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Abstract

Ordinal classification (OC), i.e., labeling instances along classes with a natural
ordering, is common in multiple applications such as disease severity labeling and
size or budget based recommendations. Often in practical scenarios, it is desirable
to obtain a small set of likely classes with a guaranteed high chance of including the
true class. Recent works on conformal prediction (CP) address this problem for the
classification setting with non-ordered labels but the resulting prediction sets (PS)
are often non-contiguous and unsuitable for ordinal classification. In this work,
we propose a framework to adapt existing CP methods to generate contiguous sets
with guaranteed coverage and minimal cardinality. Our framework employs a novel
non-parametric approach for modeling unimodal distributions. Empirical results
on both synthetic and real-world datasets demonstrate that our method outperforms
SOTA baselines by 4% on Accuracy@K and 8% on PS size.

1 Introduction

A large number of practical applications involve ordinal classification (OC), i.e., labeling of instances
along a set of ordered discrete classes. These include applications such as determining severity level
of abuse incidents or disease diagnosis for efficient follow up, predicting customer age-range, apparel
size, and budget for improving recommendations and reducing customer cognitive effort by offering
adaptive search filters. Often, in such cases, it is desirable to identify a small set of classes (called
prediction set or PS) for a given input instance such that the true class is amongst the identified set
with a high probability (called coverage level) instead of a single point estimate of the most likely
class. This allows more flexibility in choosing operating points that balance precision-recall trade-off.
For instance, customers looking for shoes are often recommended products that are not even available
in the customer’s typical size. An OC model that predicts the customer size would be well suited
to improve the recommendations offered. However, limiting the recommendations to a single most
likely size is too restrictive because the model accuracy is often low due to variations in size over time
and across brands. Instead, it is preferable to identify a small set of product sizes with say > 90%
coverage and use that for automatically filtering the recommendations as shown in Fig. 1.

Conformal prediction (CP)[35, 1, 36, 9] is an emerging area that addresses the problem of predicting
a set of likely outputs along with a measure of the confidence or coverage level. While existing CP
methods offer ease of deployment and provable coverage guarantees, most of these methods deal
with unordered classes and output prediction sets that are non-contiguous and unsuitable for OC
settings where the underlying distribution is likely unimodal. For example, for any customer, based
on their foot size, a good fit is possible only with a small set of proximal shoe sizes resulting in a
unimodal class distribution. Recommending a non-contiguous set of sizes [4, 8, 9] is not a desirable
customer experience. On the other hand, expanding the PS to a minimal contiguous superset leads to
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Figure 1: A comparison on different model fit on an underlying unimodal distribution. CP on
Unconstrained fit results in non-contiguous sets (red). While CP on unimodal fits results in contiguous
set (green), a better fitted model can result in the ideal minimal set (blue) which we seek.

a significant expansion of the set size (e.g., [4, 8, 9] → [4, 5, 6, 7, 8, 9] ) diminishing its application
utility and diluting coverage guarantees. A similar contiguity requirement arises in applications such
as cancer stage diagnosis where predicting non-contiguous labels (stage-1, stage-4) would be
discordant compared to contiguous labels. Note that there do exist OC scenarios such as prediction
of day of week for an event where unimodality might not be valid as we discuss in Section 6.

While ordinal classification [18, 7] has been well-studied in the past, most earlier works [28, 8]
do not assume unimodality. Recent works [4, 22, 42, 12, 15, 20] demonstrate strong benefits of
assuming the underlying conditional distribution to be unimodal for OC tasks . However, these
techniques primarily focus on point estimates and not conformal predictions. Furthermore, these
methods often either impose a restrictive structure on the model [33] or assume parametric models
(e.g., Binomial[4], Gaussian[42] ), which limits their representation ability and utility for real-world
applications. Given the multitude of practical applications, there is a strong need for a principled
approach that combines ideas from ordinal classification and conformal predictions to construct
minimal contiguous prediction sets when the underlying true class distribution is unimodal.

In this work, we focus on ordinal classification where the true class distribution is unimodal. We
build on existing work, Adaptive Prediction Set (APS) [35], to obtain minimal contiguous prediction
sets with provable coverage guarantees. Below we summarize our key contributions:

1. For ordinal classification where the true class distribution is unimodal, we show that any model
constrained to output a unimodal distribution can be used with APS algorithm to yield contiguous PS
with a guaranteed coverage level. Further, we prove a tight upper bound for the cardinality of this set
in terms of the optimal set and the divergence between the fitted model and the true distribution.

2. We provide a novel construction to adapt any DNN-based architecture to always yield a unimodal
distribution over ordinal classes while ensuring that any arbitrary unimodal class distribution can be
approximated.

3. We study the efficacy of our approach for Conformal Predictions for OC (COPOC) via controlled
ablation studies on synthetic datasets which demonstrates the utility of unimodal construction in
improving learnability relative for small data sizes, and its versatility compared to other methods that
make parametric distributional assumptions.

4. We perform extensive evaluation on benchmark datasets for facial age estimation, HCI classifica-
tion,image aesthetic score estimation and biomedical image classification with results indicating that
our method outperforms SOTA baselines by 4% on Accuracy@K and 8% on PS size.

2 Contiguous Conformal Prediction Set Problem

Notation: P[E] denotes the probability of event E. [i]ba denotes conditioning on integer index
∀i, a ≤ i ≤ b within a range while x = [xi]

b
i=a denotes the vector or sequence [xa, · · · , xb].

Let X denote input space and C = {ck}Kk=1 denote an ordered set of K classes. Consider the case
where the random variables X,Y are drawn from X × C following a joint distribution PX,Y such
that the true underlying conditional distribution PY |X is unimodal. In other words, for any x ∈ X ,
denoting pk = PY |X(Y = ck|X = x), there exists a class cm ∈ C such that pk ≤ pk+1, [k]

m−1
1 and
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pk ≥ pk+1, [k]
K
m. Given a training dataset D = {(xi, yi)}ni=1 with samples drawn exchangeably

(e.g., i.i.d.) from PX,Y and a desired coverage level (1 − α) ∈ (0, 1) for any unseen input test
instance (Xtest, Ytest) ∈ Dtest drawn from same distribution, the objective is to determine the
minimal non-empty contiguous prediction set (PS) ŜD,α(Xtest) = {cl+1, · · · , cu}, 0 ≤ l < u ≤ K
satisfying marginal coverage with finite samples above a specified level:

P[Ytest ∈ ŜD,α(Xtest)] ≥ (1− α). (1)

The above probability is taken over all (Xtest, Ytest) ∈ Dtest data points. While marginal coverage is
achievable, it differs from conditional coverage: P[Ytest ∈ ŜD,α(Xtest)|Xtest = xtest] ≥ (1− α),
which is a stronger notion. In practice, it is desirable for ŜD,α to approximate conditional coverage
and achieve it asymptotically in the limit of large sample sizes.

3 Related Work

Conformal Prediction. Originating in [40, 41], conformal prediction is a statistical approach for
generating predictive sets with marginal coverage guarantees (Eqn.1) with finite samples. Earlier
methods for calibrating probabilities (e.g., via Platt scaling [32] or temperature scaling [17]) and
assembling a prediction set by including the most likely classes till the covered probability mass
exceeds a specified coverage level do not achieve the desired theoretical guarantees since the cali-
bration is often erroneous[29]. Most recent CP methods use split conformal prediction that enables
easy deployment with any arbitrary predictor [31, 21]. APS [35], [9], and [36] introduce techniques
aimed at achieving coverage that is similar across regions of feature space whereas [19] propose
methods to achieve equal coverage for each class. Of these, Least Ambiguous Set-valued Classifier
(LAC) [36] provides provably smallest average PS size when probability estimates are approximately
correct while APS[35] has been shown to be superior in practice. For a primer on conformal methods
please refer [2]. RAPS[1] presents a regularized version of APS for Imagenet. Although relatively
new, CP methods are being widely applied for regression, vision, NLP and time-series forecasting
[34, 38, 3, 14]. Our work adapts existing CP methods to unimodal ordinal classification setting with
an additional contiguity requirement. Ordinal-APS [25] and [43] share the same motivation but
propose a greedy CP method that results in larger prediction sets compared to COPOC (Table 4).

Ordinal Classification. Early works on ordinal classification [18, 7, 45] are based on regular
classification or regression, ignoring ordinal relationship and non-uniform separation among labels.
Some DNN-based methods model cumulative distribution (CDF) up to each ordered class using
multiple binary classifiers [8, 39, 6, 28] but the output class probabilities are not necessarily unimodal
and are also not guaranteed to form a valid CDF. Label smoothing methods [15, 16, 24, 12, 20, 42]
convert hard target labels into unimodal prior distributions to be used as the reference for the training
loss but these methods are often sub-optimal since the assumed priors might not reflect the true
distribution, classes might not be equi-spaced categories and additionally test predictions might
not necessarily be unimodal. [22, 5] learns a non-parametric unimodal distribution as a constraint
optimization problem in the loss function which is not only difficult to optimize but also does not
guarantee unimodality on test data. In [4, 10], unimodality is guaranteed by assuming a Binomial or
Poisson distribution but has limited representation ability due to a single degree-of-freedom which
does not capture hetereoscedastic noise. Keeping in view the potential benefits of accurate unimodal
distribution learning for the ordinal classification setting, our work explores a non-parametric flexible
DNN-based approach that guarantees unimodality of the predicted class distribution even on test data.

4 Solution Approach

To generate conformal predictions for ordinal classification, we consider two questions: (i) what is
the primary drawback of the existing CP methods for classification with respect to ordered labels
setting? (ii) how do we address this drawback?

Most CP methods for classification [35, 36, 9] are based on a split calibration approach where the
training data D is divided into two sets. The first set Dtrain is used to learn a probabilistic model
P̂Y |X(·) using a blackbox learning algorithm while the second set Dcal is used to determine the
optimal conformity score threshold for a desired coverage level, which is then used for conformal
inference. Below we discuss two common CP methods:
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Least Ambiguous Set Values Classifier (LAC) [36]. Here, the conformal PS for a test instance
xtest is constructed using a calibration rule of the form,

ŜD,α(xtest) = {c ∈ C|p̂k(xtest) ≥ q̂Dcal
(α)}, (2)

where p̂k(x) = P̂Y |X(Y = ck|X = x) is the class probability from the model and q̂Dcal
(α) is the

score threshold defined as the bias-adjusted (α)th quantile of the model score of the true label.

Adaptive Prediction Set (APS) [35]. In APS, for every instance (x, y) ∈ Dcal, we compute
a conformity score defined as the cumulative probability mass required to include the true label
corresponding to that instance, i.e., s(x) =

∑T
k=1 p̂πk

(x), where T is chosen such that cπT
= y

and π is the permutation of {1, . . . ,K} that sorts P̂Y |X(.|x) in the descending order from most
likely to least likely. Given a desired coverage (1 − α), we compute a suitable score threshold
q̂Dcal

(α) = Quantile({s(x)|x ∈ Dcal}, ⌈(n+1)(1−α)⌉
n ), where n = |Dcal|. The conformal PS in

APS is constructed using:

ŜD,α(xtest) = {cπ1
, cπ2

. . . cπj
} where j = sup

{
j′ :

j′∑
k=1

p̂πk
(xtest) < q̂Dcal

(α)

}
+ 1. (3)

More details on the coverage guarantees of APS are in Appendix B. While the above methods
yield minimal sets with provable guarantees on marginal coverage, the primary drawback is that the
resulting prediction sets are not necessarily contiguous, which is an important requirement for ordinal
classification when underlying true distribution is unimodal.

A naive solution is to consider the minimal contiguous set that covers the PS output by CP method. For
example, if CP outputs {2, 4, 6}, we can produce a minimal contiguous set by including "in-between"
classes i.e., {2, 3, 4, 5, 6}. However, this would end up having a much larger cardinality, which
invalidates the tight coverage bounds (refer Appendix B) (i.e., the new set will have a coverage much
higher than the upper bound guaranteed for that method). Hence, we consider an alternative approach
based on the observation that if the blackbox learning algorithm in the first step is constrained to
output a unimodal distribution, then the classes with probability above a threshold will cluster around
the mode. The conformal calibration rules in Eqn. 2 and 3, which are designed to choose classes
in the order of class probability will thus result in contiguous sets. Using this insight, we propose
a solution depicted in Fig. 2 that consists of two steps: (a) design a learning algorithm that can
accurately model training data such that the output class distribution is always unimodal, (b) adapt
an appropriate CP algorithm based on Eqn. 2 or Eqn. 3 to identify the PS. While this high level
approach can be used with any of the CP method, in our current work, we consider the Adaptive
Predictive Set (APS) approach [35] since it provides tight guarantees on marginal coverage and has
been empirically shown to achieve better conditional coverage than LAC [36] and smaller set size
than CQC [9]. We now describe our solution beginning with a study of the properties of the resulting
PS (Sec. 4.1) followed by construction of the unimodal classifier (Sec. 4.2).

4.1 Conformal Prediction Sets from Unimodal Models

We now study the properties of PS corresponding to the COPOC approach outlined in Fig. 2 where
for every input instance X , both the true underlying distribution PY |X and the learned classification
model P̂Y |X are unimodal. In other words, there exists a class cm̂ ∈ C such that p̂k ≤ p̂k+1, [k]

m̂−1
1 ,

and p̂k ≥ p̂k+1, [k]
K
m̂. For a given xtest and coverage level (1 − α), let Soracle

α (xtest) denote the
minimal contiguous PS that can be constructed by an oracle that knows the underlying PY |X , i.e.,

Soracle
α (xtest) = argmin

S={cl+1,··· ,cu}, 0≤l<u≤K, P[ytest∈S|xtest]≥(1−α)

[u− l]. (4)

where pk = PY |X(Y = ck|X = xtest). This is the set with the least cardinality satisfying contiguity
and conditional coverage. In case of multiple solutions, the oracle can pick any one at random. In
practice, we do not have access to the true PY |X and ŜD,α(xtest) has to be constructed from the
approximate distribution P̂Y |X using CP methods such as APS for valid coverage guarantees. Lemma
1 establishes the contiguity of the prediction sets resulting from LAC and APS. Thm. 1 bounds the
cardinality of the APS PS relative to the oracle sets. Further, when P̂Y |X is a consistent estimator of
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Figure 2: Framework of COPOC. Figure 3: Unimodal DNN Construction.

the true PY |X , the APS conformity score threshold asymptotically converges to α and the cardinality
of ŜD,α(xtest) converges to that of the oracle [35].

Lemma 1. 1 Given a fitted unimodal model P̂Y |X , for any xtest and α ∈ (0, 1], prediction sets
ŜD,α(xtest) constructed using Eqn.2 or 3 have at least one solution which is contiguous (amongst
multiple possibilities). When P̂Y |X is strictly unimodal, all the solutions are contiguous.

Proof Sketch: By design, the prediction sets from Eqn.2 or 3 have to contain the top k most likely
classes for some k which results in contiguity in case of strict unimodality. When the unimodality
is not strict, non-contiguous sets may satisfy the required constraints due to classes with equal
probabilities at the boundaries, but the shortest span solution is contiguous.

Theorem 1. For any x ∈ X , let pk(x) = PY |X(Y = ck|X = x) and p̂k(x) = P̂Y |X(Y =
ck|X = x) denote the true and fitted model class probabilities that are always unimodal. Let
σk(x) =

∑k
k′=1 pk′(x) and σ̂k(x) =

∑k
k′=1 p̂k′(x) denote the corresponding cumulative distribu-

tion functions. If |σk(x)− σ̂k(x)| ≤ δ, [k]K1 for a constant δ, then for any α ∈ (0, 1], ∀x ∈ Dtest,
the APS and oracle prediction sets from Eqn.3 and Eqn. 4 satisfy |ŜD,α(x)| ≤ |Soracle

α−4δ− 1
n+1

(x)|
where n is the size of the calibration set.

Proof Sketch:. To establish the result, we prove the following two statements: (a) |ŜD,α(x)| ≤
|SOracle

1−q̂Dcal
(α)−2δ(x), and (b) |Soracle

1−q̂Dcal
(α)−2δ(x)| ≤ |Soracle

α−4δ− 1
n+1

|. From Eqn. 4 and Lemma 1, we

observe that the unimodality of p̂(x) and p(x) leads to the oracle prediction sets and at least one of
the APS prediction sets being contiguous. Let ŜD,α(x) = {cl̂+1, · · · , cû}, 0 ≤ l̂ < û ≤ K and
Soracle
1−q̂Dcal

(α)−2δ(x) = {cl∗+1, · · · , cu∗}, 0 ≤ l∗ < u∗ ≤ K. From the definitions and contiguity, we

observe that the probability mass of ŜD,α(x) w.r.t. p̂ equals (σ̂û(x)− σ̂l̂(x)) ≥ q̂Dcal
(α) while that

of Soracle
1−q̂Dcal

(α)−2δ(x) w.r.t p equals (σu∗(x) − σl∗(x)) ≥ q̂Dcal
(α) + 2δ. Using the divergence

bound on the two CDFs and the fact that ŜD,α(x) is the minimal contiguous set with probability
mass ≥ q̂Dcal

(α) as per p̂ yields (a). Using the divergence bound, we also observe that the marginal
coverage, P [y ∈ ŜD,α(x)] ≥ q̂Dcal

(α) − 2δ. Combining this from the APS coverage guarantees
(Theorem 3 in Appendix B) yields part (b).

4.2 Non-Parametric Unimodal Distribution Learning

We now consider the problem of learning a classification model that is guaranteed to be unimodal and
also expressive enough to accurately model any unimodal distribution. Given universal approximation
properties of DNNs with respect to probability distributions [26], these form a natural choice
as a multi-class classification learning algorithm. For a given x, let z(x) = f(x; θ) denote the
output of last fully connected layer of a DNN model f(·), where θ is the model parameters and
z(x) a K-dimensional vector where K = |C|. Softmax operation is applied to z(x) to obtain
class probability distribution. Predicted probability of class ck ∈ C for x is given by p̂k(x) =

exp(zk(x))∑K
k=1 exp(zk(x))

. Training is usually performed by minimizing cross-entropy (CE) loss between

1Detailed proofs are in Appendix B.
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this predicted distribution and the ground truth. Since CE loss does not assume any constraints on
underlying distribution, it can, in principle, model any arbitrary distribution asymptotically with
large enough data and model size. When the true underlying distribution PY |X is unimodal, this
standard learning approach results in a classifier P̂Y |X that approximates PY |X and is itself unimodal
assuming large enough data and model size. However, in practice with limited high-dimensional
data and limited model capacity, the standard training is not guaranteed to reach the true "global
minima" [11] or even adhere to the unimodality constraints that lead to contiguous prediction sets.
Hence, there is a need for introducing the right inductive bias that truncates the hypothesis class
to be searched while ensuring it is expressive enough to include the true hypothesis so as to allow
for better learnability and generalization [27]. For our scenario, the set of unimodal distributions
is the most natural hypothesis class. While previous works [4, 42] consider a set of parameterised
unimodal distributions (e.g., based on Gaussian or Binomial distributions), we propose a construction
that ensures the hypothesis class exactly maps to the set of unimodal distributions on the K-simplex.

Construction. Let U be the set of all discrete unimodal distributions on C. For any x with p̂(x) =
P̂Y |X(Y |X = x) ∈ U , the class probabilities [p̂k(x)]

K
k=1 would be unimodal, i.e., there exists a

mode cm̂ ∈ C such that the sequence is monotonically non-decreasing before cm̂ and non-increasing
post cm̂. The corresponding log probabilities denoted by zk = log(p̂k(x)) ∈ R−, [k]K1 also form a
unimodal sequence with the same mode and are all negative valued.

Let ψ : R+ → R− be any strictly monotonically decreasing bijective function, Then, for any z ∈ R−,
there is a unique r ∈ R+ such that ψ(r) = z. Let rk = ψ−1(zk), [k]

K
m̂ and rk = −ψ−1(zk), [k]

m̂−1
1

then given [zk]
K
k=1, we obtain a unique2 non-decreasing sequence [rk]

K
k=1. Let ψE : R → R− be

the “even” extension of ψ(·), i.e., ψE(r) = ψ(r) for r ∈ R+ and ψE(r) = ψ(−r) for r ∈ R−, then
we have ψE(rk) = zk. Possible choices include ψE(x) = −|x|d for any real d. The monotonically
increasing [rk]

K
k=1 can be generated from the output vector v of a DNN constrained such that

vk ≥ 0, [k]K2 using a non-negative transformation ϕ : R 7→ R+ followed by a cumulative summation.
Fig. 3 depicts our proposed construction for any DNN f(·) along with equations below.

η(x) = f(x, θ); v1 = η1(x); vk = ϕ(ηk(x)), [k]K2 ,

r1 = v1; rk = rk−1 + vk, [k]K2 ; zk = ψE(rk); p̂k =
exp(zk)∑K
k=1 exp(zk)

, [k]K1 .
(5)

This network can be trained with standard CE loss. From Thm. 2, any distribution in U maps to an
output vector η(x) ∈ Rd, which can be approximated using DNNs with appropriate capacity [26].
Fig. 8 in Appendix C.4 presents some illustrative examples of Unimodal model fit of COPOC on a
public dataset.

Theorem 2. Let η : X → RK , ϕ : R→ R+ and ψE : R→ R− such that ψE(r) = ψE(−r), ∀r ∈
R and its restriction to R+ is a strictly monotonically decreasing bijective function. (a) Then, the
model output constructed as per Eqn. 5 is always unimodal, i.e., p̂(x) ∈ U , ∀x ∈ X . (b) Further,
given any p̂(x) ∈ U for x ∈ X , there exists a well defined function η(x) ∈ RK that satisfies Eqn. 5
if ϕ(·) is surjective on R+.

Proof Sketch: Part (a) follows by observing that the non-decreasing sequence [rk]
K
k=1 will result

in a unimodal [zk]Kk=1 and unimodal p̂(x) ∈ U with mode corresponding to sign change in rk
sequence. Part (b) follows by constructing a unique inverse for ψE(·) by pivoting on the largest
indexed mode m̂ of p̂(x). For k < m̂, we choose (ψE)−1(zk) ∈ R− and for k ≥ m̂, we choose
(ψE)−1(zk) ∈ R+.

5 Experiments

We evaluate the utility of our approach (COPOC) for generating minimal contiguous PS for a desired
coverage for ordinal classification on multiple datasets. We investigate the following questions:

2Note for uniqueness, m̂ has to be defined as the largest value of mode in case of multiple modes.

6



Table 1: Results on HCI: Mean & std. error is reported for 5 trials. Best results bolded.

MAE Acc@1 Acc@2 Acc@3 |PS| CV%

HCI

CE 0.68± 0.03 54.3± 2.6 75.3± 3.1 88.9± 1.6 3.28± 0.14 24.4± 1.2

POE 0.66± 0.05 56.5± 1.8 76.5± 2.5 89.0± 2.1 3.1± 0.18 9.8± 1.2

SORD 0.65± 0.06 56.2± 2.8 77.1± 2.9 89.8± 2.6 2.96± 0.19 2.7± 1.1

AVDL 0.64± 0.08 56.8± 1.5 77.9± 2.4 89.8± 1.05 2.98± 0.11 2.1± 1.4

Binomial 0.68± 0.05 54.5± 1.2 75.8± 2.6 88.8± 1.8 3.01± 0.16 0

Binomial-temp 0.66± 0.04 55.5± 1.8 78± 2.2 90.1± 2.1 2.90± 0.11 0

Uni-loss 0.67± 0.09 54.5± 3.1 74.8± 2.5 88.1± 2.5 3.05± 0.38 5.1± 1.9

COPOC 0.65± 0.04 56.5± 2.0 79.8± 1.6 91.7± 2.8 2.66± 0.13 0

• RQ1: How does COPOC perform relative to SOTA methods on OC tasks?
• RQ2: What benefits does COPOC offer relative to parametric modeling on synthetic datasets?
• RQ3: Under what conditions does COPOC outperform vanilla model trained with CE loss (V-CE)?

Is COPOC an approximately consistent estimator of the underlying distribution?
• RQ4: How does COPOC performance vary with a different choice of conformal inference such as

LAC [36] instead of APS?
• RQ5: How does Ordinal-APS [25] which also outputs a contiguous prediction set (PS) over

ordinal labels with regular model training fares against COPOC with it’s unimodal training?

5.1 Experimental Setup

Algorithms : We compare our proposed unimodal construction (COPOC) against six SOTA methods
as well as modeling with vanilla cross-entropy loss V-CE using APS for conformal inference for
all methods for a fair comparison. For COPOC, we experimented with various choices of ϕ and
ψ and chose ϕ(x) = |x| and ψE(x) = −|x| based on performance (see Appendix C.3). The
SOTA methods include approaches that (a) utilize soft labels generated from linear exponentially
decaying distributions SORD [[12], and linear adaptive Gaussians with variance learning AVDL
[42], (b) specifically model unimodal distribution through parametric assumptions Binomial [4] and
Binomial-Temp, and (c) non-parametric methods based on unimodality aware loss function Uni-Loss
[22] or ordinality imposed in embedding space POE[23]. In Sec. 5.5, we also evaluate an alternative
conformal procedure LAC [36] with our unimodal construction.

Metrics: Similar to [35, 9] we compute PS Size (|PS|) @90% coverage i.e., α = 0.1. Since APS
does not guarantee contiguity for models that do not output unimodal distribution, we consider
a minimal contiguous interval that covers the output PS and report the size. We also report the
fraction of instances which resulted in non-contiguous PS for which we needed to expand the original
non-contiguous set (CV%). To evaluate performance on OC tasks, we report MAE - mean absolute
difference between predicted and ground-truth and Accuracy@K (Acc@K) that captures if the
ground truth was in the top k predictions. This can benefit unimodal constrained models where
classes adjacent to the mode will receive the next greatest probability mass. For comparing different
conformal prediction methods in Sec. 5.5, we use size-stratified coverage violation (SSCV) [1] that
measures violations of the conditional coverage property and is suited for high dimensional data.

Datasets: We evaluate COPOC on four public image datasets: age-detection (Adience [13]), historical
image dating (HCI [30]), image aesthetics estimation (Aesthetic [37]) and biomedical classification
(Retina-MNIST [44]). These datasets contain 8, 5, 5, and 5 ordered classes respectively and the
number of instances is 26580, 1325, 15680, and 1600. More details are included in Appendix C.1.
We also experimented with synthetic data with the generation process and result discussed in Sec 5.3.

5.2 RQ1: Performance on ordinal classification on real world datasets

Table 1 presents comparison of COPOC with other methods on the HCI dataset. Results on other
datasets included in the Appendix C.1 due to space constraints. COPOC performs at par with other
baselines in terms of MAE & Acc@1 and significantly outperforms them on Acc@2, Acc@3 & |PS|
( 8% smaller compared to the next best one). We observe that V-CE and POE have the highest
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Table 2: Results on Synthetic Data: We report KL-Div, PS Size [Ground truth Oracle size], CV%
and MAE. Mean and std. error is reported across 10 random trials. Best mean results are bolded.

V-CE SORD AVDL Binomial Binomial-temp Uni-Loss COPOC

D1

KL Div. 0.04± 0.01 0.03± 0.01 0.07± 0.01 0.1± 0.02 0.09± 0.01 0.12± 0.10 0.04± 0.01

|PS| [3.03] 3.09± 0.06 3.09± 0.04 3.12± 0.05 3.16± 0.04 3.16± 0.04 3.61± 0.15 3.09± 0.05

CV% 0.3± 0.01 0 0 0 0 1.7± 0.4 0

MAE 0.65± 0.02 0.65± 0.01 0.67± 0.02 0.68± 0.02 0.69± 0.01 0.68± 0.03 0.65± 0.02

D2

KL Div. 0.06± 0.01 0.17± 0.02 0.18± 0.04 0.19± 0.03 0.17± 0.02 0.26± 0.11 0.04± 0.01

|PS| [2.56] 2.65± 0.04 2.72± 0.04 2.78± 0.04 2.85± 0.06 2.81± 0.02 3.12± 0.09 2.59± 0.01

CV% 2.3± 0.05 0.3± 0.1 0.6± 0.1 0 0 2.9± 0.7 0

MAE 0.56± 0.01 0.59± 0.01 0.60± 0.01 0.61± 0.02 0.61± 0.01 0.63± 0.04 0.57± 0.02

D3

KL Div. 0.13± 0.01 0.38± 0.02 0.17± 0.01 0.49± 0.03 0.44± 0.02 0.4± 0.09 0.09± 0.01

|PS| [1.58] 1.73± 0.02 1.96± 0.06 1.85± 0.04 2.39± 0.04 2.38± 0.02 2.35± 0.1 1.66± 0.02

CV% 2.9± 0.1 1.1± 0.2 0.8± 0.2 0 0 2.7± 0.4 0

MAE 0.24± 0.02 0.25± 0.02 0.23± 0.03 0.28± 0.01 0.26± 0.02 0.27± 0.04 0.23± 0.02

D4

KL Div. 0.14± 0.01 0.33± 0.01 0.31± 0.02 0.44± 0.04 0.35± 0.02 0.35± 0.1 0.08± 0.01

|PS| [4.40] 4.67± 0.03 4.73± 0.04 4.78± 0.05 4.83± 0.04 4.82± 0.06 5.04± 0.2 4.50± 0.02

CV% 4.7± 0.8 2.7± 0.4 2.8± 0.3 0 0 5.6± 1.1 0

MAE 1.26± 0.02 1.27± 0.03 1.27± 0.02 1.31± 0.04 1.29± 0.02 1.30± 0.03 1.24± 0.01

contiguity violations CV%. Though SORD, AVDL, and Uni-loss enforce unimodality in training, it
does not necessarily translate to unimodality in test samples (indicated by high CV%) resulting in
poor performance on Acc@2 and Acc@3 and |PS|, which is critical in OC tasks. Since Binomial-temp
enforces unimodality by construction, it performs better than the above methods on Acc@k. However,
unimodality constraint on DNN in COPOC results in even better model fit for OC tasks which
translates to higher Acc@K & shorter |PS|.

5.3 RQ2: Ablative Study of Unimodal Modeling Methods on Synthetic Data

To generate synthetic data, we consider the label set C of size 10, i.e„ Y ∈ {c1, . . . , c10} and
input space X ⊆ R10, where X1 ∼ Uniform(1, 10) and X2, . . . , X10 follow independent normal
distribution. Further, we define h(X) = 100∗(sin(0.2∗X1)+cos(0.4∗X1)). To generate the labels,
we consider a conditional distribution function QZ|X that generates Z with h(X) as distributional
parameters and a mapping function g : R → C that maps Z to the output label Y ∈ C. Thus, for
each x, we generate z ∼ QZ|X(x) and y = g(z). We consider two choices of mapping functions
g(·). The first choice gequi partitions the range of Z into 10 equi-bins which can be mapped to the
label set in a linear order while the second choice gnon−equi partitions the range of Z into 10 bins of
arbitrary width to assign labels. From the construction, one can see that gequi considers classes to be
equi-spaced categories while gnon−equi does not. We consider the following four synthetic datasets
in increasing order of complexity and train models (details in Appendix C.2 )

• D1: QZ|X(x) = Double-Exponential with mean at h(x) and constant variance; g = gequi.

• D2: QZ|X(x) = Double-Exponential with mean at h(x) and constant variance; g = gnon−equi.

• D3: QZ|X(x) = Gaussian with mean and variance varying with h(x); g = gnon−equi.

• D4: QZ|X(x) = Gaussian,Poisson or double Exponential with mean and variance varying with
h(x) chosen at random for each x; g = gnon−equi.

Since we have the true distribution PY |X , we compute the Oracle PS size and compare it with that of
other methods. We report KL Divergence (KL) between the true and predicted distributions with lower
KL indicating better model fit. Table 2 shows that for D1, SORD fits the data well with lowest KL and
MAE as it explicitly models exponential distribution assuming all classes to be equi-spaced. However,
on D2 and D3, COPOC outperforms all the other methods on the model fit and also results in shorter
|PS| closer to Oracle. On D2 and D3, SORD performs poorly because it assumes both constant
variance across input spaces and equi-distant classes which are not valid for these datasets. Since D3
draws samples from Gaussian distribution with heteroskedastic noise, AVDL outperforms SORD but
is inferior to COPOC. Since D4 is drawn from a more complex distribution, COPOC outperforms the
rest with an even larger margin. The Binomial variants underperform throughout due to distributional
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Figure 4: Comparison of KL
Div. indicates superior model
fit of COPOC vs. V-CE for
smaller train size with conver-
gence as data size increases.

Figure 5: Comparison of
|PS| and CV% indicates that
COPOC is superior against V-
CE with smaller train size.

Figure 6: LAC vs APS com-
parison by varying α. (Top)
|PS| and (Bottom) SSCV.

mismatch while Uni-Loss exhibits high variance indicating convergence issues. As with the real
benchmarks, enforcing unimodality via loss or soft-labels does not guarantee unimodailty on test
data, indicated by high CV%. Interestingly V-CE performs exceedingly well throughout in terms
of KL beating more sophisticated methods. The overall observation is that the performance of the
methods depends largely on the validity of the assumptions and relatively unconstrained nature of
COPOC makes it more versatile.

5.4 RQ3: COPOC vs Vanilla-CE and Consistency Properties

We compare COPOC against V-CE by varying train-data size (= N ) on synthetic data D4. Fraction
of samples used to train each model is 3/4, and rest is used for calibration and test. All experiments
are repeated 10 times with random realization of train set. Comparing the KL loss on train set in
Fig. 4, we observe that COPOC has lower KL in early stages with lesser data and performance
for both converges when N reaches to ∼ 80K and KL asymptotically becomes negligible. Fig. 5
compares |PS| and CV% by varying N on D4. |PS| of COPOC approaches those of Oracle with far
lesser samples compared to VC-E. Thus, COPOC with its inductive bias fits the data better with
lesser samples compared to unbiased CE yielding shorter sets with finite samples. Above results also
suggest that COPOC might be approximately consistent. Note that with increased N , V-CE results in
a better model fit, lower CV% and shorter sets, indicating that these are correlated.

5.5 RQ4: Choice of Conformal Inference: LAC vs. APS

Table 3: LAC vs APS with COPOC on image
datasets. Mean is reported after 100 trials.

LAC APS
|PS| SSCV |PS| SSCV

HCI 2.61 0.09 2.66 0.09
Adience 2.42 0.13 2.52 0.10
Aesthetic 1.58 0.19 1.65 0.07
RetinaMnist 3.08 0.24 3.14 0.09

Table 3 provides a comparison of PS size and
size-stratified coverage violation(SSCV) of APS
against LAC when applied on the output of our
proposed unimodal model for α = 0.1 . Both
methods generate contiguous prediction sets. Al-
though LAC consistently produces shorter sets,
it also has slightly worse SSCV metrics across
datasets. In Fig. 6, we plot |PS| and SSCV across
different α for synthetic data D4 and results are
similar. We observe that LAC achieves the small-
est prediction set size but sacrifices adaptiveness
(conditional coverage) in the process.

5.6 RQ5: COPOC vs Ordinal-APS [25]

Table 4 shows an empirical comparison of COPOC against APS and Ordinal-APS applied over
a Vanilla DNN trained with Cross-entropy loss (V-CE) on public datasets and synthetic data D4
described in Sec. 5.2 and 5.3. For V-CE with APS we consider a minimal contiguous interval that
covers the output PS and report its size. We observe that Ordinal-APS produces significantly shorter
sets compared to V-CE with APS . However, COPOC significantly outperforms Ordinal-APS because
of better unimodal data fit. Note that Ordinal-APS outputs a contiguous PS over ordinal labels
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Table 4: Ordinal-APS [25] vs COPOC on Synthetic data D4 and public image datasets. Mean and
std. error is reported after 10 trials.

APS Ordinal-APS COPOC
Synthetic D4 4.67± 0.03 4.59± 0.03 4.50± 0.02
HCI 3.28± 0.14 3.03± 0.15 2.66± 0.13
Adience 4.82± 0.24 2.67± 0.12 2.26± 0.06
Aesthetic 1.96± 0.2 1.77± 0.05 1.70± 0.06
Retina MNIST 3.6± 0.08 3.28± 0.02 3.03± 0.01

irrespective of whether the posterior distribution generated by the model is unimodal or not. COPOC
with unimodal regularization results in better model fit and hence shorter PS sizes.

6 Validity of the Unimodality Assumption

Table 5: Comparison of COPOC against V-CE
in terms of NLL. Mean and std. error is reported
after 10 trials.

V-CE COPOC
HCI 1.73± 0.13 1.59± 0.15
Adience 2.33± 0.18 1.66± 0.21
Aesthetic 1.49± 0.01 0.71± 0.02
Retina MNIST 1.24± 0.04 1.23± 0.04

Unimodality assumption might not be universally
applicable for all OC scenarios (eg., prediction of
preference ratings, event-hour-of-day etc.). How-
ever, there do exist a large number of OC ap-
plications where it is beneficial to assume uni-
modality as validated by multiple notable works
in computer vision domain [12, 20, 42, 4]. Ta-
ble 5 shows the negative log-likelihood (NLL)
of vanilla DNN (V-CE) fitted with CE loss (un-
constrained fit) and COPOC (unimodal fit) on
four public datasets described in Sec. 5.2. The
superior fit of COPOC indicated by lower NLL justifies the unimodality assumption for these datasets.
COPOC makes an assumption on the underlying distribution being unimodal and one could potentially
check the validity of the assumption by comparing the likelihood of the unimodal and unconstrained
fits. Note that even if the unimodality assumption is not true, the theoretical coverage guarantees of
the prediction set produced by COPOC would still hold but the cardinality bounds would be weaker
since the fitted distribution would deviate significantly from the true underlying distribution.

7 Conclusion, Broader Impact, and Limitations

We proposed an approach to construct minimal contiguous prediction sets for ordinal classification
with guarantees on coverage and cardinality along with empirical validation of efficacy on both real
and synthetic datasets. Our solution employs a novel architecture for non-parametric modelling of
arbitrary unimodal class distributions without sacrificing representation ability. With ML-driven
systems playing an increasingly important role in our society, it is critical to provide practical
guarantees on the reliability and uncertainty of the ML model output. While existing CP methods [35]
address this concern for the general classification setting, there is a need for specialized solutions for
application scenarios with inherent ordinality and unimodality in class labels, e.g., predicting cancer
stage of biopsy signals. Our work makes an important contribution in this direction and also provides
a way to effectively communicate the limitations of the model adaptively across the input space
with bigger prediction sets for harder instances. The proposed methods have numerous practical
applications in improving recommendations based on an ordered attribute (e.g., budget), and reducing
human supervision effort for ordinal classification tasks. Future directions include extensions to tasks
where classes are partially ordered or hierarchically grouped (e.g., topic hierarchies). Consistency of
our proposed unimodal construction is also worth investigating.

Limitations: COPOC makes an assumption on the underlying distribution being unimodal and might
lead to a sub-optimal fit if the assumption does not hold. Furthermore, it can be paired only with CP
methods such as LAC and APS where the prediction sets can be viewed as upper-level sets of the
predicted class probabilities, i.e., set of classes with probability higher than a threshold. Due to the
reliance on the CP methods, the coverage guarantees are also valid only only when the assumption on
the exchangeability of the data points holds true.
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APPENDIX

A Broader Impact

Our current work on contiguous conformal predictions for ordinal classification is foundational in
nature and has multiple real-world applications.

• Cancer Diagnosis. Given the huge costs of misprediction for high-stakes applications such
as cancer diagnosis, instead of a single point prediction it is useful to predict a contiguous
set. For instance, prediction set of [stage 2, stage 3] gives a better notion of severity
than a non-contiguous set such as [no cancer, stage 3] which might be discordant or a
point prediction with low accuracy.

• Dynamic Product Search Filters. Customers new to any e-commerce platform often
experience heavy cognitive load in specifying their requirements via search filters (e.g.,
budget, product dimensions). Identifying a small highly likely set of options based on their
typical profile or immediate session history would significantly enhance the usability of the
search filters and improve the customer experience.

• Personalised Fit Recommendations. Shopping apparel and shoes at any e-commerce
platform is often tedious due to the limited support for fit-based recommendations. Often,
customers find that the recommended products do not have options for their size and are
forced to use search filters, which need to be repeatedly specified for each query. Addition-
ally, customers also tend to order multiple products in the same size (bracketing) that results
in a high return rate and excessive shipping costs for the platform. Automatic identification
of the likely size ranges of a customer would improve the accuracy of recommendations and
reduce shopping effort as well as return rates.

• Personalised Budget Recommendations, Since budget ranges have a natural ordering,
automatic personalisation of product and brand recommendations for customers based on
their preferred budget ranges is another area that can leverage COPOC to improve customer
satisfaction.

• Abuse Incident Audits. E-commerce abuse incidents are often categorised along severity
levels that have a natural ordering. Typically, human auditors are required to audit the abuse
incidents, but current models do not often distinguish between a high chance of low severity
incident vs. moderate chance of high severity incident. Conformal predictions can help
streamline the audit workflows to better focus on the high severity incidents and optimise
the overall outcomes both for e-commerce platform and the customers through expedited
resolution.

B Theoretical Analysis

Lemma 1. Given a fitted unimodal model P̂Y |X , for any test x and α ∈ (0, 1], prediction sets
ŜD,α(x) constructed using Eqn.6 or 7 has at least one solution which is contiguous (amongst
multiple possibilities). When P̂Y |X is strictly unimodal, all the solutions are contiguous.

Proof: Let ŜD,α(x) be the prediction set with the shortest span (i.e., difference between highest and
lowest included labels) as per Eqn.6 or 7.

Let l + 1 and u denote the smallest and largest indices of the labels included in ŜD,α(x) so that the
span is given by u− l.

Assuming ŜD,α(x) is non-contiguous implies that there exists at least one kskip such that (l + 1) <

kskip < u and ckskip /∈ ŜD,α(x). Let p̂k(x) = P̂Y |X(Y = ck|X = x). Since p̂(x) is unimodal,
there are two possible scenarios depending on where kskip relies relative to the mode cm̂ of p̂:

• kskip < m̂: In this case, we have p̂kskip ≥ p̂l+1 since p̂ is non-decreasing before the mode
• kskip ≥ m̂: In this case, we have p̂kskip ≥ p̂u since p̂ is non-increasing after the mode
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Thus, p̂kskip ≥ min(p̂l+1, p̂u).

Case 1: LAC- PS Construction follows Eqn. 6: For this case, we have,

ŜD,α(x) = {ck ∈ C|p̂k ≥ q̂Dcal
(α)}, (6)

where q̂Dcal
(α) is the bias-adjusted (α)th quantile of the model score of the true label. Since cl+1

and cu are included in ŜD,α(x), it follows that both p̂l+1 ≥ q̂Dcal
(α) and p̂u ≥ q̂Dcal

(α).

Since p̂kskip ≥ min(p̂l+1, p̂u), it follows that p̂kskip ≥ q̂Dcal
(α) as well implying that ckskip ∈

ŜD,α(x) which leads to a contradiction. Hence, the shortest span ŜD,α(x) has to be contiguous.

Case 2: APS- PS Construction follows Eqn. 7: For this case, we have,

ŜD,α(x) = {cπ1 , cπ2 . . . cπj} where j = sup

{
j′ :

j′∑
k=1

p̂πk
< q̂Dcal

(α)

}
+ 1, (7)

where π is a permutation of {1, . . . ,K} that sorts p̂k in the descending order from most likely to
least likely and q̂Dcal

(α) is the bias-adjusted (1 − α)th quantile of the APS conformity scores as
defined for Eqn. 7.

Let P̂sum(S) =
∑

ck∈S p̂k denote the (fitted) probability mass within the prediction set S. Due to the
unimodality of p̂, it follows that one of the boundary labels cu and cl+1 have the minimum probability
among those included in the set ŜD,α(x). Without loss of generality, let us assume p̂u is one of the
minima (since the same argument can be applied for the case where (l + 1) is among the minima).

From the construction, we have, P̂sum(ŜD,α(x)) ≥ q̂Dcal
(α) and P̂sum(ŜD,α(x)\{cu}) < q̂Dcal

(α).
Consider the sets S1 = ŜD,α(x)

⋃
{ckskip} \ {cu} and S2 = S1 \ {ckmin} where kmin is the largest

index satisfying kmin = argmin
k|ck∈S1

[p̂k]. Since p̂kskip ≥ min(p̂l+1, p̂u), it follows that P̂sum(S1) ≥

q̂Dcal
(α). Further, from the definition of j as the size of largest top k set with probability mass as

defined in Eqn. 7, it follows that P̂sum(S2) < q̂Dcal
(α).

Therefore, the set S1 is a valid APS prediction set as well with span (kmin− l) < (u− l), which leads
to a contradiction. Thus, the shortest span ŜD,α(x) has to be contiguous for this case as well. Thus,
in both cases, there exists at least one solution, i.e., shortest span prediction set, which is contiguous
for both the constructions.

For the case, where p̂ is strictly unimodal, from the constructio Eqn.6 or 7, the prediction sets have
to contain the top k most likely classes for some k which results in contiguity in case of strict
unimodality.

Theorem 1. For any x ∈ X , let pk(x) = PY |X(Y = ck|X = x) and p̂k(x) = P̂Y |X(Y =
ck|X = x) denote the true and fitted model class probabilities that are always unimodal. Let
σk(x) =

∑k
k′=1 pk′(x) and σ̂k(x) =

∑k
k′=1 p̂k′(x) denote the corresponding cumulative distribu-

tion functions. If |σk(x)− σ̂k(x)| ≤ δ, [k]K1 for a constant δ, then for any α ∈ (0, 1], ∀x ∈ Dtest,
the APS and oracle prediction sets from Eqn.7 and Eqn. 4 satisfy |ŜD,α(x)| ≤ |Soracle

α−4δ− 1
n+1

(x)|
where n is the size of the calibration set.

Proof. To establish the result, we prove that the following two statements hold true under the
assumption on the CDFs of PY |X and P̂Y |X :

(a) |ŜD,α(x)| ≤ |SOracle
1−q̂Dcal

(α)−2δ(x)|

(b) |Soracle
1−q̂Dcal

(α)−2δ(x)| ≤ |Soracle
α−4δ− 1

n+1

|

Part (a): From Eqn. 4 and Lemma 1, we observe that the unimodality of p̂(x) and p(x) leads to
the oracle prediction set being contiguous and also the existence of a contiguous APS prediction set.

15



Since all the APS solution sets as per Eqn 7 have the same cardinality, we use ŜD,α(x) to denote the
contiguous solution.

Let ŜD,α(x) = {cl̂+1, · · · , cû}, 0 ≤ l̂ < û ≤ K and Soracle
1−q̂Dcal

(α)−2δ(x) = {cl∗+1, · · · , cu∗}, 0 ≤
l∗ < u∗ ≤ K. From the definition of the sets and the contiguity, we observe that the probability
mass of ŜD,α(x) w.r.t. p̂ equals (σ̂û(x)− σ̂l̂(x)) ≥ q̂Dcal

(α) while that of Soracle
1−q̂Dcal

(α)−2δ(x) w.r.t
p equals (σu∗(x)− σl∗(x)) ≥ 1− (1− q̂Dcal

(α)− 2δ) = q̂Dcal
(α) + 2δ.

Using the divergence bound on the two CDFs, i.e., |σk(x)− σ̂k(x)| ≤ δ, [k]K1 , we have

(σ̂u∗(x)− σ̂l∗(x)) ≥ (σu∗(x)− δ)− ((σl∗(x) + δ)

= σu∗(x)− σl∗(x)− 2δ

≥ q̂Dcal
(α) + 2δ − 2δ

= q̂Dcal
(α).

Since ŜD,α(x) is the minimal contiguous set with probability mass greater than or or equal to
q̂Dcal

(α) as per p̂ in Eqn 7, we have

|ŜD,α(x)| = (û− l̂) ≤ (u∗ − l∗) = |Soracle
1−q̂Dcal

(α)−2δ(x)|.

Part (b): Denoting the minimal contiguous APS prediction set by ŜD,α(x) as before, we have
(σ̂û(x) − σ̂l̂(x)) ≥ q̂Dcal

(α). Considering the divergence bound on the two CDFs, i.e., |σk(x) −
σ̂k(x)| ≤ δ, [k]K1 , we have (σ̂û(x)− σ̂l̂(x)) ≤ (σû(x) + δ)− ((σl̂(x)− δ) = σû(x)− σl̂(x) + 2δ.

Hence, for all x, we have

(σ̂û(x)− σ̂l̂(x)) ≥ q̂Dcal
(α)

⇔ σû(x)− σl̂(x) + 2δ ≥ q̂Dcal
(α)

⇔ σû(x)− σl̂(x) ≥ q̂Dcal
(α)− 2δ

Since this holds for all x, the marginal coverage P [Y ∈ ŜD,α(X)] ≥ q̂Dcal
(α)− 2δ.

From Theorem 3, we also have an upper bound on the marginal coverage for test samples, i.e.,
P [Y ∈ ŜD,α(X)] ≤ 1− α+ 1

n+1 where n is the size of the calibration set.

Hence, we have

1− α+
1

n+ 1
≥ P [Y ∈ ŜD,α(X)]

⇔ 1− α+
1

n+ 1
≥ q̂Dcal

(α)− 2δ

⇔ 1− q̂Dcal
(α)− 2δ ≥ α− 4δ − 1

n+ 1

From the above inequality and the definition of the oracle prediction set, we observe that

|Soracle
1−q̂Dcal

(α)−2δ(x)| ≤ |Soracle
α−4δ− 1

n+1
|.

Combining the results in part (a) and (b), we have

|ŜD,α(x)| ≤ |Soracle
α−4δ− 1

n+1
|.

As the size of the calibration set increases, the term 1
n+1 vanishes and as the divergence δ decreases,

then the cardinality of the APS set converges to that of the oracle set.
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Theorem 2. Let η : X → RK , ϕ : R→ R+ and ψE : R→ R− such that ψE(r) = ψE(−r), ∀r ∈
R and its restriction to R+ is a strictly monotonically decreasing bijective function. (a) Then, the
model output constructed as per Eqn. 5 is always unimodal, i.e., p̂(x) ∈ U , ∀x ∈ X . (b) Further,
given any p̂(x) ∈ U for x ∈ X , there exists a function η(x) ∈ RK that satisfies Eqn. 5 if ϕ(·) is
surjective on R+.

Proof. We begin by restating the construction:

η(x) = f(x, θ); v1 = η1(x); vk = ϕ(ηk(x)), [k]K2 ,

r1 = v1; rk = rk−1 + vk, [k]K2 ; zk = ψE(rk); p̂k =
exp(zk)∑K
k=1 exp(zk)

, [k]K1 .

Figure 7: Construction of our DNN

Part a: Following the above construction, for any x ∈ X , since ϕ : R → R+, the DNN output
vk ≥ 0, [k]K2 . Hence, the cumulative sum sequence r is non-decreasing, i.e., r1 ≤ r2 ≤ · · · ≤ rK .

There can be 3 possible scenarios:

Scenario 1. r1 ≤ r2 · · · ≤ rK ≤ 0 : In this case, [zk = ψE(rk)]
K
k=1 is also a non-decreasing

sequence and so is [p̂k]Kk=1. Here [p̂k]
K
k=1 is unimodal sequence with mode at cK .

Scenario 2. 0 ≤ r1 ≤ r2 · · · <= rK : In this case, [zk = ψE(rk)]
K
k=1 is also a non-increasing

sequence and so is [p̂k]Kk=1. Here [p̂k]
K
k=1 is unimodal sequence with mode at c1.

Scenario 3. r1 ≤ r2 · · · ≤ rm ≤ 0 ≤ rm+1 ≤ · · · ≤ rK for some m. In this case, [zk =
ψE(rk)]

K
k=1 is non-decreasing till m and non-increasing from m+1 onwards, which makes

it unimodal. The mode is either m or m+ 1 or both depending on the magnitudes |rm| and
|rm+1|. The probability distribution [p̂k]

K
k=1 follows the same pattern and is unimodal as

well.

Part b: Let us assume p̂(x) ∈ U is any arbitrary unimodal distribution conditioned on x with class
probabilities p̂k ≤ p̂k+1, [k]

m−1
1 and p̂k ≥ p̂k+1, [k]

K
m, where m is the highest indexed (in case of

multiple) mode of the unimodal distribution. We can then obtain zk = log(p̂k), [k]
K
1 and construct

the sequence rk = (ψE)−1(zk) where rk ∈ R− for 1 ≤ k ≤ (m− 1) and rk ∈ R+ for m ≤ k ≤ K.
Since ψ : R+ → R− is a strictly monotonically decreasing bijective function and ψE is it’s even
extension, the sequence [rk]

K
k=1 is well-defined. Further, since [zk]

K
k=1 is a unimodal sequence,

[rk]
K
k=1 is monotonically increasing with rm−1 ≤ 0 ≤ rm. Then, we can obtain the vector v such

that vk = rk − rk−1 ≥ 0, [k]K2 and v1 = r1. When ϕ(·) is a surjective function on R+, we can
define ηk(x) = (ϕ)−1(vk), [k]

K
2 and η1(x) = v1. There will always be a valid η(x), which ensures

that construction can generate the original p̂(x).
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B.1 APS Coverage guarantees

Theorem 3. [APS [35]] If samples (xi, yi) xi ∈ X ,yi ∈ Y are exchangeable ∀1 ≤ i ≤ n and all
samples from Dtrain, Dcal are invariant to permutations, and conformity scores are almost surely
distinct, then APS algorithm gives tight marginal coverage given by:

1− α ≤ P [Ytest ∈ ŜD,α(Xtest)] ≤ 1− α+
1

|Dcal|+ 1

C Experiment Details

C.1 Benchmark Image Datasets and Implementation Details

We now provide a brief description of the four public datasets and the modeling details. For each of
these datasets, we split the data into train, calibration, and test sets. We use calibration set to calibrate
APS and report mean and standard deviation (std. error) on the test set across 5 independent splits.
Note that for all experiments to avoid over-fitting, data augmentation, i.e., random horizontal flipping
and random cropping for each training image, was applied in our experiments. The predictions was
obtained with a central crop during testing. COPOC was implemented with ϕ = |x| and ψ = −|x|.
Age Estimation - Adience [13]: The task associated with this dataset is to predict the age for a given
facial image. This dataset contains 26580 Flickr photos of 2284 subjects. The age is annotated with
eight groups: 0−2, 4−6, 8−13, 15−20, 25−32, 38−43, 48−53, and over 60 years old. From the
nature of the class labels, it is evident that classes are not equally spaced categories. Hence, previous
works which assumed it to be equi-spaced (SORD [12] for instance) are suboptimal. For feature
extractor backbone, we use ImageNet pre-trained VGG-16 network since most competing methods
[23, 12] used this model. For our usage we append single layer MLP with last layer configured to
output unimodal distribution as described in sec. 4.2. We trained models for 50 epochs with a batch
size of 64. For optimization, Adam optimizer was utilized with a learning rate of 0.0001, with decay
rate of 0.2.
Historical Colour Image Dating - HCI [30]: The historical color image dataset is collected for the
task of estimating the age of historical color photos. Each image is annotated with its associated
decade, where five decades from the 1930s to 1970s are considered. There are 265 images for
each category. Following [23] we utilized VGG-16 as the backbone, which was initialized with the
ImageNet pre-trained weights for a fair comparison. We trained models for 50 epochs with Adam
optimizer with a learning rate of 0.0001, with decay rate of 0.2. For COPOC, we append single layer
MLP with last layer configured to output unimodal distribution as described in sec. 4.2.

Retina-MNIST [44]: RetinaMNIST is based on the DeepDRiD24 challenge, which provides a
dataset of 1600 retina fundus images. The task is ordinal classification for 5-level grading of diabetic
retinopathy severity. We use a similar feature extractor network as used in [44] along with a final
unimodality constrained layer at end. The network was trained with same settings as [44].

Image Aesthetic Estimation [37]: The Aesthetics dataset consists of 15687 Flickr image belonging
to four different nominal categories: animals, urban, people, and nature. All The pictures are anno-
tated by 5 different graders in 5 aesthetic categories in an orderly manner: 1) “unacceptable” pictures
with extremely low quality, 2) “flawed” low quality images (slightly blurred,over/underexposed),
and with no artistic value; 3) “ordinary” images without technical flaws (well framed, in focus), but
no artistic value; 4) “professional” images (flawless framing,lightning),and 5) “exceptional”, very
appealing images, showing outstanding quality. The ground truth label for each image is set to be
the median among all of its gradings. Following [23, 12] we use ImageNet pre-trained VGG-16
as the backbone for feature extraction. For our usage, we append single layer MLP with last layer
configured to output unimodal distribution as described in sec. 4.2. We only report aggregate metric
across all the categories for this data.

Additional Implementation Details: On the public benchmark datasets where the official
best hyperparameters are available for baseline methods (For instance in Adience, HCI and Aesthetic
dataset best settings for POE and SORD, and for Binomial best settings on Adience were available)
from the corresponding authors work or code, we directly use those settings. We were able to
replicate the results (MAE and Accuracy) on these datasets as reported by them. For all other
cases (namely AVDL, Uni-Loss), we optimize for MAE in hyperparameters search since that is the
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most common metric used for all ordinal classification tasks across competing benchmarks. We
cross-validate over the following grid:

• learning rate ∈ {1e− 2, 1e− 3, 1e− 4} with decay rate of 0.2.
• weight decay ∈ {0, 1e− 3, 1e− 2, 1e− 1}.
• dropout rate ∈ {0.1, 0.25, 0.5, 0.75}.
• Adam optimizer with default settings.

Few additional algorithm specific hyperparameters that needed tuning were:

• For POE, there are two extra hyperparameters of α and β in its distance-aware loss function
in embedding space which we search over {1e− 3, 1e− 4, 1e− 5, 1e− 6} as suggested by
the authors.

• SORD describes three type of distance metric losses - absolute inter class distance, squared
distance and its log variant. We search over these loss functions too.

• AVDL requires choosing the initial variance (of the Gaussian) of all images which we search
from {0.25, 0.5, 1, 2} similar to their work.

• Uni-loss has hyperparameter that controls the weightage between unimodality and mean-
variance component of its loss function. We search over {10, 100, 500, 1000, 5000}.

Table 6: Results on Image Benchmark Datasets: Mean and std. error is reported for 5 trials. Best
mean results bolded.

MAE Acc@1 Acc@2 Acc@3 |PS| CV%

HCI

V-CE 0.68± 0.03 54.3± 2.6 75.3± 3.1 88.9± 1.6 3.28± 0.14 24.4± 1.2

POE 0.66± 0.05 56.5± 1.8 76.5± 2.5 89.0± 2.1 3.1± 0.18 9.8± 1.2

SORD 0.65± 0.06 56.2± 2.8 77.1± 2.9 89.8± 2.6 2.96± 0.19 2.7± 1.1

AVDL 0.64± 0.08 56.8± 1.5 77.9± 2.4 89.8± 1.05 2.98± 0.11 2.1± 1.4

Binomial 0.68± 0.05 54.5± 1.2 75.8± 2.6 88.8± 1.8 3.01± 0.16 0

Binomial-temp 0.66± 0.04 55.5± 1.8 78± 2.2 90.1± 2.1 2.90± 0.11 0

Uni-loss 0.67± 0.09 54.5± 3.1 74.8± 2.5 88.1± 2.5 3.05± 0.38 5.1± 1.9

COPOC 0.65± 0.04 56.1± 2.0 79.8± 1.6 91.7± 2.8 2.66± 0.13 0

Adience

V-CE 0.57± 0.07 58.1± 1.6 80.8± 1.6 91.4± 2.3 4.82± 0.24 21.4± 2.2

POE 0.48± 0.05 60.5± 1.5 84.1± 2.0 93.9± 2.3 4.16± 0.18 12.8± 1.2

SORD 0.48± 0.06 59.9± 3.8 85.2± 2.9 94.3± 1.6 2.86± 0.09 3.7± 1.1

AVDL 0.49± 0.03 60.1± 2.5 85.3± 3.1 94.0± 1.1 2.95± 0.15 4.1± 0.9

Binomial 0.5± 0.04 60.0± 1.2 86± 1.8 95.4± 1.9 2.5± 0.06 0

Binomial-temp 0.48± 0.04 60.5± 2.1 86.4± 1.2 95.6± 1.3 2.45± 0.05 0

Uni-loss 0.64± 0.14 51.5± 7.9 80.8± 5.8 89.4± 3.5 3.14± 0.26 8.3± 2.3

COPOC 0.49± 0.04 61.0± 1.9 86± 1.5 96.1± 2.2 2.26± .06 0

Aesthetic

V-CE 0.29± 0.01 71.4± 1.6 94.6± 2.0 97.8± 0.8 1.96± 0.2 7.9± 0.2

POE 0.28± 0.05 72.1± 1.5 94.1± 1.1 98.0± 0.1 1.85± 0.11 7.85± 0.9

SORD 0.29± 0.02 72.0± 1.7 95.2± 1.9 98.3± 0.2 1.78± 0.09 0

AVDL 0.28± 0.03 72.2± 1.5 95.2± 1.8 98.5± 0.1 1.75± 0.05 0.3± 0.1

Binomial 0.31± 0.01 69.5± 0.7 93.1± 2.8 96.0± 0.9 1.83± 0.06 0

Binomial-temp 0.32± 0.04 69± 1.7 93.0± 1.6 96.2± 0.1 1.89± 0.09 0

Uni-loss 0.37± 0.14 66.8± 5.0 92.0± 3.8 97.4± 1.5 1.94± 0.24 2.1± 0.8

COPOC 0.28± 0.04 72.0± 1.3 95.9± 1.0 99.0± 0.2 1.70± .06 0

Retina-MNIST

V-CE 0.73± 0.02 52.2± 0.6 72.2± 0.1 86.0± 0.5 3.6± 0.08 9.8± 2.4

POE 0.73± 0.02 52.4± 0.4 72.5± 0.6 86.4± 0.8 3.4± 0.05 6.4± 2.8

SORD 0.71± 0.01 53.5± 0.3 70.5± 0.6 84.5± 0.9 3.2± 0.03 3.9± 1.1

AVDL 0.72± 0.02 53.0± 0.2 71.0± 0.4 84.6± 0.9 3.24± 0.04 3.8± 1.2

Binomial 0.71± 0.01 52.7± 0.2 69.7± 0.6 83.7± 0.8 3.33± 0.02 0

Binomial-temp 0.70± 0.02 53.0± 0.2 70.5± 0.5 84.0± 0.4 3.3± 0.02 0

Uni-loss 0.74± 0.05 52.0± 1.1 72.5± 0.6 84.5± 1.5 3.25± 0.1 4.2± 1.1

COPOC 0.71± 0.01 53.5± 0.2 72.5± 0.6 87.0± 0.3 3.03± 0.01 0
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Result Discussion : We highlight the key takeaways from Table 6.

1. COPOC performs at par with SOTA baselines in terms of MAE and Acc@1.

2. Benefit of COPOC comes with improved gains in Acc@2 and Acc@3. Apart from COPOC,
there is no single method that performs consistently across the 4 datasets in terms of these metrics.
For instance in HCI and Adience, Binomial-temp comes closest to COPOC, but on Aesthetic, both
variants of Binomial severely under-perform whereas AVDL and SORD perform quite well and comes
the closest to COPOC. In contrast, on Retina-MNIST, non-parametric models such as V-CE,POE,
Uni-loss have Acc@k close to COPOC and beat other parametric models significantly. This shows
that parametric distribution assumption in any underlying model fits the data well when the data is
actually drawn from a similar distribution. Since most methods depend largely on the validity of the
assumptions, the relatively unconstrained parameter-free nature of COPOC is more robust and allows
it to consistently outperform across datasets.

3. There is a strong correlation between CV% and PS size. This is expected because higher CV%
indicates more number of cases for which we had to predict a minimal contiguous super set, thus
inflating the size of PS. Better unimodal fit by underlying model is bound to have lesser CV% and
and thus, shorter sets. Hence, COPOC again outperforms all other baselines across datasets in term
of |PS| consistently. Although Binomial model variants has 0 CV% due to it’s construction, it still
produces larger sets than COPOC as seen in HCI and Adience. This can be because COPOC results
in better unimodal fit which is also idicated by higher Acc@K.

4. Enforcing unimodality in training scheme in terms of soft-labels (SORD,AVDL) or in loss
function (Uni-loss) or in embedding space (POE) does not necessarily translate to a unimodal
distribution in test samples which is indicated by high CV%.

5. Although V − CE in principle should have been able to model any underlying distribution, on
high dimensional real-world datasets it fails miserably. This shows the need for injecting prior "bias"
into training network like COPOC which aids the model in reaching the optima.

6. Uni-loss has issues with model convergence as it shows high variance across metrics for all
datasets. This could be because its sensitive to λ hyperparamter that control the weightage between
unimodality and mean-variance component of its loss function which is difficult to tune.

7. Datasets with higher accuracy results in shorter PS size in general, which is expected. For instance
Aesthetic has lower PS size across methods compared to HCI or Retina-MNIST both having same
number of class labels.

C.2 Implementation details of experiments on synthetic Data

For all the results on synthetic datasets presented in Sec.5.3, we employ same DNN network
across all the methods for fair comparison. To be precise, we use 6 layer DNN architecture
having 128 hidden dimensions with a dropout of 0.2. We use the same training paradigm as
before – Adam optimizer with learning rate of 0.001 and batch size of 512 trained for 500 epochs
ensuring convergence. We divide the data into 70% train and 30% test splits. We train our model
10 times for each independent split of the data. For each test set, we again randomly split into
calibration for APS and evaluate |PS| on final-test and repeat this 100 times to ensure conver-
gence of PS. We use ϕ = |x| and ψ = −|x| for COPOC. We report mean and standard error in Table 2.

C.3 Ablation study on the choice of ϕ(·) and ψE(·) for COPOC

Although there can be many possible choices for ϕ(·) and ψE(·) in the COPOC construction Eqn. 5,
in practice not all choices leads to good model convergence. In this section, we perform a comparison
of few common choices and present results in Table 7. We train the model for synthetic data D4
as described in Sec. 5.3. We train the model using CE loss with same model capacity and training
paradigm as described in Appendix C.2. We report train CE loss and since we have access to true
underlying distribution for D4 we report KL. Div. to measure goodness of model fit. Below we
summarise few observations:
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Table 7: Ablation study on implementation choice of ϕ(·) and ψ(·) for COPOC. We report mean
results across 10 trials.

Train loss KL Div.
ϕ = ReLU , ψ = −|x| 3.89 0.24
ϕ = Softplus, ψ = −|x| 3.11 0.19
ϕ = x2, ψ = −|x| 3.48 0.2
ϕ = |x|, ψ = −|x| 1.64 0.04
ϕ = |x|, ψ = −x2 2.20 0.13
ϕ = |x|, ψ = −|x|0.5 1.89 0.1

1. ϕ = ReLU maps most of [vk]K2 to zeroes which results in flat probability distribution for
most of the data points while ϕ = Softplus instead maps most [vk]K2 to very small values
which again results in almost flat distribution for most points. With ϕ = x2 we observed
unusually large values for [vk]K2 resulting in unstable training. ϕ = |x| gives a good balance
as each [ηk]

K
2 gets linearly mapped to [vk]

K
2 .

2. ψ = −|x|2 tends to over-emphasize higher probability classes in the model fitting while
ψ = −|x|0.5 under-emphasizes them. Again since ψ = −|x| does a linear transformation of
rk on either side of the origin it gives a good balanced estimate of zk.

C.4 Illustrative Comparison Between Unimodal and Non-Unimodal Model Fit

Figure 8: Predicted probability distributions of (naive) unconstrained DNN trained with vanilla Cross
entropy loss (V-CE) (Top) and COPOC (bottom) on three datapoints from the public benchmark
Adience-Age Estimation task dataset [13], which is annotated with 8 class labels with age groups as:
0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, and over 60 years old. Ground truth class is highlighted in
red. We present a few difficult data instances where both models fail to predict the correct class as
the top one. However COPOC with its unimodality bias is able to predict the correct class within top
2 or 3 predictions leading to better Accuracy@K compared to naive DNN.
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