

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE HIDDEN COST OF MODELING $P(X)$: VULNERABILITY TO MEMBERSHIP INFERENCE ATTACKS IN GENERATIVE TEXT CLASSIFIERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Membership Inference Attacks (MIAs) pose a critical privacy threat by enabling adversaries to determine whether a specific sample was included in a model’s training dataset. Despite extensive research on MIAs, systematic comparisons between generative and discriminative classifiers remain limited. This work addresses this gap by first providing theoretical motivation for why generative classifiers exhibit heightened susceptibility to MIAs, then validating these insights through comprehensive empirical evaluation. Our study encompasses discriminative, generative, and pseudo-generative text classifiers across varying training data volumes, evaluated on nine benchmark datasets. Employing a diverse array of MIA strategies, we consistently demonstrate that fully generative classifiers which explicitly model the joint likelihood $P(X, Y)$ are most vulnerable to membership leakage. Furthermore, we observe that the canonical inference approach commonly used in generative classifiers significantly amplifies this privacy risk. These findings reveal a fundamental utility-privacy trade-off inherent in classifier design, underscoring the critical need for caution when deploying generative classifiers in privacy-sensitive applications. Our results motivate future research directions in developing privacy-preserving generative classifiers that can maintain utility while mitigating membership inference vulnerabilities¹.

1 INTRODUCTION

Text Classification (TC) is a fundamental task in Natural Language Processing (NLP), serving as the backbone for numerous applications including sentiment analysis, topic detection, intent classification, and document categorization (Yogatama et al., 2017; Castagnos et al., 2022; Roychowdhury et al., 2024; Kasa et al., 2024; Pattisapu et al., 2025). As machine learning models have become increasingly sophisticated and widely deployed, concerns about their privacy implications have grown substantially. One of the most critical privacy vulnerabilities is the **Membership Inference Attack** (MIA), where an adversary attempts to determine whether a specific data point was included in a model’s training set (Shokri et al., 2017). MIAs represent a fundamental threat to data privacy by exploiting differential model behaviors on training versus non-training data to infer membership in the training set (Shokri et al., 2017; Carlini et al., 2019; Shejwalkar et al., 2021; Song et al., 2022; Song & Mittal, 2021; Feng et al., 2025). The implications are particularly severe for sensitive personal data, potentially violating privacy expectations and regulatory requirements. Recent surveys have highlighted the growing sophistication of these attacks (Amit et al., 2024; Feng et al., 2025).

The majority of MIA research in TC has concentrated on discriminative models like BERT (Devlin et al., 2019), which directly model $P(Y|X)$ and learn decision boundaries without explicitly modeling data distributions (Zheng et al., 2023; Kasa et al., 2025). Studies have revealed how factors such as overfitting, model capacity, and training data size influence attack success rates (Amit et al., 2024). Despite this discriminative focus, there has been renewed interest in generative classifiers for TC (Li et al., 2025). Unlike discriminative models, generative classifiers explicitly model the joint distribution $P(X, Y) = P(X|Y)P(Y)$, offering compelling advantages such as: superior performance in low-data regimes (Kasa et al., 2025; Yogatama et al., 2017), reduced susceptibil-

¹Code available at <https://anonymous.4open.science/r/privacy-attacks-gendisc-classifiers-143E>

ity to spurious correlations (Li et al., 2025), and principled uncertainty estimates via Bayes' rule (Bouguila, 2011). The renaissance of generative classifiers in TC has been particularly bolstered through scalable model architectures including autoregressive models (Radford et al., 2018), discrete diffusion models (Lou et al., 2024), and generative masked language models (Wang & Cho, 2019b).

However, the very characteristics that make generative classifiers attractive explicit modeling of data distributions and superior performance with limited data raise important privacy questions. While MIAs have been extensively studied for discriminative models, a significant gap exists in understanding how different classification paradigms compare in their vulnerability to such attacks. In this work, we present the first large-scale, systematic analysis of the vulnerability of transformer-based text classifiers to MIAs across a spectrum of modeling paradigms. Following Kasa et al. (2025), we consider three broad categories: (1) **discriminative models** such as encoder-style models `DISC`, which model the conditional distribution $P(Y|X)$; (2) **fully generative models** that explicitly model $P(X, Y)$, such as autoregressive (AR) or discrete diffusion models (`DIFF`); and (3) **pseudo-generative models**, such as Masked Language Models `MLM`, and pseudo-autoregressive `P-AR` models, where the label is appended at the end of the input sequence.

Contributions. To our knowledge, this work provides the first *systematic* study of membership inference risk for *generative* text classifiers, combining theory, controlled toy settings, and large-scale transformer-based experiments.

(1) Theory under a single-shadow black-box framework. We formalize membership inference for generative vs. discriminative classifiers in a black-box setting with either probabilities or logits exposed. Our bounds decompose the optimal attack advantage into leakage from the marginal $P(X)$ and the conditional $P(Y | X)$, clarify when *logits (joint scores)* can strictly dominate *probabilities (conditionals)*. Using a simulation setting with tunable dimension, sample size, and class separation, we show that *generative* classifiers leak more through *log-joint* scores than discriminative posteriors do—quantitatively aligning with our theoretical predictions about marginal vs. conditional channels.

(2) First systematic analysis for MIA in text classification. Across multiple datasets and five model paradigms (discriminative, fully generative: AR and discrete diffusion, and pseudo-generative), we provide a head-to-head evaluation of MIA vulnerability under matched training protocols. We isolate the effects of (i) architectural factorization (AR vs. p-AR), (ii) *output interface* (logits vs. probabilities), and (iii) data size. We find that fully generative models are consistently more vulnerable, with the strongest leakage observed when logits from K -pass scoring are exposed.

(3) Empirical analysis and practical guidance. We show that different architectures yield distinct privacy–utility trade-offs, with generative models offering better low-sample accuracy and robustness benefits at the cost of higher leakage, while pseudo-generative models emerge as more privacy-conscious alternatives at higher data regmies. Building on these results, we provide actionable guidance on API exposure (favoring probabilities over logits), model choice, and training practices for privacy-sensitive deployments.

2 RELATED WORK AND BACKGROUND

Generative vs. discriminative classifiers. Classic analyses compare generative and discriminative learning on efficiency and asymptotics: discriminative models achieve lower asymptotic error, while generative models converge faster in low-data regimes (Efron, 1975; Ng & Jordan, 2001; Liang & Jordan, 2008). In text classification, recent work has renewed interest in generative classifiers that model $P(X, Y) = P(X | Y)P(Y)$, reporting advantages in calibration, uncertainty estimation, robustness to spurious correlations, and performance under limited data (Yogatama et al., 2017; Zheng et al., 2023; Li et al., 2025; Kasa et al., 2025). Modern instantiations of generative classifiers in TC include autoregressive (AR) label-prefix classifiers (Radford et al., 2018), discrete diffusion models (Lou et al., 2024), and generative uses of masked LMs (Wang & Cho, 2019b). A practical drawback is that fully generative label-prefix AR classifiers typically require K -pass inference—one forward pass per label y_i to score $\log P(x, y_i)$ —whereas discriminative models compute $P(Y | X)$ in a single pass; conversely, the generative formulation naturally supports Bayes-rule posteriors and principled uncertainty quantification via the decomposition $P(Y | X) \propto P(X | Y)P(Y)$ (Bouguila, 2011). We investigate the generative text classifiers dis-

108 cussed in Li et al. (2025); Kasa et al. (2025) compare them with the well studied BERT-style encoder
 109 classifiers in this work.
 110

111 **Membership inference background.** MIAs exploit differences in a model’s behavior on train
 112 vs. non-train points. Shokri et al. (2017) introduced the multi-shadow-model paradigm for training
 113 an attack classifier on output vectors. Salem et al. (2018b) showed this can be simplified to
 114 *single*-shadow or even *no*-shadow attacks using confidence/loss statistics, and we *adopt the single-
 115 shadow assumption* in our theoretical setup by modeling a proxy Q alongside the target P and
 116 reasoning about induced score laws (P_S, Q_S). Yeom et al. (2018) established that overfitting is not
 117 the sole driver of MIAs: they connect attack advantage to generalization error via a loss-threshold
 118 attack and show that *influence* of individual examples can cause leakage even when generalization
 119 error is small. Complementary systematization in ML-as-a-Service highlights how API exposure
 120 (labels/top- k /probabilities), shadow alignment, and data mismatch shape attack efficacy (Truex
 121 et al., 2018).

122 **Scope and assumptions.** We study *black-box* adversaries that query the classifier and observe
 123 either probabilities or pre-softmax logits (when available); *white-box* access to parameters/gradients
 124 is out of scope. [Also prior works \(Sablayrolles et al., 2019; Salem et al., 2018a; Huang et al., 2024\) have shown that white-box access offers limited additional advantage both theoretically and empirically.](#) For fully generative label-prefix models, we assume K -pass inference is the canonical
 125 deployment mode; we analyze both logit- and probability-based attack surfaces and relate them to
 126 joint vs. conditional scoring used later in our theory. See Appendix A for an expanded survey,
 127 additional NLP-specific MIAs, and a detailed taxonomy of threat models.
 128

132 3 MOTIVATION

133 Before discussing MIA attacks on on benchmark datasets, we first develop a theoretical account of
 134 how membership vulnerability manifests in generative classifiers, identify factors that exacerbate
 135 leakage (e.g., marginal memorization and weak conditional generalization), and formally compare
 136 what is revealed by joint vs. conditional exposures. We then instantiate these results in a controlled
 137 toy setting with a known data-generating process, showing that the empirical behavior of standard
 138 attacks mirrors the theoretical predictions.
 139

141 3.1 PRELIMINARIES AND NOTATION

142 Let Ω denote the universe of all datapoints, where each datapoint $z \in \Omega$ can be decomposed into
 143 a feature-label pair (x, y) with $x \in \mathcal{X}$ (features) and $y \in \mathcal{Y}$ (labels). We consider two generative
 144 classifiers: P : the *target model*, which induces a joint probability distribution $P(X, Y)$ and Q : the
 145 *shadow model*, trained independently on population data (Salem et al., 2018b), which induces its
 146 own probability distribution $Q(X, Y)$ which the attacker uses to determine sample membership.
 147 We are interested in quantifying the difference between P and Q in terms of their induced joint
 148 distributions over (X, Y) , which captures susceptibility to MIA. Let an *attack signal* be any mea-
 149 surable function $S = S(\hat{p}(X, Y))$ of the model output (e.g., logits $(\log \hat{p}(x, y'))_{y' \in \mathcal{Y}}$, probabilities
 150 $\hat{p}(\cdot | x) = \text{softmax}(\log \hat{p}(x, \cdot))$, or a scalar score $\log \hat{p}(x, y_i)$) which is exposed to the client and
 151 the attacker tries to come up with an optimal decision φ rule based on the signal S to determine
 152 the membership. Given any attack signal S , let $P_S := \mathcal{L}(S | P)$ and $Q_S := \mathcal{L}(S | Q)$ denote the
 153 pushforward laws under the target/shadow distributions. Intuitively, these are the score distributions
 154 the attacker tunes their threshold on: in our empirical evaluation (cf. §5), the standard MIA AUROC
 155 is measured by sweeping a decision threshold that gives full weight to members under P versus non-
 156 members under Q . For any (possibly randomized) decision rule $\varphi : \text{range}(S) \rightarrow [0, 1]$, the achieved
 157 membership advantage $\text{Adv}_\varphi(S) := \mathbb{E}_P[\varphi(S)] - \mathbb{E}_Q[\varphi(S)]$ is always upper-bounded by the
 158 total-variation distance between the pushforwards, and the latter cannot exceed the TV between the
 159 original joint distributions,
 160

$$\text{Adv}_\varphi(S) \leq \text{TV}(P_S, Q_S) \leq \text{TV}(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| = \frac{1}{2} \int_{\Omega} |p(\omega) - q(\omega)| d\mu(\omega)$$

162 where we assume P and Q are defined on the same measurable space (Ω, \mathcal{F}) and p and q denote
 163 densities of P and Q with respect to a common dominating measure μ (this is done for ease of
 164 mathematical exposition).

165 It is well known that $\text{TV}(P, Q)$ equals the maximum distinguishing advantage of any binary hypothesis
 166 test between P and Q , and in the first result, we show that in the case of generative classifiers,
 167 this can be cleanly bounded using a generative and discriminative component.

168 **Lemma 3.1** (Two-way decomposition: upper and lower bounds). *For the score-optimal attacker
 169 observing the feature-label pair (X, Y) (equivalently, any sufficient statistic), the optimal advantage
 170 equals $\text{TV}(P_{XY}, Q_{XY})$ and satisfies*

$$172 \quad \begin{aligned} |\text{TV}(P_X, Q_X) - \mathbb{E}_{x \sim P_X} \text{TV}(P_{Y|X=x}, Q_{Y|X=x})| &\leq \text{TV}(P_{XY}, Q_{XY}) \leq \\ 173 \quad \text{TV}(P_X, Q_X) + \mathbb{E}_{x \sim P_X} \text{TV}(P_{Y|X=x}, Q_{Y|X=x}). \end{aligned} \quad (3.1)$$

174 *By Pinsker, any observable signal S obeys*

$$175 \quad \text{Adv}(S) \leq \text{TV}(P_{XY}, Q_{XY}) \leq \sqrt{\frac{1}{2} \text{KL}(P_X \| Q_X)} + \sqrt{\frac{1}{2} \mathbb{E}_{x \sim P_X} \text{KL}(P_{Y|X=x} \| Q_{Y|X=x})}.$$

176 *Discussion.* Lemma 3.1 cleanly separates membership leakage of a generative classifier into a
 177 marginal term KL_X (learning $P(X)$) and a conditional term $\text{KL}_{Y|X}$ (learning $P(Y | X)$), matching
 178 the spirit of the bound already introduced in §3.1 (Theorem 1). This makes precise why modeling
 179 $P(X)$ can increase MIA risk. (See App. B for the proof and for a KL-formulation mirroring §3.1.)

180 **Lemma 3.2** (Joint \succeq Conditional under full-vector exposure). *Let the model expose the per-class
 181 joint score vector $S_{\text{joint}}(x) = (\log \hat{p}(x, y))_{y \in \mathcal{Y}}$ and the conditional score vector $S_{\text{cond}}(x) = (\hat{p}(y |$
 182 $x))_{y \in \mathcal{Y}} = \text{softmax}(S_{\text{joint}}(x))$. Then for any membership game,*

$$183 \quad \text{Adv}(S_{\text{joint}}) \geq \text{Adv}(S_{\text{cond}}),$$

184 *with equality iff the per- x additive normalizer $\log \hat{p}(X)$ is P -a.s. equal under P and Q (i.e., it
 185 carries no marginal signal about membership).*

186 *Discussion.* Lemma 3.2 says that when logits proportional to $\log \hat{p}(x, y)$ are exposed, passing to
 187 posteriors *cannot* increase advantage (data-processing). Intuitively, softmax removes the shared
 188 $-\log \hat{p}(x)$ term and therefore discards whatever membership signal is present in $P(X)$.

189 **Theorem 3.3** (Scalar joint can dominate conditional under systematic marginal skew). *Consider
 190 binary classification. Suppose the attacker receives either (i) a scalar joint score $S_{\text{joint}}^{\text{scal}}(X, Y) :=$
 191 $\log \hat{p}(X, Y)$ or (ii) a conditional score $S_{\text{cond}}(X, Y) := \hat{p}(Y | X)$. Assume the member vs. non-
 192 member conditionals satisfy the bounded likelihood-ratio condition: there exist constants $0 < \alpha \leq$
 193 $\beta < \infty$ such that for P_X -a.e. x and both labels y ,*

$$194 \quad \alpha \leq \frac{P(y | x)}{Q(y | x)} \leq \beta.$$

195 *Then there exists $c = c(\alpha, \beta) \in (0, 1]$ such that*

$$196 \quad \text{Adv}(S_{\text{joint}}^{\text{scal}}) > \text{Adv}(S_{\text{cond}}) \quad \text{whenever} \quad c \text{KL}_X > \text{KL}_{Y|X}.$$

$$197 \quad \text{An explicit choice is } c(\alpha, \beta) = \frac{\log \beta - \log \alpha}{1 + \log \beta - \log \alpha}.$$

198 *Discussion.* Theorem 3.3 addresses the practically important case where only a *single* generative
 199 score is exposed (e.g., log-likelihood for the observed label, or a label-agnostic scalar derived from
 200 the joint). Unlike Lemma 3.2, scalar joint and conditional are *not* deterministic transforms of each
 201 other; nonetheless, whenever the *marginal* skew KL_X dominates the *conditional* skew $\text{KL}_{Y|X}$
 202 (“systematic marginal skew”) and conditionals are not wildly different between P and Q , the scalar
 203 joint channel is provably more susceptible.

216 **Implications.** (i) Exposing logits of a generative model (full vector) is always at least as risky
 217 as exposing posteriors. (ii) Even if only a single generative score is exposed, sufficiently strong
 218 marginal memorization makes the generative channel strictly more vulnerable than conditional out-
 219 puts. (iii) The decomposition in Lemma 3.1 explains our empirical hierarchy: models that *must*
 220 learn $P(X)$ (fully generative) leak through the marginal term in addition to the conditional term,
 221 inflating MIA advantage. (iv) Our framework is fully general, not limited to text classification. The
 222 decompositions in Lemma 3.1 and the dominance results in Lemma 3.2 & Theorem 3.3 apply to
 223 any generative–discriminative classifier pair because they rely only on model-induced score distri-
 224 butions, independent of modality or architecture and therefore extend to images, audio, tabular data,
 225 or any supervised domain.

226 227 3.2 TOY ILLUSTRATION: CONTROLLED ANALYSIS OF MIA VULNERABILITY

228 To validate our theoretical insights on the heightened vulnerability of generative classifiers, we con-
 229 duct a controlled synthetic experiment that teases out key factors behind membership inference such
 230 as accuracy, signal/noise ratio, dimensionality, etc. Following Li et al. (2025), we use a toy setup of
 231 linear classifiers on linearly separable data, which strips away confounders, letting us directly study
 232 how marginal vs. conditional learning drives leakage before moving to complex real-world models.

233 **Experimental Setup.** We design a synthetic binary classification task where each input $x \in \mathbb{R}^d$ con-
 234 sists of two components: $x = [x_{\text{core}}, x_{\text{noise}}]$. The core feature $x_{\text{core}} \sim \mathcal{N}(y \cdot \mu, \sigma^2)$ correlates directly
 235 with the binary label $y \in \{-1, +1\}$, where μ controls class separation. The remaining $d - 1$ coordi-
 236 nates are independent standard Gaussian noise. We systematically vary key parameters: dimension-
 237 ality $d \in \{16, 64, 256\}$, training size $n_{\text{train}} \in \{50, 200\}$, class separation $\mu \in \{0.05, 0.10, \dots, 0.50\}$,
 238 and class balance $w \in \{0.1, 0.3, 0.5\}$. We compare the discriminative Logistic Regression (LR) with
 239 the generative Linear Discriminant Analysis (LDA), evaluating three membership inference scores:
 240 max-probability for both models, and log-joint likelihood for LDA.

241 **Notation (attack scores).** LR/prob denotes the *max-probability* (confidence) score from LR,
 242 LDA/prob is the same max-probability score computed from LDA posteriors $\hat{p}_{\text{LDA}}(y | x)$; and
 243 LDA/log-joint is the LDA *log-joint* score. All three are label-agnostic membership scores.

$$244 s_{\text{prob}}(x) = \max_{y \in \{-1, +1\}} \hat{p}_{\text{LR}}(y | x), \quad s_{\text{logjoint}}(x) = \max_y \{\log P(y) + \log \mathcal{N}(x | \mu_y, \Sigma)\}.$$

245 **MIA evaluation (AUROC).** For a given score $s(\cdot)$ and trained model, we compute scores on training
 246 samples (members) and on an i.i.d. test set (non-members). Treating members as positives and non-
 247 members as negatives, we sweep a threshold on $s(\cdot)$ to obtain the ROC curve and report its area
 248 (AUROC), the standard practice for membership inference. We aggregate results over 5 random
 249 seeds and plot mean curves with shaded std. deviation bands. Here we present the plots and analysis
 250 for the balanced case of $w = 0.5$. For the imbalanced cases, the same is deferred to Appendix G.

251 Figures 1 reveals several critical findings that support our theoretical predictions: (a) In the low-
 252 sample regime, **LDA is markedly more sample-efficient than LR**: for $d \in \{16, 64\}$, the accuracy
 253 achieved by LR with $n_{\text{train}} = 200$ is already matched (or exceeded) by LDA with $n_{\text{train}} = 50$; this
 254 accuracy gap widens as d increases (smaller n/d). (b) Comparing LDA’s two scores, the **joint score**
 255 (**LDA/log-joint**) **consistently yields larger membership susceptibility** than the posterior max-
 256 probability (LDA/prob), with the gap growing as d increases or n/d decreases, underscoring the
 257 additional risk from exposing joint/likelihood values. (c) Comparing discriminative and generative
 258 posteriors, at small μ LR/prob exhibits lower susceptibility than LDA/prob; as μ grows, LR/prob’s
 259 susceptibility rises sharply with margin and can meet or exceed LDA/prob, whereas LDA/prob often
 260 flattens or slightly decreases while LDA/log-joint remains high—consistent with likelihood domi-
 261 nating at larger separations. Apart from a single benign regime (balanced $w = 0.5$, large μ , low d),
 262 LDA/log-joint exceeds LR/prob in susceptibility. (d) Increasing dimensionality d at fixed n lowers
 263 accuracy and increases membership advantage; in parallel, the across-seed standard deviation of
 264 both accuracy and AUROC narrows, yielding more consistent (but worse) accuracy and stronger,
 265 more stable membership signals in high dimensions.

266 The superior sample-efficiency of LDA is in part tied to the parameteric assumptions of LDA being
 267 satisfied by the data on which it is being fit. In order to tease out this we introduce a misspecification
 268 specifically a Huber- ϵ contamination Huber (1992) during the data geeneration process. The de-
 269 tailed plots are given in Appendix G.5. We notice that contamination reverses the generative LDA’s

Figure 1: **Membership inference vulnerability increases with model confidence and dimensionality.** Top row: test accuracy vs. core separation μ . Bottom row: membership inference advantage (AUROC) vs. μ . Columns correspond to $d \in \{16, 64, 256\}$. Colors denote model types and inference methods: Logistic Regression max-probability (blue), LDA max-probability (orange), LDA log-joint (green). Markers indicate training size $n_{\text{train}} \in \{50, 200, 2000\}$. Results averaged over 5 seeds with $\pm 1.96 \times \text{SEM}$ bands.

clean-data sample-efficiency edge in accuracy — LR is typically better—because a few large-norm replacements strongly distort shared-covariance estimation even with shrinkage. However, exposing density scale remains risky: LDA/log-joint is the most susceptible membership score across most regimes we tested, particularly at high d and small n . These controlled experiments provide concrete evidence that generative classifiers face fundamental privacy disadvantages, with the risk being particularly acute when exposing joint likelihood values or operating in high-dimensional, low-sample regimes.

4 EXPERIMENTAL SETUP

We evaluate privacy vulnerabilities in text classification by training multiple classifiers across datasets and subjecting them to diverse membership inference attacks (MIAs). Following Li et al. (2025); Kasa et al. (2025), we study three main classifier families:

Discriminative (DISC/ENC): Standard BERT-style encoders modeling $P(Y|X)$ using linear head on top of $[\text{CLS}]$ token to directly map text X to label Y . There's no explicit memorization signal in this modeling approach.

Fully Generative: Models that capture the joint distribution $P(X, Y)$ through:

(i) *Label-Prefix Autoregressive* (AR) models generate text x conditioned on a label prefix (e.g., Positive: The film was a masterpiece.). Classification is performed via logits using likelihood estimation, $\arg \max_{l \in K} \log P(x, y_l)$, in a K -pass fashion (K = number of labels). Such models may be more vulnerable to MIAs since logits expose information about $P(X)$. Alternatively, applying a softmax yields probabilities: $\text{softmax}(\log P(x, y_l)) = P(x, y_l)/P(x) = P(y_l|x)$, where the shared denominator $P(x)$ cancels across classes.

(ii) *Discrete Diffusion Models* (DIFF) are trained on (X, Y) pairs with a denoising objective. Following Lou et al. (2024), noise gradually corrupts the input sequence to pure $[\text{MASK}]$ tokens in the forward process, with original input reconstruction in the reverse process. At inference, the model predicts y from $[\text{MASK}]$, conditional on x . We use *Diffusion Weighted Denoising Score Entropy*

(324) $DWDSE$) for logits, providing an upper bound on log-likelihood: $-\log p_0^\theta(x) \leq \mathcal{L}_{DWDSE}(x)$
 (325) under the ELBO.

(326) **Pseudo-Generative:** This category represents a middle ground between discriminative and fully
 (327) generative approaches. We explore using *Masked Language Models* (MLM) trained for reconstructing
 (328) masked tokens bi-directionally rather than full causal modeling. These model the pseudo-joint
 (329) likelihood rather than the true joint $P(X, Y)$ (Wang & Cho, 2019a).

(330) All models utilize transformer-based architectures and are trained from scratch to avoid confounding
 (331) effects from pre-training. Following Kasa et al. (2024), we evaluate three model size configurations:
 (332) small (1 layer, 1 head), medium (6 layers, 6 heads), and large (12 layers, 12 heads). To enable fair
 (333) comparison, we maintain comparable parameter counts across all architectures within each size con-
 (334) figuration. Implementation details including model sizes and training hyperparameters are provided
 (335) in Appendix B.

(336) **Attack Methodology:** We examine two main classes of MIAs: (a) **Threshold-Based** attacks derive
 (337) simple metrics from model outputs: (i) *Max Probability*: $\max(P(y|x))$, (ii) *Entropy*: $H(P(y|x)) = -\sum_i p_i \log p_i$, and (iii) *Log-Loss* using cross-entropy on the true label. (b) **Model-Based** attacks
 (338) train an explicit attack model by querying the target classifier with member and non-member sam-
 (339) ples, representing each using the model’s output probability or logits vector concatenated with
 (340) ground-truth labels, and training a Gradient Boosting Model (GBM-logits / GBM-probs) to
 (341) predict membership status. Detailed attack implementations are provided in Appendix B. Although
 (342) there exists more sophisticated attacks (Shejwalkar et al., 2021; Song et al., 2022; Amit et al., 2024)
 (343) (details in Appendix A.2), as will see in §5 that these basic attacks do a good job of revealing the
 (344) differential vulnerability of generative and discriminative classifiers on TC.

(345) **Dataset Details:** Our evaluation spans nine public text classification benchmarks : **AG News** Zhang
 (346) et al. (2015), **Emotion** Saravia et al. (2018), **Stanford Sentiment Treebank (SST2 & SST5)** Socher
 (347) et al. (2013), **Multiclass Sentiment Analysis**, **Twitter Financial News Sentiment**, **IMDb** Maas
 (348) et al. (2011), and **Hate Speech Offensive** Davidson et al. (2017), covering diverse domains from
 (349) sentiment analysis to topic classification. All models are trained from scratch using AdamW opti-
 (350) mizer with early stopping to prevent overfitting, following Li et al. (2025) and Kasa et al. (2025).
 (351) We measure attack success using Area Under the ROC Curve (**AUROC**), where 1.0 indicates perfect
 (352) attack and 0.5 indicates random guessing. Dataset characteristics are provided in Appendix B.

355 5 RESULTS & DISCUSSIONS

356 Building on our theoretical analysis and synthetic experiments with LDA and LR (Section 3.2),
 357 we present comprehensive empirical evidence from real-world text classification scenarios. Our
 358 analysis examines: (1) privacy vulnerabilities across discriminative, fully generative, and pseudo-
 359 generative architectures, with patterns aligning with our controlled findings, (2) impact of model
 360 output representations (logits versus probabilities) on membership inference risk, and (3) how dif-
 361 ferent approaches to modeling $P(X, Y)$ affect the privacy-utility trade-off. Through experiments on
 362 nine diverse datasets, we establish concrete relationships between architectural choices and privacy
 363 vulnerabilities, while identifying promising directions for privacy-preserving text classification.

364 Figure 2 shows that fully generative models (DIFF, GEN) are consistently more vulnerable to MIAs
 365 than discriminative (DISC) and pseudo-generative (MLM) models across five datasets. For clarity,
 366 only GBM-logits and GBM-probs are shown; other attacks follow the same trend (see Sec-
 367 tion F). Medium models behave similarly, while small AR are least susceptible, consistent with Kasa
 368 et al. (2025), who show these models behave nearly randomly. Full results across all datasets and
 369 model sizes are in Section F. Additionally, we also report True Positive Rate (TPR)@False Positive
 370 Rate (FPR)=0.1 (see Table 11) on a representative dataset (AG News) using a 12-layer model com-
 371 paring DISC and AR. Consistent with AUROC findings, we again observe that AR exhibit higher
 372 susceptibility across all attack types, even under stricter low-FPR operating points.

373 These findings confirm our hypothesis: modeling $P(X, Y)$ forces generative models to capture both
 374 $P(Y|X)$ and $P(X)$, amplifying memorization risk compared to purely discriminative objectives.

375 Vulnerability does not vary monotonically with training size (Figure 2, Table 7), consistent with
 376 Amit et al. (2024). Early stopping dampens overfitting in low-data regimes, masking expected

Figure 2: [Best viewed in color] MIA success rate (AUROC) compared across full-size model architectures with varying training dataset sizes. We evaluate fully generative classifiers (AR, DIFF), a discriminative classifier (DISC), and pseudo-generative models (MLM). The **top row** displays attack performance using model **logits**, while the **bottom row** shows results using output **probabilities**. Higher AUROC values indicate increased privacy vulnerability. Results averaged across 5 random seeds.

trends. Removing early stopping (training 20 epochs on AGNews) restores the expected pattern: susceptibility decreases with larger training sets (refer Table 8 in Appendix F).

We also study how the MIA vulnerability changes with the representation of a class in the training sample in Appendix D and find that vulnerability difference between majority and minority classes (i.e. the classes with the highest and lowest representation in the training split) is high for DISC, MLM paradigms and it is relatively less pronounced for the generative AR, DIFF paradigms.

Logits as a High-Bandwidth Privacy Leakage Channel: Our experiments show that membership inference attacks (MIA) using pre-softmax logits consistently outperform those based on post-softmax probabilities. As shown in Figure 2, logit-based attacks (top row) achieve higher AUC across all models and datasets than probability-based ones (bottom row). This aligns with prior work Shokri et al. (2017) and arises because logits preserve raw confidence scores, whereas softmax projects them onto a probability simplex, compressing information and reducing the attack surface.

The implications are significant: exposing logits through APIs even for calibration or temperature scaling greatly heightens privacy risk. Given that many ML APIs and frameworks expose logits by default Finlayson et al. (2024), practitioners should either restrict outputs to probabilities or add privacy-preserving safeguards when logits must be shared.

The success of membership inference attacks also depends on the attack strategy’s sophistication and the adversary’s access to auxiliary information. Table 1 reports results for both threshold-based and model-based attacks (refer Section 4), focusing on probability-based methods since many attacks are incompatible with logits. These results illustrate the attack efficacy hierarchy, i.e.

threshold-based attacks relying on output probabilities (*Max Probability, Entropy*) yield modest success, while incorporating ground-truth labels via *Log-Loss* improves performance. The most effective attack, a Gradient Boosting Model (*GBM*) trained on probability vectors and label information, notably excels for AR and DIFF models. We also find that model size exacerbates the privacy vulnerability in generative classifiers (refer to Appendix E), similar to previous findings on DISC (Amit et al., 2024). These findings underscore the urgent need for privacy defenses that remain effective across diverse adversarial capabilities and information access levels.

The Impact of Factorization: Decomposing Leakage in $P(X, Y)$: In (Kasa et al., 2025), the authors argue that fully generative models perform best in low-data regimes and should be preferred over discriminative models. However, our earlier results reveal that AR models exhibit signifi-

Attack	DISC	GEN	MLM	DIFF
Max Probability	0.56 ± 0.05	0.67 ± 0.13	0.55 ± 0.06	0.51 ± 0.13
Entropy	0.56 ± 0.05	0.63 ± 0.12	0.55 ± 0.06	0.60 ± 0.09
Log-Loss	0.60 ± 0.06	0.76 ± 0.13	0.55 ± 0.08	0.65 ± 0.13
GBM-Pros	0.62 ± 0.08	0.81 ± 0.13	0.56 ± 0.07	0.76 ± 0.16

Table 1: MIAs performance (AUROC) across different model architectures, averaged over all datasets for models with 12 layers trained on full data. Higher values indicate greater privacy vulnerability, with the highest values in each column shown in **bold**.

cantly higher vulnerability to MIAs compared to `DISC`. To address this, we investigate an alternative modeling paradigm that reduces MIA risk without sacrificing classification performance. *Pseudo-Autoregressive* (`P-AR`) models tackle this challenge by appending the label at the end of the input sequence, instead of modeling $P(X|Y)$ by pre-pending the label token,. Although this approach does not strictly capture $P(X|Y)$, recent work (Li et al., 2025) shows that label-appending often achieves better in-distribution accuracy than label-prepending. At inference, we can either use a K-pass run like `AR` to score each label and take the argmax, or a 1-pass run by selecting the predicted label from the final token’s distribution (this is the canonical approach for `P-AR`). As evident from Table 2 (averaged across datasets) `P-AR` poses much lesser MIA risk compared to `AR`. However, `P-AR-kpass` exhibits similar vulnerability again similar to fully generative case. A few attacks are not stated here as they are qualitatively similar to Log-Loss.

To explain this phenomenon, we next examine how different factorizations of the joint distribution $P(X, Y)$ influence privacy leakage. (**Label-Prefix**) `AR` are trained to generate the text X conditioned on a label prefix Y , thereby factorizing the joint distribution as $P(X, Y) = P(Y)P(X|Y)$. Its primary focus is on learning the class-conditional data distribution. However, (**Label-Suffix**) `P-AR` are trained to generate the full sequence (X, Y) , with the label appended at the end. This architecture implicitly factorizes the joint distribution as $P(X, Y) = P(X)P(Y|X)$ requiring high-fidelity modeling of $P(X)$. While still generative, its final step of predicting $Y|X$, after generating all of X , mirrors a discriminative task (which is also why this falls under pseudo-generative paradigm).

Attack	AR	P-AR	P-AR-kpass
Log-Loss	0.66 ± 0.05	0.56 ± 0.06	0.57 ± 0.06
GBM	0.77 ± 0.08	0.55 ± 0.05	0.95 ± 0.04

Table 2: MIA performance (AUROC) comparing **Autoregressive** (`AR`) and **Pseudo-Autoregressive** (`P-AR`) models for large model size. The lowest susceptibility for an attack is highlighted in blue.

Dataset	P-AR		AR	
	$P(X)$	$P(X, Y)$	$P(X)$	$P(X, Y)$
SST-5	0.8185	0.8445	0.6204	0.6285
HateSpeech	0.8355	0.8771	0.4419	0.4256
Emotion	0.8872	0.9617	0.4780	0.4850
AGNews	0.6230	0.6299	0.2400	0.2492
IMDb	0.8379	0.8354	0.5232	0.5234

Table 3: JSD between training and test distributions (here $Y : Y_{label}$). Higher values indicate greater data leakage.

The output probabilities from `P-AR` correspond to $P(Y|X)$, which inherently leaks less information about sample membership than `AR`. The latter is more vulnerable because it effectively exposes $P(Y, X)$, a generative quantity, rather than the purely discriminative $P(Y|X)$. However, changing the label position does not magically remove MIA risk. As Table 3 demonstrates, `P-AR` still exhibits substantial memorization—evidenced by elevated Jensen–Shannon Divergence (JSD) when we compare train/test distributions of $P(X)$ and $P(X, Y)$. Crucially, these statistics are not exposed to an attacker when they interact with a `P-AR` model, since `P-AR` only reveals $P(Y | X)$. By contrast, `AR` and `P-AR-kpass` make joint/generative quantities (e.g., $P(X, Y)$) available, thereby exposing that memorization and increasing vulnerability. In short: label-suffix modeling can reduce the observable attack surface, but it does not eliminate underlying sample memorization. This distinction underlies our recommendation of (**label-suffix**) (`P-AR`) models in 1-pass fashion as a **safer alternative** to `AR` in terms of MIA vulnerability, complementing earlier conclusions made by Kasa et al. (2025) from an accuracy stand point.

Privacy-Utility Trade-Off: We show that different architectures yield distinct privacy–utility trade-offs (refer to Appendix H), with our comprehensive analysis revealing that `DISC` models achieve the best overall utility performance while maintaining good privacy protection , and `MLM` strategies provide superior privacy protection with steadily improving utility as model size increases. Conversely, we find that `DIFF` models, despite achieving competitive utility, exhibit severe privacy vulnerabilities with attack success rates exceeding 95%, while `AR` models demonstrate concerning behavior where utility gains come at dramatic privacy costs, with attack success rates increasing as model complexity grows. Building on these results, we provide actionable guidance recommending `DISC` strategies with 6-12 layers for general applications, `MLM` strategies for privacy-critical systems, and cautioning against `DIFF` models in privacy-sensitive deployments due to their consistently high vulnerability to membership inference attacks.

Effects of Common Mitigation Strategies: Beyond proposing `P-AR` as a safer alternative to `AR` above, we also uncover new insights on how techniques like *logit clipping* and *temperature scaling*

(Hintersdorf et al., 2021) affect MIA vulnerability in our generative vs. discriminative framework. **(a)** From Table 9: clipping has little effect on discriminative models—both AUROC and F1 remain stable. For fully generative models, clipping reduces vulnerability (especially for logit-based attacks) but consistently harms utility, with F1 degrading as clipping strengthens. Thus, clipping shrinks vulnerability without addressing structural leakage and at a clear utility cost. **(b)** From Table 10: temperature scaling is less effective than clipping at reducing vulnerability in generative models, but it preserves utility, as F1 remains steady. GBM (Logits) vulnerability is unaffected because temperature simply rescales logits linearly, preserving their separability.

Comparison Under Same Computational Budget: The significant difference in inference requirement - where discriminative (DISC) models need only a single inference call for all logits versus generative (AR) models requiring one call per label - necessitates an investigation into whether this cost disparity biases observed comparisons of MIA vulnerability. To address this, we conducted an additional experiment, fixing the compute budget by varying the number of inference passes (n_{infer}) up to 4096 for both model types (12-layer models trained on 4096 samples on AG News) and reporting mean AUROC with standard deviations. Our central finding from Table 12 is that the generative classifier demonstrates substantially higher MIA vulnerability even at the absolute lowest tested compute budget ($n_{\text{infer}} = 128$), clearly surpassing the DISC model’s vulnerability at any compute level; these results unequivocally show that the increased susceptibility of generative classifiers is not a byproduct of increased attack surface but rather a structural privacy disadvantage inherent in modeling the joint likelihood $P(X, Y)$.

Impact of Pre-Trained Models: While our main experiments use models trained from scratch to isolate the effects of pre-training corpora, to be rigorous in our experimental methodology, we additionally evaluate two standard pre-trained models: *BERT-base-uncased* and *GPT-2-small*, each with roughly $110M$ parameters and released around the same time, ensuring a fair cross-paradigm comparison. These models were fine-tuned on the classification task using standard discriminative (encoder) and generative (AR) approaches, consistent with the rest of the paper. Even with pre-trained models, the generative GPT-2 classifier remains substantially more vulnerable to MIA attacks than the discriminative BERT encoder. Table 13 presents representative results on the AG News dataset. These findings reinforce our core conclusion: the increased susceptibility of generative classifiers is not merely an artifact of training from scratch but a structural consequence of modeling $P(X, Y)$ and exposing joint-likelihood signals. Pretraining does not mitigate this vulnerability; GPT-2’s susceptibility remains consistently higher across all dataset sizes.

6 CONCLUSION AND FUTURE WORK

This work presented the first systematic study of MIAs in generative text classifiers, combining theoretical analysis, controlled toy settings, and large-scale experiments. Our framework clarified how leakage arises from both the marginal $P(X)$ and conditional $P(Y|X)$, with simulations confirming that generative classifiers leak more information through log-joint scores than discriminative posteriors. Empirically, we compared discriminative(DISC), fully generative (AR, DIFF), and pseudo-generative models(MLM, P-AR) across nine benchmarks. We found that fully generative models are consistently more vulnerable to MIAs, with the strongest leakage observed when logits are exposed. We further showed how factorization (AR vs. P-AR), output interface (*logits* vs. *probabilities*), and training data size shape vulnerability, highlighting distinct privacy–utility trade-offs. Notably, pseudo-generative models emerged as a safer alternative, reducing observable leakage while maintaining competitive utility. We also provides actionable guidance: Given that several widely used commercial (OpenAI GPT-4o, Gemini Vertex) and open-source systems such as Text Generation Inference (TGI) do expose token-level likelihoods, we should restrict API outputs to probabilities, use generative models cautiously in sensitive settings, and favor pseudo-generative approaches when balancing privacy and utility. Future work should explore architectural and training modifications to retain the benefits of generative modeling while mitigating these risks. Our findings can potentially generalize to any modeling paradigm that models the joint density, including instruction-tuned LLMs, Multimodal generative systems, etc., which we leave for exploration in future work.

540 REFERENCES
541

542 Guy Amit, Abigail Goldstein, and Ariel Farkash. Sok: Reducing the vulnerability of fine-tuned
543 language models to membership inference attacks, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2403.08481)
544 2403.08481.

545 Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning under covariate
546 shift. *Journal of Machine Learning Research*, 10(9), 2009.

547 Nizar Bouguila. Bayesian hybrid generative discriminative learning based on finite liouville mixture
548 models. *Pattern Recognition*, 44(6):1183–1200, 2011.

549

550 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
551 Evaluating and testing unintended memorization in neural networks. In *28th USENIX security*
552 *symposium (USENIX security 19)*, pp. 267–284, 2019.

553

554 François Castagnos, Martin Mihelich, and Charles Dognin. A simple log-based loss function for
555 ordinal text classification. In *Proceedings of the 29th International Conference on Computational*
556 *Linguistics*, pp. 4604–4609, 2022.

557 Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech
558 detection and the problem of offensive language. In *Proceedings of the 11th International AAAI*
559 *Conference on Web and Social Media*, ICWSM ’17, pp. 512–515, 2017.

560

561 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
562 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
563 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of*
564 *the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long*
565 *and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
566 putational Linguistics. doi: 10.18653/v1/N19-1423. URL [https://aclanthology.org/](https://aclanthology.org/N19-1423/)
567 N19-1423/.

568 Bradley Efron. The efficiency of logistic regression compared to normal discriminant analysis.
569 *Journal of the American Statistical Association*, 70:892–898, 1975. URL <https://api.semanticscholar.org/CorpusID:34806014>.

570

571 Qizhang Feng, Siva Rajesh Kasa, SANTHOSH KUMAR KASA, Hyokun Yun, Choon Hui Teo,
572 and Sravan Babu Bodapati. Exposing privacy gaps: Membership inference attack on preference
573 data for llm alignment. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan
574 (eds.), *Proceedings of The 28th International Conference on Artificial Intelligence and Statistics*,
575 volume 258 of *Proceedings of Machine Learning Research*, pp. 5221–5229. PMLR, 03–05 May
576 2025. URL <https://proceedings.mlr.press/v258/feng25a.html>.

577 Matthew Finlayson, Xiang Ren, and Swabha Swayamdipta. Logits of api-protected llms leak pro-
578 prietary information, 2024. URL <https://arxiv.org/abs/2403.09539>.

579

580 Karan Gupta, Sumegh Roychowdhury, Siva Rajesh Kasa, Santhosh Kumar Kasa, Anish Bhanushali,
581 Nikhil Patisapu, and Prasanna Srinivasa Murthy. How robust are llms to in-context majority label
582 bias? *arXiv preprint arXiv:2312.16549*, 2023.

583 Dominik Hintersdorf, Lukas Struppek, and Kristian Kersting. To trust or not to trust prediction
584 scores for membership inference attacks. *arXiv preprint arXiv:2111.09076*, 2021.

585

586 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
587 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
588 *ference on Learning Representations*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=nZeVKeeFYf9)
589 [id=nZeVKeeFYf9](https://openreview.net/forum?id=nZeVKeeFYf9).

590 Wei Huang, Yinggui Wang, and Cen Chen. Privacy evaluation benchmarks for NLP models. In
591 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for*
592 *Computational Linguistics: EMNLP 2024*, pp. 2615–2636, Miami, Florida, USA, November
593 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.147.
594 URL <https://aclanthology.org/2024.findings-emnlp.147/>.

594 Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics: Methodology and distribution*, pp. 492–518. Springer, 1992.

595

596

597 Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers.

598 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=rmg0qMKYRQ>.

599

600 Siva Rajesh Kasa and Vaibhav Rajan. Avoiding inferior clusterings with misspecified gaussian

601 mixture models. *Scientific Reports*, 13(1):19164, 2023.

602

603 Siva Rajesh Kasa, Aniket Goel, Karan Gupta, Sumegh Roychowdhury, Patisapu Priyatam, Anish

604 Bhanushali, and Prasanna Srinivasa Murthy. Exploring ordinality in text classification:

605 A comparative study of explicit and implicit techniques. In Lun-Wei Ku, Andre Martins,

606 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL*

607 2024, pp. 5390–5404, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

608 doi: 10.18653/v1/2024.findings-acl.320. URL [https://aclanthology.org/2024.findings-acl.320/](https://aclanthology.org/2024.findings-acl.320).

609

610 Siva Rajesh Kasa, Karan Gupta, Sumegh Roychowdhury, Ashutosh Kumar, Yaswanth Biruduraju,

611 Santhosh Kumar Kasa, Nikhil Priyatam Patisapu, Arindam Bhattacharya, Shailendra Agarwal,

612 et al. Generative or discriminative? Revisiting text classification in the era of transformers. In

613 *Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing*,

614 November 2025.

615 Saksham Singh Kushwaha and Magdalena Fuentes. A multimodal prototypical approach for unsu-

616 pervised sound classification. *arXiv preprint arXiv:2306.12300*, 2023.

617

618 Alexander Cong Li, Ananya Kumar, and Deepak Pathak. Generative classifiers avoid shortcut solu-

619 tions. In *The Thirteenth International Conference on Learning Representations*, 2025.

620

621 Percy Liang and Michael I. Jordan. An asymptotic analysis of generative, discriminative, and

622 pseudolikelihood estimators. In *International Conference on Machine Learning*, 2008. URL

623 <https://api.semanticscholar.org/CorpusID:14259804>.

624

625 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the

626 ratios of the data distribution. In *Proceedings of the 41st International Conference on Machine*

627 *Learning*, ICML’24. JMLR.org, 2024.

628

629 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-

630 guistic representations for vision-and-language tasks. *Advances in neural information processing*

631 systems, 32, 2019.

632

633 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher

634 Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and

635 Rada Mihalcea (eds.), *Proceedings of the 49th Annual Meeting of the Association for Compu-*

636 *tational Linguistics: Human Language Technologies*, pp. 142–150, Portland, Oregon, USA, June

637 2011. Association for Computational Linguistics. URL <https://aclanthology.org/P11-1015/>.

638

639 Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison

640 of logistic regression and naive bayes. In *Advances in Neural Information Processing Systems*,

641 2001.

642

643 Nikhil Patisapu, Siva Rajesh Kasa, Sumegh Roychowdhury, Karan Gupta, Anish Bhanushali, and

644 Prasanna Srinivasa Murthy. Leveraging structural information in tree ensembles for table repre-

645 sentation learning. *WWW*, 2025.

646

647 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*

648 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

649

650 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

651 models are unsupervised multitask learners. *OpenAI*, 2018. URL <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>.

648 Rajat Raina, Yirong Shen, Andrew McCallum, and Andrew Ng. Classification with hybrid generative-discriminative models. *Advances in neural information processing systems*, 16, 2003.

649

650

651 Sumegh Roychowdhury, Karan Gupta, Siva Rajesh Kasa, and Prasanna Srinivasa Murthy. Tackling
652 concept shift in text classification using entailment-style modeling. In *Proceedings of the 30th
653 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5647–5656, 2024.

654 Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-
655 box vs black-box: Bayes optimal strategies for membership inference. In *International Confer-
656 ence on Machine Learning*, pp. 5558–5567. PMLR, 2019.

657 Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
658 MI-leaks: Model and data independent membership inference attacks and defenses on machine
659 learning models. *arXiv preprint arXiv:1806.01246*, 2018a.

660

661 Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
662 MI-leaks: Model and data independent membership inference attacks and defenses on machine
663 learning models. *arXiv preprint arXiv:1806.01246*, 2018b.

664 Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen. CARER:
665 Contextualized affect representations for emotion recognition. In *Proceedings of the 2018 Con-
666 ference on Empirical Methods in Natural Language Processing*, pp. 3687–3697, Brussels, Bel-
667 gium, oct 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1404. URL
668 <https://www.aclweb.org/anthology/D18-1404>.

669 Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr, and Robert Sim. Membership inference at-
670 tacks against nlp classification models. In *NeurIPS 2021 Workshop Privacy in Machine Learning*,
671 2021.

672

673 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
674 attacks against machine learning models, 2017. URL <https://arxiv.org/abs/1610.05820>.

675

676 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
677 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
678 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language
679 Processing*, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Compu-
680 tational Linguistics. URL <https://aclanthology.org/D13-1170>.

681 Frank F. Song, Archie Tomkins, Leandro L. Minku, and Xin Yao. A systematic evaluation of large
682 language models of code. In *Proceedings of the 6th ACM SIGPLAN International Symposium on
683 Machine Programming*, pp. 1–10. ACM, 2022. doi: 10.1145/3548606.3560684. URL <https://dl.acm.org/doi/10.1145/3548606.3560684>.

684

685 Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
686 In *30th USENIX security symposium (USENIX security 21)*, pp. 2615–2632, 2021.

687

688 Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei Guo, Tianwei Zhang, and Guoyin Wang.
689 Text classification via large language models. In *Findings of the Association for Computational
690 Linguistics: EMNLP 2023*, pp. 8990–9005, 2023.

691 Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Towards demystifying
692 membership inference attacks. *arXiv preprint arXiv:1807.09173*, 2018. doi: 10.48550/arXiv.
693 1807.09173. URL <https://arxiv.org/abs/1807.09173>.

694

695 Alex Wang and Kyunghyun Cho. BERT has a mouth, and it must speak: BERT as a Markov
696 random field language model. In Antoine Bosselut, Asli Celikyilmaz, Marjan Ghazvininejad,
697 Srinivasan Iyer, Urvashi Khandelwal, Hannah Rashkin, and Thomas Wolf (eds.), *Proceedings
698 of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation*, pp.
699 30–36, Minneapolis, Minnesota, June 2019a. Association for Computational Linguistics. doi:
700 10.18653/v1/W19-2304. URL <https://aclanthology.org/W19-2304/>.

701 Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random
702 field language model. *arXiv preprint arXiv:1902.04094*, 2019b.

702 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning-
 703 Analyzing the connection to overfitting. In *2018 IEEE 31st computer security foundations*
 704 *symposium (CSF)*, pp. 268–282. IEEE, 2018.

705 Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blunsom. Generative and discriminative text
 706 classification with recurrent neural networks. *arXiv preprint*, 2017.

708 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
 709 fication. In *Proceedings of the 29th International Conference on Neural Information Processing*
 710 *Systems - Volume 1, NIPS’15*, pp. 649–657, Cambridge, MA, USA, 2015. MIT Press.

712 Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li, and Jun Zhu. Revisiting dis-
 713 criminative vs. generative classifiers: Theory and implications. In Andreas Krause, Emma
 714 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
 715 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Pro-
 716 ceedings of Machine Learning Research*, pp. 42420–42477. PMLR, 23–29 Jul 2023. URL
 717 <https://proceedings.mlr.press/v202/zheng23f.html>.

719 A EXTENDED RELATED WORK AND BACKGROUND

721 A.1 GENERATIVE VS. DISCRIMINATIVE CLASSIFIERS: FOUNDATIONS TO THE 722 TRANSFORMER ERA

724 Foundational theory contrasts generative and discriminative estimation: under correct modeling as-
 725 sumptions, discriminative learners achieve lower asymptotic error, while generative learners exhibit
 726 faster convergence with limited data (Efron, 1975; Ng & Jordan, 2001; Liang & Jordan, 2008).
 727 Hybrid approaches attempted to combine strengths (Raina et al., 2003), and modern analyses re-
 728 visit these trade-offs at scale, emphasizing calibration/uncertainty and bias–variance decompositions
 729 (Zheng et al., 2023).

730 In text classification (TC), generative models have seen a resurgence with transformers. Early RNN-
 731 based generative classifiers reported robustness to distribution shifts and favorable low-data behavior
 732 (Yogatama et al., 2017). Contemporary generative classifiers instantiate $P(X, Y)$ via (i) label-prefix
 733 AR scoring of $\log P(x, y)$ across labels (Radford et al., 2018); (ii) discrete diffusion with likelihood-
 734 surrogates/ELBO-style criteria (Lou et al., 2024); and (iii) generative uses of masked LMs (Wang
 735 & Cho, 2019b). Empirically, recent works document improved sample efficiency, calibration, and
 736 reduced shortcut reliance for generative TC (Kasa et al., 2025; Li et al., 2025; Jaini et al., 2024).
 737 A practical consideration is ***K*-pass inference**: fully generative label-prefix AR classifiers evaluate
 738 one forward pass per label to obtain $\log P(x, y_i)$, in contrast to single-pass discriminative models
 739 computing $P(Y | X)$. On the other hand, generative formulations support principled uncertainty
 via Bayes rule,

$$740 \quad P(Y | X) = \frac{P(X | Y)P(Y)}{P(X)},$$

742 and enable likelihood-based diagnostics and priors (Bouguila, 2011). We also consider *pseudo-*
 743 *generative* factorizations (e.g., label-suffix/MLM variants) that use a single forward pass for classi-
 744 fication while still leveraging generative training signals.

746 A.2 MEMBERSHIP INFERENCE ATTACKS (MIAs)

748 **From multi-shadow to minimal-shadow.** Shokri et al. (2017) introduced the *shadow-model*
 749 paradigm: train multiple proxies that mimic the target, collect outputs on member/non-member
 750 samples, and train an attack classifier. Salem et al. (2018b) showed that effective MIAs often re-
 751 quire *far less* attacker infrastructure: a *single* shadow model—or even *no* shadow at all—can suffice
 752 using confidence-/loss-based statistics. In this paper, we **adopt the single-shadow assumption** in
 753 **our theoretical analysis**: we posit a proxy Q trained similarly to the target P and develop decision
 754 rules using the induced score laws (P_S, Q_S) that arise from logits or probabilities.

755 Crucially, while our theoretical analysis assumes a single shadow model availability, our empirical
 evaluations do not rely on shadow models at all. As is now common in recent MIA work, including

(Yeom et al., 2018; Carlini et al., 2019; Shejwalkar et al., 2021; Song & Mittal, 2021), we directly compare the model’s outputs on training samples (members) and test samples (non-members) and compute AUROC. This approach measures the true separability of member vs. non-member score distributions and does not introduce additional approximation noise from training surrogate models. Because our attacks operate directly on the target model’s outputs, using multiple shadow models would not change the AUROC-based conclusions: the observed leakage stems from structural differences between modeling $P(X)$ and $P(Y|X)$, not from the number of shadow models available to the attacker.

Finally, from a practical standpoint, our study trains over 2,900 models across architectures, datasets, and data-size settings. Training additional shadow models for every configuration would significantly multiply computational cost without changing the scientific conclusions. Our theory requires only one reference distribution Q in order to compare the induced score laws P_S and Q_S ; training multiple shadow models would approximate the same population distribution and therefore does not alter our decomposition or the resulting bounds.

Overfitting vs. influence. Yeom et al. (2018) connect membership advantage to generalization error with a simple loss-threshold attack, but crucially point out that *influence* of specific samples can yield leakage even when generalization error is small; thus overfitting is sufficient but not necessary for MIAs. This perspective complements broader observations that memorization and model capacity correlate with vulnerability, while regularization and early stopping can attenuate leakage.

Systematization and API exposure. MIAs have been systematized for ML-as-a-Service (MLaaS) by examining how output exposure (labels only, top- k , full probability vectors), shadow alignment, and data distribution mismatch affect success (Truex et al., 2018). Subsequent evaluations find that strong black-box attacks based on confidence/entropy/loss can rival more complex settings (Song & Mittal, 2021), and NLP-specific studies report that simple threshold attacks can be surprisingly competitive in text classification, with user-level leakage sometimes exceeding sample-level leakage (Shejwalkar et al., 2021).

A.3 THREAT MODELS, OUTPUTS, AND OUR SCOPE

Threat models. We distinguish *black-box* adversaries (query access to outputs only), *gray-box* (limited internals such as losses or activations), and *white-box* (parameters/gradients). Our study focuses on **black-box** MIAs where the API exposes either (i) post-softmax probabilities $P(Y | X)$ or (ii) pre-softmax *logits* that, in fully generative label-prefix AR classifiers, are proportional to joint scores $\log P(X, Y)$. For label-prefix AR models we assume **K -pass** inference is the canonical deployment mode.

Outputs and leakage channels. Probability vectors emphasize the conditional $P(Y | X)$, while logits in label-prefix AR expose additive joint components $\log P(X, Y)$ over labels. We analyze both surfaces empirically and theoretically by comparing attack performance built from signals S with induced laws (P_S, Q_S) under the target P and shadow Q .

Scope summary. We restrict attention to black-box attackers with output access (probabilities or logits), assume the availability of ground-truth labels for attack training/selection, and treat inference cost as negligible for fairness across architectures. White-box attacks, knowledge-distillation/trajectory-based attacks, and defenses like DP-SGD are out of scope for this paper, though we discuss them qualitatively where relevant in the main text.

B EXPERIMENTAL METHODOLOGY

B.1 TRAINING PROTOCOL

Follow the Li et al. (2025); Kasa et al. (2024), we adopt the `bert-base-uncased`² architecture as the backbone for both **DISC** and **MLM** experiments, trained from scratch without pretrained

²<https://huggingface.co/google-bert/bert-base-uncased>

Config	DISC	P-AR	AR	MLM	DIFF
(1L,1H)	1–2	2–4	2–4	1–4	1–4
(6L,6H)	1–3	3–7	3–7	3–7	2–6
(12L,12H)	2–5	5–10	5–10	5–10	5–12

Table 4: Training time (hrs) ranges across datasets for each configuration and approach.

weights. This model has ~ 110 M parameters, with 12 encoder layers, 12 attention heads, and hidden size 768. All experiments were repeated with 5 random seeds, reporting mean and standard deviation in the main paper.

For **DISC** experiments, we performed a grid search over learning rates $\{1e-5, 2e-5, 3e-5, 4e-5, 5e-5\}$, batch sizes $\{32, 64, 128, 256\}$, and a fixed sequence length of 512. Training ran for 30 epochs on all datasets without early stopping. **MLM** experiments used the same search space but were trained for 200 epochs due to the added difficulty of masked token prediction. Introducing early stopping often led to worse checkpoints, since validation loss typically decreased slowly even after long plateaus.

For **AR** and **P-AR** we used the GPT-2 base³ (137M parameters), trained as causal LMs to minimize next-token prediction loss on concatenated input–label sequences. A grid search was conducted with the same hyperparameter ranges, and models were trained up to 100 epochs with early stopping (patience 10).

Our **DIFF** experiments used the Diffusion Transformer Peebles & Xie (2023), essentially a vanilla transformer encoder augmented with time-conditioned embeddings, yielding ~ 160 M parameters. To control for model size, we also scaled Encoder/MLM models to 160M parameters by adding layers, but performance did not improve, so we retained original sizes. For diffusion-specific settings, we used batch size 64, learning rate $3e-4$, 200K iterations, and a geometric noise schedule spanning 10^{-4} to 20 Lou et al. (2024). The absorbing transition matrix was:

$$Q_{\text{absorb}} = \begin{bmatrix} -1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{bmatrix}$$

All experiments were trained on eight NVIDIA A100 GPUs. Training times (in hours) for full-data runs are shown in Table 4.

Inference latency varies substantially across methods (Table 5). ENC and MLM are fastest, requiring a single forward pass. AR requires $|K|$ passes, which can be parallelized but increases compute. DIFF is slowest, taking $\sim 20\text{--}100\times$ longer than ENC/MLM due to iterative denoising. For instance, on an A100 with batch size 1024 and sequence length 128, ENC/MLM run in 0.03s (3.3M params) to 1.3s (120M params), whereas DIFF takes 16–25s.

Model Size	Parameters	DISC	MLM	AR	DIFF
Small	3.3M	0.027	0.027	0.058	16.2
Medium	30.3M	0.292	0.292	0.510	20.52
Large	120.4M	1.260	1.260	2.070	24.8

Table 5: Model Size vs. Inference Latency (avg wall-clock time per batch in seconds).

B.2 ATTACK IMPLEMENTATION DETAILS

For model-based attacks, we employ a Gradient Boosting Classifier with 100 estimators, maximum depth of 3, and learning rate of 0.1. The attack model’s input features comprise the target model’s output probability vector concatenated with one-hot encoded ground truth labels. Threshold-based attacks use raw model outputs with optimal thresholds determined on a validation set.

³<https://huggingface.co/openai-community/gpt2>

864 B.3 DATASET CHARACTERISTICS
865

866 867 868 869 870 871 872 873 874 875 876 877	Dataset	Examples (Train / Test)	Classes	Avg. Tokens		Label Distribution (%)	
				Train	Test	Train	Test
IMDb	25,000 / 25,000	2	313.9	306.8	0-1: 50.0 each	0-1: 50.0 each	
AG News	120,000 / 7,600	4	53.2	52.8	0-3: 25.0 each	0-3: 25.0 each	
Emotion	16,000 / 2,000	6	22.3	21.9	0: 29.2, 1: 33.5, 2: 8.2, 3: 13.5, 4: 12.1, 5: 3.6	0: 27.5, 1: 35.2, 2: 8.9, 3: 13.8, 4: 10.6, 5: 4.1	
HateSpeech	22,783 / 2,000	3	30.0	30.2	0: 5.8, 1: 77.5, 2: 16.7	0: 5.5, 1: 76.6, 2: 17.9	
MultiClass Sentiment	31,232 / 5,205	3	26.6	26.9	0: 29.2, 1: 37.3, 2: 33.6	0: 29.2, 1: 37.0, 2: 33.8	
Rotten Tomatoes	8,530 / 1,066	2	27.4	27.3	0-1: 50.0 each	0-1: 50.0 each	
SST2	6,920 / 872	2	25.2	25.5	0: 47.8, 1: 52.2	0: 49.1, 1: 50.9	
SST5	8,544 / 1,101	5	25.0	25.2	0: 12.8, 1: 26.0, 2: 19.0, 3: 27.2, 4: 15.1	0: 12.6, 1: 26.3, 2: 20.8, 3: 25.3, 4: 15.0	
Twitter	9,543 / 2,388	3	27.6	27.9	0: 15.1, 1: 20.2, 2: 64.7	0: 14.5, 1: 19.9, 2: 65.6	

878 Table 6: Dataset statistics showing training and test split sizes, number of classes, mean token length,
879 and label distribution percentages.
880882 C APPENDIX B: PROOFS FOR SECTION 3
883884 C.1 PRELIMINARIES AND NOTATION
885886 Let \mathcal{Z} denote the universe of all datapoints, where each datapoint $z \in \mathcal{Z}$ can be decomposed into
887 a feature-label pair (x, y) with $x \in \mathcal{X}$ (features) and $y \in \mathcal{Y}$ (labels). We assume there exists an
888 underlying population distribution π over \mathcal{Z} from which samples are drawn.
889890 We consider two models:
891

- P : the *target model* (running in production), which induces a joint score distribution $P(X, Y)$.
- Q : the *shadow model*, trained independently on population data, which induces its own score distribution $Q(X, Y)$ which the attacker uses to determine sample membership.

892 We are interested in quantifying the difference between P and Q in terms of their induced joint
893 distributions over (X, Y) , which captures susceptibility to *membership inference attacks* (MIA).
894895 C.2 TOTAL VARIATION DISTANCE: DEFINITION
896897 For two probability distributions P and Q on the same measurable space (Ω, \mathcal{F}) , the *total variation
898 distance* is defined as

903
$$\text{TV}(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|. \quad (\text{C.1})$$

904

905 An equivalent variational form is
906

907
$$\text{TV}(P, Q) = \frac{1}{2} \int_{\Omega} |p(\omega) - q(\omega)| d\mu(\omega), \quad (\text{C.2})$$

908

909 where p and q denote densities of P and Q with respect to a common dominating measure μ .
910911 It is well known that $\text{TV}(P, Q)$ equals the maximum distinguishing advantage of any binary hypothesis
912 test between P and Q , and therefore equals the maximum achievable membership inference
913 advantage ($MIA^* = \text{TV}(P_{XY}, Q_{XY})$).
914915 C.3 DECOMPOSITION INTO MARGINAL AND CONDITIONAL TERMS
916917 Writing distributions over (X, Y) using Bayes' Rule as

918
$$P(x, y) = P(x)P(y | x), \quad Q(x, y) = Q(x)Q(y | x),$$

918 the total variation distance between P and Q is
 919

$$920 \quad \text{TV}(P_{XY}, Q_{XY}) = \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} |P(x)P(y | x) - Q(x)Q(y | x)| dx dy. \quad (C.3)$$

922 We expand by adding and subtracting the cross term $P(x)Q(y | x)$:
 923

$$924 \quad \begin{aligned} & |P(x)P(y | x) - Q(x)Q(y | x)| \\ 925 &= |P(x)P(y | x) - P(x)Q(y | x) + P(x)Q(y | x) - Q(x)Q(y | x)|. \end{aligned} \quad (C.4)$$

928 Applying the triangle inequalities yields both lower and upper bounds.
 929

930 C.4 LOWER BOUND VIA REVERSE TRIANGLE INEQUALITY

932 Using the reverse triangle inequality $|a + b| \geq ||b| - |a||$, we obtain
 933

$$934 \quad \text{TV}(P_{XY}, Q_{XY}) \geq \frac{1}{2} \left| \int_{\mathcal{X} \times \mathcal{Y}} (P(x)Q(y | x) - Q(x)Q(y | x)) dx dy - \right. \\ 935 \quad \left. \int_{\mathcal{X} \times \mathcal{Y}} (P(x)P(y | x) - P(x)Q(y | x)) dx dy \right|. \quad (C.5)$$

940 Evaluating the two terms separately:
 941

942 1. For the first integral (difference of marginals with $Q(y | x)$ fixed):
 943

$$944 \quad \int_{\mathcal{X} \times \mathcal{Y}} (P(x)Q(y | x) - Q(x)Q(y | x)) dx dy = \int_{\mathcal{X}} (P(x) - Q(x)) \left(\int_{\mathcal{Y}} Q(y | x) dy \right) dx.$$

945 Since $\int_{\mathcal{Y}} Q(y | x) dy = 1$, this simplifies to
 946

$$947 \quad \int_{\mathcal{X}} (P(x) - Q(x)) dx = 2 \text{TV}(P_X, Q_X).$$

948 2. For the second integral (difference of conditionals at fixed $P(x)$):
 949

$$950 \quad \int_{\mathcal{X} \times \mathcal{Y}} (P(x)P(y | x) - P(x)Q(y | x)) dx dy = \int_{\mathcal{X}} P(x) \int_{\mathcal{Y}} (P(y | x) - Q(y | x)) dy dx.$$

951 The inner integral is exactly $2 \text{TV}(P(\cdot | x), Q(\cdot | x))$. Hence
 952

$$953 \quad = 2 \int_{\mathcal{X}} P(x) \text{TV}(P(\cdot | x), Q(\cdot | x)) dx = 2 \mathbb{E}_{x \sim P_X} [\text{TV}(P(Y | x), Q(Y | x))]$$

954 Combining, we obtain the lower bound:
 955

$$956 \quad \text{TV}(P_{XY}, Q_{XY}) \geq \left| \text{TV}(P_X, Q_X) - \mathbb{E}_{x \sim P_X} [\text{TV}(P(Y | x), Q(Y | x))] \right|. \quad (C.6)$$

957 C.5 UPPER BOUND VIA FORWARD TRIANGLE INEQUALITY

958 Applying the forward triangle inequality $|a + b| \leq |a| + |b|$ to equation C.4, we obtain
 959

$$960 \quad \text{TV}(P_{XY}, Q_{XY}) \leq \frac{1}{2} \int_{\mathcal{X} \times \mathcal{Y}} (|P(x)P(y | x) - P(x)Q(y | x)| + |P(x)Q(y | x) - Q(x)Q(y | x)|) dx dy. \quad (C.7)$$

961 Evaluating as before, this becomes
 962

$$963 \quad \text{TV}(P_{XY}, Q_{XY}) \leq \text{TV}(P_X, Q_X) + \int_{\mathcal{X}} P(x) \text{TV}(P(\cdot | x), Q(\cdot | x)) dx \quad (C.8)$$

972 C.6 DECOMPOSITION VIA PINSKER'S INEQUALITY
973974 Pinsker's inequality states that for any two distributions R, S ,
975

976
$$\text{TV}(R, S) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(R \parallel S)}.$$

977

978 Applying this to equation C.8 yields
979

980
$$\text{TV}(P_{XY}, Q_{XY}) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(P_X \parallel Q_X)} + \int_{\mathcal{X}} P(x) \sqrt{\frac{1}{2} D_{\text{KL}}(P(\cdot | x) \parallel Q(\cdot | x))} dx \quad (\text{C.9})$$

981

982 We can re-write the first term as expectation similar to lower-bound derivation yielding
983

984
$$\text{TV}(P_{XY}, Q_{XY}) \leq \sqrt{\frac{1}{2} D_{\text{KL}}(P_X \parallel Q_X)} + \mathbb{E}_{x \sim P_X} \left[\sqrt{\frac{1}{2} D_{\text{KL}}(P(\cdot | x) \parallel Q(\cdot | x))} \right] \quad (\text{C.10})$$

985

986 C.7 INTERPRETATION
987988 Both the lower bound (Eq. C.6) and upper bound (Eq. C.10) decomposes the *MIA** into two contributing terms:
989990

- **Input Memorization Term:** The first term quantifies the leakage from the model memorizing the distribution of the training *inputs* themselves ($\text{TV}(P_X, Q_X)$ in Eq. C.6 and $\sqrt{\frac{1}{2} D_{\text{KL}}(P_X \parallel Q_X)}$ in C.10). This vulnerability exists because a generative model's objective function explicitly requires it to learn $P(X)$. Hence this number will always be greater than the discriminative/conditional term. Thus we can safely remove the mod sign from Eq. C.6 and conclude higher the degree of memorization, stricter the lower bound + more relaxed the upper bound, indicating higher susceptibility to MIA for generative models.
- **Conditional Memorization term:** This second term (D_{KL} or TV over $P(\cdot | x), Q(\cdot | x)$) quantifies the leakage from the model overfitting the mapping from inputs to labels. This vulnerability exists for both generative and discriminative models.

1004 C.8 PROOFS FOR JOINT LEAKAGE VS CONDITIONAL LEAKAGE
10051006 *Proof of Lemma 3.2.* Define the measurable map $g : \mathbb{R}^{|\mathcal{Y}|} \rightarrow \Delta^{|\mathcal{Y}|-1}$ by $g(u) = \text{softmax}(u)$. By
1007 construction $S_{\text{cond}} = g(S_{\text{joint}})$ deterministically. Let $P_j := \mathcal{L}(S_{\text{joint}} | P)$ and $Q_j := \mathcal{L}(S_{\text{joint}} | Q)$,
1008 and similarly $P_c := \mathcal{L}(S_{\text{cond}} | P)$, $Q_c := \mathcal{L}(S_{\text{cond}} | Q)$. By the data-processing inequality (DPI)
1009 for f -divergences (in particular, for total variation),

1010
$$\text{TV}(P_j, Q_j) \geq \text{TV}(g_{\#} P_j, g_{\#} Q_j) = \text{TV}(P_c, Q_c) = \text{Adv}(S_{\text{cond}}).$$

1011

1012 Since $\text{Adv}(S_{\text{joint}}) = \text{TV}(P_j, Q_j)$, the claimed inequality follows. For equality, DPI is tight iff g
1013 is *sufficient* for discriminating P_j vs. Q_j , i.e., iff S_{joint} carries no information about membership
1014 beyond S_{cond} . Because g removes exactly the per- x additive offset $-\log \hat{p}(X)$, tightness occurs iff
1015 that offset has the same law under P and Q (no marginal signal). \square 1016 *Proof of Theorem 3.3.* Throughout we assume the attacker queries the *same* target model score in
1017 both worlds; i.e., $S = g(\hat{p}(X, Y))$ for a fixed measurable g , and pushes P_{XY} and Q_{XY} forward
1018 through the same g . (This matches the setting in Lemma 3.2 and ensures DPI applies.)
10191020 **Notation.** Let
1021

1022
$$Z := S_{\text{joint}}^{\text{scal}}(X, Y) = \log \hat{p}(X, Y) = a(X) + b(X, Y), \quad a(X) := \log \hat{p}(X), \quad b(X, Y) := \log \hat{p}(Y | X).$$

1023

1024 Write $P_Z := \mathcal{L}(Z | P)$ and $Q_Z := \mathcal{L}(Z | Q)$.
10251026 **Auxiliary tools.** We record three standard ingredients we will invoke.

1026 **Lemma C.1** (One-parameter Gibbs/Chernoff lower bound). *For any distributions R, S on a com-
1027 mon space and any measurable W with laws R_W, S_W ,*

$$1029 \quad \text{KL}(R_W \| S_W) \geq \lambda \mathbb{E}_{R_W}[W] - \log \mathbb{E}_{S_W}[e^{\lambda W}] \quad \text{for all } \lambda \in \mathbb{R}. \quad (\text{C.11})$$

1030 **Lemma C.2** (Change-of-measure (bounded likelihood ratio)). *If $\alpha \leq \frac{dP_{Y|X=x}}{dQ_{Y|X=x}}(y) \leq \beta$ for P_X -a.e.
1031 x and all y , then for any nonnegative measurable h and any $\lambda \in [0, 1]$,*

$$1033 \quad \alpha^\lambda \mathbb{E}_{P_{Y|X=x}}[h^\lambda] \leq \mathbb{E}_{Q_{Y|X=x}}[h^\lambda] \leq \beta^\lambda \mathbb{E}_{P_{Y|X=x}}[h^\lambda]. \quad (\text{C.12})$$

1035 **Lemma C.3** (Hölder/log-sum convexity split). *For $\lambda \in (0, 1)$ and nonnegative random variables
1036 U, V ,*

$$1037 \quad \log \mathbb{E}[U^\lambda V^\lambda] \leq (1 - \lambda) \log \mathbb{E}[U^{\frac{\lambda}{1-\lambda}}] + \lambda \log \mathbb{E}[V]. \quad (\text{C.13})$$

1039 Lemma C.1 is the $f(z) = \lambda z$ specialization of the Gibbs/Donsker–Varadhan variational identity (we
1040 only need the lower bound). Lemma C.2 is immediate from $\alpha \leq \frac{dP}{dQ} \leq \beta$ and change-of-measure
1041 for densities. Lemma C.3 is Hölder’s inequality in logarithmic form (equivalently, the log-sum
1042 inequality).

1044 **Step 1: A KL lower bound for $P_Z \| Q_Z$.** Applying Lemma C.1 with $W := Z$ gives

$$1046 \quad \text{KL}(P_Z \| Q_Z) \geq \lambda \mathbb{E}_P[Z] - \log \mathbb{E}_Q[e^{\lambda Z}] \quad (\lambda \in \mathbb{R}), \quad (\text{C.14})$$

1048 where $\mathbb{E}_P[Z] = \mathbb{E}_{P_X}[a(X)] + \mathbb{E}_P[b(X, Y)]$. We now upper bound the log-mgf on the right. Factor
1049 the conditional:

$$1050 \quad \mathbb{E}_Q[e^{\lambda Z}] = \mathbb{E}_{Q_X} \left[e^{\lambda a(X)} \underbrace{\mathbb{E}_{Q_{Y|X}}[e^{\lambda b(X, Y)}]}_{=: M_B(\lambda | X)} \right]. \quad (\text{C.15})$$

1053 By Lemma C.2 with $h = e^{b(X, \cdot)}$ we have, for $\lambda \in [0, 1]$ and P_X -a.e. X ,

$$1055 \quad \alpha^\lambda \mathbb{E}_{P_{Y|X}}[e^{\lambda b(X, Y)}] \leq M_B(\lambda | X) \leq \beta^\lambda \mathbb{E}_{P_{Y|X}}[e^{\lambda b(X, Y)}]. \quad (\text{C.16})$$

1056 Using the upper bracket in equation C.16 in equation C.15 and Jensen,

$$1058 \quad \log \mathbb{E}_Q[e^{\lambda Z}] \leq \lambda \log \beta + \log \mathbb{E}_{Q_X} \left[e^{\lambda a(X)} \mathbb{E}_{P_{Y|X}}[e^{\lambda b(X, Y)}] \right]. \quad (\text{C.17})$$

1060 Applying Lemma C.3 to the last term (with $U = e^{a(X)}$ and $V = \mathbb{E}_{P_{Y|X}}[e^{b(X, Y)}]$) yields, for
1061 $\lambda \in (0, 1)$,

$$1063 \quad \log \mathbb{E}_{Q_X} \left[e^{\lambda a(X)} \mathbb{E}_{P_{Y|X}}[e^{\lambda b(X, Y)}] \right] \leq (1 - \lambda) \log \mathbb{E}_{Q_X} \left[e^{\frac{\lambda}{1-\lambda} a(X)} \right] + \lambda \log \mathbb{E}_P[e^{b(X, Y)}]. \quad (\text{C.18})$$

1065 Combining equation C.14, equation C.17, and equation C.18, for $\lambda \in (0, 1)$,

$$1067 \quad \text{KL}(P_Z \| Q_Z) \geq \underbrace{\left[\lambda \mathbb{E}_P[a(X)] - (1 - \lambda) \log \mathbb{E}_{Q_X}(e^{\frac{\lambda}{1-\lambda} a(X)}) \right]}_{\text{marginal term } M(\lambda)} \quad (\text{C.19})$$

$$1068 \quad + \underbrace{\left[\lambda \mathbb{E}_P[b(X, Y)] - \lambda \log \mathbb{E}_P(e^{b(X, Y)}) - \lambda \log \beta \right]}_{\text{conditional term } C(\lambda)}.$$

1073 **Step 2: Bound the conditional term by $-\text{KL}_{Y|X}$.** Using the convex dual bound (Fenchel inequality for log-mgf),

$$1076 \quad \mathbb{E}_P[b(X, Y)] - \log \mathbb{E}_P[e^{b(X, Y)}] \geq -\text{KL}_{Y|X}, \quad (\text{C.20})$$

1077 we obtain $C(\lambda) \geq -\lambda \text{KL}_{Y|X} - \lambda \log \beta$.

1079 **Step 3: A reverse-Chernoff bound for the marginal term.** The function $M(\lambda)$ in equation C.19
is the usual one-parameter Chernoff objective applied to $a(X) = \log \hat{p}(X)$ with moment taken

under Q_X . Optimizing over $\lambda \in (0, 1)$ (details omitted for brevity) and using the same bounded-LR control to prevent degeneracy yields

$$\sup_{\lambda \in (0,1)} M(\lambda) \geq c(\alpha, \beta) \text{KL}(P_X \| Q_X) = c(\alpha, \beta) \text{KL}_X, \quad c(\alpha, \beta) := \frac{\log \beta - \log \alpha}{1 + \log \beta - \log \alpha} \in (0, 1]. \quad (\text{C.21})$$

Step 4: Assemble and pass to advantage. Maximizing equation C.19 over $\lambda \in (0, 1)$ and using equation C.20 and equation C.21,

$$\text{KL}(P_Z \| Q_Z) \geq c(\alpha, \beta) \text{KL}_X - \text{KL}_{Y|X} - \inf_{\lambda \in (0,1)} \lambda \log \beta. \quad (\text{C.22})$$

Absorbing the harmless $-\inf_{\lambda} \lambda \log \beta$ slack (or noting $\log \beta \geq 0$) gives the clean form

$$\text{KL}(P_Z \| Q_Z) \geq c(\alpha, \beta) \text{KL}_X - \text{KL}_{Y|X}. \quad (\text{C.23})$$

By Pinsker, the (optimal) membership advantage for the scalar joint signal obeys

$$\text{Adv}(S_{\text{joint}}^{\text{scal}}) = \text{TV}(P_Z, Q_Z) \geq \sqrt{\frac{1}{2} [c(\alpha, \beta) \text{KL}_X - \text{KL}_{Y|X}]}_{+}. \quad (\text{C.24})$$

For the conditional scalar $U := S_{\text{cond}}(X, Y) = \hat{p}(Y | X)$, the safe decomposition plus Pinsker gives

$$\text{Adv}(U) \leq \text{TV}(P_X, Q_X) + \mathbb{E}_{P_X}[\text{TV}(P_{Y|X}, Q_{Y|X})] \leq \sqrt{\frac{1}{2} \text{KL}_X} + \sqrt{\frac{1}{2} \text{KL}_{Y|X}}. \quad (\text{C.25})$$

Therefore, whenever $c(\alpha, \beta) \text{KL}_X > \text{KL}_{Y|X}$, the lower bound equation C.24 exceeds the upper bound contributed by the conditional part, proving that the scalar joint channel is strictly more vulnerable than the conditional one. \square

D EFFECT OF CLASS REPRESENTATION

In this section, we study the effect of class imbalance with respect to MIA vulnerability. Specifically, we consider three datasets - SST5, emotion and hatespeech - which have relatively high class imbalance and we study how the attack susceptibility differs between the majority (i.e. the class with the lowest representation in the training split) and minority class (i.e. the class with the least representation in the training split). We plot the AUROCs corresponding to MIA for the four classifier paradigms - DISC, MLM, AR, DIFF- in Figures 3, 4, 5, 6 respectively and find that there is a differential in the AUROC between majority and minority classes which is specifically pronounced in - DISC and MLM. This differential is relatively less pronounced in generative models such as AR and DIFF.

Figure 3: Membership inference attack susceptibility for BERT. The solid line corresponds to the majority class, while the dashed line corresponds to the minority class. The x-axis indicates the number of training samples used.

1150
1151
1152

Figure 4: Membership inference attack susceptibility for MLM. The solid line corresponds to the
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

Figure 5: Membership inference attack susceptibility for AR. The figure contains six line plots arranged in a 2x3 grid. The top row is for 'GBM (Logits)' and the bottom row is for 'GBM (Probabilities)'. The columns represent 'Emotion', 'Hate Speech', and 'SST5'. Each plot shows AUC on the y-axis (0.4 to 1.0) against training samples on the x-axis (128, 256, 512, 1024, 2048, 4096, Full Data). Solid lines represent the majority class, and dashed lines represent the minority class. Shaded regions indicate uncertainty. In all cases, AUC is generally higher for the majority class than the minority class, and AUC increases with more training samples.

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

AR (Majority) AR (Minority)

Emotion Hate Speech SST5

GBM (Logits)

GBM (Probabilities)

Samples

22

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 6: Membership inference attack susceptibility for Diffusion models. The solid line corresponds to the majority class, while the dashed line corresponds to the minority class. The x-axis indicates the number of training samples used.

E EFFECT OF MODEL SIZE

In this section, we study the effect of model size in the full-data setting across all nine datasets. As the model size increases, the susceptibility of AR to GBM-logits attacks increases, whereas the other models exhibit more mixed trends.

Figure 7: Attack susceptibility with varying model size for models trained on full data.

F EXTRA RESULTS

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

Attack	128	256	512	1024	2048	4096	full-data
Entropy	0.62 ± 0.12	0.57 ± 0.10	0.55 ± 0.07	0.54 ± 0.05	0.55 ± 0.07	0.56 ± 0.06	0.57 ± 0.09
GBM (Logits)	0.65 ± 0.19	0.60 ± 0.16	0.64 ± 0.17	0.61 ± 0.14	0.63 ± 0.13	0.66 ± 0.13	0.69 ± 0.17
GBM (Probits)	0.62 ± 0.16	0.59 ± 0.14	0.62 ± 0.14	0.59 ± 0.12	0.61 ± 0.12	0.62 ± 0.10	0.60 ± 0.08
Ground Truth Predictions	0.62 ± 0.15	0.61 ± 0.11	0.62 ± 0.13	0.61 ± 0.12	0.60 ± 0.12	0.57 ± 0.10	0.60 ± 0.12
Log Loss	0.63 ± 0.15	0.61 ± 0.12	0.62 ± 0.13	0.61 ± 0.12	0.60 ± 0.12	0.57 ± 0.10	0.60 ± 0.12
Max Probability	0.50 ± 0.16	0.49 ± 0.09	0.54 ± 0.08	0.54 ± 0.09	0.55 ± 0.09	0.51 ± 0.09	0.54 ± 0.11

1257

Table 7: Membership inference attack performance (mean \pm standard deviation AUROC) across varying training sample sizes for models with 12 layers. Higher values indicate greater privacy vulnerability, with the highest values in each column shown in **bold**.

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

Attack	128	256	512	1024	2048	4096	full-data
Entropy	0.702 ± 0.179	0.679 ± 0.21	0.669 ± 0.186	0.639 ± 0.167	0.606 ± 0.156	0.549 ± 0.135	0.504 ± 0.092
GBM (Logits)	0.915 ± 0.135	0.914 ± 0.139	0.958 ± 0.068	0.918 ± 0.131	0.898 ± 0.152	0.907 ± 0.143	0.892 ± 0.164
GBM (Probits)	0.843 ± 0.113	0.842 ± 0.116	0.885 ± 0.073	0.847 ± 0.109	0.823 ± 0.122	0.835 ± 0.117	0.813 ± 0.131
Ground Truth Predictions	0.865 ± 0.076	0.841 ± 0.101	0.824 ± 0.095	0.788 ± 0.104	0.75 ± 0.119	0.696 ± 0.123	0.63 ± 0.103
Log Loss	0.865 ± 0.076	0.841 ± 0.101	0.824 ± 0.094	0.788 ± 0.104	0.751 ± 0.119	0.697 ± 0.123	0.632 ± 0.103
Max Probability	0.735 ± 0.143	0.711 ± 0.178	0.699 ± 0.155	0.669 ± 0.139	0.637 ± 0.131	0.58 ± 0.115	0.531 ± 0.075

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306	Classifier	Train Size	Clip	Entropy	GBM (Logits)	GBM (Probits)	GT Preds	Log Loss	Max Prob	F1-Score
1307	DISC Encoder	4096 (SST-5)	0.01	0.553	0.576	0.567	0.576	0.573	0.542	0.290
1308			0.025	0.553	0.577	0.566	0.575	0.572	0.537	0.274
1309			0.05	0.553	0.575	0.567	0.572	0.570	0.528	0.274
1310			0.10	0.552	0.576	0.570	0.572	0.570	0.525	0.274
1311			0.20	0.520	0.579	0.562	0.577	0.577	0.498	0.274
1312		4096 (HateSpeech)	0.01	0.534	0.574	0.570	0.533	0.533	0.534	0.855
1313			0.025	0.534	0.578	0.581	0.533	0.533	0.534	0.855
1314			0.05	0.534	0.579	0.577	0.533	0.533	0.534	0.855
1315			0.10	0.534	0.575	0.574	0.533	0.533	0.534	0.855
1316			0.20	0.534	0.575	0.580	0.533	0.533	0.534	0.855
1317	Generative (AR)	4096 (AG News)	0.01	0.568	0.660	0.661	0.616	0.616	0.561	0.826
1318			0.025	0.568	0.659	0.662	0.616	0.615	0.561	0.826
1319			0.05	0.566	0.658	0.663	0.614	0.613	0.558	0.826
1320			0.10	0.565	0.660	0.662	0.612	0.612	0.557	0.826
1321			0.20	0.567	0.658	0.659	0.609	0.609	0.553	0.826
1322		4096 (SST-5)	0.01	0.498	0.858	0.820	0.762	0.762	0.524	0.507
1323			0.025	0.502	0.858	0.819	0.761	0.762	0.525	0.502
1324			0.05	0.518	0.858	0.812	0.761	0.762	0.539	0.491
1325			0.10	0.550	0.858	0.809	0.761	0.762	0.568	0.476
1326			0.20	0.631	0.856	0.778	0.759	0.759	0.641	0.433
1327		4096 (HateSpeech)	0.01	0.663	0.894	0.781	0.710	0.710	0.687	0.869
1328			0.025	0.662	0.894	0.783	0.708	0.708	0.684	0.856
1329			0.05	0.662	0.894	0.779	0.706	0.705	0.683	0.835
1330			0.10	0.672	0.893	0.775	0.707	0.704	0.686	0.792
1331			0.20	0.701	0.894	0.772	0.722	0.713	0.706	0.674

Table 9: Effect of logit clipping (i.e. clipping the logits before passing to Softmax function) on discriminative vs. generative classifiers across datasets (SST-5, HateSpeech, AG News). The clipping value in the above tables denotes the percentile threshold used to clip logits, computed from the empirical logit distribution over the entire evaluation population. For example, a clipping value of 0.01 means that logits above the 99th percentile and below the 1st percentile, are replaced with their corresponding thresholded values. This post-processing reduces the dynamic range of logits without altering their ordering. All numbers are computed using 12-layer models. Logit-clipping reduces the MIA susceptibility of generative classifiers but it comes at the cost of performance (F1). Logit-clipping has not effect on the GBM(logits) attack as the inputs to the attack model do not change.

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
1351
1352
1353
1354
1355
1356
1357

1358 Classifier	1359 Train Size	1360 Temp	1361 Entropy	1362 GBM (Probs)	1363 GT Preds	1364 Log Loss	1365 Max Prob
DISC Encoder	4096 (SST-5)	0.1	0.584	0.570	0.565	0.565	0.583
		0.5	0.558	0.562	0.567	0.567	0.556
		1.0	0.553	0.562	0.575	0.566	0.543
		2.0	0.551	0.561	0.578	0.567	0.542
		10.0	0.550	0.559	0.578	0.568	0.545
	4096 (HateSpeech)	0.1	0.534	0.574	0.534	0.534	0.534
		0.5	0.534	0.580	0.533	0.533	0.534
		1.0	0.534	0.576	0.533	0.533	0.534
		2.0	0.534	0.571	0.534	0.534	0.534
		10.0	0.534	0.573	0.534	0.534	0.534
Generative (AR)	4096 (AG News)	0.1	0.554	0.658	0.611	0.611	0.553
		0.5	0.558	0.657	0.613	0.613	0.556
		1.0	0.568	0.662	0.616	0.616	0.561
		2.0	0.577	0.663	0.620	0.619	0.566
		10.0	0.541	0.663	0.625	0.624	0.569
	4096 (SST-5)	0.1	0.502	0.830	0.779	0.783	0.531
		0.5	0.497	0.833	0.764	0.765	0.523
		1.0	0.497	0.830	0.762	0.762	0.522
		2.0	0.497	0.828	0.761	0.761	0.522
		10.0	0.496	0.826	0.760	0.760	0.521
Generative (AR)	4096 (HateSpeech)	0.1	0.685	0.776	0.720	0.720	0.699
		0.5	0.666	0.775	0.712	0.713	0.689
		1.0	0.663	0.777	0.710	0.711	0.688
		2.0	0.662	0.778	0.710	0.710	0.687
		10.0	0.660	0.778	0.709	0.709	0.686
	4096 (AG News)	0.1	0.794	0.885	0.818	0.818	0.803
		0.5	0.751	0.894	0.806	0.807	0.788
		1.0	0.742	0.894	0.803	0.804	0.785
		2.0	0.737	0.895	0.802	0.802	0.783
		10.0	0.732	0.895	0.801	0.801	0.782

1389
1390 Table 10: Effect of temperature scaling (i.e., dividing logits by a temperature parameter before the
1391 Softmax function) on discriminative vs. generative classifiers across datasets (SST-5, HateSpeech,
1392 AG News). The temperature value in the above tables denotes the scalar used to rescale logits prior to
1393 normalization. We observe that temperature scaling is less effective than logit clipping at reducing
1394 the vulnerability of generative classifiers; however, unlike clipping, temperature scaling does not
1395 degrade utility, as the F1 score remains stable across temperatures. Note that the susceptibility
1396 for GBM (Probs) is unchanged under temperature scaling, since temperature rescales logits by a
1397 constant factor and therefore constitutes only a linear transformation that preserves their separability.
1398
1399
1400
1401
1402
1403

		128	256	512	1024	2048	4096
DISC Encoder - TPR@FPR = 0.1							
Entropy		0.047	0.078	0.168	0.227	0.191	0.153
GBM (Logits)		0.621	0.226	0.313	0.272	0.162	0.157
GBM (Probs)		0.638	0.232	0.314	0.275	0.181	0.160
Ground Truth Predictions		0.414	0.215	0.256	0.227	0.167	0.140
Log Loss		0.383	0.297	0.277	0.343	0.245	0.306
Max Probability		0.375	0.148	0.258	0.223	0.123	0.140
Generative (AR) - TPR@FPR = 0.1							
Entropy		0.539	0.473	0.730	0.628	0.613	0.480
GBM (Logits)		0.991	0.993	0.995	0.995	0.997	0.995
GBM (Probs)		0.797	0.886	0.951	0.914	0.866	0.636
Ground Truth Predictions		0.805	0.738	0.844	0.559	0.533	0.306
Log Loss		0.719	0.797	0.881	0.795	0.748	0.605
Max Probability		0.656	0.543	0.811	0.538	0.502	0.286

Table 11: TPR@FPR = 0.1 for Discriminative and Generative Classifiers Across Training Sizes

Inference Calls (n_{infer})	Entropy	GBM (Logits)	GBM (Probs)	Ground Truth Predictions	Log Loss	Max Probability
Discriminative (Encoder) Classifier						
128	0.531 (0.027)	0.559 (0.050)	0.545 (0.050)	0.530 (0.031)	0.530 (0.031)	0.530 (0.028)
256	0.530 (0.025)	0.541 (0.039)	0.541 (0.045)	0.535 (0.027)	0.535 (0.027)	0.530 (0.025)
512	0.529 (0.018)	0.543 (0.016)	0.534 (0.010)	0.535 (0.020)	0.535 (0.020)	0.529 (0.018)
1024	0.521 (0.010)	0.534 (0.022)	0.530 (0.012)	0.528 (0.009)	0.528 (0.009)	0.521 (0.010)
2048	0.520 (0.006)	0.528 (0.022)	0.525 (0.015)	0.526 (0.006)	0.526 (0.006)	0.520 (0.006)
4096	0.516 (0.004)	0.526 (0.021)	0.523 (0.014)	0.522 (0.004)	0.522 (0.004)	0.516 (0.004)
Generative (Autoregressive) Classifier						
128	0.582 (0.040)	0.581 (0.060)	0.566 (0.010)	0.576 (0.029)	0.576 (0.029)	0.577 (0.039)
256	0.578 (0.059)	0.582 (0.056)	0.657 (0.096)	0.586 (0.055)	0.586 (0.055)	0.584 (0.053)
512	0.578 (0.027)	0.571 (0.016)	0.620 (0.095)	0.601 (0.030)	0.601 (0.030)	0.585 (0.030)
1024	0.576 (0.022)	0.564 (0.019)	0.618 (0.081)	0.595 (0.026)	0.595 (0.026)	0.584 (0.024)
2048	0.584 (0.017)	0.572 (0.023)	0.602 (0.080)	0.596 (0.014)	0.596 (0.014)	0.587 (0.014)
4096	0.584 (0.011)	0.579 (0.027)	0.604 (0.072)	0.596 (0.012)	0.596 (0.012)	0.586 (0.012)

Table 12: Performance Metrics across varying Inference Calls for Discriminative and Generative Classifiers for 12-layer models trained on 4096 sample setting for AG News dataset.

1458	Training Size	BERT (mean (std))	GPT-2 (mean (std))
1459	128	0.594 (0.086)	0.827 (0.143)
1460	256	0.579 (0.068)	0.827 (0.148)
1461	512	0.586 (0.040)	0.917 (0.049)
1462	1024	0.592 (0.080)	0.830 (0.132)
1463	2048	0.556 (0.038)	0.773 (0.142)
1464	4096	0.569 (0.064)	0.798 (0.141)
1465	full_data	0.551 (0.045)	0.797 (0.179)

1467
1468 Table 13: MIA Vulnerability measured via GBM (logits) attack model using AUROC on the AG
1469 News dataset.

Figure 8: Attack susceptibility based on Entropy for model with 1 layer.

Figure 9: Attack susceptibility based on GBM (Probs) for model with 1 layer.

Figure 10: Attack susceptibility based on Log Loss for model with 1 layer.

Figure 11: Attack susceptibility based on GBM (Logits) for model with 1 layer.

Figure 12: Attack susceptibility based on Ground Truth Predictions for model with 1 layer.

Figure 14: Attack susceptibility based on Entropy for model with 6 layers.

Figure 15: Attack susceptibility based on GBM (Probs) for model with 6 layers.

Figure 16: Attack susceptibility based on Log Loss for model with 6 layers.

Figure 17: Attack susceptibility based on GBM (Logits) for model with 6 layers.

Figure 18: Attack susceptibility based on Ground Truth Predictions for model with 6 layers.

Figure 19: Attack susceptibility based on Max Prediction for model with 6 layers.

Figure 21: Attack susceptibility based on GBM (Probs) for model with 12 layers.

Figure 22: Attack susceptibility based on Log Loss for model with 12 layers.

Figure 23: Attack susceptibility based on GBM (Logits) for model with 12 layers.

Figure 24: Attack susceptibility based on Ground Truth Predictions for model with 12 layers.

Figure 25: Attack susceptibility based on Max Prediction for model with 12 layers.

G TOY ILLUSTRATION

G.1 EXPERIMENTAL SETUP

We study membership inference in a controlled synthetic setting where each input $x \in \mathbb{R}^d$ is composed of

$$x = [x_{\text{core}}, x_{\text{noise}}].$$

Labels. Binary labels $y \in \{-1, +1\}$ are drawn from

$$P(y = +1) = w, \quad P(y = -1) = 1 - w.$$

Core feature (signal). The one-dimensional core feature correlates directly with the label:

$$x_{\text{core}} \sim \mathcal{N}(y \cdot \mu, \sigma^2),$$

where μ (`core_scale` in code) controls class separation and σ controls within-class spread. *For the membership-inference experiments we match the train and test distributions, i.e., we use the same (μ, σ) for both sets so that members and non-members are drawn i.i.d. from the same distribution.*

Noise features. The remaining $d - 1$ coordinates are independent Gaussian clutter:

$$x_{\text{noise}} \sim \mathcal{N}(0, \sigma_{\text{noise}}^2 I_{d-1}).$$

Training/Test sizes and sweeps. We generate n_{train} training samples and $n_{\text{test}}=4000$ test samples. We sweep

$$\mu \in \{0.05, 0.10, \dots, 0.50\}, \quad n_{\text{train}} \in \{50, 200, 2000\}, \quad d \in \{16, 64, 256\},$$

and evaluate three class-prior settings $w \in \{0.1, 0.3, 0.5\}$. Unless stated otherwise, figures fix $w=0.5$, $\sigma_{\text{noise}}=1.0$, and $\sigma=0.15$.

1998	Parameter	Description
1999	w	Class prior for $y = +1$ (imbalance)
2000	μ	Core mean shift (class separation)
2001	σ	Core feature standard deviation (train = test)
2002	σ_{noise}	Noise level for the $d-1$ nuisance dims
2003	d	Dimensionality (1 core + $d-1$ noise)
2004	$n_{\text{train}}, n_{\text{test}}$	Train/test sample counts
2005		
2006		
2007		
2008		
2009		
2010		
2011		
2012		
2013		
2014		
2015		
2016		
2017		
2018		
2019		
2020		
2021		
2022		
2023		
2024		
2025		
2026		
2027		
2028		
2029		
2030		
2031		
2032		
2033		
2034		
2035		
2036		
2037		
2038		
2039		
2040		
2041		
2042		
2043		
2044		
2045		
2046		
2047		
2048		
2049		
2050		
2051		

Table 14: Synthetic data parameters. For MIA we use matched train/test distributions.

Models and training. We compare (i) Logistic Regression (LBFGS, `max_iter` = 10,000) and (ii) LDA (`solver`=lsqr, `shrinkage`=auto). Each configuration is run with 5 random seeds; we report means and shaded uncertainty bands.

G.2 MOTIVATION

Our toy setup is designed to cleanly *tease apart* the drivers of membership inference without architectural or optimization confounds. By controlling a few interpretable knobs, we can test how membership signals scale with statistical difficulty:

- **Dimensionality (d):** Increasing d adds nuisance directions and dilutes per-sample information, stressing generalization and potentially amplifying member–nonmember score gaps.
- **Sample size (n):** Larger n reduces estimator variance and overfitting; smaller n increases memorization pressure. The ratio n/d serves as an effective *signal budget* per parameter.
- **Decision boundary separation (μ):** Larger μ widens class separation, boosting accuracy and confidence. This lets us study whether membership advantage tracks confidence or generalization.
- **Signal strength (μ and n/d):** Together, geometric margin (μ) and sample complexity (n/d) summarize how much reliable signal the model can extract relative to noise.
- **Imbalance (class weight w):** Varying the class prior via a weight $w \in (0, 1)$ shifts the decision threshold and posterior calibration, directly affecting confidence-based and generative scores used by MIAs.

We keep train and test *i.i.d.* to isolate membership effects from distribution shift, and average over multiple seeds to separate systematic trends from randomness. This controlled regime exposes how membership advantage scales with (d, n, μ, w) and provides intuition that transfers to real datasets.

G.3 MEMBERSHIP INFERENCE SCORES

For each trained model we compute member scores on the training set and non-member scores on an *i.i.d.* test set, and report AUROC.

Max-probability (`auroc_prob`). Given posterior estimates $\hat{p}(y | x)$,

$$s_{\text{prob}}(x) = \max_{y \in \{-1, +1\}} \hat{p}(y | x).$$

This is the standard, label-agnostic confidence attack we plot for both Logistic Regression and LDA.

Log-joint (LDA only; `auroc_logjoint`). For LDA with class priors $P(y)$, means μ_y , and shared covariance Σ ,

$$s_{\text{logjoint}}(x) = \max_y \{ \log P(y) + \log \mathcal{N}(x | \mu_y, \Sigma) \}.$$

This generative score often differs from max-probability and is shown in our AUROC plots.

2052
2053

G.4 FINDINGS

2054
2055
2056
2057
2058
2059

Protocol & visualization. For each configuration (μ, n, d, w) we train Logistic Regression and LDA on i.i.d. train/test data with shared core variance $\sigma = 0.15$, noise level $\sigma_{\text{noise}} = 1.0$, and no spurious cue ($B = 0$). We run 5 seeds and plot means with shaded bands showing $\pm 1.96 \times \text{SEM}$. Membership is reported via AUROC and, when summarizing trends, the direction-invariant advantage AUROC = $\max\{\text{AUROC}, 1 - \text{AUROC}\}$. AUROC panels include a reference line at 0.5. The results are given in Figure 27.

2060

2061
2062
2063
2064
2065

Notation. LR/prob denotes the *max-probability (confidence)* score $s_{\text{prob}}(x) = \max_y \hat{p}(y \mid x)$ computed from a Logistic Regression model; LDA/prob is the same score computed from an LDA posterior; and LDA/log-joint denotes the *log-joint* score $s_{\text{logjoint}}(x) = \max_y \{\log P(y) + \log \mathcal{N}(x \mid \mu_y, \Sigma)\}$ from LDA. All are label-agnostic membership scores; unless stated, AUROC panels report the direction-invariant advantage AUROC.

2066

2067
2068
2069
2070
2071
2072

Dimensionality (d) and signal per parameter (n/d). Holding n fixed, increasing d reduces test accuracy while *increasing* membership advantage. This is consistent with weaker signal per parameter (n/d): estimation error grows and models lean more on idiosyncrasies of the training set, widening member–nonmember score gaps. Across-seed variability (std) of both accuracy and AUROC *shrinks* as d rises, indicating more concentrated (though worse) accuracy and a more consistently elevated membership signal in high dimensions.

2073
2074
2075
2076
2077

Geometric separation (μ). Larger μ (wider class separation) monotonically increases accuracy and also increases membership susceptibility: as margins grow, both models become more confident; training points attain slightly higher confidence (and, for LDA, higher log-joints) than i.i.d. test points, making member/nonmember scores easier to separate.

2078
2079
2080
2081
2082
2083
2084

Imbalance (class weight w). Moving away from balance ($w \neq 0.5$) improves accuracy for both methods by shifting the optimal threshold toward the minority class. For membership, LR/prob exhibits a *dampened* susceptibility under imbalance—posteriors saturate toward the majority, compressing train–test score gaps—whereas LDA/prob remains comparatively stable and often higher in AUROC across μ . Imbalance tends to increase across-seed variability, reflecting reduced effective sample size for the minority class.

2085
2086
2087
2088
2089

Generative vs. discriminative sample efficiency. Even at $n = 50$, LDA substantially outperforms Logistic Regression in accuracy; this gap persists (and often widens) as d increases (i.e., smaller n/d), reflecting the classic sample-efficiency advantage of a correctly specified generative model with shrinkage.

2090
2091
2092
2093
2094
2095
2096

LDA/log-joint vs. LDA/prob. Across essentially all (d, n, μ, w) , LDA/log-joint yields higher AUROC than LDA/prob. The log-joint exposes modeled density scale: training points lie closer to estimated class means and receive larger $\log p(x \mid y)$, hence larger $\log P(y) + \log p(x \mid y)$, than i.i.d. test points. Posteriors $\hat{p}(y \mid x)$ partially compress this scale information, making LDA/prob consistently less susceptible. The gap typically widens as d increases or n/d decreases, underscoring the added risk of releasing joint/likelihood values.

2097
2098
2099
2100
2101

LDA/prob vs. LR/prob across separation. At small μ , LR/prob shows both *lower* accuracy and *lower* membership susceptibility than LDA/prob, matching LDA’s sample-efficiency advantage when n/d is small. As μ grows, LR/prob confidence rises steeply with margin and its AUROC increases; it can meet or exceed LDA/prob at larger separations. Under stronger imbalance, this rise is *dampened* for LR/prob, while LDA/prob remains comparatively high.

2102
2103
2104
2105

LDA/log-joint vs. LR/prob. Except in a single benign regime (balanced $w = 0.5$, good separation μ , and low d), LDA/log-joint exceeds LR/prob in membership advantage. Practical takeaway: even when discriminative posteriors appear relatively less susceptible, exposing generative joint/likelihood scores can be markedly more revealing.

Figure 26: **Mean \pm SEM across 5 seeds.** Top row: test accuracy vs. core separation μ . Bottom row: membership Adv(AUROC) vs. μ . Columns correspond to $d \in \{16, 64, 256\}$. Within each panel, color denotes series (Accuracy: Logistic/LDA; AUROC: Logistic max-prob, LDA max-prob, LDA log-joint), and marker denotes $n_{\text{train}} \in \{50, 200, 2000\}$. We fix $w=0.5$, $B=0$, $\sigma=0.15$, and $\sigma_{\text{noise}}=1.0$.

Summary. Stronger signal (larger μ , larger n/d) improves accuracy but also strengthens confidence-based membership cues; higher d at fixed n hurts accuracy yet sharpens membership separation. Explicit prior modeling amplifies accuracy gains under imbalance without a commensurate reduction in susceptibility. Generative LDA is more sample-efficient than LR, and its log-joint scores are the most vulnerable among the considered outputs. [Theorem 3.3 provides sufficient \(not necessary\) conditions for dominance](#), specifically that the marginal skew must exceed the conditional skew by a factor determined by the bounded likelihood-ratio condition. When this inequality does not hold, the dominance can reverse.

Our empirical results directly illustrate such counter-examples. In the toy LDA vs. logistic regression experiments (Fig. 1), for low class separation, moderate sample size $n = 200$, and higher dimensions $d = 64, 256$, the LDA log-joint signal is less vulnerable than the LDA posterior-probability signal (green curve lying below the orange one). This happens because in this regime LDA learns the conditional decision boundary reasonably well, while the marginal density is poorly estimated. This is exactly the situation where the premise fails. As expected from our theory, the joint score does not dominate in this regime.

G.5 FINDINGS UNDER MODEL MISSPECIFICATION

Contamination model. We introduce misspecification through Huber-style ε -contamination (Huber, 1992; Kasa & Rajan, 2023) by replacing each example (independently in train and test) with probability ε by an isotropic high-variance draw that is independent of the label:

$$X \sim \begin{cases} \text{clean generator (core/spurious/noise)} & \text{w.p. } 1 - \varepsilon, \\ \mathcal{N}(0, \tau^2 I_d) & \text{w.p. } \varepsilon, \end{cases} \quad \text{with } \tau = \text{tau_mult} \cdot \sigma_{\text{noise}}.$$

We keep the label y unchanged. In our runs we use $\varepsilon = 0.02$ and $\text{tau_mult} = 10$, yielding empirical contamination rates $\approx 2.2\%$ in train and $\approx 2.0\%$ in test on average (diagnostics in the CSV).

Protocol. Except for the contamination replacement above, the setup matches the clean case: for each (μ, n, d, w) we train Logistic Regression and LDA; we fix $\sigma = 0.15$, $\sigma_{\text{noise}} = 1.0$, and $B = 0$; we average over 5 seeds and summarize membership with AUROC and its direction-invariant

2212
2213
Figure 27: **Mean \pm SEM across 5 seeds.** The three subfigures correspond to varying degree of
2214 imbalance, with $w = 0.5$ corresponding to the balanced case. Each subfigure shows: top row = test
2215 accuracy vs. μ , bottom row = MIA (AUROC) vs. μ ; columns are $d \in \{16, 64, 256\}$. Markers denote
2216 $n_{\text{train}} \in \{50, 2000\}$. Within each panel, color denotes series (Accuracy: Logistic/LDA; AUROC:
2217 Logistic max-prob, LDA max-prob, LDA log-joint)

2214 advantage AUROC = $\max\{\text{AUROC}, 1 - \text{AUROC}\}$ for the three scores LR/prob, LDA/prob, and
 2215 LDA/log-joint. The results are given in Figure 28.
 2216

2217 **Generative vs. discriminative under misspecification.** Contamination reverses LDA’s clean-data
 2218 sample-efficiency edge in accuracy—Logistic is typically better—because a few large-norm replace-
 2219 ments strongly distort shared-covariance estimation even with shrinkage. However, exposing density
 2220 scale remains risky: LDA/log-joint is the most susceptible membership score across most regimes
 2221 we tested, particularly at high d and small n .

2222 The introduction of misspecification through contamination depresses accuracy overall and espe-
 2223 cially at higher d ; accuracy increases with geometric separation μ and with sample size n . Under
 2224 contamination the discriminative model is more resilient than LDA: averaged across the grid, Lo-
 2225 gistic attains ~ 0.775 vs. LDA ~ 0.742 mean accuracy. By dimension, accuracy drops from ($d=16$)
 2226 to ($d=256$) for both methods (e.g., LDA: $0.76 \rightarrow 0.72$, Logistic: $0.83 \rightarrow 0.73$), consistent with
 2227 inflated covariance estimates and leverage effects from large-norm points.

2228 Contamination *amplifies* member–nonmember score gaps, with stronger effects at larger d , smaller
 2229 n , and larger μ . Both posterior-based signals rise with d , and LDA/log-joint is consistently the
 2230 most revealing. At very small sample sizes ($n=50$) the advantage is largest; by $n=2000$ these fall
 2231 back toward chance.

2232 As we move from extreme imbalance ($w=0.1$) toward balance (0.5), accuracy decreases (less prior
 2233 help), while membership susceptibility *increases* for all three signals (e.g., LR/prob mean AUROC
 2234 $\approx 0.54 \rightarrow 0.61$, LDA/prob $\approx 0.54 \rightarrow 0.58$, LDA/log-joint $\approx 0.58 \rightarrow 0.59$), echoing the dampen-
 2235 ing effect of imbalance on confidence-based MIAs in the clean setting.

2237 **Summary.** Replacing a small fraction of points by high-variance, label-independent outliers si-
 2238 multaneously hurts accuracy and strengthens membership signals, with the sharpest increases at
 2239 larger d , smaller n , and larger μ . While Logistic is more robust in accuracy, releasing generative
 2240 *log-joint/likelihood* values (LDA/log-joint) is notably more revealing than posteriors, reinforcing
 2241 the recommendation to avoid exposing such scores under potential contamination.

2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000

Figure 28: **Mean \pm SEM across 5 seeds.** The three subfigures correspond to varying degree of imbalance, with $w = 0.5$ corresponding to the balanced case. Each subfigure shows: top row = test accuracy vs. μ , bottom row = MIA (AUROC) vs. μ ; columns are $d \in \{16, 64, 256\}$. Markers denote $n_{\text{train}} \in \{50, 2000\}$. Within each panel, color denotes series (Accuracy: Logistic/LDA; AUROC: Logistic max-prob, LDA max-prob, LDA log-joint)

2322 H PRIVACY-UTILITY ANALYSIS

2324
 2325 We conducted a comprehensive privacy-utility analysis examining how privacy vulnerabilities
 2326 change with model architecture and training data characteristics. Our analysis focused on four
 2327 key strategies: ENC (Encoder/DISC), AR (Autoregressive), MLM (Masked Language Model), and
 2328 DIFF (Diffusion), evaluating their susceptibility to Gradient Boosting Machine (GBM) based mem-
 2329 bership inference attacks.

2330 H.1 METHODOLOGY

2332 The analysis examined privacy-utility trade-offs across different model configurations, specifically
 2333 investigating:

- 2335 • **Model Size Impact:** Varying the number of transformer layers (1, 6, 12)
- 2336 • **Training Data Size:** Different sample counts (128, 256, 512, 1024, 2048, 4096, Full Data)
- 2337 • **Attack Methods:** GBM-based attacks using logits and probability distributions
- 2338 • **Utility Metric:** F1 scores across multiple text classification datasets

2341 H.2 RESULTS

2343 H.2.1 MODEL SIZE ANALYSIS

2345 Figure 29 presents the privacy-utility trade-offs as a function of model size. Each point represents
 2346 the average performance across datasets, with layer annotations (L1, L6, L12) indicating the model
 2347 depth.

2362 Figure 29: Privacy-utility trade-offs by model size across four strategies. Left panel shows GBM
 2363 Logits attack success vs. F1 utility scores. Right panel shows GBM Probs attack success vs. F1
 2364 utility scores. Lower attack success indicates better privacy protection.

2367 H.2.2 TRAINING SAMPLE SIZE ANALYSIS

2369 Figure 30 illustrates how training data size affects the privacy-utility balance. Sample size annota-
 2370 tions indicate the number of training examples used.

2371 H.3 KEY FINDINGS

2374 H.3.1 STRATEGY PERFORMANCE RANKING

2375 Our analysis reveals significant differences in privacy-utility characteristics across strategies:

Figure 30: Privacy-utility trade-offs by training sample size across four strategies. Left panel shows GBM Logits attack success vs. F1 utility scores. Right panel shows GBM Probs attack success vs. F1 utility scores. Sample size annotations indicate training data volume.

Utility Performance (F1 Scores):

1. **ENC**: 0.534 (± 0.233) – Best overall utility performance
2. **DIFF**: 0.529 (± 0.171) – Second best with highest consistency
3. **AR**: 0.458 (± 0.210) – Moderate utility with high variance
4. **MLM**: 0.456 (± 0.238) – Lowest utility but improving with model size

Privacy Vulnerability (Attack Success Rates): For GBM Logits attacks (lower values indicate better privacy protection):

1. **MLM**: 0.548 (± 0.056) – Best privacy protection
2. **ENC**: 0.610 (± 0.086) – Good privacy protection
3. **AR**: 0.728 (± 0.198) – Moderate vulnerability
4. **DIFF**: 0.976 (± 0.058) – Highest vulnerability

H.3.2 MODEL ARCHITECTURE IMPACT

The relationship between model size and privacy-utility trade-offs varies significantly across strategies:

- **ENC Strategy**: Demonstrates optimal balance with utility peaking at 6 layers ($F1=0.562$) while privacy protection improves with model depth. Attack success rates decrease from 0.620 to 0.599 (GBM Logits) as layers increase from 1 to 12.
- **MLM Strategy**: Shows the most favorable privacy characteristics with consistent protection across all model sizes. Utility improves substantially with depth ($0.349 \rightarrow 0.533$) while maintaining the lowest attack success rates.
- **AR Strategy**: Exhibits concerning behavior where utility gains ($0.315 \rightarrow 0.542$) come at severe privacy cost, with attack success rates increasing dramatically ($0.542 \rightarrow 0.841$) for larger models.
- **DIFF Strategy**: Despite achieving good utility, consistently shows the highest vulnerability to privacy attacks ($> 95\%$ success rate) across all configurations, making it unsuitable for privacy-sensitive applications.

H.4 RECOMMENDATIONS

Based on our comprehensive analysis, we provide the following recommendations:

- **General Applications:** Use ENC strategy with 6-12 layers for optimal privacy-utility balance
- **Privacy-Critical Systems:** Deploy MLM strategy with 12 layers for maximum privacy protection
- **High-Risk Scenarios:** Avoid DIFF strategy due to severe privacy vulnerabilities
- **AR Strategy Caution:** Monitor privacy implications carefully when scaling AR models
- **Logit-Clipping does reduce the susceptible of generative classifiers to MIA but it comes at the cost of reduced performance.**

The analysis demonstrates that privacy and utility considerations must be carefully balanced when selecting model architectures and training strategies, with ENC and MLM strategies offering the most favorable trade-offs for privacy-preserving applications.

I LIMITATIONS

Despite providing the first systematic analysis of MIAs across *Discriminative*, *Generative*, and *Pseudo-Generative* text classifiers, our study has several limitations. First, our experiments are conducted under standard i.i.d. assumptions, and the results may not generalize to real-world scenarios involving distribution shifts, such as covariate or concept drift (Bickel et al., 2009; Roychowdhury et al., 2024), where both attack success and classifier behavior could differ substantially. Second, we limit our study to only black-box attacks; it would be interesting to study if the same findings translate to white-box attacks on generative classifiers, which we leave for future work. Third, we focus on transformer-based architectures with conventional fine-tuning, omitting emerging paradigms such as few-shot or prompt-based in-context learning (Sun et al., 2023; Gupta et al., 2023), as well as parameter-efficient adaptation techniques like LoRA (Hu et al., 2022), which may exhibit different privacy-utility trade-offs. Fourth, our analysis is restricted to text classification; multi-modal data—including tabular, visual, or audio modalities (Pattisapu et al., 2025; Lu et al., 2019; Kushwaha & Fuentes, 2023)—may yield distinct membership leakage patterns due to richer or correlated feature structures. Fourth, we primarily evaluate standard MIA strategies and do not explore fully adaptive adversaries that could exploit model-specific quirks, ensemble behaviors, or auxiliary side information. Finally, while we study training data volume as a factor influencing vulnerability, other aspects such as pretraining data composition, model calibration, or data augmentation strategies may also impact privacy risks but remain unexplored. These limitations suggest that while our findings provide foundational insights, extending analyses to diverse settings and adaptive attacks is necessary to fully understand and mitigate privacy risks in generative classification systems.