y ) := log p̂(Y | X).

Write PZ := L(Z | P ) and QZ := L(Z | Q).

Auxiliary tools. We record three standard ingredients we will invoke.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma C.1 (One-parameter Gibbs/Chernoff lower bound). For any distributions R,S on a com-
mon space and any measurable W with laws RW , SW ,

KL(RW ∥SW ) ≥ λERW
[W ] − logESW

[
eλW

]
for all λ ∈ R. (C.11)

Lemma C.2 (Change-of-measure (bounded likelihood ratio)). If α ≤ dPY |X=x

dQY |X=x
(y) ≤ β for PX -a.e.

x and all y, then for any nonnegative measurable h and any λ ∈ [0, 1],

αλ EPY |X=x
[hλ] ≤ EQY |X=x

[hλ] ≤ βλ EPY |X=x
[hλ]. (C.12)

Lemma C.3 (Hölder/log-sum convexity split). For λ ∈ (0, 1) and nonnegative random variables
U, V ,

logE[UλV λ] ≤ (1− λ) logE
[
U

λ
1−λ

]
+ λ logE[V ]. (C.13)

Lemma C.1 is the f(z) = λz specialization of the Gibbs/Donsker–Varadhan variational identity (we
only need the lower bound). Lemma C.2 is immediate from α ≤ dP

dQ ≤ β and change-of-measure
for densities. Lemma C.3 is Hölder’s inequality in logarithmic form (equivalently, the log-sum
inequality).

Step 1: A KL lower bound for PZ∥QZ . Applying Lemma C.1 with W := Z gives

KL(PZ∥QZ) ≥ λEP [Z] − logEQ

[
eλZ

]
(λ ∈ R), (C.14)

where EP [Z] = EPX
[a(X)] + EP [b(X,Y )]. We now upper bound the log-mgf on the right. Factor

the conditional:
EQ[e

λZ ] = EQX

[
eλa(X) EQY |X

[
eλb(X,Y )

]︸ ︷︷ ︸
=:MB(λ|X)

]
. (C.15)

By Lemma C.2 with h = eb(X,·) we have, for λ ∈ [0, 1] and PX -a.e. X ,

αλ EPY |X [eλb(X,Y )] ≤ MB(λ | X) ≤ βλ EPY |X [eλb(X,Y )]. (C.16)

Using the upper bracket in equation C.16 in equation C.15 and Jensen,

logEQ[e
λZ ] ≤ λ log β + logEQX

[
eλa(X) EPY |X [eλb(X,Y )]

]
. (C.17)

Applying Lemma C.3 to the last term (with U = ea(X) and V = EPY |X [eb(X,Y )]) yields, for
λ ∈ (0, 1),

logEQX

[
eλa(X) EPY |X [eλb(X,Y )]

]
≤ (1−λ) logEQX

[
e

λ
1−λa(X)

]
+ λ logEP

[
eb(X,Y )

]
. (C.18)

Combining equation C.14, equation C.17, and equation C.18, for λ ∈ (0, 1),

KL(PZ∥QZ) ≥
[
λEP [a(X)] − (1− λ) logEQX

(
e

λ
1−λa(X)

)]
︸ ︷︷ ︸

marginal term M(λ)

(C.19)

+
[
λEP [b(X,Y )] − λ logEP

(
eb(X,Y )

)
− λ log β

]
︸ ︷︷ ︸

conditional term C(λ)

.

Step 2: Bound the conditional term by −KLY |X . Using the convex dual bound (Fenchel inequal-
ity for log-mgf),

EP [b(X,Y )] − logEP

[
eb(X,Y )

]
≥ −KLY |X , (C.20)

we obtain C(λ) ≥ −λKLY |X − λ log β.

Step 3: A reverse-Chernoff bound for the marginal term. The function M(λ) in equation C.19
is the usual one-parameter Chernoff objective applied to a(X) = log p̂(X) with moment taken
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under QX . Optimizing over λ ∈ (0, 1) (details omitted for brevity) and using the same bounded-LR
control to prevent degeneracy yields

sup
λ∈(0,1)

M(λ) ≥ c(α, β)KL(PX∥QX) = c(α, β)KLX , c(α, β) :=
log β − logα

1 + log β − logα
∈ (0, 1].

(C.21)

Step 4: Assemble and pass to advantage. Maximizing equation C.19 over λ ∈ (0, 1) and using
equation C.20 and equation C.21,

KL(PZ∥QZ) ≥ c(α, β)KLX − KLY |X − inf
λ∈(0,1)

λ log β. (C.22)

Absorbing the harmless − infλ λ log β slack (or noting log β ≥ 0) gives the clean form

KL(PZ∥QZ) ≥ c(α, β)KLX − KLY |X . (C.23)

By Pinsker, the (optimal) membership advantage for the scalar joint signal obeys

Adv
(
Sscal
joint

)
= TV(PZ , QZ) ≥

√
1
2

[
c(α, β)KLX −KLY |X

]
+
. (C.24)

For the conditional scalar U := Scond(X,Y ) = p̂(Y | X), the safe decomposition plus Pinsker
gives

Adv(U) ≤ TV(PX , QX) + EPX

[
TV(PY |X , QY |X)

]
≤

√
1
2 KLX +

√
1
2 KLY |X . (C.25)

Therefore, whenever c(α, β)KLX > KLY |X , the lower bound equation C.24 exceeds the upper
bound contributed by the conditional part, proving that the scalar joint channel is strictly more
vulnerable than the conditional one.

D EFFECT OF CLASS REPRESENTATION

In this section, we study the effect of class imbalance with respect to MIA vulnerability. Specifi-
cally, we consider three datasets - SST5, emotion and hatespeech - which have relatively high class
imbalance and we study how the attack susceptibility differs between the majority (i.e. the class with
the lowest representation in the training split) and minority class (i.e. the class with the least repre-
sentation in the training split). We plot the AUROCs corresponding to MIA for the four classifier
paradigms - DISC, MLM, AR, DIFF- in Figures 3, 4, 5, 6 respectively and find that there is a
differential in the AUROC between majority and minority classes which is specifically pronounced
in - DISC and MLM. This differential is relatively less pronounced in generative models such as AR
and DIFF.

Figure 3: Membership inference attack susceptibility for BERT. The solid line corresponds to the
majority class, while the dashed line corresponds to the minority class. The x-axis indicates the
number of training samples used.
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Figure 4: Membership inference attack susceptibility for MLM. The solid line corresponds to the
majority class, while the dashed line corresponds to the minority class. The x-axis indicates the
number of training samples used.

Figure 5: Membership inference attack susceptibility for AR. The solid line corresponds to the
majority class, while the dashed line corresponds to the minority class. The x-axis indicates the
number of training samples used.
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Figure 6: Membership inference attack susceptibility for Diffusion models. The solid line corre-
sponds to the majority class, while the dashed line corresponds to the minority class. The x-axis
indicates the number of training samples used.

E EFFECT OF MODEL SIZE

In this section, we study the effect of model size in the full-data setting across all nine datasets. As
the model size increases, the susceptibility of AR to GBM-logits attacks increases, whereas the
other models exhibit more mixed trends.

Figure 7: Attack susceptibility with varying model size for models trained on full data.

F EXTRA RESULTS
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Attack 128 256 512 1024 2048 4096 full-data

Entropy 0.62 ± 0.12 0.57 ± 0.10 0.55 ± 0.07 0.54 ± 0.05 0.55 ± 0.07 0.56 ± 0.06 0.57 ± 0.09
GBM (Logits) 0.65 ± 0.19 0.60 ± 0.16 0.64 ± 0.17 0.61 ± 0.14 0.63 ± 0.13 0.66 ± 0.13 0.69 ± 0.17
GBM (Probits) 0.62 ± 0.16 0.59 ± 0.14 0.62 ± 0.14 0.59 ± 0.12 0.61 ± 0.12 0.62 ± 0.10 0.60 ± 0.08
Ground Truth Predictions 0.62 ± 0.15 0.61 ± 0.11 0.62 ± 0.13 0.61 ± 0.12 0.60 ± 0.12 0.57 ± 0.10 0.60 ± 0.12
Log Loss 0.63 ± 0.15 0.61 ± 0.12 0.62 ± 0.13 0.61 ± 0.12 0.60 ± 0.12 0.57 ± 0.10 0.60 ± 0.12
Max Probability 0.50 ± 0.16 0.49 ± 0.09 0.54 ± 0.08 0.54 ± 0.09 0.55 ± 0.09 0.51 ± 0.09 0.54 ± 0.11

Table 7: Membership inference attack performance (mean ± standard deviation AUROC) across
varying training sample sizes for models with 12 layers. Higher values indicate greater privacy
vulnerability, with the highest values in each column shown in bold.

Attack 128 256 512 1024 2048 4096 full-data

Entropy 0.702 ± 0.179 0.679 ± 0.21 0.669 ± 0.186 0.639 ± 0.167 0.606 ± 0.156 0.549 ± 0.135 0.504 ± 0.092
GBM (Logits) 0.915 ± 0.135 0.914 ± 0.139 0.958 ± 0.068 0.918 ± 0.131 0.898 ± 0.152 0.907 ± 0.143 0.892 ± 0.164
GBM (Probits) 0.843 ± 0.113 0.842 ± 0.116 0.885 ± 0.073 0.847 ± 0.109 0.823 ± 0.122 0.835 ± 0.117 0.813 ± 0.131
Ground Truth Predictions 0.865 ± 0.076 0.841 ± 0.101 0.824 ± 0.095 0.788 ± 0.104 0.75 ± 0.119 0.696 ± 0.123 0.63 ± 0.103
Log Loss 0.865 ± 0.076 0.841 ± 0.101 0.824 ± 0.094 0.788 ± 0.104 0.751 ± 0.119 0.697 ± 0.123 0.632 ± 0.103
Max Probability 0.735 ± 0.143 0.711 ± 0.178 0.699 ± 0.155 0.669 ± 0.139 0.637 ± 0.131 0.58 ± 0.115 0.531 ± 0.075

Table 8: Membership inference attack performance (mean ± standard deviation AUROC) across
varying training sample sizes for models with 12 layers trained without early stopping, averaged
across all datasets. Higher values indicate greater privacy vulnerability; as the number of samples
increase, the susceptibility reduces for all the models.
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Classifier Train Size Clip Entropy GBM (Logits) GBM (Probits) GT Preds Log Loss Max Prob F1-Score

DISC Encoder

4096 (SST-5)

0.01 0.553 0.576 0.567 0.576 0.573 0.542 0.290
0.025 0.553 0.577 0.566 0.575 0.572 0.537 0.274
0.05 0.553 0.575 0.567 0.572 0.570 0.528 0.274
0.10 0.552 0.576 0.570 0.572 0.570 0.525 0.274
0.20 0.520 0.579 0.562 0.577 0.577 0.498 0.274

4096 (HateSpeech)

0.01 0.534 0.574 0.570 0.533 0.533 0.534 0.855
0.025 0.534 0.578 0.581 0.533 0.533 0.534 0.855
0.05 0.534 0.579 0.577 0.533 0.533 0.534 0.855
0.10 0.534 0.575 0.574 0.533 0.533 0.534 0.855
0.20 0.534 0.575 0.580 0.533 0.533 0.534 0.855

4096 (AG News)

0.01 0.568 0.660 0.661 0.616 0.616 0.561 0.826
0.025 0.568 0.659 0.662 0.616 0.615 0.561 0.826
0.05 0.566 0.658 0.663 0.614 0.613 0.558 0.826
0.10 0.565 0.660 0.662 0.612 0.612 0.557 0.826
0.20 0.567 0.658 0.659 0.609 0.609 0.553 0.826

Generative (AR)

4096 (SST-5)

0.01 0.498 0.858 0.820 0.762 0.762 0.524 0.507
0.025 0.502 0.858 0.819 0.761 0.762 0.525 0.502
0.05 0.518 0.858 0.812 0.761 0.762 0.539 0.491
0.10 0.550 0.858 0.809 0.761 0.762 0.568 0.476
0.20 0.631 0.856 0.778 0.759 0.759 0.641 0.433

4096 (HateSpeech)

0.01 0.663 0.894 0.781 0.710 0.710 0.687 0.869
0.025 0.662 0.894 0.783 0.708 0.708 0.684 0.856
0.05 0.662 0.894 0.779 0.706 0.705 0.683 0.835
0.10 0.672 0.893 0.775 0.707 0.704 0.686 0.792
0.20 0.701 0.894 0.772 0.722 0.713 0.706 0.674

4096 (AG News)

0.01 0.734 0.999 0.888 0.793 0.794 0.774 0.847
0.025 0.711 0.999 0.872 0.769 0.769 0.745 0.832
0.05 0.666 0.999 0.851 0.725 0.726 0.694 0.807
0.10 0.574 0.999 0.806 0.634 0.635 0.589 0.754
0.20 0.421 0.999 0.752 0.477 0.478 0.421 0.626

Table 9: Effect of logit clipping (i.e. clipping the logits before passing to Softmax function) on
discriminative vs. generative classifiers across datasets (SST-5, HateSpeech, AG News). The clip-
ping value in the above tables denotes the percentile threshold used to clip logits, computed from
the empirical logit distribution over the entire evaluation population. For example, a clipping value
of 0.01 means that logits above the 99th percentile and below the 1st percentile, are replaced with
their corresponding thresholded values. This post-processing reduces the dynamic range of logits
without altering their ordering. All numbers are computed using 12-layer models. Logit-clipping
reduces the MIA susceptibility of generative classifiers but it comes at the cost of performance (F1).
Logit-clipping has not effect on the GBM(logits) attack as the inputs to the attack model do not
change.
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Classifier Train Size Temp Entropy GBM (Probs) GT Preds Log Loss Max Prob

DISC Encoder

4096 (SST-5)

0.1 0.584 0.570 0.565 0.565 0.583
0.5 0.558 0.562 0.567 0.567 0.556
1.0 0.553 0.562 0.575 0.566 0.543
2.0 0.551 0.561 0.578 0.567 0.542

10.0 0.550 0.559 0.578 0.568 0.545

4096 (HateSpeech)

0.1 0.534 0.574 0.534 0.534 0.534
0.5 0.534 0.580 0.533 0.533 0.534
1.0 0.534 0.576 0.533 0.533 0.534
2.0 0.534 0.571 0.534 0.534 0.534

10.0 0.534 0.573 0.534 0.534 0.534

4096 (AG News)

0.1 0.554 0.658 0.611 0.611 0.553
0.5 0.558 0.657 0.613 0.613 0.556
1.0 0.568 0.662 0.616 0.616 0.561
2.0 0.577 0.663 0.620 0.619 0.566

10.0 0.541 0.663 0.625 0.624 0.569

Generative (AR)

4096 (SST-5)

0.1 0.502 0.830 0.779 0.783 0.531
0.5 0.497 0.833 0.764 0.765 0.523
1.0 0.497 0.830 0.762 0.762 0.522
2.0 0.497 0.828 0.761 0.761 0.522

10.0 0.496 0.826 0.760 0.760 0.521

4096 (HateSpeech)

0.1 0.685 0.776 0.720 0.720 0.699
0.5 0.666 0.775 0.712 0.713 0.689
1.0 0.663 0.777 0.710 0.711 0.688
2.0 0.662 0.778 0.710 0.710 0.687

10.0 0.660 0.778 0.709 0.709 0.686

4096 (AG News)

0.1 0.794 0.885 0.818 0.818 0.803
0.5 0.751 0.894 0.806 0.807 0.788
1.0 0.742 0.894 0.803 0.804 0.785
2.0 0.737 0.895 0.802 0.802 0.783

10.0 0.732 0.895 0.801 0.801 0.782

Table 10: Effect of temperature scaling (i.e., dividing logits by a temperature parameter before the
Softmax function) on discriminative vs. generative classifiers across datasets (SST-5, HateSpeech,
AG News).The temperature value in the above tables denotes the scalar used to rescale logits prior to
normalization. We observe that temperature scaling is less effective than logit clipping at reducing
the vulnerability of generative classifiers; however, unlike clipping, temperature scaling does not
degrade utility, as the F1 score remains stable across temperatures. Note that the susceptibility
for GBM (Probs) is unchanged under temperature scaling, since temperature rescales logits by a
constant factor and therefore constitutes only a linear transformation that preserves their separability.
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128 256 512 1024 2048 4096

DISC Encoder - TPR@FPR = 0.1

Entropy 0.047 0.078 0.168 0.227 0.191 0.153
GBM (Logits) 0.621 0.226 0.313 0.272 0.162 0.157
GBM (Probs) 0.638 0.232 0.314 0.275 0.181 0.160
Ground Truth Predictions 0.414 0.215 0.256 0.227 0.167 0.140
Log Loss 0.383 0.297 0.277 0.343 0.245 0.306
Max Probability 0.375 0.148 0.258 0.223 0.123 0.140

Generative (AR) - TPR@FPR = 0.1

Entropy 0.539 0.473 0.730 0.628 0.613 0.480
GBM (Logits) 0.991 0.993 0.995 0.995 0.997 0.995
GBM (Probs) 0.797 0.886 0.951 0.914 0.866 0.636
Ground Truth Predictions 0.805 0.738 0.844 0.559 0.533 0.306
Log Loss 0.719 0.797 0.881 0.795 0.748 0.605
Max Probability 0.656 0.543 0.811 0.538 0.502 0.286

Table 11: TPR@FPR = 0.1 for Discriminative and Generative Classifiers Across Training Sizes

Inference Calls (ninfer) Entropy GBM (Logits) GBM (Probs) Ground Truth Predictions Log Loss Max Probability
Discriminative (Encoder) Classifier

128 0.531 (0.027) 0.559 (0.050) 0.545 (0.050) 0.530 (0.031) 0.530 (0.031) 0.530 (0.028)
256 0.530 (0.025) 0.541 (0.039) 0.541 (0.045) 0.535 (0.027) 0.535 (0.027) 0.530 (0.025)
512 0.529 (0.018) 0.543 (0.016) 0.534 (0.010) 0.535 (0.020) 0.535 (0.020) 0.529 (0.018)
1024 0.521 (0.010) 0.534 (0.022) 0.530 (0.012) 0.528 (0.009) 0.528 (0.009) 0.521 (0.010)
2048 0.520 (0.006) 0.528 (0.022) 0.525 (0.015) 0.526 (0.006) 0.526 (0.006) 0.520 (0.006)
4096 0.516 (0.004) 0.526 (0.021) 0.523 (0.014) 0.522 (0.004) 0.522 (0.004) 0.516 (0.004)

Generative (Autoregressive) Classifier

128 0.582 (0.040) 0.581 (0.060) 0.566 (0.010) 0.576 (0.029) 0.576 (0.029) 0.577 (0.039)
256 0.578 (0.059) 0.582 (0.056) 0.657 (0.096) 0.586 (0.055) 0.586 (0.055) 0.584 (0.053)
512 0.578 (0.027) 0.571 (0.016) 0.620 (0.095) 0.601 (0.030) 0.601 (0.030) 0.585 (0.030)
1024 0.576 (0.022) 0.564 (0.019) 0.618 (0.081) 0.595 (0.026) 0.595 (0.026) 0.584 (0.024)
2048 0.584 (0.017) 0.572 (0.023) 0.602 (0.080) 0.596 (0.014) 0.596 (0.014) 0.587 (0.014)
4096 0.584 (0.011) 0.579 (0.027) 0.604 (0.072) 0.596 (0.012) 0.596 (0.012) 0.586 (0.012)

Table 12: Performance Metrics across varying Inference Calls for Discriminative and Generative
Classifiers for 12-layer models trained on 4096 sample setting for AG News dataset.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Training Size BERT (mean (std)) GPT-2 (mean (std))
128 0.594 (0.086) 0.827 (0.143)
256 0.579 (0.068) 0.827 (0.148)
512 0.586 (0.040) 0.917 (0.049)
1024 0.592 (0.080) 0.830 (0.132)
2048 0.556 (0.038) 0.773 (0.142)
4096 0.569 (0.064) 0.798 (0.141)

full data 0.551 (0.045) 0.797 (0.179)

Table 13: MIA Vulnerability measured via GBM (logits) attack model using AUROC on the AG
News dataset.

Figure 8: Attack susceptibility based on Entropy for model with 1 layer.
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Figure 9: Attack susceptibility based on GBM (Probs) for model with 1 layer.

Figure 10: Attack susceptibility based on Log Loss for model with 1 layer.
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Figure 11: Attack susceptibility based on GBM (Logits) for model with 1 layer.

Figure 12: Attack susceptibility based on Ground Truth Predictions for model with 1 layer.
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Figure 13: Attack susceptibility based on Max Prediction for model with 1 layer.

Figure 14: Attack susceptibility based on Entropy for model with 6 layers.
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Figure 15: Attack susceptibility based on GBM (Probs) for model with 6 layers.

Figure 16: Attack susceptibility based on Log Loss for model with 6 layers.
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Figure 17: Attack susceptibility based on GBM (Logits) for model with 6 layers.

Figure 18: Attack susceptibility based on Ground Truth Predictions for model with 6 layers.
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Figure 19: Attack susceptibility based on Max Prediction for model with 6 layers.

Figure 20: Attack susceptibility based on Entropy for model with 12 layers.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 21: Attack susceptibility based on GBM (Probs) for model with 12 layers.

Figure 22: Attack susceptibility based on Log Loss for model with 12 layers.
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Figure 23: Attack susceptibility based on GBM (Logits) for model with 12 layers.

Figure 24: Attack susceptibility based on Ground Truth Predictions for model with 12 layers.
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Figure 25: Attack susceptibility based on Max Prediction for model with 12 layers.

G TOY ILLUSTRATION

G.1 EXPERIMENTAL SETUP

We study membership inference in a controlled synthetic setting where each input x ∈ Rd is com-
posed of

x =
[
xcore, xnoise

]
.

Labels. Binary labels y ∈ {−1,+1} are drawn from

P (y = +1) = w, P (y = −1) = 1− w.

Core feature (signal). The one-dimensional core feature correlates directly with the label:

xcore ∼ N
(
y · µ, σ2

)
,

where µ (core scale in code) controls class separation and σ controls within-class spread. For
the membership-inference experiments we match the train and test distributions, i.e., we use the same
(µ, σ) for both sets so that members and non-members are drawn i.i.d. from the same distribution.

Noise features. The remaining d− 1 coordinates are independent Gaussian clutter:

xnoise ∼ N
(
0, σ2

noiseId−1

)
.

Training/Test sizes and sweeps. We generate ntrain training samples and ntest=4000 test samples.
We sweep

µ ∈ {0.05, 0.10, . . . , 0.50}, ntrain ∈ {50, 200, 2000}, d ∈ {16, 64, 256},

and evaluate three class-prior settings w ∈ {0.1, 0.3, 0.5}. Unless stated otherwise, figures fix
w=0.5, σnoise=1.0, and σ=0.15.
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Parameter Description

w Class prior for y=+ 1 (imbalance)
µ Core mean shift (class separation)
σ Core feature standard deviation (train = test)
σnoise Noise level for the d−1 nuisance dims
d Dimensionality (1 core + d−1 noise)
ntrain, ntest Train/test sample counts

Table 14: Synthetic data parameters. For MIA we use matched train/test distributions.

Models and training. We compare (i) Logistic Regression (LBFGS, max iter = 10,000) and
(ii) LDA (solver=lsqr, shrinkage=auto). Each configuration is run with 5 random seeds;
we report means and shaded uncertainty bands.

G.2 MOTIVATION

Our toy setup is designed to cleanly tease apart the drivers of membership inference without ar-
chitectural or optimization confounds. By controlling a few interpretable knobs, we can test how
membership signals scale with statistical difficulty:

• Dimensionality (d): Increasing d adds nuisance directions and dilutes per-sample informa-
tion, stressing generalization and potentially amplifying member–nonmember score gaps.

• Sample size (n): Larger n reduces estimator variance and overfitting; smaller n increases
memorization pressure. The ratio n/d serves as an effective signal budget per parameter.

• Decision boundary separation (µ): Larger µ widens class separation, boosting accuracy
and confidence. This lets us study whether membership advantage tracks confidence or
generalization.

• Signal strength (µ and n/d): Together, geometric margin (µ) and sample complexity
(n/d) summarize how much reliable signal the model can extract relative to noise.

• Imbalance (class weight w): Varying the class prior via a weight w ∈ (0, 1) shifts the
decision threshold and posterior calibration, directly affecting confidence-based and gener-
ative scores used by MIAs.

We keep train and test i.i.d. to isolate membership effects from distribution shift, and average over
multiple seeds to separate systematic trends from randomness. This controlled regime exposes how
membership advantage scales with (d, n, µ, w) and provides intuition that transfers to real datasets.

G.3 MEMBERSHIP INFERENCE SCORES

For each trained model we compute member scores on the training set and non-member scores on
an i.i.d. test set, and report AUROC.

Max-probability (auroc prob). Given posterior estimates p̂(y | x),

sprob(x) = max
y∈{−1,+1}

p̂(y | x).

This is the standard, label-agnostic confidence attack we plot for both Logistic Regression and LDA.

Log-joint (LDA only; auroc logjoint). For LDA with class priors P (y), means µy , and
shared covariance Σ,

slogjoint(x) = max
y

{
logP (y) + logN

(
x
∣∣µy,Σ

)}
.

This generative score often differs from max-probability and is shown in our AUROC plots.
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G.4 FINDINGS

Protocol & visualization. For each configuration (µ, n, d, w) we train Logistic Regression and
LDA on i.i.d. train/test data with shared core variance σ = 0.15, noise level σnoise = 1.0, and
no spurious cue (B = 0). We run 5 seeds and plot means with shaded bands showing ±1.96 ×
SEM. Membership is reported via AUROC and, when summarizing trends, the direction-invariant
advantage AUROC = max{AUROC, 1 − AUROC}. AUROC panels include a reference line at
0.5. The results are given in Figure 27.

Notation. LR/prob denotes the max-probability (confidence) score sprob(x) = maxy p̂(y | x)
computed from a Logistic Regression model; LDA/prob is the same score computed from an LDA
posterior; and LDA/log-joint denotes the log-joint score slogjoint(x) = maxy{logP (y)+logN (x |
µy,Σ)} from LDA. All are label-agnostic membership scores; unless stated, AUROC panels report
the direction-invariant advantage AUROC.

Dimensionality (d) and signal per parameter (n/d). Holding n fixed, increasing d reduces test
accuracy while increasing membership advantage. This is consistent with weaker signal per parame-
ter (n/d): estimation error grows and models lean more on idiosyncrasies of the training set, widen-
ing member–nonmember score gaps. Across-seed variability (std) of both accuracy and AUROC
shrinks as d rises, indicating more concentrated (though worse) accuracy and a more consistently
elevated membership signal in high dimensions.

Geometric separation (µ). Larger µ (wider class separation) monotonically increases accuracy
and also increases membership susceptibility: as margins grow, both models become more confident;
training points attain slightly higher confidence (and, for LDA, higher log-joints) than i.i.d. test
points, making member/nonmember scores easier to separate.

Imbalance (class weight w). Moving away from balance (w ̸= 0.5) improves accuracy for both
methods by shifting the optimal threshold toward the minority class. For membership, LR/prob
exhibits a dampened susceptibility under imbalance—posteriors saturate toward the majority, com-
pressing train–test score gaps—whereas LDA/prob remains comparatively stable and often higher in
AUROC across µ. Imbalance tends to increase across-seed variability, reflecting reduced effective
sample size for the minority class.

Generative vs. discriminative sample efficiency. Even at n = 50, LDA substantially outperforms
Logistic Regression in accuracy; this gap persists (and often widens) as d increases (i.e., smaller
n/d), reflecting the classic sample-efficiency advantage of a correctly specified generative model
with shrinkage.

LDA/log-joint vs. LDA/prob. Across essentially all (d, n, µ, w), LDA/log-joint yields higher
AUROC than LDA/prob. The log-joint exposes modeled density scale: training points lie closer to
estimated class means and receive larger log p(x | y), hence larger logP (y) + log p(x | y), than
i.i.d. test points. Posteriors p̂(y | x) partially compress this scale information, making LDA/prob
consistently less susceptible. The gap typically widens as d increases or n/d decreases, underscoring
the added risk of releasing joint/likelihood values.

LDA/prob vs. LR/prob across separation. At small µ, LR/prob shows both lower accuracy
and lower membership susceptibility than LDA/prob, matching LDA’s sample-efficiency advantage
when n/d is small. As µ grows, LR/prob confidence rises steeply with margin and its AUROC
increases; it can meet or exceed LDA/prob at larger separations. Under stronger imbalance, this rise
is dampened for LR/prob, while LDA/prob remains comparatively high.

LDA/log-joint vs. LR/prob. Except in a single benign regime (balanced w = 0.5, good sepa-
ration µ, and low d), LDA/log-joint exceeds LR/prob in membership advantage. Practical take-
away: even when discriminative posteriors appear relatively less susceptible, exposing generative
joint/likelihood scores can be markedly more revealing.
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Figure 26: Mean ± SEM across 5 seeds. Top row: test accuracy vs. core separation µ. Bottom
row: membership Adv(AUROC) vs. µ. Columns correspond to d ∈ {16, 64, 256}. Within each
panel, color denotes series (Accuracy: Logistic/LDA; AUROC: Logistic max-prob, LDA max-prob,
LDA log-joint), and marker denotes ntrain ∈ {50, 200, 2000}. We fix w=0.5, B=0, σ=0.15, and
σnoise=1.0.

Summary. Stronger signal (larger µ, larger n/d) improves accuracy but also strengthens
confidence-based membership cues; higher d at fixed n hurts accuracy yet sharpens membership
separation. Explicit prior modeling amplifies accuracy gains under imbalance without a commensu-
rate reduction in susceptibility. Generative LDA is more sample-efficient than LR, and its log-joint
scores are the most vulnerable among the considered outputs. Theorem 3.3 provides sufficient (not
necessary) conditions for dominance, specifically that the marginal skew must exceed the condi-
tional skew by a factor determined by the bounded likelihood-ratio condition. When this inequality
does not hold, the dominance can reverse.

Our empirical results directly illustrate such counter-examples. In the toy LDA vs. logistic regres-
sion experiments (Fig. 1), for low class separation, moderate sample size n = 200, and higher
dimensions d = 64, 256, the LDA log-joint signal is less vulnerable than the LDA posterior-
probability signal (green curve lying below the orange one). This happens because in this regime
LDA learns the conditional decision boundary reasonably well, while the marginal density is poorly
estimated. This is exactly the situation where the premise fails. As expected from our theory, the
joint score does not dominate in this regime.

G.5 FINDINGS UNDER MODEL MISSPECIFICATION

Contamination model. We introduce misspecification through Huber-style ε–contamination (Hu-
ber, 1992; Kasa & Rajan, 2023) by replacing each example (independently in train and test) with
probability ε by an isotropic high-variance draw that is independent of the label:

X ∼
{

clean generator (core/spurious/noise) w.p. 1− ε,

N (0, τ2Id) w.p. ε,
with τ = tau mult · σnoise.

We keep the label y unchanged. In our runs we use ε = 0.02 and tau mult = 10, yielding
empirical contamination rates ≈ 2.2% in train and ≈ 2.0% in test on average (diagnostics in the
CSV).

Protocol. Except for the contamination replacement above, the setup matches the clean case: for
each (µ, n, d, w) we train Logistic Regression and LDA; we fix σ = 0.15, σnoise = 1.0, and B =
0; we average over 5 seeds and summarize membership with AUROC and its direction-invariant
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(b) w = 0.3
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(c) w = 0.1

Figure 27: Mean ± SEM across 5 seeds. The three subfigures correspond to varying degree of
imbalance, with w = 0.5 corresponding to the balanced case. Each subfigure shows: top row = test
accuracy vs. µ, bottom row = MIA (AUROC) vs. µ; columns are d ∈ {16, 64, 256}. Markers denote
ntrain ∈ {50, 2000}. Within each panel, color denotes series (Accuracy: Logistic/LDA; AUROC:
Logistic max-prob, LDA max-prob, LDA log-joint)41
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advantage AUROC = max{AUROC, 1−AUROC} for the three scores LR/prob, LDA/prob, and
LDA/log-joint. The results are given in Figure 28.

Generative vs. discriminative under misspecification. Contamination reverses LDA’s clean-data
sample-efficiency edge in accuracy—Logistic is typically better—because a few large-norm replace-
ments strongly distort shared-covariance estimation even with shrinkage. However, exposing density
scale remains risky: LDA/log-joint is the most susceptible membership score across most regimes
we tested, particularly at high d and small n.

The introduction of misspecification through contamination depresses accuracy overall and espe-
cially at higher d; accuracy increases with geometric separation µ and with sample size n. Under
contamination the discriminative model is more resilient than LDA: averaged across the grid, Lo-
gistic attains∼0.775 vs. LDA∼0.742 mean accuracy. By dimension, accuracy drops from (d=16)
to (d=256) for both methods (e.g., LDA: 0.76 → 0.72, Logistic: 0.83 → 0.73), consistent with
inflated covariance estimates and leverage effects from large-norm points.

Contamination amplifies member–nonmember score gaps, with stronger effects at larger d, smaller
n, and larger µ. Both posterior-based signals rise with d , and LDA/log-joint is consistently the
most revealing . At very small sample sizes (n=50) the advantage is largest ; by n=2000 these fall
back toward chance .

As we move from extreme imbalance (w=0.1) toward balance (0.5), accuracy decreases (less prior
help), while membership susceptibility increases for all three signals (e.g., LR/prob mean AUROC
≈ 0.54 → 0.61, LDA/prob ≈ 0.54 → 0.58, LDA/log-joint ≈ 0.58 → 0.59), echoing the dampen-
ing effect of imbalance on confidence-based MIAs in the clean setting.

Summary. Replacing a small fraction of points by high-variance, label-independent outliers si-
multaneously hurts accuracy and strengthens membership signals, with the sharpest increases at
larger d, smaller n, and larger µ. While Logistic is more robust in accuracy, releasing generative
log-joint/likelihood values (LDA/log-joint) is notably more revealing than posteriors, reinforcing
the recommendation to avoid exposing such scores under potential contamination.
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(a) w = 0.5

(b) w = 0.3

(c) w = 0.1

Figure 28: Mean ± SEM across 5 seeds. The three subfigures correspond to varying degree of
imbalance, with w = 0.5 corresponding to the balanced case. Each subfigure shows: top row = test
accuracy vs. µ, bottom row = MIA (AUROC) vs. µ; columns are d ∈ {16, 64, 256}. Markers denote
ntrain ∈ {50, 2000}. Within each panel, color denotes series (Accuracy: Logistic/LDA; AUROC:
Logistic max-prob, LDA max-prob, LDA log-joint)43
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H PRIVACY-UTILITY ANALYSIS

We conducted a comprehensive privacy-utility analysis examining how privacy vulnerabilities
change with model architecture and training data characteristics. Our analysis focused on four
key strategies: ENC (Encoder/DISC), AR (Autoregressive), MLM (Masked Language Model), and
DIFF (Diffusion), evaluating their susceptibility to Gradient Boosting Machine (GBM) based mem-
bership inference attacks.

H.1 METHODOLOGY

The analysis examined privacy-utility trade-offs across different model configurations, specifically
investigating:

• Model Size Impact: Varying the number of transformer layers (1, 6, 12)

• Training Data Size: Different sample counts (128, 256, 512, 1024, 2048, 4096, Full Data)

• Attack Methods: GBM-based attacks using logits and probability distributions

• Utility Metric: F1 scores across multiple text classification datasets

H.2 RESULTS

H.2.1 MODEL SIZE ANALYSIS

Figure 29 presents the privacy-utility trade-offs as a function of model size. Each point represents
the average performance across datasets, with layer annotations (L1, L6, L12) indicating the model
depth.

Figure 29: Privacy-utility trade-offs by model size across four strategies. Left panel shows GBM
Logits attack success vs. F1 utility scores. Right panel shows GBM Probs attack success vs. F1
utility scores. Lower attack success indicates better privacy protection.

H.2.2 TRAINING SAMPLE SIZE ANALYSIS

Figure 30 illustrates how training data size affects the privacy-utility balance. Sample size annota-
tions indicate the number of training examples used.

H.3 KEY FINDINGS

H.3.1 STRATEGY PERFORMANCE RANKING

Our analysis reveals significant differences in privacy-utility characteristics across strategies:
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Figure 30: Privacy-utility trade-offs by training sample size across four strategies. Left panel shows
GBM Logits attack success vs. F1 utility scores. Right panel shows GBM Probs attack success vs.
F1 utility scores. Sample size annotations indicate training data volume.

Utility Performance (F1 Scores):

1. ENC: 0.534 (±0.233) – Best overall utility performance

2. DIFF: 0.529 (±0.171) – Second best with highest consistency

3. AR: 0.458 (±0.210) – Moderate utility with high variance

4. MLM: 0.456 (±0.238) – Lowest utility but improving with model size

Privacy Vulnerability (Attack Success Rates): For GBM Logits attacks (lower values indicate
better privacy protection):

1. MLM: 0.548 (±0.056) – Best privacy protection

2. ENC: 0.610 (±0.086) – Good privacy protection

3. AR: 0.728 (±0.198) – Moderate vulnerability

4. DIFF: 0.976 (±0.058) – Highest vulnerability

H.3.2 MODEL ARCHITECTURE IMPACT

The relationship between model size and privacy-utility trade-offs varies significantly across strate-
gies:

• ENC Strategy: Demonstrates optimal balance with utility peaking at 6 layers (F1=0.562)
while privacy protection improves with model depth. Attack success rates decrease from
0.620 to 0.599 (GBM Logits) as layers increase from 1 to 12.

• MLM Strategy: Shows the most favorable privacy characteristics with consistent protec-
tion across all model sizes. Utility improves substantially with depth (0.349 → 0.533)
while maintaining the lowest attack success rates.

• AR Strategy: Exhibits concerning behavior where utility gains (0.315 → 0.542) come at
severe privacy cost, with attack success rates increasing dramatically (0.542 → 0.841) for
larger models.

• DIFF Strategy: Despite achieving good utility, consistently shows the highest vulnerabil-
ity to privacy attacks (> 95% success rate) across all configurations, making it unsuitable
for privacy-sensitive applications.

H.4 RECOMMENDATIONS

Based on our comprehensive analysis, we provide the following recommendations:
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• General Applications: Use ENC strategy with 6-12 layers for optimal privacy-utility bal-
ance

• Privacy-Critical Systems: Deploy MLM strategy with 12 layers for maximum privacy
protection

• High-Risk Scenarios: Avoid DIFF strategy due to severe privacy vulnerabilities
• AR Strategy Caution: Monitor privacy implications carefully when scaling AR models
• Logit-Clipping does reduce the susceptible of generative classifiers to MIA but it comes

at the cost of reduced performance.

The analysis demonstrates that privacy and utility considerations must be carefully balanced when
selecting model architectures and training strategies, with ENC and MLM strategies offering the
most favorable trade-offs for privacy-preserving applications.

I LIMITATIONS

Despite providing the first systematic analysis of MIAs across Discriminative, Generative, and
Pseudo-Generative text classifiers, our study has several limitations. First, our experiments are con-
ducted under standard i.i.d. assumptions, and the results may not generalize to real-world scenarios
involving distribution shifts, such as covariate or concept drift (Bickel et al., 2009; Roychowdhury
et al., 2024), where both attack success and classifier behavior could differ substantially. Second,
we limit our study to only black-box attacks; it would be interesting to study if the same findings
translate to white-box attacks on generative classifiers, which we leave for future work. Third, we fo-
cus on transformer-based architectures with conventional fine-tuning, omitting emerging paradigms
such as few-shot or prompt-based in-context learning (Sun et al., 2023; Gupta et al., 2023), as well
as parameter-efficient adaptation techniques like LoRA (Hu et al., 2022), which may exhibit dif-
ferent privacy-utility trade-offs. Fourth, our analysis is restricted to text classification; multi-modal
data—including tabular, visual, or audio modalities (Pattisapu et al., 2025; Lu et al., 2019; Kush-
waha & Fuentes, 2023)—may yield distinct membership leakage patterns due to richer or correlated
feature structures. Fourth, we primarily evaluate standard MIA strategies and do not explore fully
adaptive adversaries that could exploit model-specific quirks, ensemble behaviors, or auxiliary side
information. Finally, while we study training data volume as a factor influencing vulnerability, other
aspects such as pretraining data composition, model calibration, or data augmentation strategies may
also impact privacy risks but remain unexplored. These limitations suggest that while our findings
provide foundational insights, extending analyses to diverse settings and adaptive attacks is neces-
sary to fully understand and mitigate privacy risks in generative classification systems.
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