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Abstract

Convolutional neural networks (CNNs), which have achieved significant success in various vi-
sual tasks, are inspired by the architecture of the mammalian vision system. However, unlike
CNNs, the visual cortex contains a substantial number of top-down or feedback connections.
Inspired by this, recent research has investigated incorporating feedback mechanisms into
CNNs. In this paper, we propose a novel feedback mechanism called ’Image Specific Fea-
ture Selection (ISFS)’ that leverages feedback to utilize only a relevant subset of filters for
the given image. The feedback weights are learned, and thus the network learns to select
features/filters tailored to each image. The feedback improves performance both in terms
of better accuracy and better confidence in classification. The selection of filters through
the feedback is indeed image-specific and results in interesting behaviour of the network.
The feedback signals produced for a given image, can be viewed as a useful low-dimensional
approximation of the internal representation of the image. We demonstrate that we can
effectively use the feedback signals to identify when a given image has adversarial noise.

Keywords : CNN, Feedback in CNNs, Image Specific Feature Selection

1 Introduction

Convolutional Neural Networks (CNNs) have been highly successful in a variety of image processing tasks.
Many of the architectural features of CNNs, such as multiple layers of processing, hierarchy of feature
detectors, local receptive fields of feature detectors etc. were inspired by the structure of the vision system
of mammalian brains Lecun et al. (1998). There are also many differences between CNNs and these vision
systems. A major difference is the preponderance of top-down or feedback connections in the biological
vision Herzog et al. (2020b). It is believed that these feedback pathways are useful for many functionalities
in the biological vision and that feedback is useful for stable visual perception Gilbert & Li (2013); Gilbert
& Sigman (2007).

Motivated by this, many researchers have explored models of CNNs with feedback for many different appli-
cations. (See, e.g., Sam & Babu (2018); Yan et al. (2019); Cao et al. (2019). We briefly review these in the
next subsection). By feedback in CNNs, we mean a mechanism whereby the output at higher layers of the
network is used to generate some signals that would modify the output of the lower layers of the network in
a dynamic or iterative fashion.

In this paper we present a novel mechanism for incorporating feedback in CNNs that we term as Image
Specific Feature Selection (ISFS) which leverages feedback to dynamically select the most relevant filters for
a given image. What we propose is a generic mechanism for incorporating feedback in any CNN used for a
classification task.

In our model, the outputs of the last convolutional layer and the final (softmax) layer of the CNN are supplied
to a separate feedback generator network which generates the feedback signals. The feedback signals would
be binary vectors that are gated on to the outputs of the filters at different convolutional layers. This will
result in the enabling of only a subset of the filters at different (convolutional) layers in the CNN. Since
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the feedback signals are generated in response to each input image, this selection of filters would be image-
specific. Since filters in a CNN represent feature detectors, we call this as image specific feature selection
(ISFS). We want to point out that this is distinctly different from the general feature selection mechanisms,
where we choose (or learn) a subset of relevant features for the classification problem as a whole. The idea
of ISFS is that for each image, the features appropriate for that particular image should be used. All the
feature detectors in the network may be relevant for the classification problem as a whole. But we have a
feedback mechanism that would, for each given input image, results in a specific subset of features to be
used for that image.

Considering a CNN used for object recognition, we can intuitively view this process as follows. Given the
input image, the CNN would process it (in the usual feed-forward manner) to arrive at a tentative internal
representation and a tentative decision on its category. Now using these current outputs of the network,
feedback signals are generated that would disable some of the filters from being used at each layer of the
CNN and the input image is processed again through this CNN. This is like bringing in the global context
of this image in arriving at the final decision on this image.

We provide simulation results with multiple CNN architectures and multiple data sets to show that this feed-
back mechanism is interesting and is useful. We show that, in all cases, the feedback improves classification
accuracy. We also show that feedback improves the performance of the network in terms of confidence in the
classification as measured by Expected Confidence Error and Reliability diagrams Guo et al. (2017).Further,
we provide some empirical evidence which suggests that our feedback mechanism results in sharper, and
more semantically focused saliency maps.

Our empirical results show that the network indeed learns to make image-specific feature selection. The final
learnt network uses only a subset of filters which is, by and large, distinct for each image. While more than
30% of the total filters (at the top convolutional layer) are discarded for any specific image, almost every
filter is used for some image or the other.

At an anecdotal level, the image specific feature selection is intuitively satisfying. For example, consider
the four images of the same class in each of the figures 1 and 2. In each figure, the two subsets of filters
selected by the network for the first two images differ much more than those selected for the next two images.
Visually, we can see that the first two images certainly have a higher level of dissimilarity compared to the
next two images (even though all four belong to the same class).

Figure 1: 1st and 2nd Image: Cheetah class images with binary feedback vectors at top convolution layer
differing by 79 bits; 3rd and 4th Image: Images of Cheetah class whose binary feedback vectors at top
convolution layer are identical. (Images from Imagenet-10).

There is another interesting aspect of this feedback structure. In a normal CNN classifier, the main inference
or output available from the network for any given image is the outputs of the final softmax layer which
are estimates of P (c | X), where c is a class label and X is the input image. In addition, one can consider
the output of the final convolutional layer (which can be viewed as the learnt internal representation of
the image) as another output from the CNN. With our feedback mechanism, the binary feedback vector
computed by the network for a given input image is an additional inference or output from the network. We
can consider this as a low dimensional approximation to the computed internal representation (output of the
final convolutional layer). The binary feedback vector implicitly contains some important global information
present in the image. We explore this aspect in an interesting scenario. We give the trained network a
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Figure 2: 1st and 2nd Image: Ostrich class images with binary feedback vectors at top convolutional layer
differing by 82 bits; 3rd and 4th Image: Images of Ostrich class whose binary feedback vectors at top
convolutional layer differing in 4 bits. (Images from Imagenet)

mix of normal as well as adversarially perturbed images and compute the binary feedback vectors. We
now represent each image by its binary feedback vector (of dimension 256) and train an SVM classifier to
distinguish between normal and adversarially perturbed images. This SVM achieves good accuracy even
though each image is represented by only a 256-bit vector. We compare this classifier with an MLP classifier
whose input is the output of the final convolutional layer in the CNN. This achieves a similar (though slightly
less) accuracy. Thus the binary feedback vectors provide a good low-dimensional approximation to the learnt
internal representation of images. We also show that the learnt SVM classifier can be used to get a CNN
classifier with a reject option to be able to reject adversarially perturbed images with a high rate of success.

The main contributions of the paper can be summarized as follows. We propose a novel feedback mechanism
in CNNs that we call Image-Specific Feature Selection. The method we propose is very generic and such
a feedback can be added onto any CNN used as a classifier. The proposed feedback mechanism (through
learning of the feedback generator network) results the system selecting a subset of relevant features for
each image. We show that the feedback improves the performance of the network both in terms of accuracy
and confidence in classification. We also show that using the feedback we get saliency maps that are more
focussed on relevant parts of the object. We show that the feature selection resulting from the feedback is
indeed image-specific and is interesting. We also explore the utility of the feedback signals in enabling the
network to effectively reject input images that contain adversarial noise.

The rest of the paper is organized as follows. Section 1.1 discusses related work. Section 2 presents our
proposed feedback mechanism. Section 3 discusses our empirical results, and concluding remarks are provided
in Section 4.

1.1 Related Work

Feedback in CNNs has been explored for many different applications such as

• Object Classification : Nayebi et al. (2022); Herzog et al. (2020a); Huang et al. (2020); Kreiman &
Serre (2020); Yan et al. (2019); Li et al. (2018); Nayebi et al. (2018); Nguyen et al. (2018); Wang
et al. (2018); Zamir et al. (2017); Cao et al. (2015); Stollenga et al. (2014)

• Hyper-spectral Image Classification : Yu et al. (2021)

• Scene Parsing: Jin et al. (2017); Pinheiro & Collobert (2014); Liang et al. (2015)

• Segmentation : Tomar et al. (2022); Cao et al. (2019); Li et al. (2016)

• Pose Estimation : Belagiannis & Zisserman (2017); Carreira et al. (2016); Oberweger et al. (2015)

• Crowd Counting Sam & Babu (2018)

• Super Resolution Image Generation: Deng et al. (2021); Lee et al. (2020); Li et al. (2019)
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• Saliency Detection : Ding et al. (2022)

• Object Localization : Kreiman & Serre (2020); Cao et al. (2019; 2015)

• Adversarial Improvement : Alamia et al. (2023); Huang et al. (2020); Yan et al. (2019)

• Text Prediction : Chung et al. (2015) etc.

In Li et al. (2018) and Stollenga et al. (2014), feedback generated using information from the top layers of the
CNN, is used in an attention-like mechanism to improve performance in object recognition tasks. Similarly,
Ding et al. (2022) presents an approach to improve saliency detection by selectively emphasizing regions
that are most likely to attract human gaze. In Cao et al. (2015) and Cao et al. (2019), it is demonstrated
that feedback can be used to selectively enhance certain regions in the lower layers of the network, which is
useful for better object localization. In general, feedback in CNNs is seen to be effective in learning better
representations across various vision tasks Zamir et al. (2017); Stollenga et al. (2014); Yan et al. (2019). In
Nayebi et al. (2018), it is demonstrated that using local recurrent connections, a convolutional network with
fewer layers can achieve recognition accuracies on the ImageNet dataset that are comparable to those of deep
Residual Networks. Furthermore, Kreiman & Serre (2020) and Yan et al. (2019) highlight that modulating
the output of adjacent layers through feedback can significantly improve the representation of lower layers.

Mostly, the different works cited above use different architectures and learning algorithms to implement
feedback. In most cases, the proposed architecture for the CNN with feedback is rather application-specific.
In contrast, the mechanism we propose here is quite generic. It is like an add-on module that can be used
with any CNN. Also, the specific mechanism, namely image specific feature selection, that we propose here
is novel and has not been explored in the literature.

In Huang et al. (2020) a general feedback based CNN is proposed where the the final representation in the
forward CNN is used to recreate the input image through a generative model and the reconstructed image
is once again passed through the forward CNN for a consistency check. While this is a general CNN with
feedback, its feedback mechanism is limited to only reconstruction of input image (relying on a pixel-level
reconstruction error for learning the generative model).

Another approach to feedback mechanisms in neural networks is the concept of predictive coding, as explored
in Han et al. (2018). Predictive coding involves local recurrence within a visual area, rather than between
adjacent visual areas. In Alamia et al. (2023), CNNs with predictive coding dynamics through feedback
connections are shown to be effective for image classification, especially with noisy data.

2 CNN with Feedback for Image Specific Feature Selection

Consider a normal (feedforward) CNN with L convolutional layers. We denote the output of layer l by yl.
Then yl = (yl

1, yl
2, . . . , yl

nl
), where nl is the number of channels or filters at layer l and each yl

c is an image
of appropriate dimension. These outputs are calculated as

yl+1 = fl+1(W l+1 ⊛ yl), l = 0, · · · , L − 1 (1)

where W l+1 is the weight tensor and fl+1 is the activation function (e.g., ReLU) at this layer, and ⊛
symbolically represents the usual convolution operation done in CNNs to obtain output of any layer. We
take y0 to be the input image. In the CNN used for classification, these convolutional layers are followed
by some fully connected layers with the final output layer being the softmax layer whose outputs are the
estimated probabilities of different classes.

When we incorporate feedback, the outputs of the top layers of the CNN are used, through another network
that we call feedback generating network (FBG), to generate feedback signals that modify the outputs of the
lower layers. Since this process is iterative, let us denote by yl(k) and ml(k) the output and the feedback
signal respectively at layer l at kth iteration. Note that the input to the FBG that generates ml(k) would
be yl′(k − 1) for some values of l′ > l. We will describe the network architecture and the learning algorithm
in the next subsection.
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Now we can write the equations for the output of layer l + 1 at kth iteration in the CNN with feedback as

yl+1(k) = fl+1(W l+1 ⊛ (yl(k) ⊙ ml(k))) (2)

where ⊙ symbolically denotes the operation by which the feedback signal modifies the output of the layer.
(We take y0(k) to be the input image for all k).

For us, the feedback signals would be binary and they would be gated onto the filters at each layer. Thus
ml = (ml

1, · · · , ml
nl

) is a binary vector of dimension nl which is the number of filters at layer l. Now we
define the operation of the feedback by

yl(k) ⊙ ml(k) = (yl
1(k) ⊗ ml

1(k), · · · , yl
nl

(k) ⊗ ml
nl

(k)) (3)

where yl
c(k) ⊗ ml

c(k) denotes the operation of multiplying each elements of the array yl
c(k) by the number

ml
c(k). Note that ml

c(k) ∈ {0, 1}. For a specific c, if ml
c = 0, then that particular filter will not contribute

any input to the next layer. Thus, only those filters whose corresponding ml
c are 1 are used at this layer.

This is how the feedback results in image-specific selection of filters or features at each layer.

We take ml(1) to be a vector of all 1′s so that yl(1) ⊙ ml(1) = yl(1) which will make the first iteration same
as the normal pass through the (feed-forward) CNN. After calculating yl(1) for all layers, these are used to
generate ml(2) for different l (using the FBGs) which are then used in the above equations to get yl(2) for
all layers and so on.

During Training, we need to decide on the number of times we iterate through eq.(2) for deciding on the final
output of the network which would be used for computing the loss and updating the weights. The minimum
number of iterations is 2 because, otherwise feedback has no effect. In all the experiments reported here,
during training we used only two iterations. At inference time also we take the output of the second iteration
as the final output of the network.

The overall system, thus, consists of a forward network which is a CNN and another network to generate
the feedback which is the FBG. We discuss the architecture of the system in the next subsection.

Remark 1: This structure of a CNN with feedback is quite distinct from that of a general recurrent
neural network (RNN). In an RNN, each layer is a dynamical system. In contrast, a CNN with feedback
is essentially the coupling of two separate feed-forward networks, whereby after the initial pass through the
forward network, signals travel backwards through another network so as to enable the system to iteratively
refine its representations.

2.1 Architecture of the CNN with feedback

Our forward network will be a CNN with some L convolutional layers which will be followed by some fully
connected layers and a final softmax output layer whose outputs are the (estimated) probabilities of different
classes.

For the CNN we choose standard off-the-shelf architectures. Our feedback mechanism is very generic and it
can be incorporated into any CNN. Hence, for our experiments we choose standard off-the-shelf architectures
for the CNN. We present results with ResNet-18, ResNet-34 He et al. (2016) and VGGNet Simonyan &
Zisserman (2015). In the ResNets and the VGGNet, the convolutional layers are organized into groups. For
the purpose of feedback we treat the group as a single entity and thus group l would have a feedback vector,
ml. From now on, we refer to each group as a layer.

For each layer (group), l, we need to generate the feedback vector ml. Thus, the number of FBGs corresponds
to the number of layers receiving feedback.

The next question is what should be the structure of FBG network. The network structures employed
for generating feedback signals are pretty diverse in the current literature on CNNs with feedback. Some
authors used a second CNN Sam & Babu (2018), and some others use CNNs where the filters have fractional
stride Huang et al. (2020); Yan et al. (2019). In contrast, some use simple feedforward MLPs Li et al. (2018).
Some feedback-generating networks are quite non-standard Cao et al. (2019).
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To keep the FBGs simple and generic, we choose a one hidden layer feedforward network (an MLP) for all
the FBGs. The input to the FBGs is taken from the final convolutional layer and the softmax layer of the
CNN. The output of the final convolutional layer is taken through a global average pooling (GAP) module
to form one part of the input to the FBG while the other part is the output of the softmax layer. Thus the
dimension of the input layer in the FBG is nL +M where nL is the number of filters in the final convolutional
layer and M is the number of classes. All FBGs share the weight matrix from input to the hidden layer. All
hidden layer nodes in the FBG use ReLU activation. The output of FBG generating ml has dimension nl.
So, each FBG needs to have its own output layer with appropriate dimension. All nodes in the output layer
of FBG use sigmoid activation function. We use a binarizer that thresholds these outputs at 0.5 to generate
the final binary feedback vector.

Consider the system with the forward CNN being ResNet-18. In Resnet-18, the convolutional layers are
grouped into five groups. Hence for us L = 5 here. In our system we supply feedback to three convolutional
layers, namely groups 2, 3, and 4. These have, respectively, 64, 128, and 256 filters. We will have three
FBGs each of which is a one-hidden-layer MLP. All of them share the input to hidden layer weights.

As mentioned earlier, we also experimented with configurations where the forward CNN is ResNet-34 or
VGGNet.

ResNet-34 is also partitioned into five groups, so L = 5. As in the earlier ResNet-18 configuration, we inject
feedback into three convolutional groups, namely, groups 2, 3, and 4, whose output stages contain 64, 128,
and 256 filters, respectively. The architecture of the feedback generator (FBG) is kept identical to that used
in the ResNet-18 setting.

VGG19 is also divided into five convolutional blocks (L = 5), with feedback injected before Blocks 2 to 5,
which have 64, 128, 256, and 512 channels respectively. The feedback generator mirrors the ResNet-18/34
design.

Figure 3a illustrates the complete architecture when using ResNet-18 as the forward CNN, and Figure 3b
shows the analogous setup with VGG-19. In each diagram, the shared part of the feedback generator is
labeled FB-base, while the output layers which are different for different FBGs are labeled FB-1, FB-2, and
FB-3 (with an additional FB-4 in the VGG-19 variant). Precise dimensions for the feedback vectors ml and
the hidden layer sizes of these FBGs are provided in Section 3.

2.2 Learning Algorithm

The operation of this CNN with feedback is as follows. We present the input image at the input of the
CNN. In the first iteration we take all feedback signals to be 1. Thus the first iteration would be the normal
computation through a CNN using all the filters. Then we supply the output of last convolutional layer and
the final softmax layer of the CNN as input to all the FBGs, which give us the binary feedback vectors ml(2)
for iteration 2. Using these we now recompute the output of CNN using eq.(2). (As per this computation, in
the second iteration, in each layer l, the output of filter c is passed onto the next layer only when ml

c(2) = 1,
for c = 1, · · · , nl). Thus we get two outputs at the final softmax layer of the CNN. Both these would be
vectors of (predicted) probabilities of different classes for the input image. Call the two vectors q1, q2. Here,
q1 would be for the case when we use all the filters in the CNN while q2 is in the case where we use only
those filters selected by the feedback signals. At test time, we use q2 as the final output from the CNN. For
training the CNN and the FBGs we follow the procedure described below.

For each input training image we compute the outputs q1 and q2. Suppose the class label of the training
image is ỹ which we take to be a one-hot vector. Then we first learn the CNN weights using CCE(q1, ỹ) as
the loss function where the general CCE loss function is defined below

CCE(t, s) = −
M∑

i=1
ti log(si) (4)

Note that during this learning of CNN, we are not using the FBGs.
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(a) The architecture of the ResNet-18 with feedback

Input

3× 3Conv, 64

3× 3Conv, 64

Pool

⊗

3× 3Conv, 128

3× 3Conv, 128

Pool

⊗

3× 3Conv, 256

3× 3Conv, 256

Pool

⊗

3× 3Conv, 512\2

3× 3Conv, 512

3× 3Conv, 512

3× 3Conv, 512

Pool

⊗

3× 3Conv, 512\2

3× 3Conv, 512

3× 3Conv, 512

3× 3Conv, 512

Pool

FC

Class Probabilities

F
B
-4

F
B
-3

F
B
-2

F
B
-1

F
B
-B

as
e

GAP

(b) The architecture of the VGG-19 with feedback

Figure 3: Architectures of our feedback-augmented CNNs: (a) ResNet-18 variant and (b) VGG-19 variant,
each injecting learned binary gating vectors at multiple blocks.
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After 30 epochs of learning the CNN, we freeze the weights in the CNN and then learn the weights in the
FBGs using CCE(q2, ỹ) as the loss function. In the FBGs we have a binarizer and we need to backpropagate
the error through it for learning the weights. For the purposes of backpropagation we treat the binarizer as
an identity map.

There are two reasons for this learning protocol. The feedback here is intended to select a subset of filters
that are relevant for a given image. The FBG network is to be trained so that it learns to select appropriate
filters. For such learning it would be good if the filters in the CNN are stabilized. That is why we first train
the CNN separately and then learn the weights in the FBG network. A second reason for this protocol is
that we want to think of ISFS as a general pupose mechanism that can be used with any CNN. That is why
we take a CNN that is trained separately and then incorporate the feedback and train only the weights in
the FBGs. As a matter of fact, in our experiments involving the 1000-class Imagenet data, we download
a publicly available CNN for this data set and then train only the FBGs. We also note here that, during
training of the FBG, the number of weights to be learnt is only about 1% of the number of weights in the
Resnet. Thus adding our feedback mechanism to a CNN has negligible overheads in terms of the additional
weights that are added.

3 Empirical Results

In this section, we present the experimental results obtained with our feedback mechanism of image-specific
feature selection. We show that the feedback improves the performance of the network in terms of both
classification accuracy, and Expected Confidence Error Guo et al. (2017). We also show that it can result
in better Saliency maps which computes a pixel-wise importance. We demonstrate that the binary feedback
vectors generated are indeed image-specific and that they are a good low-dimensional approximation to the
internal representation of the image.1

3.1 Experimental Setup

Forward Network: As mentioned earlier, we used three different widely used CNNs: ResNet-18 and
ResNet-34 He et al. (2016), and VGG-19 Simonyan & Zisserman (2015). ResNet-18 comprises 17 convolu-
tional layers organized into five residual blocks (with a single convolution layer in Block 1), while ResNet-34
extends this design to 33 layers across the same block structure. VGG-19 consists of 19 weight layers ar-
ranged into five convolutional blocks. In both ResNet variants, we apply our feedback mechanism at the
outputs of Blocks 2, 3, and 4, which have 64, 128, and 256 feature channels, respectively. In VGG-19 we
inject feedback at the outputs of Blocks 1 to 4, corresponding to 64, 128, 256, and 512 channels.

Feedback Generator: As mentioned earlier, each of our FBGs is an MLP with one hidden layer. The
dimension of the input layer is 512 + k(where ’k’ is the number of classes) and the the output of the final
convolutional layer (or block) in all our forward network architectures would have dimension 512 after global
average pooling. The hidden layer has 128 nodes and the input to hidden layer weights are shared by all
FBGs. (This part is shown as FB-base in Figure 3). The number of nodes in the output layer of an FBG is
the same as the number of filters in the layer to which this feedback signal is sent. Figure 3 illustrates the
overall architecture when we use ResNet-18 and VGG-19 as forward network. The total number of weights in
all the FBGs put together is about 1% of the weights of the forward network. Thus introduction of feedback
does not add any significant computational complexity.

Data sets: We evaluate our method on both small and large-scale classification benchmarks. First, we
construct five disjoint 10-class subsets from ImageNet – denoted ImageNet-10(D1) through ImageNet-10(D5)
– each containing 1,300 training and 100 test images per class. Second, we test on several balanced and
imbalanced datasets with much larger numbers of categories: Caltech-101 (101 classes, 31 to 800 images per
class), Caltech-256 (256 classes, 80 to 800 images per class), Flowers-102 (102 classes, 40 to 250 images per
class), Tiny ImageNet (200 classes, 500 training images per class), and the full ImageNet-1K (1,000 classes).
(We get similar results on the simple data sets such as MNIST and Fashion-MNIST; but these are not shown
in the results presented here.).

1Codes will be made available post-acceptance
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Training Procedure: We described the learning method in Section 2.2. We first train the CNN alone for
30 epochs. After that we freeze the weights in the CNN. Subsequently, we train only the feedback generating
networks for 70 epochs.

We compare the performance of the CNN with and without feedback. For incorporating feedback, we first
train the forward CNN alone for 30 epochs. Then we freeze the CNN weights and train only the FBGs.2.
For obtaining the performance of the CNN without feedback, we train the CNN for about 50 to 100 epochs.
We train the CNN till the training loss stabilizes. We do not provide comparisons with any other model
of CNN with feedback. Almost all the reported architectures of CNN with feedback are rather application
specific. Our mechanism for feedback is fairly generic. It can be added onto any pretrained CNN. Further, the
feedback mechanism we proposed here is novel. The simulations are intended to demonstrate the performance
enhancements this novel feedback can bring about.

3.2 Prediction Accuracy of the CNN with feedback

The classification accuracy of the trained network, with and without feedback, is shown in Table 1. The
results shown in the table are averages (with standard deviation) over five repetitions.3 As can be seen from
the tables, across all the different data sets and for all the three CNN architectures, Feedback improves the
accuracy and the increase is significant given the standard deviation.

Figure 4: Reliability Diagrams for Flowers 102 using ResNet-18: without feedback (left panel) and with
Feedback (right panel)

3.3 Confidence Error and Reliability Diagrams

Apart from percentage accuracy, another way to measure the performance of a classifier is through measures
characterizing the confidence. Reliability diagrams and confidence errors are tools for evaluating probabilistic
classification modelsGuo et al. (2017). The confidence error quantifies the misalignment between a model’s
predicted confidence and the actual accuracy.

Expected Confidence Error (ECE) evaluates how well a probabilistic classifier’s predicted confidence aligns
with true accuracy Guo et al. (2017). For a sample i, let pi = maxk p̂k

i , where p̂k
i is the predicted probability

for class k. Predictions are grouped into bins Bm, m = 1, · · · , M , such that sample i is put in Bm if
pi ∈ ( m−1

M , m
M ]. For each bin Bm, accuracy and average confidence are calculated as:

acc(Bm) = 1
|Bm|

∑
i∈Bm

1ŷi=yi
, conf(Bm) = 1

|Bm|
∑

i∈Bm

pi

2Only in case of Imagenet-1000 data set, we use a publicly available CNN model and we do not train the forward CNN
3In the tables the standard deviation is not shown if it is less than 0.001.
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Table 1: Predictive accuracy (mean ± std) across datasets without and with Feedback

Model Dataset Without Feedback With Feedback

ResNet-18

Imagenet-10 (D1) 0.92 ± 0.005 0.94 ± 0.003
Imagenet-10 (D2) 0.94 ± 0.006 0.96 ± 0.004
Imagenet-10 (D3) 0.9 ± 0.008 0.92 ± 0.004
Imagenet-10 (D4) 0.88 ± 0.008 0.91 ± 0.005
Imagenet-10 (D5) 0.95 ± 0.004 0.97 ± 0.003
Caltech-101 0.883 ± 0.012 0.902 ± 0.008
Caltech-256 0.678 ± 0.006 0.689 ± 0.007
Flowers-102 0.943 ± 0.021 0.958 ± 0.03
Tiny ImageNet 0.71 ± 0.009 0.725 ± 0.005
ImageNet 1K 0.673 0.681

ResNet-34

Imagenet-10 (D1) 0.93 ± 0.005 0.943 ± 0.008
Imagenet-10 (D2) 0.941 ± 0.006 0.965 ± 0.009
Imagenet-10 (D3) 0.912 ± 0.007 0.928 ± 0.003
Imagenet-10 (D4) 0.895 ± 0.005 0.918 ± 0.006
Imagenet-10 (D5) 0.954 ± 0.004 0.968 ± 0.008
Caltech-101 0.901 ± 0.008 0.916 ± 0.005
Caltech-256 0.695 ± 0.003 0.718 ± 0.007
Flowers-102 0.954 ± 0.007 0.97 ± 0.006
Tiny ImageNet 0.728 ± 0.005 0.732 ± 0.006
ImageNet 1K 0.725 0.731

VGG-19

Imagenet-10 (D1) 0.89 ± 0.011 0.925 ± 0.001
Imagenet-10 (D2) 0.918 ± 0.017 0.938 ± 0.005
Imagenet-10 (D3) 0.91 ± 0.009 0.927 ± 0.002
Imagenet-10 (D4) 0.869 ± 0.008 0.888 ± 0.005
Imagenet-10 (D5) 0.926 ± 0.011 0.939 ± 0.012
Caltech-101 0.848 ± 0.005 0.859 ± 0.002
Caltech-256 0.63 ± 0.008 0.642 ± 0.003
Flowers-102 0.883 ± 0.005 0.905 ± 0.006
Tiny ImageNet 0.675 ± 0.005 0.677 ± 0.002
ImageNet 1K 0.69 0.701

where ŷi and yi are the predicted and true labels, respectively. The ECE is:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm) − conf(Bm)| ,

where n is the total number of samples. Lower ECE implies better calibration. Ideally we want acc(Bm) ≈
conf(Bm) for all m.

Reliability diagram visually represents this relationship by plotting acc(Bm) (y-axis) against conf(Bm) (x-
axis) for each bin. Perfect calibration corresponds to the diagonal line acc(Bm) = conf(Bm). Deviations from
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Table 2: Expected Confidence Error (ECE) with and without Feedback across datasets and architectures

Model Dataset Without Feedback With Feedback

ResNet-18

ImageNet-10 (D1) 0.021 ± 0.003 0.003 ± 0.0008
ImageNet-10 (D2) 0.014 ± 0.004 0.002 ± 0.0007
ImageNet-10 (D3) 0.031 ± 0.005 0.003 ± 0.0008
ImageNet-10 (D4) 0.028 ± 0.007 0.005 ± 0.0011
ImageNet-10 (D5) 0.018 ± 0.003 0.004 ± 0.0019
Caltech-101 0.053 ± 0.018 0.005 ± 0.005
Caltech-256 0.125 ± 0.026 0.022 ± 0.002
Flowers-102 0.054 ± 0.006 0.005 ± 0.002
Tiny ImageNet 0.121 ± 0.016 0.07 ± 0.002
ImageNet 1K 0.0377 0.0214

ResNet-34

ImageNet-10 (D1) 0.025 ± 0.011 0.007 ± 0.002
ImageNet-10 (D2) 0.023 ± 0.005 0.006 ± 0.004
ImageNet-10 (D3) 0.027 ± 0.005 0.005 ± 0.0006
ImageNet-10 (D4) 0.032 ± 0.005 0.006 ± 0.0005
ImageNet-10 (D5) 0.016 ± 0.004 0.005 ± 0.0002
Caltech-101 0.065 ± 0.002 0.003 ± 0.002
Caltech-256 0.045 ± 0.005 0.005 ± 0.008
Flowers-102 0.033 ± 0.015 0.006 ± 0.005
Tiny ImageNet 0.172 ± 0.012 0.092 ± 0.004
ImageNet 1K 0.0438 0.0328

VGG-19

ImageNet-10 (D1) 0.039 ± 0.005 0.016 ± 0.008
ImageNet-10 (D2) 0.058 ± 0.012 0.033 ± 0.007
ImageNet-10 (D3) 0.040 ± 0.005 0.010 ± 0.004
ImageNet-10 (D4) 0.050 ± 0.017 0.016 ± 0.009
ImageNet-10 (D5) 0.026 ± 0.008 0.017 ± 0.009
Caltech-101 0.073 ± 0.006 0.004 ± 0.002
Caltech-256 0.056 ± 0.004 0.005 ± 0.001
Flowers-102 0.062 ± 0.003 0.012 ± 0.010
Tiny ImageNet 0.235 ± 0.013 0.150 ± 0.021
ImageNet 1K 0.124 0.091

the diagonal indicate overconfidence (accuracy < confidence) or underconfidence (accuracy > confidence).
These metrics enable a rigorous assessment of model reliability.

We evaluated these metrics both before and after applying feedback. Table. 2 shows the ECE without and
with feedback. As we can see there is a significant reduction in the ECE when we use feedback.

Figure 4 ,5 shows the reliability diagram for the data set Flowers-102 and Imagenet-10(D5) respectively,
which illustrates that the model with feedback is better calibrated compared to the model without feedback.
Similar results are observed for other data sets also. (More such images can be seen in supplementary
material) These results demonstrate that our feedback mechanism improves the performance of the model
in terms of confidence scores and reliability of the model also.
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Figure 5: Reliability Diagrams for Imagenet-10(D5) with VGG-19: without feedback (left panel) and with
Feedback (right panel)

Table 3: Number of distinct binary feedback vectors generated at different blocks for different classes of
Imagenet-10(D1) with ResNet-18 as the Forward Network

Block C-0 C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 Overall

Block-2 136 259 129 120 221 305 184 221 231 130 1368
Block-3 949 1096 632 729 780 749 955 970 712 762 8285
Block-4 1248 1281 1224 1206 1271 1236 1265 1175 1224 1222 12270

3.4 Feedback-guided Salience Analysis

Saliency analysis computes a pixel-wise importance map by taking the magnitude of the input gradient∣∣∇xsc(x)
∣∣(Here, x denotes the input image tensor, sc(x) the model’s output score for class c, ∇xsc(x) its

gradient with respect to x, and | · | the element-wise absolute value). This quantity helps in identifying
regions of an image that most strongly influence the predicted class score. As a direct, post-hoc visualization
of the network’s “attention”, such maps help verify that decisions rest on semantically meaningful features
rather than spurious cues, and it can expose failure modes (for example, over-focus on background artifacts).
Such an analysis is often useful in dataset curation and architecture refinement, and can help evaluate the
model’s trustworthiness.

We investigated the utility of feedback in terms of such a saliency analysis. For each image, we generate∣∣∇xsc(x)
∣∣ as a heat-map. We do this both with and without feedback. In the no-feedback case, the full

gradient of the class score propagates back through every filter, to produce the heatmaps; in the case with-
feedback, only those convolutional filters selected by the binary feedback vector are permitted to transmit
the gradient while generating the heatmap. We present these results in Figure 6. In the figure we show some
sample saliency maps of Imagenet-10 images using the Resnet-18 CNN with and without feedback. The
results demonstrate that feedback helps concentrate saliency on the most informative pixels, aligning more
closely with human intuition about key object parts and thus providing a basis for better interpretability.
These results suggest that our image-specific selection of features through feedback seems to be helping
the network choose more semantically relevant features for an image. These results are only indicative and
they suggest that it is worthwhile to explore the utility of this feedback mechanism for generating better
explanations. A full exploration of this issue is beyond the scope of this paper.
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Figure 6: Saliency comparison on ImageNet-10 subsets using ResNet-18: each row presents (left to right)
the original image, the saliency map without feedback, and the feedback-filtered saliency map. The maps

obtained by using the feedback signals are noticeably sharper and more focused on the object’s core regions.
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Table 4: Number of distinct binary feedback vectors generated at different blocks for different classes of
Imagenet-10(D4) with ResNet-18 as Forward Network

Block C-0 C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 Overall

Block-2 219 89 294 221 126 105 210 399 177 243 1567
Block-3 924 589 919 745 767 644 1043 631 798 839 7813
Block-4 1268 1235 1257 1269 1261 1166 1297 1263 1201 1257 12236

Table 5: Variation in the number of filters used on ImageNet-10 (D2) with ResNet-18 as the forward network.

# Common Filters
Used in Every Image

# Filters Used
Across All Images

Avg. % of Filters
Used per Image

Block–2 35 64 92
Block–3 54 128 85
Block–4 77 250 69

3.5 Analysis of the Binary Feedback Vectors

The feedback signal at each level is in the form of a binary vector that decides which all filters are used
at that level for the current image. We analyze the image-specific nature of the feedback by calculating
how many distinct binary vectors are generated at different blocks of the Forward network. In this and the
next section we are providing these results where ResNet-18 is used as forward network. (Similar results are
obtained for other networks and datasets, which are given in the supplementary material). In ResNet-18,
feedback is delivered to blocks 2,3, & 4, and these blocks have 64, 128 and 256 filters respectively.

Tables 3 and 4 show the number of distinct binary feedback vectors at blocks 2, 3, and 4 (separately for
each class as well as for all the classes combined) for the Imagenet-10(D1) and Imagenet-10(D4) data sets
respectively. These results show that higher blocks have more distinct binary vectors. This is intuitively
clear because lower convolutional layers would be learning basic feature detectors (which are needed for all
images) while more complex feature detectors are learnt in deeper convolutional layers. As can be seen from
the table, at block 4, more than 12,000 different binary vectors are generated in response to the 13,000
images. These results show that the feedback vectors are very much image-specific at block 4.

By considering all the distinct binary vectors generated at a level we can calculate the number of filters at
that level used by every image and the number of filters used by at least one image (by bitwise AND and
OR operations on the ensemble of the distinct binary vectors). These are shown for Imagenet-10(D2), in
Table 5. The table also shows the average number of filters used per image. At block 4, on the average, less
than 70% of the filters are used by any specific image. However, almost 250 (out of 256) filters are used for
some image or the other.

Table 6: Confusion Matrix for Normal Vs Adversarial classification for Imagenet-10(D1) (and Imagenet-
10(D3) in the brackets) with ResNet-18 as Forward Network

Predicted
Label

Normal Adversarial
Actual Normal 88.6% (87.83%) 11.4% (12.17%)
Label Adversarial 9.7% (9.84%) 90.3% (90.16%)
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We can get some intuitive idea of this image-specific feature selection by looking at pairs of images of the
same class that result in similar or dissimilar feedback vectors. As mentioned in Sec. 1, such pairs of images
are shown in figures 1 & 2. (More such images are given in the supplimentary material). In these figures the
first two images in the row are dissimilar even though they belong to the same class. The system chooses
fairly different subsets of filters for them. This is in contrast to the next two images in the row which are
similar and the system chooses almost identical subset of filters for them. One can see that our intuitive
idea of similarity of images is reflected by the similarity of feedback vectors.

We did an ablation experiment to see the utility of feedback in selecting a relevant subset of filters. For each
image we generate the feedback vector and count the number of 1’s in it. Then we generate a random binary
vector with the same number of 1’s and use it for feature selection. For the ImageNet-10 (D5) dataset, this
approach causes the accuracy to drop from 0.966 to 0.71. This demonstrates that the selected features are
indeed relevant for the image, as any random combination of the same number of features does not yield the
same accuracy.

3.6 Classifying the image as Plain or Adversarial using their Binary Vectors

Since the feedback vectors are calculated using the internal representation of the image at the final convolu-
tional layer, they contain some information about the image as a whole. We next explore whether the global
context of image that is possibly captured by the binary feedback vectors is good enough for distinguishing
between normal and adversarial images. Given the trained network we generate adversarial examples using
both FGSM and PGD methods. We process the normal as well as adversarial images through the system
and represent each image by the (256-bit) binary feedback vector it generates at block 4. An SVM classifier
with a linear kernel is learnt to classify the binary vectors as normal or adversarial.

The learnt SVM classifiers deliver good performance in distinguishing between normal and adversarial images
with accuracies on test set varying from 0.91 to 0.85 for the five Imagenet-10 datasets.

We also trained a single hidden layer MLP (with 100 hidden nodes), whose input is the output of the final
convolutional layer (after passing through Global Average pooling layer), for distinguishing between plain
and adversarially perturbed images. This classifier gives accuracy of 0.85 on the test set which is comparable
to the accuracy achieved with the binary feedback vectors. Thus, we can say that the binary feedback vectors
indeed capture enough information from the internal representation of the image.

To evaluate the effectiveness of this view of the binary feedback vectors, we use the learnt SVM classifier
along with our trained CNN with feedback as follows. For each test image, we generate the binary feedback
vector using the CNN with feedback and send it to the SVM to get a normal or adversarial classification.
The Confusion Matrix for this classification is shown in Table 6 for the FGSM & PGD attacks for Imagenet-
10(D1) and Imagenet-10(D3). As can be seen from the table, we are able to correctly identify adversarial
images about 90% of the time. (However, for 11% of the time we wrongly flag a normal image as adversarial).
Under this experimental design we obtain an accuracy of 0.9, precision of 0.82, recall of 0.89 and F1-score
of 0.85. This shows that we can use the CNN with feedback along with the SVM, as a classifier with a
reject option to be able to reject input images that may be adversarially perturbed. More importantly, this
suggests that the binary feedback vectors indeed capture some useful global information about the image
which may be exploited for different purposes.

4 Conclusion

In this paper, we presented a novel feedback mechanism for CNNs that we called image-specific feature
selection. This is a generic mechanism that can be used with any CNN in image classification tasks. We can
incorporate it into any pretrained CNN by training only the feedback generating networks. The FBGs are
very simple MLPs and the additional computational complexity by adding the feedback is very small. (In
our experiments, the weights in the FBGs are less than 1% of the weights in the CNN).

What we proposed is an interesting feedback mechanism that enables the network to learn to dynamically
choose a subset of features tailored for each individual image. Using multiple data sets and different CNN
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architectures, we demonstrated that the proposed feedback mechanism improves the performance in terms
of both classification accuracy as well as confidence & reliability scores and saliency. Our experiments used
data sets where number of classes varied over 10, 100, 200, and 1000. Some data sets also had severe
class imbalance. But in all cases the accuracy and confidence scores showed significant improvement. Our
empirical results also show that the binary feedback vectors are very much image specific. We also illustrated
through an example that, among images of the same class, the similarity between the feedback vectors does
reflect our intuitive notion of similarity between images. The binary feedback vectors generated for any given
image through this mechanism contain some implicit global information about the image. We illustrated the
utility of this by showing that this information can be used through a simple SVM classifier for distinguishing
between normal and adversarial images with a good level of accuracy.

The feedback mechanism proposed here is very generic and can be used with any CNN. The feedback is
helping the system to select features that may be particularly relevant for the given image. Our experiments
clearly demonstrate the potential of this feedback mechanism More work is needed to explore this feedback
mechanism further to fully realize the potential of CNNs with feedback. One issue with our feedback
mechanism is that we use the feedback only for one iteration. One needs to explore stability of such
feedback. While it may be difficult to get useful theoretical results on stability, it would be interesting to
explore mechanisms for learning FBGs that promote stability. This is an important direction in which the
proposed feedback idea can be explored further.
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