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Abstract

The ability to reason about events and their
temporal relations is a key aspect in Natural
Language Understanding. In this paper, we
investigate the ability of Large Language Mod-
els to resolve temporal references with respect
to longer event sequences. Given that events
rarely occur in isolation, it is crucial to deter-
mine the extent to which Large Language Mod-
els can reason about longer sequences of events.
Towards this goal, we introduce a novel syn-
thetic benchmark dataset comprising of 2200
questions to test the abilities of LLMs to rea-
son about events using a Question Answering
task as proxy. We compare the performance
of 4 state of the art LLMs on the benchmark,
analyzing their performance in dependence of
the length of the event sequence considered as
well as of the explicitness of the temporal ref-
erence. Our results show that, while the bench-
marked LLMSs can answer questions over event
sequences with a handful of events and explicit
temporal references successfully, performance
clearly deteriorates with larger event sequence
length and when temporal references get less
explicit.

1 Introduction

Events are pervasive in our lives and as such we fre-
quently refer to events when we speak. In fact, the
ability to reason about events is an important aspect
in understanding natural language (van Lambalgen
and Hamm, 2006).

Take as example the following questions:

(i) Did Mary watch TV on the 13th of January
2023?
(i) Who prepared Risotto on Christmas?
(iii)) When was the last time that Peter prepared a
Risotto?

Such and other questions require to reason with
respect to a chain or sequence of events that have
happened in the past. The last question, for in-
stance, requires retrieving all the times that Peter

prepared Risotto vs. all the other times he cooked
something different and finding the instance that is
closest to the speaking time.

Motivated by the recent success of Large Lan-
guage Models (LLMs) on reasoning tasks in gen-
eral (Wei et al., 2022), we ask the question whether
Large Language Models are capable of reasoning
on the basis of a sequence of events to answer tem-
poral questions. Towards this goal we compile a
new English synthetic benchmark dataset compris-
ing of temporal questions over sequences of events,
and experimentally validate the ability of different
LLMs to answer such questions. Our focus lies
on two crucial dimensions. On the one hand, we
quantify the impact of varying the degree of ex-
plicitness of a temporal reference. As an example,
the temporal reference in question (i) is maximally
specific, referring to a concrete day. The refer-
ence to Christmas in (ii) is less explicit, as knowl-
edge about Christmas is needed to infer a specific
day. The expression ‘last time that Peter prepared
risotto’ in (iii) requires temporal reasoning to infer
a date, being thus a very implicit reference. On
the other hand, our goal is to analyze the ability of
large models to cope with longer event sequences,
so that we analyze the performance on the task by
systematically varying the length of the sequence
to be considered. Considering that LLMs currently
lack explicit memory and explicit temporal reason-
ing abilities, we formulate two hypotheses:

* HI1: The performance of LLMs will degrade
with increasing level of implicitness of tempo-
ral references.

* H2: The performance of LLMs will degrade
the longer the event sequences to be consid-
ered are.

Starting from these two hypotheses, we construct
our synthetic benchmark dataset and define our ex-
periments such that one can measure the perfor-
mance of LLMs along these two dimensions: event
sequence length and degree of explicitness of the



temporal reference. Our benchmark consists of
2200 questions in the domain of activities carried
out at home. We will make the dataset publicly
available via a GitHub Link so that it can be used
by the community upon publication of the paper.

Our contributions are the following:

* We propose a new task, that is, temporal rea-
soning over event sequences. We propose to
investigate the ability of systems to reason
about such sequences in a QA setting in which
the sequence of events is encoded by a LLM
which is then asked to answer a specific tem-
poral question.

* We present a synthetically generated bench-
mark comprising 2200 questions over com-
mon household events as a domain.

* We systematically test different prompt engi-
neering methods to find an effective prompt
for the task.

* We compare
(Gemma-7b-it, Llama3-8B-Instruct,
Llama3-70B-Instruct, GPT-4-0125) on
the task, reporting results for different event
sequence lengths and levels of explicitness.

four LLMs

Overall, our findings corroborate our two hy-
potheses, e.g. that LLMs have more difficulties
with a higher volume of events in the event se-
quence and that they struggle with questions in-
volving more implicit temporal references. Our
results show that performance indeed deteriorates
with increasing size of event sequences for all
benchmarked LLMs. Further, the performance on
questions involving implicit temporal references is
roughly a third worse compared to the performance
on questions with explicit references. In addition,
we observe that LLM size clearly correlates with
performance on the task.

2 Related Work

Events can ontologically be regarded as things that
happen in time in which participants play differ-
ent roles, e.g. agent, patient, beneficiary, etc. In
his early foundational work, Davidson (2001) has
argued that action sentences can be formalized as
referring to an event as an ontologically reified
object to which further roles can be attached. Fur-
ther work has attempted to distinguish different
types of events and unveiling their internal struc-
ture. Vendler (1957) introduced the important
distinctions between subtypes of events, includ-
ing activities, achievements and accomplishments.

Moens and Steedman (1988) have proposed that
an event consists of a nucleus with an associated
preparatory phase, a culmination and a consequent
phase. The ability to reason about events when
interpreting natural language is key, and there has
been work defining how events can be formalized
and treated ’properly’ (van Lambalgen and Hamm,
2006). Further, specific markup languages have
been proposed to allow for annotating temporal ex-
pressions in corpora and documents, with TimeML
(Pustejovsky, 2005) being the most prominent rep-
resentative. Other markup Languages are TIE-ML
(Cavar et al., 2021) and ISO-TimeML (Pustejovsky
et al., 2010). ISO-TimeML is a revised and in-
teroperable version of TimeML and the ISO/TC37
standard for time and event markup and annotation.

2.1 Categories of Temporal Questions

Temporal questions are often categorized depend-
ing on the explicitness by which temporal expres-
sions contained therein refer to a particular date. In
our discussion we follow previous categorisations
as proposed by (Huang, 2018; Alonso et al., 2007;
Strétgen, 2015).

We distinguish on the one hand temporally explicit
questions, in which the temporal expression unam-
biguously and explicitly refers to a certain point
in time in a way that is context-independent, e.g.
25th of December 2023’. Other questions refer to
a time point in a more implicit way, thus requir-
ing additional knowledge to resolve the temporal
expression, such as for ‘Christmas 2023’, ‘yester-
day’ and "Tom’s Birthday’. The category of tempo-
rally implicit questions can be further subdivided
into four subcategories: i) questions requiring com-
mon sense knowledge, ii) referential relative to
speech time, iii) referential relative to an arbitrary
time point, and iv) referring to personal knowledge.
Questions requiring common sense knowledge in-
volve expressions such as ‘Christmas 2023’ that
can be resolved to a particular date using common
sense knowledge, e.g. that Christmas is on the 25th
of December of each year. Temporal questions that
are referential relative to speech time require in-
terpreting a certain temporal expression relative to
the point in time in which the question is spoken or
written. Such questions contain temporal expres-
sions such as ‘today’, ‘vesterday’, ‘two days ago’,
etc. Temporal questions that are referential relative
to an arbitrary time point involve expressions such
as ‘two days before Christmas 2022’ that need to
be resolved in relation to some other event. Finally,



there are temporal questions requiring personal or
private knowledge such as in the question: ‘Who
watched TV on Tom’s birthday?’. In our bench-
mark, we consider two types of questions, explicit
and implicit questions of subtype referential rela-
tive to speech time.

2.2 Benchmarks for Temporal Questions

Several benchmarks for temporal question answer-
ing (QA) have been proposed so far. TempQues-
tions (Jia et al., 2018) and TimeQuestions (Jia et al.,
2021) are two related datasets comprising 12k and
16k questions, respectively. The questions pertain
to historical events such as Obama’s presidency
and Brad Pitt’s 2001 award. Event knowledge is
stored in a Knowledge Graph (KG), so that answers
are retrieved by mapping questions to a KG query.

The Test of Time (ToT) Benchmark (Fatemi et al.,
2024) is designed to evaluate two fundamental as-
pects of temporal cognition independently: ToT Se-
mantic assesses comprehension of temporal seman-
tics and logic without dependence on prior knowl-
edge, while ToT Arithmetic evaluates the ability
to perform calculations involving time points and
durations. Two QA sets (Date Understanding and
Temporal Sequences) in the ’Beyond the Imitation
Game Benchmark’ (Srivastava and et al., 2023) rely
on textually encoded contexts on the basis of which
to answer questions. However, these benchmarks
are not suited for our research questions. Date Un-
derstanding, Temporal Sequences and ToT do not
allow to benchmark models with respect to their
ability to consider longer sequences of events with
different participants as we do.

2.3 Large Language Models for Reasoning

Large Language Models have been successfully
applied to multiple reasoning tasks (see Huang and
Chang, 2023 for a recent overview). Examples of
these tasks include symbolic manipulation, such
as concatenating the last letter of words (Last Let-
ter Concatenation’ ), mathematical reasoning, and
arithmetic tasks like algebraic problems (AQuA,
Ling et al., 2017), Math World Problems (MWP),
(SVAMP Patel et al., 2021), or Graduate School
Math Word Problems (GSM8K, Cobbe et al., 2021).
In general, the performance on reasoning tasks
seems to increase with the size of the model (Wei
et al., 2022, Saparov and He, 2023). It has further

1h'ctps ://huggingface.co/datasets/ChilleD/
LastLetterConcat

been shown that Chain-of-Thought prompting en-
hances LLMs performance (Suzgun et al., 2022).
So far, however, LLMs have not been evaluated
on the task of resolving temporal references in the
context of longer event sequences, a gap we close
in this paper.

On the other hand, LL.Ms struggle with reason-
ing tasks that more closely resemble real-world sit-
uations, such as commonsense planning domains
(Valmeekam et al., 2023, Joublin et al., 2023). Par-
mar et al., 2024 also demonstrate that LLMs often
overlook contextual information when engaged in
logical reasoning over natural Language text. Ac-
cording to Saparov and He, 2023, while LLMs are
capable of handling reasoning tasks that involve
single deductive steps, they encounter difficulties
when dealing with tasks that require multiple de-
ductive steps. Thus, it is an interesting research
question to examine the ability of LLMs to resolve
explicit and implicit temporal expression in set-
tings where multiple events take place and several
steps might be involved in answering a temporal
question involving such a reference.

3 Methods

In this section, we describe the methodology for
constructing the dataset consisting of event se-
quences of varying length (Section 3.1) with corre-
sponding questions (Section 3.2). In addition, we
describe the prompting strategies we use for the
LLMs (Section 3.3).

3.1 Generation of synthetic event sequences

We generate event sequences automatically by ran-
domly sampling from a set of action predicates,
agents which can carry out the action, objects on
which the action is carried out and the location of
the event. For this, we consider events that might
typically take place in a home environment. Events
are described in terms of five variables (with their
potential fillers in brackets): i) Action (Watch, Eat,
Read, Dance, Store, Drink, Chat) ii) Object (Film,
Risotto, Book, Salsa, Wine Bootle, Juice, Friend),
iii) Agent (Mary, Tom, Ria), iv) Location (Living
Room, Kitchen), and v) Timestamp. Timestamps
are provided as a Unix timestamp ranging from
2023-01-01 to 2023-09-29.
For instance, our procedure would generate
events such as the following:
* Action:watch, Object:film, Location:living
room, Subject:mary, Timestamp:1695948843
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Question Category | Temporal Expression

Temporally ,On yyyy-mm-dd
Explicit nyyyy-mm
in the year yyyy
today
Referential relative ye.sterday
. this year
to speech time .
this month
last month

Table 1: Temporal Expressions for the 2 categories of
temporal questions. yyyy is the year with four digits,
mm the month of the year with two digits, and dd the
day of the month with two digits.

* Action:eat, Object:risotto, Location:kitchen,
Subject:tom, Timestamp: 1695852168
We randomly generate event sequences, with a
length of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and
100. Given the many possibilities and timestamps
in particular, the probability of generating the same
event twice is negligible.

3.2 Question Generation

For each event sequence, we automatically gener-
ate a set of questions together with a ground truth
answer that is computed on the basis of a symbolic
representation of the event sequences. In order to
generate questions, we rely on the question tem-
plates shown in Table 2. As an example, we would
generate questions such as: Who washed a mug in
the kitchen today?

For each event instance in a generated event se-
quence, we instantiate each of the 4 question tem-
plates in Table 2 with each of the temporal expres-
sion in Table 1, whereby the fourth pattern (‘When
was the last time...? *) is instantiated only for the
category referential relative to speech time without
a temporal expression. This yields 25 questions for
each event instance (8 x 3 + 1 = 25).

Given the event instance: Action:wash, Ob-
Jject:mug, Location:kitchen, Subject:tom, Times-
tamp:1695852168, we would generate 25 questions
for all possible choices of temporal expressions,
generating questions such as:

* Who washed a mug in the kitchen on 2023-

08-16?

* When was the last time Tom washed a mug in

the kitchen?

* Did Tom wash a mug in the kitchen yesterday?

Overall, we generate 100 questions for each

Today is the 2023-09-29 22:18. I will give you a list
indicating events and when they have taken place (event
sequence): {Action: watch, Object: film, Location: living
room, Subject: Mary, Date: 2023-09-29 08:01}, { Action:
eat, Object: risotto, Location: kitchen, Subject: Tom,
Date: 2023-09-28 14:27}, { Action: read, Object: book,
Location: living room, Subject: Ria, Date: 2023-06-11
12:44}, {Action: dance, Object: lively salsa, Location:
kitchen, Subject: Mary, Date: 2023-08-11 10:57}, {Ac-
tion: store, Object: wine bottle, Location: living room,
Subject: Tom, Date: 2023-09-01 20:44}. Who watched a
film in the living room on 2023-09-29? Answer with the

the name of the subject or say 'nobody’.

Figure 1: Exemplary zero-shot prompt for an event
sequence length of 5 events.

length of event sequence and question category.
This makes 100 x 2 x 11 = 2200 questions in total.

3.3 Prompting Strategies

As baseline prompting strategy, we rely on a zero-
shot prompt, where we only define the expected
answer of the LLM corresponding to the ques-
tion templates from Table 2. The basic prompt
is given in Figure 1. Hereby, we experimentally
vary the granularity in which the temporal infor-
mation is presented. We distinguish two granular-
ities: Date-Only and Date-Extended. In the first
case, Date-Only, the date and its corresponding
hour and minute is provided. In the second case,
Date-Extended, the date, corresponding weekday
and calendar week are included, as in the following
example

Date: 2023-08-11 10:57, Weekday: Friday, Cal-
endar Week: 32

Beyond varying the date granularity, we vary
the way in which the events and their dates are
presented. In the Json condition (see example in
Figure 1), the event is encoded in JSON format.
In the Language condition, the event and its cor-
responding date granularity is transformed into a
natural Language sentence. For Date-Only, this
would look as follows:

On September 29, 2023 at 08:01, Mary watched
a film in the living room.

Beyond relying on a zero-shot prompting ap-
proach as proposed above, we also experiment with
an advanced prompting strategy relying on Chain
of Thought (CoT). We distinguish two different
strategies: CoT Review, and CoT Step-by-Step rea-
soning. In the CoT Review case, the model receives



Template

Return Type

Who <action><object><location><ref_date>?

Did <subject><action><object><location><ref_date>?
How often did <subject><action><object>location><ref_date>?
lightgrayheightWhen was the last time <subject><action><object><location>?

String - Persons Name(s)

Bool
Integer
Date

Table 2: Templates for the Questions of the QA Set

instructions on how to approach the task. For a
"Who...?" question this would be like this:

Review each event out of the event history se-
quentially. If the action, object, location and date
of an event match the information in the question,
record the subject of that event. At the end return
the subjects of all matching events.

In the CoT Step-by-Step reasoning condition, we
extend the CoT Review prompt by the sentence
‘Let’s think step by step.’

4 Experiments

4.1 Experimental Plan

We consider state-of-the-art LLMs, select-
ing the following models: Gemma-7b-it
(Team et al., 2024), Llama3-8B-Instruct,
Llama3-70B-Instruct (Lla, 2024) and
GPT-4-0125 (OpenAl, 2023). We proceed
as follows: we first carry out experiments with all
possible different prompting strategies and event
sequence lengths of 5 and 50 for GPT-4. On the
basis of this initial experiment, we identify the top
four best performing prompting strategies and test
these for all Language models and event sequence
lengths of between 5 and 50 events to determine
the best prompting strategy for all models. We then
present results showing how performance differs
depending on question type, question category
and event sequence length for the top performing
prompting strategy.

4.2 Experimental Settings

The individual experiments are conducted on GPU
(L1ama3, Gemma) and over API (GPT-4). We used
the L1ama3? in the 8B and 70B instruction variant
and Gemma® in the 7B instruction variant without
further fine-tuning from HuggingFace. We evaluate
the performance of the models using accuracy. For
all models we use a temperature of 0 or correspond-
ing settings so that the responses are deterministic.

Zhttps://huggingface.co/collections/
meta-1lama/meta-1lama-3-66214712577ca38149ebb2b6
Shttps://huggingface.co/google/gemma-7b-it

Review each event out of the event history sequentially.
If the action, object, location and date of an event match
the information in the question, record the subject of that
event. At the end return the subjects of all matched events.
Today’s date is September 29, 2023, and the time is 22:18.
I have a list of events (event sequence) that have occurred
in the past, including who did what, where and when: On
September 29, 2023 at 08:01, Mary watched a film in the
living room. On September 28, 2023 at 14:27, Tom ate a
risotto in the kitchen. On June 11, 2023 at 12:44, Ria read
a book in the living room. On August 11, 2023 at 10:57,
Mary danced a lively salsa in the kitchen. On September
01, 2023 at 20:44, Tom stored a wine bottle in the living
room. Now, I want to know: Who watched a film in the

living room on September 29, 20237

Figure 2: Exemplary final prompt for an event sequence
length of 5 events.

4.3 Results

We report our results by analysing first the impact
of all possible prompting strategies for GPT-4 in
Section 4.3.1. In the following Section 4.3.2 we
further present the results of all models for the four
best performing prompting strategies identified in
Section 4.3.1. Then we present the difference in
performance of the benchmarked LLMs depending
on question type in Section 4.3.3. Finally, we in-
vestigate the relation between length of the event
sequence and performance in Section 4.3.4.

4.3.1 Prompting Strategies

Given the variability of our prompting strategies (3
Prompt types: zero-shot, CoT Review, CoT Step-
by-Step; 2 date representations: Date-Only, Date-
extended; 2 event presentations: Json, Language),
we have 12 possible prompt types that we evaluate
using GPT-4 and event sequence lengths of 5 and
50 events. The accuracy scores for the different
configurations are given in Table 3. We observe that
for all prompting strategies, performance is higher
for 5 compared to 50 events. Generally, the impact
of CoT seems to be positive as results are generally
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better compared to the baseline Zero-Shot prompt.
Extended date encoding (Date-extended) does not
seem to have any positive impact beyond the simple
date encoding (Date-Only). The top performing
prompting strategies rely on CoT prompting and
Date-only date in combination with either of the
two event presentation approaches.

4.3.2 Model Impact

Table 4 shows the accuracy for the 4 best prompt-
ing strategies for all models with respect to event
sequences of 5 and 50 events. We see that the mod-
els with the most parameters (GPT-4, L1ama3-70B)
have the top performance with accuracies between
83%-84% (GPT-4) and 84%-90% (Llama3-7@B)
across the different configurations. Llama3-70B
seems thus to be slightly ahead of GPT-4. The
other models (Gemma, L1ama3-8B) have lower re-
sults of between 63%-86% (Gemma) and 68%-74%
(L1ama3-8B).

For our further experiments, we select the con-
figuration with highest average performance across
all models: CoT Review, Date-Only, Language.

4.3.3 Type of Questions

Table 5 shows the results for the two question cate-
gories Temporally Explicit and Referential relative
to speech time as well as the different question
templates from Table 2.

Impact of degree of explicitness: The perfor-
mance across models for temporally explicit ques-
tions ranges between 75% (L1lama3-8B) and 92%
(L1ama3-7@B). We observe a significant perfor-
mance drop when considering questions with ex-
pressions that need to be resolved with respect
to speech time. Here results range between 34%
(Gemma) and 74% (L1ama3-70B). The performance
is reduced by around 17%-50% when shifting from
explicit to implicit temporal references.

Results by template type: Regarding the per-
formance by template type, we see that the in-
vestigated models have the best performance on
questions following the template Did ... 7 with ac-
curacies ranging between 78% (Gemma) and 92%
(GPT-4). The question template with the worst
performance is the When was the last time ...?7 tem-
plate, yielding results of 34% for Gemma, 53% for
Llama3-8B and 66% for L1ama3-70B. GPT-4 has
the lowest accuracy for Who ... 7 with 59%.

4.3.4 Sequence Length

The results for the two question categories Referen-
tial relative to speech time and Temporally Explicit
for different event sequence lengths (5, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100) are shown in Figures 3
and 4, respectively. From these plots we see that
performance of the models decreases substantially
with increasing sequence length. For the Tempo-
rally explicit question category, the decrease from
5 to 100 events ranges between 18% (Gemma) and
10% (L1lama3-7@B). Overall. the performance de-
creases by between 1,0% (L1lama3-70B) and 3,6%
(L1ama3-8B) at each step.

For the Referential relative to speech time, the
performance decreases are even more pronounced,
ranging between 39% (GPT-4 and L1ama3-8B) and
29% (Llama3-70B). The performance decreases
stepwise by between 2,9% (L1ama3-70B) and 4,9%
(L1ama3-8B) from 5 to 100 events considered.

Accuracy for the category of temporally explicit questions

GPT-4-0125

02 Llama3-8B-Instruct
Llama3-70B-Instruct
Gemma-7b-it

0 20 40 60 80 100
Number of Events

Figure 3: Accuracy for the Temporally Explicit question
category depending on sequence length.

Accuracy for the category of referential relative to speech time questions

GPT-4-0125

1.01 Llama3-8B-Instruct
Llama3-70B-Instruct
Gemma-7b-it

0.2

0.0 T r T T T
o 20 40 60 80 100
Number of Events

Figure 4: Accuracy for the Referential relative to speech
time question category depending on sequence length

5 Discussion

Our results clearly corroborate our two hypotheses.
Regarding H1, our results show that the average



Prompting Date Event Events
Strategy Information Presentation | 5 50 Average
Zero-Shot Date-Only Json 97 .67 | .82
Zero-Shot Date-Only Language 96 .67 | .82
Zero-Shot Date-Extended Json 97 .64 | 81
Zero-Shot Date-Extended Language 96 .68 | .82
CoT Review Date-Only Json 97 71 | .84
CoT Review Date-Only Language 94 71| .83
CoT Review Date-Extended Json 95 .68 | .82
CoT Review Date-Extended Language 93 71| .82
CoT Step-by-Step Date-Only Json 94 71 | .83
CoT Step-by-Step Date-Only Language 95 71| .83
CoT Step-by-Step  Date-Extended Json 94 .66 | .80
CoT Step-by-Step  Date-Extended Language 94 70 | .82

Table 3: Accuracy of all possible prompts for GPT-4-0.125 averaged for the two question categories Temporally
Explicit and Referential relative to speech time over event sequence lengths of 5 and 50 events. The last column is
the average of the accuracy for 5 and 50 Events. The 4 highest results are marked in bold.

Prompting Date Event Gemma  Llama3 Llama3 GPT-4 | Ave-
Strategy Information Presentation | -7b-it -8B-Instr. -70B-Instr. -0125 | rage
CoT Review Date-Only  Json .68 .68 .86 84 .76
CoT Review Date-Only Language .68 74 .88 .83 .78
CoT Step-by-Step Date-Only  Json .63 .69 .84 .83 75
CoT Step-by-Step Date-Only  Language .65 72 90 .83 a7

Table 4: Accuracy of the 4 best performing prompt configurations for GPT-4-0. 125 on all evaluated LLMs averaged
over event sequence lengths of 5 and 50 events for both question categories. The highest result for each model and

the highest average result is marked in bold.

performance of all models is 26% lower for ques-
tions involving implicit temporal references com-
pared to questions with explicit dates. This shows
that it is a challenge for LLMs to interpret temporal
expressions beyond explicit dates. Given that in the
case of temporally explicit expressions the dates
in the questions match exactly a date in the event
history, there might be sufficient cues for the LLMs
to perform well on this.

Regarding H2, our results clearly convey a trend,
i.e. that performance deteriorates with increasing
length of event history. This is understandable, as
LLMs do not have an explicit memory and can not
’store’ events for later random access. The perfor-
mance decrease varies from model to model, with
the most pronounced drop of 39% being observed
for GPT-4 and L1ama3-8B between the sequences
of 5 and 100 events and the question category Ref-
erential relative to speech time.

Considering the different prompting strategies,
even if the performances only vary by up to 6%, we
can clearly see that using CoT always leads to bet-

ter performances. This has also been shown in other
studies ((Wei et al., 2023), (Suzgun et al., 2022)).
Representing the date information in the Date-Only
format is always better than Date-Extended. This
may be because we do not ask questions about in-
formation in the Date-Extended format, such as
questions about the day of the week. Then the ex-
tended format would just make the final prompt
longer. Presenting events in natural language out-
performs the presentation by way of JSON. This is
likely due to the fact that models have been mainly
trained with language as input and might have seen
JSON structures more rarely.

Considering the different question templates, it
is interesting to observe that the best performance
across models is reached for the question follow-
ing the template Did...?. The reason for this high
performance is likely due to the fact that a binary
yes/no answer is required and chances of getting it
right are a priori high.

The performance on the other question templates
(How often did...? and Who...?) are around 20%



Gemma Llama3-8B Llama3-70B GPT-4 | Ave-

-7b-it -Instruct -Instruct -0125 | rage
e
Categories | * * i 34 58 74 64 58

peech time

Who ...7 .58 .58 .83 .59 .65
Question Did ...? .78 .80 90 92 .85
Templates | How often did ...? 44 63 78 70 64
When was the last time ...7? .34 .53 .66 75 .57

Table 5: Accuracy for the different question template types averaged over all evaluated event sequence lengths. The
right column is the average of all models. The highest results of each model for each question category and question

template are marked in bold.

worse than Did...7?. Answering questions of type
Who...? requires extracting a list of agents that par-
ticipated in an event instance of the given type in
the period selected. This seems to be a challenging
task for all models. The questions of type How
often did...? require deeper reasoning ability to
identify all events that meet the criteria and count-
ing them. The benchmarked models do not seem
to be capable of such an advanced reasoning. Per-
formance on questions When was the last time...?
are the worst for all models except GPT-4.

Our results clearly show that size matters in that
the two models with the largest parameters also per-
form best on the task. Interestingly L1ama3-70B
performs slightly better than GPT-4 in spite of hav-
ing less parameters than GPT-4, that is 70 Bn. vs.
1760 Bn. This could be an indication that model
size is only important up to a certain extent. Further
research is needed to find out which factors make
L1lama3-7@B so successful.

6 Conclusion & Future Work

We have analysed the ability of Large Language
Models to reason about event sequences, proposing
a benchmark that relies on a question answering
proxy task. Our focus has been on analyzing the
performance of four state-of-the-art language mod-
els on the task depending on the size of the event
sequences and the explicitness of temporal refer-
ences included in the questions. The two hypothe-
ses have been validated on the basis of our results.
While LLMs can answer questions containing ex-
plicit temporal expression with high accuracy, they
struggle when the temporal expressions become
more implicit. Further, the performance deterio-
rates significantly with the size and length of event
sequences to consider.

Future work could investigate how such mod-
els can be extended with some explicit memory
to store events and access them explicitly. A fur-
ther line of work might explore how such models
can be endowed with explicit temporal reasoning
abilities by extending them with logical temporal
theories, e.g. by function calls such as supported
by some recent LLMs. One relevant work in this
context is by (Xiong et al., 2024), where they gen-
erated a temporal graph from a prompt containing
historical events and a corresponding question to
incorporate explicit memory. They then applied
Chain-of-Thought reasoning on this temporal graph
to improve the temporal reasoning capabilities of
LLM:s.

7 Optional Supplementary Materials

7.1 Limitations

Our benchmark consists of synthetically generated
data, which raises the question of how representa-
tive this benchmark is for real events taking place in
home environments and potential questions users
might ask. As an example our generated events
are independent from each other which is rather
rare in real life, as a meal, for example, has to be
prepared before it is eaten. Regarding the degree
of explicitness we have only contrasted the two cat-
egories (Temporally Explicit, Referential relative
to speech time). However, it would be interesting
to consider further distinctions along the categories
of questions described in Related Work. We ac-
knowledge that our experimental settings might be
perceived as "unfair" because LLMs do not have
explicit memory. This means that one might expect
them to have difficulty on tasks requiring storage.
Nevertheless, there are increasingly investigations
regarding the ability of LLMs to perform reasoning,



and in this context it is relevant to test the abilities
also on tasks that might require some memory to
understand their limitations.

7.2 Ethics

We do not think that the specific methods or bench-
mark presented in this work raises ethical issues.
However, there are some ethical issues worth con-
sidering when thinking of the productive applica-
tion of models such as benchmarked in this paper,
e.g. in smart homes or other environments in which
humans perform tasks. Building up a memory of
events might require rich sensors, cameras etc. The
storage of such information in multimodal memo-
ries would clearly raise data protection issues and
ethical questions related to profiling and privacy
protection.
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