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Abstract

The ability to reason about events and their001
temporal relations is a key aspect in Natural002
Language Understanding. In this paper, we003
investigate the ability of Large Language Mod-004
els to resolve temporal references with respect005
to longer event sequences. Given that events006
rarely occur in isolation, it is crucial to deter-007
mine the extent to which Large Language Mod-008
els can reason about longer sequences of events.009
Towards this goal, we introduce a novel syn-010
thetic benchmark dataset comprising of 2200011
questions to test the abilities of LLMs to rea-012
son about events using a Question Answering013
task as proxy. We compare the performance014
of 4 state of the art LLMs on the benchmark,015
analyzing their performance in dependence of016
the length of the event sequence considered as017
well as of the explicitness of the temporal ref-018
erence. Our results show that, while the bench-019
marked LLMs can answer questions over event020
sequences with a handful of events and explicit021
temporal references successfully, performance022
clearly deteriorates with larger event sequence023
length and when temporal references get less024
explicit.025

1 Introduction026

Events are pervasive in our lives and as such we fre-027

quently refer to events when we speak. In fact, the028

ability to reason about events is an important aspect029

in understanding natural language (van Lambalgen030

and Hamm, 2006).031

Take as example the following questions:032

(i) Did Mary watch TV on the 13th of January033

2023?034

(ii) Who prepared Risotto on Christmas?035

(iii) When was the last time that Peter prepared a036

Risotto?037

Such and other questions require to reason with038

respect to a chain or sequence of events that have039

happened in the past. The last question, for in-040

stance, requires retrieving all the times that Peter041

prepared Risotto vs. all the other times he cooked 042

something different and finding the instance that is 043

closest to the speaking time. 044

Motivated by the recent success of Large Lan- 045

guage Models (LLMs) on reasoning tasks in gen- 046

eral (Wei et al., 2022), we ask the question whether 047

Large Language Models are capable of reasoning 048

on the basis of a sequence of events to answer tem- 049

poral questions. Towards this goal we compile a 050

new English synthetic benchmark dataset compris- 051

ing of temporal questions over sequences of events, 052

and experimentally validate the ability of different 053

LLMs to answer such questions. Our focus lies 054

on two crucial dimensions. On the one hand, we 055

quantify the impact of varying the degree of ex- 056

plicitness of a temporal reference. As an example, 057

the temporal reference in question (i) is maximally 058

specific, referring to a concrete day. The refer- 059

ence to Christmas in (ii) is less explicit, as knowl- 060

edge about Christmas is needed to infer a specific 061

day. The expression ‘last time that Peter prepared 062

risotto’ in (iii) requires temporal reasoning to infer 063

a date, being thus a very implicit reference. On 064

the other hand, our goal is to analyze the ability of 065

large models to cope with longer event sequences, 066

so that we analyze the performance on the task by 067

systematically varying the length of the sequence 068

to be considered. Considering that LLMs currently 069

lack explicit memory and explicit temporal reason- 070

ing abilities, we formulate two hypotheses: 071

• H1: The performance of LLMs will degrade 072

with increasing level of implicitness of tempo- 073

ral references. 074

• H2: The performance of LLMs will degrade 075

the longer the event sequences to be consid- 076

ered are. 077

Starting from these two hypotheses, we construct 078

our synthetic benchmark dataset and define our ex- 079

periments such that one can measure the perfor- 080

mance of LLMs along these two dimensions: event 081

sequence length and degree of explicitness of the 082
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temporal reference. Our benchmark consists of083

2200 questions in the domain of activities carried084

out at home. We will make the dataset publicly085

available via a GitHub Link so that it can be used086

by the community upon publication of the paper.087

Our contributions are the following:088

• We propose a new task, that is, temporal rea-089

soning over event sequences. We propose to090

investigate the ability of systems to reason091

about such sequences in a QA setting in which092

the sequence of events is encoded by a LLM093

which is then asked to answer a specific tem-094

poral question.095

• We present a synthetically generated bench-096

mark comprising 2200 questions over com-097

mon household events as a domain.098

• We systematically test different prompt engi-099

neering methods to find an effective prompt100

for the task.101

• We compare four LLMs102

(Gemma-7b-it, Llama3-8B-Instruct,103

Llama3-70B-Instruct, GPT-4-0125) on104

the task, reporting results for different event105

sequence lengths and levels of explicitness.106

Overall, our findings corroborate our two hy-107

potheses, e.g. that LLMs have more difficulties108

with a higher volume of events in the event se-109

quence and that they struggle with questions in-110

volving more implicit temporal references. Our111

results show that performance indeed deteriorates112

with increasing size of event sequences for all113

benchmarked LLMs. Further, the performance on114

questions involving implicit temporal references is115

roughly a third worse compared to the performance116

on questions with explicit references. In addition,117

we observe that LLM size clearly correlates with118

performance on the task.119

2 Related Work120

Events can ontologically be regarded as things that121

happen in time in which participants play differ-122

ent roles, e.g. agent, patient, beneficiary, etc. In123

his early foundational work, Davidson (2001) has124

argued that action sentences can be formalized as125

referring to an event as an ontologically reified126

object to which further roles can be attached. Fur-127

ther work has attempted to distinguish different128

types of events and unveiling their internal struc-129

ture. Vendler (1957) introduced the important130

distinctions between subtypes of events, includ-131

ing activities, achievements and accomplishments.132

Moens and Steedman (1988) have proposed that 133

an event consists of a nucleus with an associated 134

preparatory phase, a culmination and a consequent 135

phase. The ability to reason about events when 136

interpreting natural language is key, and there has 137

been work defining how events can be formalized 138

and treated ’properly’ (van Lambalgen and Hamm, 139

2006). Further, specific markup languages have 140

been proposed to allow for annotating temporal ex- 141

pressions in corpora and documents, with TimeML 142

(Pustejovsky, 2005) being the most prominent rep- 143

resentative. Other markup Languages are TIE-ML 144

(Cavar et al., 2021) and ISO-TimeML (Pustejovsky 145

et al., 2010). ISO-TimeML is a revised and in- 146

teroperable version of TimeML and the ISO/TC37 147

standard for time and event markup and annotation. 148

2.1 Categories of Temporal Questions 149

Temporal questions are often categorized depend- 150

ing on the explicitness by which temporal expres- 151

sions contained therein refer to a particular date. In 152

our discussion we follow previous categorisations 153

as proposed by (Huang, 2018; Alonso et al., 2007; 154

Strötgen, 2015). 155

We distinguish on the one hand temporally explicit 156

questions, in which the temporal expression unam- 157

biguously and explicitly refers to a certain point 158

in time in a way that is context-independent, e.g. 159

‘25th of December 2023’. Other questions refer to 160

a time point in a more implicit way, thus requir- 161

ing additional knowledge to resolve the temporal 162

expression, such as for ‘Christmas 2023’, ‘yester- 163

day’ and ’Tom’s Birthday’. The category of tempo- 164

rally implicit questions can be further subdivided 165

into four subcategories: i) questions requiring com- 166

mon sense knowledge, ii) referential relative to 167

speech time, iii) referential relative to an arbitrary 168

time point, and iv) referring to personal knowledge. 169

Questions requiring common sense knowledge in- 170

volve expressions such as ‘Christmas 2023’ that 171

can be resolved to a particular date using common 172

sense knowledge, e.g. that Christmas is on the 25th 173

of December of each year. Temporal questions that 174

are referential relative to speech time require in- 175

terpreting a certain temporal expression relative to 176

the point in time in which the question is spoken or 177

written. Such questions contain temporal expres- 178

sions such as ‘today’, ‘yesterday’, ‘two days ago’, 179

etc. Temporal questions that are referential relative 180

to an arbitrary time point involve expressions such 181

as ‘two days before Christmas 2022’ that need to 182

be resolved in relation to some other event. Finally, 183
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there are temporal questions requiring personal or184

private knowledge such as in the question: ‘Who185

watched TV on Tom’s birthday?’. In our bench-186

mark, we consider two types of questions, explicit187

and implicit questions of subtype referential rela-188

tive to speech time.189

2.2 Benchmarks for Temporal Questions190

Several benchmarks for temporal question answer-191

ing (QA) have been proposed so far. TempQues-192

tions (Jia et al., 2018) and TimeQuestions (Jia et al.,193

2021) are two related datasets comprising 12k and194

16k questions, respectively. The questions pertain195

to historical events such as Obama’s presidency196

and Brad Pitt’s 2001 award. Event knowledge is197

stored in a Knowledge Graph (KG), so that answers198

are retrieved by mapping questions to a KG query.199

The Test of Time (ToT) Benchmark (Fatemi et al.,200

2024) is designed to evaluate two fundamental as-201

pects of temporal cognition independently: ToT Se-202

mantic assesses comprehension of temporal seman-203

tics and logic without dependence on prior knowl-204

edge, while ToT Arithmetic evaluates the ability205

to perform calculations involving time points and206

durations. Two QA sets (Date Understanding and207

Temporal Sequences) in the ’Beyond the Imitation208

Game Benchmark’ (Srivastava and et al., 2023) rely209

on textually encoded contexts on the basis of which210

to answer questions. However, these benchmarks211

are not suited for our research questions. Date Un-212

derstanding, Temporal Sequences and ToT do not213

allow to benchmark models with respect to their214

ability to consider longer sequences of events with215

different participants as we do.216

2.3 Large Language Models for Reasoning217

Large Language Models have been successfully218

applied to multiple reasoning tasks (see Huang and219

Chang, 2023 for a recent overview). Examples of220

these tasks include symbolic manipulation, such221

as concatenating the last letter of words (Last Let-222

ter Concatenation1), mathematical reasoning, and223

arithmetic tasks like algebraic problems (AQuA,224

Ling et al., 2017), Math World Problems (MWP),225

(SVAMP Patel et al., 2021), or Graduate School226

Math Word Problems (GSM8K, Cobbe et al., 2021).227

In general, the performance on reasoning tasks228

seems to increase with the size of the model (Wei229

et al., 2022, Saparov and He, 2023). It has further230

1https://huggingface.co/datasets/ChilleD/
LastLetterConcat

been shown that Chain-of-Thought prompting en- 231

hances LLMs performance (Suzgun et al., 2022). 232

So far, however, LLMs have not been evaluated 233

on the task of resolving temporal references in the 234

context of longer event sequences, a gap we close 235

in this paper. 236

On the other hand, LLMs struggle with reason- 237

ing tasks that more closely resemble real-world sit- 238

uations, such as commonsense planning domains 239

(Valmeekam et al., 2023, Joublin et al., 2023). Par- 240

mar et al., 2024 also demonstrate that LLMs often 241

overlook contextual information when engaged in 242

logical reasoning over natural Language text. Ac- 243

cording to Saparov and He, 2023, while LLMs are 244

capable of handling reasoning tasks that involve 245

single deductive steps, they encounter difficulties 246

when dealing with tasks that require multiple de- 247

ductive steps. Thus, it is an interesting research 248

question to examine the ability of LLMs to resolve 249

explicit and implicit temporal expression in set- 250

tings where multiple events take place and several 251

steps might be involved in answering a temporal 252

question involving such a reference. 253

3 Methods 254

In this section, we describe the methodology for 255

constructing the dataset consisting of event se- 256

quences of varying length (Section 3.1) with corre- 257

sponding questions (Section 3.2). In addition, we 258

describe the prompting strategies we use for the 259

LLMs (Section 3.3). 260

3.1 Generation of synthetic event sequences 261

We generate event sequences automatically by ran- 262

domly sampling from a set of action predicates, 263

agents which can carry out the action, objects on 264

which the action is carried out and the location of 265

the event. For this, we consider events that might 266

typically take place in a home environment. Events 267

are described in terms of five variables (with their 268

potential fillers in brackets): i) Action (Watch, Eat, 269

Read, Dance, Store, Drink, Chat) ii) Object (Film, 270

Risotto, Book, Salsa, Wine Bootle, Juice, Friend), 271

iii) Agent (Mary, Tom, Ria), iv) Location (Living 272

Room, Kitchen), and v) Timestamp. Timestamps 273

are provided as a Unix timestamp ranging from 274

2023-01-01 to 2023-09-29. 275

For instance, our procedure would generate 276

events such as the following: 277

• Action:watch, Object:film, Location:living 278

room, Subject:mary, Timestamp:1695948843 279
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Question Category Temporal Expression

Temporally
Explicit

on yyyy-mm-dd
in yyyy-mm
in the year yyyy

Referential relative
to speech time

today
yesterday
this year
this month
last month

Table 1: Temporal Expressions for the 2 categories of
temporal questions. yyyy is the year with four digits,
mm the month of the year with two digits, and dd the
day of the month with two digits.

• Action:eat, Object:risotto, Location:kitchen,280

Subject:tom, Timestamp:1695852168281

• ...282

We randomly generate event sequences, with a283

length of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and284

100. Given the many possibilities and timestamps285

in particular, the probability of generating the same286

event twice is negligible.287

3.2 Question Generation288

For each event sequence, we automatically gener-289

ate a set of questions together with a ground truth290

answer that is computed on the basis of a symbolic291

representation of the event sequences. In order to292

generate questions, we rely on the question tem-293

plates shown in Table 2. As an example, we would294

generate questions such as: Who washed a mug in295

the kitchen today?296

For each event instance in a generated event se-297

quence, we instantiate each of the 4 question tem-298

plates in Table 2 with each of the temporal expres-299

sion in Table 1, whereby the fourth pattern (‘When300

was the last time...?´) is instantiated only for the301

category referential relative to speech time without302

a temporal expression. This yields 25 questions for303

each event instance (8 ∗ 3 + 1 = 25).304

Given the event instance: Action:wash, Ob-305

ject:mug, Location:kitchen, Subject:tom, Times-306

tamp:1695852168, we would generate 25 questions307

for all possible choices of temporal expressions,308

generating questions such as:309

• Who washed a mug in the kitchen on 2023-310

08-16?311

• When was the last time Tom washed a mug in312

the kitchen?313

• Did Tom wash a mug in the kitchen yesterday?314

Overall, we generate 100 questions for each315

Today is the 2023-09-29 22:18. I will give you a list

indicating events and when they have taken place (event

sequence): {Action: watch, Object: film, Location: living

room, Subject: Mary, Date: 2023-09-29 08:01}, {Action:

eat, Object: risotto, Location: kitchen, Subject: Tom,

Date: 2023-09-28 14:27}, {Action: read, Object: book,

Location: living room, Subject: Ria, Date: 2023-06-11

12:44}, {Action: dance, Object: lively salsa, Location:

kitchen, Subject: Mary, Date: 2023-08-11 10:57}, {Ac-

tion: store, Object: wine bottle, Location: living room,

Subject: Tom, Date: 2023-09-01 20:44}. Who watched a

film in the living room on 2023-09-29? Answer with the

the name of the subject or say ’nobody’.

Figure 1: Exemplary zero-shot prompt for an event
sequence length of 5 events.

length of event sequence and question category. 316

This makes 100 ∗ 2 ∗ 11 = 2200 questions in total. 317

3.3 Prompting Strategies 318

As baseline prompting strategy, we rely on a zero- 319

shot prompt, where we only define the expected 320

answer of the LLM corresponding to the ques- 321

tion templates from Table 2. The basic prompt 322

is given in Figure 1. Hereby, we experimentally 323

vary the granularity in which the temporal infor- 324

mation is presented. We distinguish two granular- 325

ities: Date-Only and Date-Extended. In the first 326

case, Date-Only, the date and its corresponding 327

hour and minute is provided. In the second case, 328

Date-Extended, the date, corresponding weekday 329

and calendar week are included, as in the following 330

example 331

Date: 2023-08-11 10:57, Weekday: Friday, Cal- 332

endar Week: 32 333

Beyond varying the date granularity, we vary 334

the way in which the events and their dates are 335

presented. In the Json condition (see example in 336

Figure 1), the event is encoded in JSON format. 337

In the Language condition, the event and its cor- 338

responding date granularity is transformed into a 339

natural Language sentence. For Date-Only, this 340

would look as follows: 341

On September 29, 2023 at 08:01, Mary watched 342

a film in the living room. 343

Beyond relying on a zero-shot prompting ap- 344

proach as proposed above, we also experiment with 345

an advanced prompting strategy relying on Chain 346

of Thought (CoT). We distinguish two different 347

strategies: CoT Review, and CoT Step-by-Step rea- 348

soning. In the CoT Review case, the model receives 349
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Template Return Type
Who <action><object><location><ref_date>? String - Persons Name(s)
Did <subject><action><object><location><ref_date>? Bool
How often did <subject><action><object>location><ref_date>? Integer
lightgrayheightWhen was the last time <subject><action><object><location>? Date

Table 2: Templates for the Questions of the QA Set

instructions on how to approach the task. For a350

"Who...?" question this would be like this:351

Review each event out of the event history se-352

quentially. If the action, object, location and date353

of an event match the information in the question,354

record the subject of that event. At the end return355

the subjects of all matching events.356

In the CoT Step-by-Step reasoning condition, we357

extend the CoT Review prompt by the sentence358

‘Let’s think step by step.’359

4 Experiments360

4.1 Experimental Plan361

We consider state-of-the-art LLMs, select-362

ing the following models: Gemma-7b-it363

(Team et al., 2024), Llama3-8B-Instruct,364

Llama3-70B-Instruct (Lla, 2024) and365

GPT-4-0125 (OpenAI, 2023). We proceed366

as follows: we first carry out experiments with all367

possible different prompting strategies and event368

sequence lengths of 5 and 50 for GPT-4. On the369

basis of this initial experiment, we identify the top370

four best performing prompting strategies and test371

these for all Language models and event sequence372

lengths of between 5 and 50 events to determine373

the best prompting strategy for all models. We then374

present results showing how performance differs375

depending on question type, question category376

and event sequence length for the top performing377

prompting strategy.378

4.2 Experimental Settings379

The individual experiments are conducted on GPU380

(Llama3, Gemma) and over API (GPT-4). We used381

the Llama32 in the 8B and 70B instruction variant382

and Gemma3 in the 7B instruction variant without383

further fine-tuning from HuggingFace. We evaluate384

the performance of the models using accuracy. For385

all models we use a temperature of 0 or correspond-386

ing settings so that the responses are deterministic.387

2https://huggingface.co/collections/
meta-llama/meta-llama-3-66214712577ca38149ebb2b6

3https://huggingface.co/google/gemma-7b-it

Review each event out of the event history sequentially.

If the action, object, location and date of an event match

the information in the question, record the subject of that

event. At the end return the subjects of all matched events.

Today’s date is September 29, 2023, and the time is 22:18.

I have a list of events (event sequence) that have occurred

in the past, including who did what, where and when: On

September 29, 2023 at 08:01, Mary watched a film in the

living room. On September 28, 2023 at 14:27, Tom ate a

risotto in the kitchen. On June 11, 2023 at 12:44, Ria read

a book in the living room. On August 11, 2023 at 10:57,

Mary danced a lively salsa in the kitchen. On September

01, 2023 at 20:44, Tom stored a wine bottle in the living

room. Now, I want to know: Who watched a film in the

living room on September 29, 2023?

Figure 2: Exemplary final prompt for an event sequence
length of 5 events.

4.3 Results 388

We report our results by analysing first the impact 389

of all possible prompting strategies for GPT-4 in 390

Section 4.3.1. In the following Section 4.3.2 we 391

further present the results of all models for the four 392

best performing prompting strategies identified in 393

Section 4.3.1. Then we present the difference in 394

performance of the benchmarked LLMs depending 395

on question type in Section 4.3.3. Finally, we in- 396

vestigate the relation between length of the event 397

sequence and performance in Section 4.3.4. 398

4.3.1 Prompting Strategies 399

Given the variability of our prompting strategies (3 400

Prompt types: zero-shot, CoT Review, CoT Step- 401

by-Step; 2 date representations: Date-Only, Date- 402

extended; 2 event presentations: Json, Language), 403

we have 12 possible prompt types that we evaluate 404

using GPT-4 and event sequence lengths of 5 and 405

50 events. The accuracy scores for the different 406

configurations are given in Table 3. We observe that 407

for all prompting strategies, performance is higher 408

for 5 compared to 50 events. Generally, the impact 409

of CoT seems to be positive as results are generally 410
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better compared to the baseline Zero-Shot prompt.411

Extended date encoding (Date-extended) does not412

seem to have any positive impact beyond the simple413

date encoding (Date-Only). The top performing414

prompting strategies rely on CoT prompting and415

Date-only date in combination with either of the416

two event presentation approaches.417

4.3.2 Model Impact418

Table 4 shows the accuracy for the 4 best prompt-419

ing strategies for all models with respect to event420

sequences of 5 and 50 events. We see that the mod-421

els with the most parameters (GPT-4, Llama3-70B)422

have the top performance with accuracies between423

83%-84% (GPT-4) and 84%-90% (Llama3-70B)424

across the different configurations. Llama3-70B425

seems thus to be slightly ahead of GPT-4. The426

other models (Gemma, Llama3-8B) have lower re-427

sults of between 63%-86% (Gemma) and 68%-74%428

(Llama3-8B).429

For our further experiments, we select the con-430

figuration with highest average performance across431

all models: CoT Review, Date-Only, Language.432

4.3.3 Type of Questions433

Table 5 shows the results for the two question cate-434

gories Temporally Explicit and Referential relative435

to speech time as well as the different question436

templates from Table 2.437

Impact of degree of explicitness: The perfor-438

mance across models for temporally explicit ques-439

tions ranges between 75% (Llama3-8B) and 92%440

(Llama3-70B). We observe a significant perfor-441

mance drop when considering questions with ex-442

pressions that need to be resolved with respect443

to speech time. Here results range between 34%444

(Gemma) and 74% (Llama3-70B). The performance445

is reduced by around 17%-50% when shifting from446

explicit to implicit temporal references.447

Results by template type: Regarding the per-448

formance by template type, we see that the in-449

vestigated models have the best performance on450

questions following the template Did ...? with ac-451

curacies ranging between 78% (Gemma) and 92%452

(GPT-4). The question template with the worst453

performance is the When was the last time ...? tem-454

plate, yielding results of 34% for Gemma, 53% for455

Llama3-8B and 66% for Llama3-70B. GPT-4 has456

the lowest accuracy for Who ...? with 59%.457

4.3.4 Sequence Length 458

The results for the two question categories Referen- 459

tial relative to speech time and Temporally Explicit 460

for different event sequence lengths (5, 10, 20, 30, 461

40, 50 , 60, 70, 80, 90, 100) are shown in Figures 3 462

and 4, respectively. From these plots we see that 463

performance of the models decreases substantially 464

with increasing sequence length. For the Tempo- 465

rally explicit question category, the decrease from 466

5 to 100 events ranges between 18% (Gemma) and 467

10% (Llama3-70B). Overall. the performance de- 468

creases by between 1,0% (Llama3-70B) and 3,6% 469

(Llama3-8B) at each step. 470

For the Referential relative to speech time, the 471

performance decreases are even more pronounced, 472

ranging between 39% (GPT-4 and Llama3-8B) and 473

29% (Llama3-70B). The performance decreases 474

stepwise by between 2,9% (Llama3-70B) and 4,9% 475

(Llama3-8B) from 5 to 100 events considered. 476

Figure 3: Accuracy for the Temporally Explicit question
category depending on sequence length.

Figure 4: Accuracy for the Referential relative to speech
time question category depending on sequence length

5 Discussion 477

Our results clearly corroborate our two hypotheses. 478

Regarding H1, our results show that the average 479
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Prompting
Strategy

Date
Information

Event
Presentation

Events
Average

5 50
Zero-Shot Date-Only Json .97 .67 .82
Zero-Shot Date-Only Language .96 .67 .82
Zero-Shot Date-Extended Json .97 .64 .81
Zero-Shot Date-Extended Language .96 .68 .82
CoT Review Date-Only Json .97 .71 .84
CoT Review Date-Only Language .94 .71 .83
CoT Review Date-Extended Json .95 .68 .82
CoT Review Date-Extended Language .93 .71 .82
CoT Step-by-Step Date-Only Json .94 .71 .83
CoT Step-by-Step Date-Only Language .95 .71 .83
CoT Step-by-Step Date-Extended Json .94 .66 .80
CoT Step-by-Step Date-Extended Language .94 .70 .82

Table 3: Accuracy of all possible prompts for GPT-4-0.125 averaged for the two question categories Temporally
Explicit and Referential relative to speech time over event sequence lengths of 5 and 50 events. The last column is
the average of the accuracy for 5 and 50 Events. The 4 highest results are marked in bold.

Prompting
Strategy

Date
Information

Event
Presentation

Gemma
-7b-it

Llama3
-8B-Instr.

Llama3
-70B-Instr.

GPT-4
-0125

Ave-
rage

CoT Review Date-Only Json .68 .68 .86 .84 .76
CoT Review Date-Only Language .68 .74 .88 .83 .78
CoT Step-by-Step Date-Only Json .63 .69 .84 .83 .75
CoT Step-by-Step Date-Only Language .65 .72 .90 .83 .77

Table 4: Accuracy of the 4 best performing prompt configurations for GPT-4-0.125 on all evaluated LLMs averaged
over event sequence lengths of 5 and 50 events for both question categories. The highest result for each model and
the highest average result is marked in bold.

performance of all models is 26% lower for ques-480

tions involving implicit temporal references com-481

pared to questions with explicit dates. This shows482

that it is a challenge for LLMs to interpret temporal483

expressions beyond explicit dates. Given that in the484

case of temporally explicit expressions the dates485

in the questions match exactly a date in the event486

history, there might be sufficient cues for the LLMs487

to perform well on this.488

Regarding H2, our results clearly convey a trend,489

i.e. that performance deteriorates with increasing490

length of event history. This is understandable, as491

LLMs do not have an explicit memory and can not492

’store’ events for later random access. The perfor-493

mance decrease varies from model to model, with494

the most pronounced drop of 39% being observed495

for GPT-4 and Llama3-8B between the sequences496

of 5 and 100 events and the question category Ref-497

erential relative to speech time.498

Considering the different prompting strategies,499

even if the performances only vary by up to 6%, we500

can clearly see that using CoT always leads to bet-501

ter performances. This has also been shown in other 502

studies ((Wei et al., 2023), (Suzgun et al., 2022)). 503

Representing the date information in the Date-Only 504

format is always better than Date-Extended. This 505

may be because we do not ask questions about in- 506

formation in the Date-Extended format, such as 507

questions about the day of the week. Then the ex- 508

tended format would just make the final prompt 509

longer. Presenting events in natural language out- 510

performs the presentation by way of JSON. This is 511

likely due to the fact that models have been mainly 512

trained with language as input and might have seen 513

JSON structures more rarely. 514

Considering the different question templates, it 515

is interesting to observe that the best performance 516

across models is reached for the question follow- 517

ing the template Did...?. The reason for this high 518

performance is likely due to the fact that a binary 519

yes/no answer is required and chances of getting it 520

right are a priori high. 521

The performance on the other question templates 522

(How often did...? and Who...?) are around 20% 523
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Gemma
-7b-it

Llama3-8B
-Instruct

Llama3-70B
-Instruct

GPT-4
-0125

Ave-
rage

Question
Categories

Temporally Explicit .84 .75 .92 .84 .84
Referential relative
to speech time .34 .58 .74 .64 .58

Question
Templates

Who ...? .58 .58 .83 .59 .65
Did ...? .78 .80 .90 .92 .85
How often did ...? .44 .63 .78 .70 .64
When was the last time ...? .34 .53 .66 .75 .57

Table 5: Accuracy for the different question template types averaged over all evaluated event sequence lengths. The
right column is the average of all models. The highest results of each model for each question category and question
template are marked in bold.

worse than Did...?. Answering questions of type524

Who...? requires extracting a list of agents that par-525

ticipated in an event instance of the given type in526

the period selected. This seems to be a challenging527

task for all models. The questions of type How528

often did...? require deeper reasoning ability to529

identify all events that meet the criteria and count-530

ing them. The benchmarked models do not seem531

to be capable of such an advanced reasoning. Per-532

formance on questions When was the last time...?533

are the worst for all models except GPT-4.534

Our results clearly show that size matters in that535

the two models with the largest parameters also per-536

form best on the task. Interestingly Llama3-70B537

performs slightly better than GPT-4 in spite of hav-538

ing less parameters than GPT-4, that is 70 Bn. vs.539

1760 Bn. This could be an indication that model540

size is only important up to a certain extent. Further541

research is needed to find out which factors make542

Llama3-70B so successful.543

6 Conclusion & Future Work544

We have analysed the ability of Large Language545

Models to reason about event sequences, proposing546

a benchmark that relies on a question answering547

proxy task. Our focus has been on analyzing the548

performance of four state-of-the-art language mod-549

els on the task depending on the size of the event550

sequences and the explicitness of temporal refer-551

ences included in the questions. The two hypothe-552

ses have been validated on the basis of our results.553

While LLMs can answer questions containing ex-554

plicit temporal expression with high accuracy, they555

struggle when the temporal expressions become556

more implicit. Further, the performance deterio-557

rates significantly with the size and length of event558

sequences to consider.559

Future work could investigate how such mod- 560

els can be extended with some explicit memory 561

to store events and access them explicitly. A fur- 562

ther line of work might explore how such models 563

can be endowed with explicit temporal reasoning 564

abilities by extending them with logical temporal 565

theories, e.g. by function calls such as supported 566

by some recent LLMs. One relevant work in this 567

context is by (Xiong et al., 2024), where they gen- 568

erated a temporal graph from a prompt containing 569

historical events and a corresponding question to 570

incorporate explicit memory. They then applied 571

Chain-of-Thought reasoning on this temporal graph 572

to improve the temporal reasoning capabilities of 573

LLMs. 574

7 Optional Supplementary Materials 575

7.1 Limitations 576

Our benchmark consists of synthetically generated 577

data, which raises the question of how representa- 578

tive this benchmark is for real events taking place in 579

home environments and potential questions users 580

might ask. As an example our generated events 581

are independent from each other which is rather 582

rare in real life, as a meal, for example, has to be 583

prepared before it is eaten. Regarding the degree 584

of explicitness we have only contrasted the two cat- 585

egories (Temporally Explicit, Referential relative 586

to speech time). However, it would be interesting 587

to consider further distinctions along the categories 588

of questions described in Related Work. We ac- 589

knowledge that our experimental settings might be 590

perceived as "unfair" because LLMs do not have 591

explicit memory. This means that one might expect 592

them to have difficulty on tasks requiring storage. 593

Nevertheless, there are increasingly investigations 594

regarding the ability of LLMs to perform reasoning, 595

8



and in this context it is relevant to test the abilities596

also on tasks that might require some memory to597

understand their limitations.598

7.2 Ethics599

We do not think that the specific methods or bench-600

mark presented in this work raises ethical issues.601

However, there are some ethical issues worth con-602

sidering when thinking of the productive applica-603

tion of models such as benchmarked in this paper,604

e.g. in smart homes or other environments in which605

humans perform tasks. Building up a memory of606

events might require rich sensors, cameras etc. The607

storage of such information in multimodal memo-608

ries would clearly raise data protection issues and609

ethical questions related to profiling and privacy610

protection.611
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