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Abstract

Neural language models are black-boxes — both linguistic patterns and factual
knowledge are distributed across billions of opaque parameters. This entangled
encoding makes it difficult to reliably inspect, verify, or update specific facts. We
introduce LIMITED MEMORY LANGUAGE MODELS (LMLM)" a new class of
language models that externalizes factual knowledge to external database during
pre-training rather than memorizing them. Our pre-training approach strategically
masks externally retrieved factual values from the training loss, thereby teaching
the model to perform targeted lookups rather than relying on memorization in
model weights. Our experiments demonstrate that LMLMs achieve competitive
performance compared to significantly larger LLMs on standard benchmarks, while
offering the advantages of explicit, editable, and verifiable knowledge bases. This
work represents a fundamental shift in how language models interact with and
manage factual knowledge.

1 Introduction

Many challenges with deploying LLMs in real-world applications originate from the fact that training
on vast text corpora exposes LLMs to vast amounts of knowledge [29, 1]. Ideally, the knowledge
in language models should be fully controllable—a customer service agent for a restaurant chain
shouldn’t have the ability to answer questions about historical facts, prescription medicine, real estate
law, etc. Unfortunately, current LLM pre-training procedures entangle the learning of knowledge with
language competency in their neural weights. This has significant implications for both training and
inference. During pre-training, facts must be observed many times for reliable memorization [2, 30].
During inference, it is difficult to unlearn knowledge that may be outdated or inappropriate for a
particular application [35, 36, 41, 13]. This tight coupling of knowledge and linguistic ability makes
updating one without affecting the other extremely challenging.
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Figure 1: A schematic illustration of LMLM. Unlike RAG, which exclusively adds knowledge from
external sources, LMLM offloads knowledge from LLM:s to the external database during pre-training.

"LMLM stands for Limited Memory Language Model and is pronounced “LamLam”.
“We open-source our code, data and models at https://github.com/kilian-group/LMLM.
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Our vision is a pre-trained language model where knowledge is fully modular and controllable,
and can be added or deleted easily for different use cases. This leads us to conclude that storing
knowledge inside the model weights during pre-training should be limited as much as possible. This
gives rise to the following research question:

Can factual memorization be disentangled from language understanding in language models?

To realize this vision, we introduce LIMITED MEMORY LANGUAGE MODELS (LMLM), a new
class of language models with a pre-training recipe that teaches the model to query an external
database for entity-level facts rather than memorizing them. We provide an integrated solution for
LMLMs spanning data preparation, pre-training, and inference. To prepare the training data, we
annotate the pre-training corpus with database lookups to offload factual content, using a small,
cost-effective LM fine-tuned for this task. During pre-training, the returned facts are masked from the
loss, systematically separating factual knowledge from the neural weights. During inference, instead
of recalling memorized facts, the model qgueries the database.

Unlike the dominant paradigm of post-training and inference-time approaches such as retrieval-
augmented generation (RAG) [33] that maximize access to external information, our approach
takes the perspective of limiting knowledge stored inside the model parameters during pre-training
(Figure 1). This frees up model capacity, disentangles knowledge from language competency, and
enables precise control over factual knowledge. During inference, LMLM is naturally compatible
with RAG systems, tool calling [51], or task-specific fine-tuning [60]. LMLMs always rely on lookups
for factual information, so attempts to access out-of-scope knowledge trigger detectable lookup
failures. In contrast, traditional RAG models without LMLM pre-training typically fall back to
their internal knowledge, which is beyond the control of the user and may lead to hallucinations or
misinformation [35, 37, 55].

We compare our LMLMs against LLM counterparts of the same size, pre-trained on the same corpus
without external memory. Our experiments demonstrate that LMLMs achieve lower perplexity than
comparable LLMs (§ 3.2). Crucially, by externalizing knowledge from model weights, LMLMs
achieve significant parameter efficiency—our 382M-parameter model matches the factual precision
of a LLAMAZ2-7B (§ 3.4). Knowledge externalization also enables instant, verifiable updates and
unlearning through simple database operations (§ 3.3). Additionally, we present findings regarding the
knowledge decoupling achieved by LMLM and examine the trade-off between internal memorization
and external offloading (§ 4). LMLMs offer a pathway toward language models with substantially
reduced dependency on parameter count for factual accuracy. LMLMs have potential for integration
with knowledge representation [42], symbolic reasoning [10], and mechanistic interpretability [4],
potentially transforming how language models store, access, and maintain knowledge.

2 LIMITED MEMORY LANGUAGE MODELS

Pretrain Data Preparation: Separating Knowledge We focus primarily on entity-level atomic
Jactual knowledge, a natural starting point within the broader LMLM framework. We define facts
as triplets of the form: (entity, relation) — value. This level of granularity aligns with
previous definitions [37] and represents the most compact and tractable form of factual knowledge
to disentangle from the intertwined linguistic patterns in raw text. It also naturally maps to a
knowledge graph structure, where triplets define nodes and edges [11]. These atomic facts are ideal
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Figure 2: Overview of the LMLM framework.
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Figure 3: Training the ANNOTATOR model. We distill high-quality annotations from GPT-40 into a
lightweight model that learns to identify and externalize factual knowledge from raw pre-training
text, enabling scalable annotation of the full corpus.

for externalization: they are straightforward to extract and verify, yet hard to encode in the model
parameters, making them well-suited for storage in an external database.

Manually extracting factual triples and constructing knowledge graphs at the scale of pre-training
data is a major challenge [24]. We address this by first obtaining high-quality seed annotations with
GPT-40, then refining them through a filtering stage, and finally distilling the result into a lightweight
ANNOTATOR that scalably externalizes factual knowledge from raw text (Figure 3). Additional details
and prompts are provided in Appendix A.1.

This annotation process serves two purposes: (1) Database Construction: The extracted triplets form
a token-efficient external database that scales with the size of the pre-training corpus. (2) Pre-training
Corpus Generation: Lookup calls are interleaved with the original text, enabling the model to learn
when to rely on internal knowledge and when to issue a lookup.

Pre-training and Inference We adopt a standard next-token prediction setup with one critical
modification: During pre-training, tokens corresponding to the retrieved factual values and the ending
lookup token are excluded from the loss computation (Appendix A.3). This design discourages
LMLM from memorizing facts that are offloaded to the external database. Intuitively, when the
model can rely on accurate externally provided facts, it no longer needs to expend capacity learning
complex, long-tail factual distributions. Similar to tool-augmented models (e.g., Toolformer [51]),
LMLM generates text autoregressively until a special token triggers a database lookup, retrieves the
corresponding value, and continues generation.

3 Experiments

3.1 Experimental Setup

Pretraining and Model Setup. We pretrain on a high-quality Wikipedia corpus (~ 3B tokens) from
the OLMo2 project! [20], and evaluate perplexity on a held-out set of 1,000 samples (~ 245k tokens).
We pre-train LMLM from scratch using GPT-2 and LLaMAZ2-style architectures with their standard
tokenizers and vocabularies, extended by four special tokens for lookup calls. All models are trained
for 8 epochs with a context length of 1,024 tokens, using mixed precision. Each model completes
training within 8 H100-days. Details are in Appendix A.2.

Database and Retrieval Setting. We construct the database by annotating the entire pretraining
corpus, resulting in 54.6M knowledge triplets. Retrieval uses fuzzy matching with cosine similarity
over ALL-MINILM-L6-v2 embeddings (with a rejection threshold of 0.6).

Baseline Comparisons. We consider the following pre-training settings:

* LMLM (Ours): Pre-trained on our annotated data with lookup calls, using the loss in Equation 1.
* STANDARD: Pre-trained on our data without lookup calls. All other settings are identical.

* Off-the-shelf Models: Models with publicly available pre-training weights. These models are
marked with an asterisk (*) in the results tables.

3.2 Learning to Lookup Facts is Easier than Memorization

Perplexity Results. Figure 4 reports validation perplexities for both LML.M and STANDARD models.
We observe that LMLM consistently achieves lower perplexity than STANDARD across all model
sizes and perplexity variants.

'nttps://huggingface.co/datasets/allenai/dolmino-mix-1124
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3.3 Machine Unlearning: LMLM Supports Instant Forgetting

One natural benefit of decoupling knowledge from model parameters is that editing and unlearning
are achievable through simple operations on the external memory, without compromising the model’s
general capabilities. To verify this, we extend our evaluation to a standard machine unlearning
benchmark, TOFU [36].

Evaluation Setup. TOFU tests selective forgetting in a privacy-sensitive setup, where the goal is to
forget a Forget Set while maintaining performance on a Refain Set and preserving general capabilities.
The benchmark consists of 200 synthetic author profiles, each containing 20 QA pairs. It evaluates:

* Model utility: The average of three metrics—ROUGE (answer quality), Answer Probability, and
Truth Ratio (likelihood assigned to the correct answer over distractors)—measured on the Retain
Set, Real Author Set, and World Facts Set.

* Forget quality: Statistical test p-value comparing the unlearned and retain models.

We use LLAMA-3.2-1B-INSTRUCT as the base model, compare against NPO [65], and perform
unlearning in LMLM by directly deleting relevant database entries (see Appendix B.2 for details).

Results. Figure 5 presents the results on the TOFU benchmark, where the Forget Set is 5% of
the data. In Figure 5 (a-b), we show the forget quality and model utility throughout the unlearning
process, where ideal performance is defined by effective forgetting without degrading model utility.
LMLM achieves precisely this—effective forgetting with no loss in model utility—a direct benefit of
decoupling factual knowledge from model parameters. Figure 5 (c—d) shows that LMLM preserves
knowledge outside the Forget Set, whereas previous training-based methods tend to forget related
information due to parameter entanglement.

Importantly, forgetting is performed through simple database operations, without model updates or
access to the Retain Set. In contrast, RL-based methods such as NPO, a state-of-the-art baseline on
TOFU, incur a utility degradation, while other unlearning methods either fail to forget or exhibit
catastrophic drops in model utility (See Figure 8, right). While LMLM incurs upfront costs for data
annotation and model training, it provides substantial payoff in use cases where knowledge editing,
removal, or compliance with data deletion requests are necessary.
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Figure 5: Evaluation of Machine Unlearning. We compare LMLM with NPO on the TOFU
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3.4 Externalizing Knowledge Improves Factual Precision

We evaluate factual precision Typle |: Evaluations on factual precision. Subscripts show

on long-form biography gen- ,psolute difference from their respective STANDARD baselines.
eration (FactScore) [39] and

short-form factual completion  Model Model Type FactScore T T-RExEM 1 PopQA Acc T
using T-REX [48] and the OpeNA/GPT2-124M* - 14.6 20.1 18.51
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LMLM 20.6.9.9 54.6. 134 49.89 51 4
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. . LLAMA2-176M STANDARD 10.1 46.3 24.59
tion of atomic facts supported by ILRALI 30.6.005  S4Lins 496155
external datastore, while T-REX ~gpenal/GPT2-355M" - 52 284 91
and POPQA fOH.OW EM and Acc GPT2-355M STANDARD 14.4 44.9 21.4
metrics from prior work [51, 3]. LMLM 23905 58.7 138 52.0. 306
As shown in Table 1, LMLM STANDARD 14.0 52.0 227

’ LLAMA2-382M LMLM 319,179 5814 50.8. 051

consistently improves factual
precision over STANDARD, its
knowledge-dense  counterpart.
On LLAMAZ2-382M, it gains
+179% FactS core, +6. 1% * Models marked with an asterisk (*) are off-the-shelf models with no additional training.
T-REx EM, and +28.1% PopQA Acc. Notably, LMLM approaches the performance of much larger
models such as PYTHIA-1B and LLAMA2-7B, despite using far fewer parameters.

4 Discussion

Does LMLM Still Memorize Facts in Its Tyl 2: Disabling retrieval significantly reduces

Parameters? We provide preliminary evi- serformance on both FACTSCORE and T-REx; see
dence that LMLM reduces factual memorization Table 9 for the full comparison.

through its training design. Using the TOFU syn-

thetic trainset, we compare training objectives  Model Type FactScore T T-REx EM 1
by tracking the loss on return value tokens—the STANDARD 14.0 52.0
factual answers intended to be retrieved rather | /v |/ (wlo database) 12:87” ! 38:540 5
than memorized. LMLM 319 581

As shown in Figure 6, models trained with a

standard SFT objective exhibit a rapid decrease in the loss on these tokens, suggesting memorization
in the model’s parameters. In contrast, LMLM, trained with the masked loss maintains a high
loss throughout training, indicating that these facts are not stored internally. LMLM’s successful
application in the machine unlearning benchmark (Sec. 3.3) further supports this finding. Additionally,
we observe a notable performance gap in Table 2, where factual precision drops substantially when
the external database is disabled—forcing the model to rely on its internal parameters. These findings
suggest that editing the database offers a direct way to control what the model knows and forgets.

Toward Efficient Scaling via Knowledge Offloading. We

summarize our main findings in Figure 8. In particular, even 81

smaller instances of LMLM match or exceed the performance 6.

of much larger off-the-shelf models. These results highlight LMLM

the potential of LMLM to scale efficiently by offloading knowl- E 4- '\ —e— Regular SFT
edge to an external database, thereby maintaining strong factual

accuracy with fewer parameters. While our experiments are lim- 27 N

ited to modest scales due to computational constraints, the ob- T ———
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toward parameter-efficient language models that externalize
factual storage. Such models may enable real-time, verifiable
knowledge updates and open up new possibilities for deploying
LMLM in resource-constrained or fact-sensitive environments.

Figure 6: Training loss on return
value tokens.

Limitations. LMLM is a promising step towards separating factual knowledge from language
models with many exciting future directions. Our current limitations include: (1) It does not
guarantee perfect factuality during generation. Noise in the database and errors from fuzzy matching



can introduce inaccuracies. However, such issues are easily traceable and verifiable for LMLM.
(2) LMLM introduces additional tokens for lookup queries, which increases training and inference
costs. (3) The current implementation focuses on entity-level factual knowledge, which captures
only a subset of the broader knowledge spectrum. (4) Our experiments are limited to small models
and datasets due to compute constraints. Although sufficient to show core benefits, scaling up may
improve performance and support more complex tasks.

5 Related Work

Parametric vs. Non-Parametric Knowledge. Language models represent knowledge either para-
metrically, by encoding facts into weights during pretraining, or non-parametrically, by retrieving
information from external sources at inference or training time [37]. Parametric models have been
shown to store large amounts of factual knowledge [14, 47], and scaling data or model size often im-
proves factual precision [8, 26]. However, such knowledge remains entangled with general linguistic
ability, making it hard to update, verify, or remove [45, 30, 2]. This motivates designs that explicitly
externalize factual content while keeping reasoning and linguistic skills within parameters.

Retrieval-Augmented and Semi-Parametric Models. Retrieval-augmented generation (RAG) im-
proves factuality by conditioning generation on retrieved passages [33, 25, 53], while tool-augmented
models extend capabilities with structured calls to APIs or environments [51, 63]. Beyond inference-
time retrieval, several methods integrate external memory during pretraining, such as REALM [21]
and RETRO [7], reducing memorization and improving generalization. Semi-parametric extensions
attach differentiable key—value stores or kNN memories to LMs [32, 52, 46, 43]. These approaches,
however, still rely on the underlying parametric model to decide when to retrieve or memorize. In
contrast, LMLM constrains memorization directly during pretraining by routing factual information
into a structured external database. This enables explicit, verifiable, and dynamically editable factual
memory while preserving parametric reasoning ability (see Table 11 for comparison).

Machine Unlearning and Knowledge Editing. Machine unlearning seeks to remove specific
knowledge from a trained model without full retraining [28, 9]. Existing methods perform gradient-
based removal [34] or optimize with preference-based objectives such as IdkDPO, NPO, or Sim-
NPO [36, 65, 16]. While effective for small forget sets, these methods often reduce utility or
over-erase related content due to the tight coupling between factual and general knowledge in weights.
Recent work like MEMSINKS [19] introduces parameter-space isolation to improve controllability,
yet facts remain embedded in parameters. Our approach departs from both lines: by externalizing
knowledge into a database, forgetting reduces to deleting entries—yielding scalable, precise, and
verifiable unlearning, while naturally extending to knowledge editing and updating [40, 17].

Table 3: Comparison of selected related work. v* = supported, X = not supported.

Knowledge Storage Performance
Model Internal External Integration PPL| Factualityt Unlearning Goal
Inference
kNN-LM v DS kNN search + prob. interp. v v X Neighbor interpolation
RAG v Docs Retrieved docs in prompt X v X Improve factuality
Post-training
Toolformer v APIs Tool calls X v X Extend via tools
Pretraining
RETRO v Docs Cross-attn. to retrieved chunks v v X Scale with retrieval
MemSinks v (sink neurons) - Memorization isolation v X v Localize memorization
LMLM (ours) V/(partial) KB Explicit lookup v v v Decouple facts from weights

6 Conclusion

We introduce LMLMs, a new class of language models for externalizing knowledge alongside an
integrated solution to achieve this. Our results demonstrate promising trends towards efficient use
of model capacity and offloading facts onto an external database. LMLM represents an alternative
way to store facts during pre-training, and has the potential to be integrated with other common
approaches developed for LLMs, including retrieval-based methods, symbolic reasoning, as well as
knowledge representation. Consequently, LMLM opens up new ways for future language models to
leverage the benefits of external knowledge databases such as verifiable updates — fundamentally, it is
much easier and more memory-efficient to learn how to look up facts rather than to remember them.
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A Implementation Details

A.1 Knowledge Extraction Details

Model and Data. We construct a high-quality seed dataset by sampling 1,000 passages from
SQuAD-v2 [49] and 1,000 passages from Wikipedia. These passages are annotated by GPT-40
with structured factual triples and used to train the ANNOTATOR model. The remaining Wikipedia
passages are used as the pre-training corpus for LMLM, with no overlap with the validation set.

Both the CORRECTOR and ANNOTATOR are based on LLAMA-3.1-8B-INSTRUCT, selected for
its strong instruction-following capabilities. The CORRECTOR and ANNOTATOR use a maximum
context length of 2048 tokens. All input sequences are truncated to 1024 tokens during LMLM
pretraining for consistency.

GPT-40 and ANNOTATOR annotations follow the format [dblookup(’Entity’, ’Relation’)
-> Value]. These are converted to a token-based format for pretraining: <|db_start|> Entity
<|sep|> Relation <|db_valuel|> Value <|db_end|>.

* The CORRECTOR is fine-tuned using LoRA (r=32, alpha=16) [23] for 2 epochs on 19k GPT-40-
annotated SQuAD-v2 passages, with a learning rate of 2 x 10~* and an effective batch size of 32.
Sequence packing is enabled to improve training efficiency.

* The ANNOTATOR is tuned with instruction on the 2k annotated passages using LoRA (r=32,
alpha=16), with a learning rate of 2 x 10~% and an effective batch size of 32. Training runs for 10
epochs with a maximum sequence length of 2048.

Annotation Pipeline. 'We adopt a three-stage pipeline to distill GPT-40’s structured annotations
into a lightweight and scalable ANNOTATOR model:

» Stage 1: Seed Annotation. GPT-40 is prompted to annotate input passages with structured
factual triples (entity, relation, value). These are embedded directly into the text using
the lookup call format. Prompt template is provided in Table 4.

Table 4: Prompt templates used for GPT-40 and ANNOTATOR annotation.

Model Prompt Template
GPT-40 You are a knowledge base construction expert. Extract entity-based factual knowledge from a
passage and annotate it using the format: [dblookup(’Entity’, ’Relationship’) -> Value].
These annotations simulate a knowledge base query for factual generation. Place dblookup right
after the entity and relationship appear, keeping the text flow natural.
Entity-Based Factual Knowledge Principles:

- Entities: Use full names for people, organizations, places, or works.

- Relationships: Use specific, reusable labels that define the connection clearly.

- Values: Keep them concise and factual.
Annotation Principles:

1. Extract ALL Atomic Facts: Each annotation should capture a single verifiable fact.

2. Precise Annotations: Use correct and specific entity-relationship-value triples.

3. Ensure Reusability: Use standardized and reusable entity and relation names.

4. Contextual Positioning Rule: Place annotations only after both entity and relation appear.

5. Preserve Text and Maintain Flow: Do not alter or disrupt the original text.
Example Annotation:
Input: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer, and actress.
Output: Beyoncé Giselle Knowles-Carter (born  [dblookup(’Beyoncé Giselle
Knowles-Carter’, ’Birth Date’) -> September 4, 1981] September 4, 1981) is an
[dblookup(’Beyoncé Giselle Knowles-Carter’, ’Nationality’) -> American]
American [dblookup(’Beyoncé Giselle Knowles-Carter’, ’Occupation’) -> singer,
songwriter, record producer, actress] singer, songwriter, record producer, and actress.
ANNOTATOR | Your task is to extract and annotate entity-based factual knowledge from the provided text.
Identify and annotate specific entities, relationships, and values using the dblookup format:
[dblookup(’Entity’, ’Relationship’) -> Value]
Annotation Guidelines:

- Inline Insertion: Insert dblookup before factual statements without altering the text.

- Atomic Facts: Each dblookup should capture one verifiable fact.

- Entities: Use full names for people, organizations, places, or works.

- Relationships: Use specific, reusable labels (avoid vague terms).

- Values: Keep them concise and factual.
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» Stage 2: Cleaning. A warm-start CORRECTOR model is trained on the annotated data for 2 epochs
without instruction prompts. Although underfit, it is effective at identifying noisy or ill-formed
annotations. Specifically, we discard lookup calls where the token-level loss on the entity or relation
is in the top 10% of the distribution.

» Stage 3: Annotation. We instruction-tune a new ANNOTATOR model on the cleaned dataset for 10
epochs. This model learns to detect when factual knowledge should be externalized and how to
issue structured lookup queries. The trained model is then applied to the full pre-training corpus to
generate large-scale factual supervision. Prompt template is provided in Table 4.

Additional Notes. We observe a bimodal loss distribution on entity and relation tokens in the GPT-
4o-generated annotations. This is likely due to GPT-40 accessing future context during generation,
which breaks the left-to-right constraint of autoregressive models. As a result, some annotations are
not recoverable from preceding context alone.

The CORRECTOR helps filter out such cases—removing lookup calls that are (1) not inferable from
prior context, (2) overly specific or inconsistent, or (3) syntactically malformed. This filtering
improves the quality of supervision provided to the final ANNOTATOR model.

Ultimately, the ANNOTATOR learns to insert lookup calls only when they are contextually grounded
and likely to enhance factual accuracy. This encourages retrieval-based reasoning and helps LMLM
offload factual knowledge from its parameters into a structured database.

A.2 Model Architecture and Training Details

We pretrain LMLM from scratch using GPT-2 and LLaMA2-style decoder-only architectures. Each
model uses its original tokenizer and vocabulary, extended with four special tokens reserved for
lookup calls. This results in a vocabulary size of 50,261 for GPT-2 models and 32,004 for LLaMA2
variants. Full architecture specifications, including hidden size, depth, and parameter counts, are
shown in Table 5.

All models are trained for 8 epochs with a context length of 1,024 tokens using mixed-precision
training. For LLAMA2-176M and LLAMAZ2-382M, we use a batch size of 256 and train for 105k
steps, totaling approximately 8 H100-days. Training is performed using Hugging Face Accelerate in
bf 16 precision. Hyperparameters such as learning rate, scheduler, and warmup steps are detailed in
Table 6.

Table 5: Model architecture, vocabulary size (including 4 special tokens), and parameter counts. We
report both total and non-embedding parameter counts.

Model Hidden Size #Layers #Heads Vocab Size Params (Total / Non-Embed)
GPT2-124M 768 12 12 50,261 124.4M / 85.5M
LLAMA2-176M 512 8 8 32,004 176.4M / 160.0M
GPT2-355M 1024 24 16 50,261 354.8M /303.4M
LLAMA2-382M 768 12 12 32,004 381.8M/357.3M

Table 6: Training hyperparameters. LLAMA2-176M, LLAMA2-382Mare initialized in float32
and trained with mixed precision (bf16) using Hugging Face Accelerate.

Model Batch Size  Total Steps LR Scheduler Warmup Precision
GPT2-124M,GPT2-355M 320 66k 5.0e-4 - - bf16 (mixed)
LLAMA2-176M, LLAMA2-382M 256 105k 5.0e-4 cosine 2000 bf16 (mixed)

A.3 Formalization of Training and Evaluation Objectives

We denote an autoregressive language model by py, which defines a probability distribution over a
sequence of tokens = = (x1,...,z7) as:

po() = Hpe(xt | z<t).
t=1
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Each token z; belongs to one of the following categories:

* Tore: original text tokens from the raw corpus;
* Tiain: Return values and <|db_end | > are excluded from training loss objective.
* 7Te, Ti: tokens representing entities and relation arguments within database lookup calls;
* 7T,: tokens corresponding to retrieved factual values (i.e., return values);
* Tab: special tokens used to mark database lookup segments, including:
— <|db_start|>: begins a lookup call;
— <|sep|>: separates entity and relation in the query;
— <|db_retrieve|>: signals the insertion point for the returned value;
— <|db_end|>: marks the end of the lookup block.

Here is an example using background color to highlight different token categories:

Torg:

Napoleon was born on <|db_start|> Napoleon <|sep|> Birth_Date <|db_retrievel|>
August 15, 1769 <|db_end|> August 15, 1769.

7?rain:

Napoleon was born on <|db_start|> Napoleon <|sep|> Birth_Date <|db_retrievel|>

August 15, 1769 <|db_end|> August 15, 1769.

Training Loss. The training objective excludes supervision over return values and the closing
marker <|db_end|> to prevent memorization of factual knowledge:

L) =— Z logpo(xt | v<t), where Toain = {t |z ¢ Ty U {<|db_end|>}}. (1
1€ Tirain

Evaluation Metrics. We report both perplexity and negative log-likelihood (NLL), computed over
different token subsets depending on the evaluation setting:

» Static & Dynamic Perplexity: Tokens corresponding to lookup calls and return values are
excluded:
1
| Tore

PP lealic/dynamic = exp

Z log po(@: | w<4)

tE€ Torg

* Normalized Perplexity: This metric fairly compares generation likelihood by excluding retrieved
factual values from the loss, but normalizing by the length of the original (fully reconstructed) text.
Specifically:

1
PPL,orm = exp ( |7_ ‘ Z log pg(; | $<t)>
org

t € Tirain

* Negative Log-Likelihood (NLL): Matches the training loss computation:

NLL(z) = — Z log po (@t | z<t).
1€ Tirain

A.4 Database and Retrieval Setting

We build our database by annotating the pre-training data, obtaining 54.6M knowledge triplets
consisting of 9.5M unique entities, 8.5M relationships and 16.2M unique values. For retrieval, we
employ a fuzzy matching mechanism based on the cosine similarity of sentence embeddings from
ALL-MINILM-L6-v2%. As shown in Figure 7, specifically, given a lookup call, we compute its
embedding and compare it with the embeddings of stored triplets in our database. If the highest
similarity score is below a threshold of 0.6, we return unknown to indicate that no sufficiently similar

https://huggingface.co/sentence-transformers/all-MinilM-L6-v2
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match was found. Alternatively, we implement a prefix-tree constrained generation, ensuring that
lookup calls remain covered by the structured knowledge representations. See detailed discussion in
Appendix D.3.

Sentence Embedding Space Prefix-Tree Decoding @

Mozart, Birth Date Napoleon, Birth Date

Napoleon, Mother
@

Napoleon was born on &)(Napoleon, Birthday) Napoleon was born on E)(Napoleon, Birth Date)

Figure 7: Unconstrained vs. Constrained Query Generation.

B Experimental Setup

B.1 Evaluation Benchmarks

Perplexity. We evaluate language modeling perplexity on a held-out Wikipedia test set consisting
of 1,000 passages (~245k tokens). We use the same tokenizer as the original model (either GPT2 or
LLaMAZ2) and apply Hugging Face’s Trainer with sequence packing enabled. For LMLM, reference
completions are annotated using ANNOTATOR. In the dynamic setting, the model generates its own
lookup arguments, but we force lookup calls to occur at the same positions as in the reference. The
exact formulation of perplexity is provided in Appendix A.3.

FactScore. We evaluate factual precision using FACTSCORE [39], a benchmark for open-ended
biography generation. Given a generated text, FactScore extracts a set of atomic facts and computes
the proportion that is supported by a trusted knowledge source. We use the first 100 biography queries
provided in the benchmark. All models generate outputs using greedy decoding (maximum length =
256 tokens; repetition penalty = 1.2). Factuality is validated using retrieval-augmented prompting
with ChatGPT, following the official evaluation protocol.?

For LMLM, which is not instruction-tuned, we use a fixed prompt template to elicit biography
completions: “Tell me a bio of <name>. <name> is” This prompt is applied consistently
across all samples. To encourage structured queries during generation, we apply a logit bias to four
special tokens in the vocabulary: <|db_start|>, <|sep|>, <|db_retrievel|>, and <|db_end|>,
with respective bias values of 5.0, 2.0, 2.0, and 2.0. Retrieval is performed using fuzzy matching with
a cosine similarity threshold of 0.6. If no relevant triplet is found, the model continues generation
using the plain text string unknown as a fallback. This behavior is untrained and left for future work
to improve robustness to retrieval failures.

T-REx. We adapt the T-REx subset from LAMA [47] for autoregressive models by filtering
examples in which the masked entity does not appear in the final position. This yields 11,615 left-to-
right compatible examples, following Schick et al. [S1]. Each input consists of a factual statement,
such as: “Jaideep Sahni (born 1968) is an Indian [MASK]” The model is expected to
complete the statement with a single token (e.g., actor). We evaluate using two metrics: Exact
Match, which checks whether the reference answer appears among the first five generated content
words, and Precision@ 1, which checks whether the first generated content token matches the
reference.

All models generate outputs using greedy decoding, and both metrics are computed after post-
processing to remove lookup calls. For LMLM, we enforce a database lookup call at the masked
position using fuzzy matching with a similarity threshold of 0.6. If no match is found, the model
continues with standard decoding without triggering a structured lookup call, as the target fact may
belong to common knowledge not covered by the database.

*https://github.com/shmsw25/FActScore

16


https://github.com/shmsw25/FActScore

PopQA. We evaluate on the long-tail subset of PopQA, which contains 1,399 queries about rare
entities (fewer than 100 monthly Wikipedia page views), following Asai et al. [3]. Performance is
measured by Exact Match (EM), i.e., whether the gold answer appears in the model output. To enable
fair comparison with small pre-trained models that are not instruction-tuned, we convert the QA
format into a knowledge-completion task by prompting GPT-4 to rewrite each query. This reduces
dependence on instruction-following ability and allows answers to be appended directly. All results
reported in the paper use this rewritten format. For example: Original: What is Ufa the capital
of? Rewritten: What is Ufa the capital of? Ufa is the capital of.

B.2 Machine Unlearning Setting

TOFU. The TOFU benchmark [36] evaluates unlearning efficacy in privacy-sensitive scenarios,
aiming to selectively remove a specific subset of information (the Forget Set) from a model (the Full
Model) while maintaining performance on retained information (the Retain Set) and general model
capabilities. The benchmark’s primary goal is to ensure the resulting Unlearned Model is statistically
indistinguishable from a model trained exclusively on the Retain Set (the Retain Model).

The TOFU benchmark comprises 200 synthetic author profiles, each associated with 20 QA pairs.
Performance is assessed using two primary metrics:

* Model utility: An average of three metrics—ROUGE (answer quality), Answer Probability (the
likelihood of correct answers), and Truth Ratio (the likelihood assigned to correct answers over
distractors)—evaluated on the Retain Set, Real Author Set, and World Facts Set.

* Forget quality: The p-value from a statistical test comparing the unlearned model to the correspond-
ing retain model, quantifying the effectiveness of knowledge removal.

Our implementation directly builds upon the official TOFU repository*.

We use LLAMA-3.2-1B-INSTRUCT as the base model and compare against NPO [65], a state-of-
the-art method for unlearning. We test on forget 5% setting. For LMLM, unlearning is implemented
simply by removing relevant entries corresponding to the Forget Set from the external database.

NPO baseline. Negative Preference Optimization (NPO) [65] is a state-of-the-art method for
selective knowledge removal, especially effective for unlearning large portions (50%-90%) of training
data. Unlike traditional gradient-based unlearning methods, which often degrade a model’s general
performance and struggle to forget only 10% of training data, NPO explicitly guides the model away
from undesired (negative) samples, maintaining stable training dynamics and preventing catastrophic
performance degradation. Further details can be found in the original paper [65]. We follow the
official TOFU implementation, running unlearning fine-tuning three times with different random
seeds and reporting the mean and variance in Figure 5.

LMLM Implementation of TOFU Evaluation. To evaluate unlearning effectiveness, we assume
the synthetic knowledge used in TOFU is fully represented in our external database. We annotate the
complete TOFU dataset (4k synthetic QA pairs) using GPT-4o, subsequently building our database
from these annotations.

Since LMLM is applied to pre-existing models, we introduce an additional step to ensure the model
can utilize the lookup mechanism effectively. Specifically, we first perform a warm-up training stage
on annotated Wikipedia data, followed by fine-tuning on the annotated TOFU training set, using the
same hyperparameters as the baseline models (see Table 7).

For ROUGE evaluations, generated answers are post-processed to remove structured lookup tokens
before computing the scores. For likelihood-based metrics (Answer Probability and Truth Ratio),
we evaluate the model’s probabilities only on the annotated training input segments (7 _train, as
defined in Appendix A.3). Thus, ROUGE scores remain directly comparable across methods, but
likelihood-based metrics are not directly comparable due to differences between raw and annotated
reference answers.

Interpreting TOFU Results. When interpreting TOFU results, the key indicator of successful
unlearning is how closely the unlearned model’s performance matches that of the retain model.

*https://github.com/locuslab/open-unlearning
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Ideally, the two models should be indistinguishable, indicated by a forget quality p-value above
0.05. In practice, this means the unlearned model should achieve forget quality above 0.05 while
maintaining consistent model utility, and its ROUGE scores on both the Forget Set and Retain Set
should closely resemble those of the retain model. Importantly, lower ROUGE scores on the Forget
Set do not necessarily imply better unlearning, as these reductions could also result from general
performance degradation.

B.3 Experimental Setting of Further Analysis

Selective Knowledge Offloading. We conduct a preliminary study on the trade-off between storing
knowledge in model parameters and offloading it into the database. To enable selective externalization,
we revert only a subset of annotations based on model learning difficulty.

Specifically, we first train a LMLM model with the original annotated data described in Sec. 3 and
a STANDARD model with the unannotated data for one epoch. We measure the difference of the
language modeling loss for the 5 tokens following each lookup for the LMLM and the corresponding
tokens in the clean document for the STANDARD model. A larger gap suggests that STANDARD
struggles to memorize the fact—typically long-tail or highly specific knowledge—making it a strong
candidate for externalization. A smaller gap indicates that (i) the fact can be easily memorized by
STANDARD, (ii) contextual hints make it trivial, or (iii) database lookups in LMLM are noisy or less
useful. We calculate this loss difference across the full Wikipedia dataset, and include the distribution
( Figure 12) and random qualitative examples from each quantile bucket for illustration ( Table 14).

Based on this criterion, we then pretrain LLMs with varying knowledge offloading ratios
[0%, 25%, 50%, 75%, 90%, 100%]. Here, 0% corresponds to STANDARD (fully parametric) and
100% to LMLM (fully externalized). Offloading is applied progressively, starting with triplets that
show the largest loss differences. The corresponding loss thresholds are: 3.51 for 10% offloading,
2.24 for 25%, 1.25 for 50%, 0.64 for 75%, and 0.13 for 90%.

B.4 Experimental Settings by Figure

We detail the experimental configurations corresponding to each figure in the main paper:

* Figure 8: (Left) We eval on a held-out wikipedia validaition set of 100 passages (~21k tokens)
every 1000 steps during pretraining. (Middle) The detailed results for FactScore and NLU are in
Table 1 and 12. (Right) The backbone model is LLAMA-3.2-1B-INSTRUCT. We implement
LMLM evaluation based on TOFU official repo It is forget 5% setting. The detailed results for
baselines methods are copied from TOFU repo.

* Figure 5: For NPO baselines, we follow the official TOFU implementation, running unlearning
fine-tuning five times with different random seeds (0, 42, 420, 69, 4497) and reporting the mean and
variance throughout training. The ideal performance of the retain model is indicated with a marker.
For LMLM, which does not require training to unlearn, we show only the pre- and post-unlearning
results. Details on how to interpret the results are in Appendix B.2.

» Figure 6: We use the TOFU synthetic training set to compare training objectives by tracking the
loss on return value tokens—the factual spans intended to be retrieved via lookup. Models are
evaluated every 125 steps during training.

Table 7: Training hyperparameters used in different experimental settings. (Full set: 4k QA pairs,
Retain set: 3.8k QA pairs)

Setting learning_rate warmup_steps num_train_epochs batch_size dataset

Finetune (Standard) le-5 0.2 5 32 TOFU trainset

Warmup (LMLM) 5e-5 0.25 1 64 Annotated Wikipedia (9.8k chunk)
Finetune (LMLM) 5e-5 0.2 5 32 Annotated TOFU trainset
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Figure 8: Results overview. (Left) LMLM achieves consistently lower perplexity during pre-training,
indicating that offloading factual knowledge improves pre-training efficiency. (Middle) LMLM
significantly improves factual precision over its STANDARD counterparts while maintaining NLU
performance. (Right) On the TOFU machine unlearning benchmark, LMLM forgets targeted facts
while preserving general model utility. Results shown for LMLM with a LLaMA backbone; * denotes
off-the-shelf models.

C Detailed Results

Results Overview We summarize our main findings in Figure 8. In particular, even smaller
instances of LMLM match or exceed the performance of much larger off-the-shelf models. These
results highlight the potential of LMLM to scale efficiently by offloading knowledge to an external
database, thereby maintaining strong factual accuracy with fewer parameters.

How Does LMLM Compare to RAG? Unlike Retrieval-Augmented Generation (RAG), which
expands knowledge access at inference time, LMLM constrains factual memorization during pre-
training by externalizing entity-level knowledge into a database. Since facts are not internalized
in model weights, they can be instantly modified or removed through database operations alone
(§ 3.3)—capabilities that are difficult to achieve with post-hoc retrieval. Current RAG systems still
encode facts in parameters, so modifying specific knowledge requires model retraining or careful
prompting to override internalized information [62, 22, 57].

To contextualize their respective Typle 8: Comparison of RAG vs. LMLM on factual precision.

strengths, we compare against a con-  Reqylts are shown for GPT2-355M.
trolled RAG baseline that retrieves the

top-4 Wikipedia articles and prepends  Model FactScore t  T-RExEM T PopQA Acc 1
them to the standard LMs during gen-  ~peNAI/GPT2-355M" 15.2 28.4 19.1
eration. As shown in Table 8, LMLM +RAG 20.1 75.8 37.5
achieves higher FactScore and PopQA  GPT2-355M-LMLM 23.9135 58.7 17 52.04 145

accuracy at the current scale, indicat-

ing that it effectively queries its database for precise factual information. In contrast, RAG achieves
stronger performance on T-REXx, likely because the benchmark’s queries are drawn verbatim from
Wikipedia, making retrieval from the same corpus nearly perfect.

These results point to complementary strengths: RAG enriches pretrained models (including LMLM)
with broader contextual information at inference, whereas LMLM restructures pretraining itself to
provide fine-grained factual grounding that is directly editable and verifiable. A hybrid system could
retrieve documents with RAG for contextual understanding while using LMLM for precise, verifiable
entity lookups within those documents.

Additional Notes on RAG. We include a standard retrieval-augmented generation (RAG)
baseline as a point of reference, following Lewis et al. [33]. The retriever uses BM25 (via the
BM25Retriever from FlashRAG’) to select the top-4 relevant chunks from English Wikipedia,
segmented into 100-word passages. These passages are prepended to the model input using

https://github.com/RUC-NLPIR/FlashRAG/blob/main/docs/original_docs/baseline_
details.md#global-setting
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the prompt format: “Answer the question or complete the prompt based on the
given document. The following are given documents: [RETRIEVED_DOCUMENTS]
\n [USER_QUERY]” (see Table 18). Retrieval is performed at inference time only, without
fine-tuning. We evaluate RAG using OPENAI/GPT2-355M to match the scale of LMLM.

As an additional note on Table 8, RAG performs reasonably well on FactScore, and we expect further
improvements with larger, instruction-tuned models, as smaller models may struggle to effectively use
retrieved context. RAG also achieves high scores on T-REx, though this may reflect the benchmark’s
overlap with Wikipedia, where many completions are retrieved verbatim. We include RAG results to
provide a broader empirical context.

While both RAG and LMLM access external knowledge, they differ fundamentally. RAG retrieves
unstructured text from Wikipedia and relies on the model to extract relevant content. In contrast,
LMLM learns to issue explicit, structured lookups only when needed, interleaving retrieval with
generation at the entity level. This enables more precise and easily verifiable access to factual
knowledge. The two approaches are complementary—RAG could be applied on top of LMLM for
potential additional gains.

Factual Degradation When Forcing Internal Recall. Table 9 shows the full results when database
access is disabled, forcing models to rely solely on internal parameters. Across all variants, we
observe a consistent drop in factual precision, often below the STANDARD baseline. This degradation
supports our main claim: LMLM does not memorize factual answers but retrieves them externally.
These results highlight that what the model knows and forgets is determined by the database, enabling
precise and direct control through simple edits.

Table 9: Impact of database access on factual precision. Disabling access leads to performance drops
in both FACTSCORE and T-REXx, confirming that LMLM relies on retrieval from external database
rather than memorization.

Metrics
Model Model Type Database FActScore (%) T T-REx Exact Match (%) 1
STANDARD - 10.7 41.2
GPT2-124M LMLM X 149 57 32.0 994
LMLM v 20.6 54.6
STANDARD - 10.1 46.3
LLAMA2-176M LMLM X 113 193 349 195
LMLM v 30.6 54.1
STANDARD - 14.4 449
GPT2-355M LMLM X 104 55 36.4 555
LMLM v 23.9 58.7
STANDARD - 14.0 52.0
LLAMAZ2-382M LMLM X 12.8 191 38.5 196
LMLM v 31.9 58.1

Additional Loss Curves. Figure 9 shows the full training loss curves on different token types in
the TOFU synthetic trainset. While the main paper focuses on return value tokens, we include loss
on T, entity, and relationship tokens here for completeness. We observe no significant difference
between training objectives on these tokens.
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Figure 9: Training loss on 7, tokens, entity tokens, relationship tokens, and return value tokens.
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Table 10: Comparison of LMLM against prior memory-based work on EM (%). All baseline numbers
are reported from their original papers. “Params” refers to non-embedding model parameters.
“External Memory” summarizes the format or corpus scale used at inference.

Model Params External Memory T-REx EM (%)
CoLAKE 0.11B v' 5M Wikidata Triples 28.8
K-Adapter 0.34B v 42M Adapter Parameters 29.1
BERT-KNN  0.34B v 900M Instance Datastore 38.7
EaE 0.11B v" IM Entity Memory 38.6
FILM 0.11B v 1.7M Wikidata Triples 442
Toolformer 6.0B v API Access to Wikipedia 53.5
LMLM 0.16B v’ 54.6M Triples 54.1
LMLM 0.36B v’ 54.6M Triples 58.1

Table 11: Comprehensive comparison of related methods. v = supported, X = not supported, and ~
= partial support (e.g., edit without unlearning, or not explicitly evaluated in prior work).

Model Architecture Knowledge Storage Performance Goal

Internal External Integration PPL| Factuality] Unlearning
Pretraining
REALM [21] Enc-only v Docs Prompt prepend v v X Joint retriever + LM
RETRO [7] Dec-only v Docs Cross-attn. to retrieved chunks v v X Scale with retrieval
Atlas [27] Enc—dec v Docs FiD (passages) v v X Few-shot generalization
Memorizing Transformer [61] Dec-only V (params-+cache) - kNN attention (cache) v x X Long-term memory
MemSinks [19] Dec-only  (sink neurons) - Memorization isolation v X v Localize memorization
LMLM (ours) Dec-only V (partial) KB Explicit lookup v v v Decouple facts from weights
Post-training
K-Adapter [59] Enc + adapters v (params+adapt.) - Adapter layers X v ~ Inject KB via adapters
RAG [33] Enc-dec v Docs Retrieved docs in prompt X v X Tmprove factuality
Toolformer [51] Dec-only v APIs Tool calls X v X Extend via tools
MEMIT [38] Dec-only v - Weight editing X X v Direct fact edit
Inference
kNN-LM [52] Dec-only v DS kNN search + prob. interp. v v X Neighbor interpolation
RAG-variant Dec-only v Docs Retrieved docs in prompt X v X LLM + retrieval
Memory-based Models
CoLAKE [54] Enc-only v KG Joint MLM over KG v v X Joint language + knowledge repr.
BERT-KNN [31] Enc-only ' Docs kNN search X v X QA for long-tail facts via retrieval
EaE [18] Enc-only v Entity Mem Entity Mem + prob. interp. v v X Entity-specific memories
FILM [58] Enc-only v KB Entity-fact Mem + prob. interp. X v ~ Neuro-symbolic KB with fact injection

Comparison with memory-based related work. We also compare LMLM with prior memory-
augmented language models ( Table 11). Several approaches externalize factual knowledge by
attaching explicit memory modules. Fact-Injected Language Model (FILM) [58] augments LMs
with a neuro-symbolic memory of entity—fact pairs. CoLAKE [54] jointly pretrains language and
knowledge representations through a modified Transformer encoder. BERT-kNN [31] and EaE [18]
use kNN-style retrieval or entity-specific memories to handle rare entities. K-Adapter [59] injects
structured knowledge into PLMs via adapter modules. While these methods improve factuality by
coupling models with external memories, they generally do not address controllable unlearning,
which distinguishes LMLM from this line of work.

Table 10 shows that LMLM achieves consistently higher precision (Exact Match) on T-REx compared

to prior memory-augmented and tool-augmented models, while using fewer parameters and without
depending on large external tool APIs. These results highlight both the modeling advantages of our
approach and its empirical gains over existing memory-based baselines.
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Figure 10: Frequency distribution of database entities matched to Wikipedia entries. The database
spans a wide range of entity frequencies, including many long-tail cases.

D Further Analysis

D.1 Does LMLM Affect Language Understanding?

Beyond the promising results, it is important to verify that our approach does not compromise the
general capabilities of pretrained language models. To assess this, we follow Penedo et al. [44] and
evaluate on a set of "high-signal" Natural Language Understanding (NLU) benchmarks (as shown
in Table 12). Given our focus on smaller models, we exclude benchmarks where both GPT-2 and
similarly sized models fail to rise above the noise floor [15]. This leaves us with the following
benchmarks: Commonsense QA [56], HellaSwag [64], PIQA [5], SIQA [50], and ARC Easy [12].
Implementation details can be found in lighteval®.

It is important to mention that STANDARD and LMLM are pretrained solely on the Wikipedia dataset,
which makes certain benchmarks not applicable for comparison with off-the-shelf models. However,
the chosen NLU benchmarks still effectively address concerns about the potential negative impact on
the models’ general language understanding ability introducing by removing factual knowledge.

Table 12: Evaluation of NLU benchmarks using normalized accuracy metrics, demonstrating that
separating factual knowledge during pretraining does not compromise overall model performance.

Metrics
Model Model Type CSQA  HellaSwag PIQA  SIQA ARC Easy | All
Random Chance - 20.0 25.0 50.0 33.3 25.0 \ 30.7
OPENAI/GPT2-124M* - 303 298 625 407 395 | 406
STANDARD 265 26.4 553 392 342 | 363
GPT2-124M LMLM 279 26.8 551 399 350 | 370
STANDARD 26.6 27.0 554 40.4 33.9 36.7
LLAMA2-176M LMLM 268 282 552 402 358 | 372
OPENAI/GPT2-355M" - 326 37.1 664 412 436 | 442
STANDARD 28.1 27.0 55.7 40.0 37.8 37.7
GEI25355M LMLM 271 277 568  40.1 369 | 377
STANDARD 2738 288 552 410 358 | 377
LLAMAZ2-382M LMLM 269 291 561 408 359 | 378

* Models marked with an asterisk (*) are off-the-shelf models with no additional training.

D.2 Entity Frequency Analysis in the Knowledge Database

We analyze the prevalence of knowledge triplets in our database by estimating how often each entity
appears in Wikipedia. Using entity frequency statistics from Kandpal et al. [30], we apply fuzzy
string matching (threshold = 70) to align database entities with Wikipedia entries. Figure 10 shows
the distribution of matched entity frequencies. The results indicate that our database spans both

Shttps://github.com/huggingface/lighteval
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Figure 11: Effect of different offloading ratios; within our scope, more offloading is beneficial.

common and long-tail knowledge, with a substantial portion of entities being less frequent in the
overall training corpus.

How much knowledge should be externalized? For our main experiments, we aim to exhaustively
annotate all atomic entity-level knowledge. However, this may not be optimal. To explore the trade-
off between storing knowledge in model parameters versus offloading it into the database, we devise
a ranking criterion that quantifies the value of each lookup. Facts that require a lookup to achieve a
high likelihood are difficult to learn—typically long-tail or highly specific knowledge—and should
be externalized. On the other hand, externalizing facts that already have a high likelihood—typically
common or easily inferred knowledge—provides limited upside and may harm general capabilities.

Concretely, we first train a LMLM model and a STANDARD model for one epoch on the data described
in Sec. 3. For each fact, we then measure the average loss difference on its factual value tokens.
A large difference indicates that STANDARD LMs struggle to learn the fact (See Appendix B.3
for qualitative examples). Using this criterion, we pretrain LLMs with varying annotation ratios
(e.g. For 90% knowledge offloading, we keep the top 90% knowledge with highest loss difference),
interpolating between the two extremes of STANDARD (fully parametric) and LMLM (fully offloaded).

As shown in Figure 11, greater offloading consistently improves language modeling (lower perplexity)
and factual precision, while preserving natural language understanding. This suggests that, for
knowledge representable as triplets, increasing the offloading ratio is beneficial. Extending this
spectrum to broader and more abstract forms of knowledge remains an open direction for future work.

D.3 Ablation: Unconstrained vs. Constrained Query Generation

We compare fuzzy matching with prefix-tree constrained decoding for generating (entity,
relation) queries. In the unconstrained setting, the model freely generates queries, which are
then matched against the database using cosine similarity over sentence embeddings. This approach
provides flexibility but may result in syntactically invalid or ambiguous queries.

In contrast, prefix-tree decoding restricts generation to valid entries encoded in a trie structure,
ensuring syntactic correctness and reducing hallucinations. It is also compatible with beam search
and nucleus sampling, allowing the model to explore multiple valid paths in the induced knowledge
graph. See Appendix A.4 for more details.

As shown in Table 13, fuzzy matching consistently outperforms prefix-tree decoding in our setting,
and is therefore used in all reported experiments. While prefix-tree decoding offers stronger structural
guarantees, we find its diversity can be overly constrained by a relatively small database. As both the
database and model scale, we expect the benefits of structured decoding to become more pronounced.

D.4 Qualitative Results

To complement our quantitative results, we present qualitative examples comparing outputs from
LMLM, STANDARD, and off-the-shelf models. As shown in Table 15, 16 and 17, LMLM produces
concise, factually grounded responses by leveraging external knowledge, whereas standard and
off-the-shelf models often include hallucinated content. These examples illustrate how knowledge
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Table 13: Comparison of Fuzzy Match and Prefix-Tree Decoding. Fuzzy matching, used by default

in LMLM, offers higher flexibility; prefix-tree decoding is included for ablation.

Model Model Type Decoding FActScore (%) 1 FActScore w/o len. penalty T  Facts / Response 1
STANDARD - 10.1 11.8 23.7
LLAMA2-176M LMLM Prefix-tree 23.0_75 239 g5 34.6.32
LMLM Fuzzy Match 30.6 324 314
STANDARD - 14.0 16.6 32.4
LLAMA2-382M LMLM Prefix-tree 235 5.4 31314 28.1 56
LMLM Fuzzy Match 31.9 32.7 33.7
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Figure 12: Distribution of per-triplet loss differences with quantile buckets used to select triplets for

externalization.

offloading enables LMLM to maintain factual precision, further supporting our central finding
( Figure 8) that LMLMs achieve more with less by scaling efficiently through externalized knowledge.
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Table 14: Qualitative examples of triplets selected for externalization at different quantile buckets
of per-triplet loss difference. Higher quantiles correspond to facts that are harder for STANDARD to
memorize (long-tail or specific knowledge), while lower quantiles correspond to easier or contextually
obvious facts. The triplet of interest in each example is highlighted in color.

Delta Quantile Example

Loss
3.31 75%-100% Joseph Charles “Joe” Avellone III, M.D. (born < |db_start|[> Joseph Charles Avellone
III<|sep|> Birth Date<|db_retrieve|> September 29, 1948<|db_end|>
September 29, 1948) is an <|db_start|> Joseph Charles Avellone III<|sep|>
Nationality<|db_retrieve|> American<|db_end|> American <|db_start|>
Joseph Charles Avellone III<|sep|> Occupation<|db_retrieve|> medical
doctor, businessman, politician<|db_end|> medical doctor, businessman, and
politician ~ from  <|db_start|> Joseph Charles Avellone III<|sep|> State
of Residence<|db_retrieve|> Massachusetts<|db_end|> Massachusetts...He
then worked as CEO of biomedical company <|db_start|> Joseph Charles
Avellone III<|sepl|> CEO Of<|db_retrieve|> Veritas Medicine<|db_end|>
Veritas Medicine ...
3.23 75%-100% Elsa van Dien...Her thesis, supervised by <|db_start|> Elsa van Dien<|sep|> Thesis
Supervisor<|db_retrieve|> Donald Menzel<|db_end|> Donald Menzel , discussed
the Stark effect in the Balmer lines of early type stars.
1.41 50%-75% Kermia albicaudata is a <[db_start|> Kermia albicaudata<|sep|> Species
Type<|db_retrieve|> sea snail<|db_end|> species of sea snail, a ma-
rine gastropod mollusk in the <|db_start|> Kermia albicaudata<|sep|>
Family<|db_retrieve|> Raphitomidae<|db_end|> family Raphitomidae....
Distribution. This species occurs in the <|db_start|> Kermia albicaudata<|sep|>
Geographical Distribution<|db_retrieve|> Persian Gulf<|db_end|>

Persian Gulf .
0.82 25%-50% Havering Country Park... The land was purchased by the <|db_start|>
Havering Country Park<|sep|> Purchased By<|db_retrieve|> Greater
London Council<|db_end|> Greater London Council and opened to the public in
<|db_start|> Havering Country Park<|sep|> Opening Year<|db_retrieve|>
1975<|db_end|> 1975, with ownership transferring to <|db_start|> Havering
Country Park<|sep|> Ownership Transferred To<|db_retrieve|> Havering
Council<|db_end|> Havering Council in <|db_start|> Havering Council<|sep|>
Ownership Year<|db_retrieve|> 1986<|db_end|> 1986.
0.003 0%-25% Kagoshima District, Kagoshima is a district located in <|db_start|> Kagoshima
District, Kagoshima<|sep|> Located In Prefecture<|db_retrievel|>

Kagoshima Prefecture, Japan<|db_end|> Kagoshima Prefecture, Japan .
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Table 15: Qualitative examples of generated outputs from models with STANDARD and LMLM

settings.

Model Generated Output

LLAMA2-176M- Ko Itakura is the <|db_start|> Ko Itakura<|sep|> Position<|db_retrieve|>

LMLM center-back, defensive midfielder<|db_end|> center-back and defensive mid-
fielder for <|db_start|> Ko Itakura<|sep|> Current Team<|db_retrievel|>
Japan national team<|db_end|> Japan’s senior squad in the <|db_start|>
Ko Itakura<|sep|> League Participation<|db_retrieve|> 2022 FIFA
World Cup<|db_end|> 2022 FIFA World Cup. He was born on <|db_start|> Ko
Itakura<|sep|> Birth Date<|db_retrieve|> January 27, 1997<|db_end|>
January 27, 1997.
Career. On <|db_start|> Ko Itakura<|sep|> Joined Club<|db_retrievel|>
Kawasaki Frontale<|db_end|> July 30, 2015, it was announced that Itakura
joined JFL club Kawasaki Frontale from their youth system. In <|db_start|> Ko
Itakura<|sep|> Moved To<|db_retrieve|> Groningen<|db_end|> August
2016 he moved to Groningen. On <|db_start|> Ko Itakura<|sep|> Debut
Date<|db_retrieve|> June 17, 2019<|db_end|> June 17, 2019, Itakura debuted
against <|db_start|> Ko Itakura<|sep|> Debut Opponent<|db_retrievel|>
Uruguay<|db_end|> Uruguay in an international friendly match. After playing only one
game for Groningen during his debut season, Itakura left the club at the end of the year.
LLAMA2-176M- Ko Itakura is the name given to an ancient Japanese settlement in what is now part
STANDARD of Shimane Prefecture, Japan. The site was discovered by archaeologists from Kyoto
University and has been excavated since 1978.
The first written reference to this place appears in "Nihon Koki", which dates back to the
year 604 AD (Kumano no Kan’i), but it seems that there were already settlements at this
location before then. In the early Heian period, the area around modern-day Shimonoseki
City became known as , meaning "the land between rivers". During the Kamakura period,
the region came under control of the Ashikaga clan who built their capital on Mount
Hiei near present-day Naka Ward. After the fall of the Ashikaga shogunate, they lost
control over much of eastern Japan, including the area surrounding modern-day Shimane
prefecture. However, after the Battle of Sekigahara, Tokugawa Ieyasu established himself
as lord of most of northern Japan with his domain centered on Matsue Castle. This castle
later fell into disrepair during the Edo Period, and
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Table 16: Qualitative examples of generated outputs from models with STANDARD and LMLM

settings.

Model Generated Output

LLAMA2-382M- Ko Itakura is the <[db_start|> Ko Itakura<|sep|> Position<|db_retrieve|>

LMLM center-back, defensive midfielder<|db_end|> center-back and defensive
midfielder for <|db_start|> Ko Itakura<|sep|> Team<|db_retrieve|> Japan
national team<|db_end|> Japan’s national team. He was born in <|db_start|> Ko
Itakura<|sep|> Birthplace<|db_retrieve|> Yokohama<|db_end|> Yokohama
on <|db_start|> Ko Itakura<|sep|> Birth Date<|db_retrieve|> January
27, 1997<|db_end|> 27th January 1997. His father is from <|db_start|> Ko
Itakura<|sep|> Father’s Origin<|db_retrieve|> Japanese<|db_end|>
Japanese and his mother is from <|db_start|> Ko Itakura<|sep|> Mother’s
Origin<|db_retrieve|> Japanese<|db_end|> Japanese. When he was young, he
played baseball but after watching an exhibition match against a professional baseball
club, he decided to become a footballer. In <|db_start|> Ko Itakura<|sep|>
Joined Club Year<|db_retrieve|> Kawasaki Frontale<|db_end|> 2013, he
joined J1 League side Kawasaki Frontale. However, he could not play many matches
behind Shusaku Nishikawa until <|db_start|> Ko Itakura<|sep|> First Match
as Starter<|db_retrieve|> Uruguay<|db_end|> September when he debuted
at right back against Uruguay. After that, he became a regular player under manager
<|db_start|> Ko Itakura<|sep|> Manager Under Whom Became Regular
Player<|db_retrieve|> Japan national team<|db_end|> Shinji Ono. On
<|db_start|> Ko Itakura<|sep|> Debut Date<|db_retrieve|> June 17,
2019<|db_end|> 17 June 2019, he debuted with Japan national team against Chile during
the <|db_start|> Ko Itakura<|sep|> Competition Debut<|db_retrieve|>
Uruguay<|db_end|> 2019 Copa América.
Career statistics. “Updated to end of 2018 season”. National team career. In
August 2016, Itakura was elected to the <|db_start|> Ko Itakura<|sep|>
U-23 Selection<|db_retrieve|> Japan U-20 national team<|db_end|>
Japan U-20 national team for the <|db_start|> Japan U-20 national
team<|sep|> Tournament Participation<|db_retrieve|> 2017 U-20 World
Cup<|db_end|> 2017 U-20 World Cup. At this tournament, he played all 4 matches as
left back of three back defense. In May 2019, he was selected for the <|db_start|> Ko
Itakura<|sep|> Senior Squad Selection<|db_retrievel|>
LLAMA2-382M- Ko Itakura is the first album by Japanese singer-songwriter Koda Kumi, released on
STANDARD November 19, 2003 under Sony Music Japan label. The album was reissued in March
2004 with two bonus tracks: “Kimi no Uta” and “Tell Me A Bio”.
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Table 17: Qualitative examples of generated outputs from different off-the-shelf models.

Model

Generated Output

OPENAI/GPT2-124M

Ko Itakura is the author and editor of The Art Of Anime, which has been published by
Kadokawa since 2013 (and was also translated into English in 2015). I’m not sure if I
can say much more about this book than what you’ve said before but it’s pretty good!
This manga really does have an interesting story arc that makes for some great reading
experience as well as being very entertaining to read on its own terms!!

OPENAI/GPT2-355M

Ko Itakura is an American author, illustrator and animator who has worked on many anime
series including: Naruto, One Piece (one of the most popular manga in Japan), Bleach,
Dragon Ball Z, Ghost in The Shell, Gintama.

He also created characters for various games such as Final Fantasy VII, Pokémon X/Y, or
Pokemon Omega Ruby/Alpha Sapphire.

The story takes place during World War Il when Japanese soldiers are sent to fight against
Nazi Germany’s forces under General Yamamoto at Kure Castle near Tokyo.

After defeating them all except one—Genosha-Kaiji from Earth Kingdom fame—they
return home with their families but find that there was no sign left behind by those killed
fighting alongside them; instead it seems like everything had been destroyed!

Now this isn’t exactly what you’d expect if your favorite character were actually dead...
but then again maybe he wasn’t?

Well I'm sure we’ll get into more details about him later so stay tuned...

PYTHIA-1B

Ko Itakura is the name of my father.”

I don’t know him,§aid the man, but I can tell you that he was an excellent swordsman
and a good fighter. He had many friends in the army who were killed by bandits or
robbers when they tried to capture them. They would have been glad if someone like
him could help them escape from their captors. But it’s not possible for anyone with
his skill to be captured alive. So we must find out where he lives so that we may rescue him.”

The man went on: He has lived here all these years because there are no other people
around. The only thing that keeps him going is the hope that someday some day he will
return home. And now he wants to see you again. Please come this way.”

They walked along the road until they came to a small house which looked as though it
might belong to one of the villagers. A woman opened the door and invited them inside.
She led them into a room full of bookshelves. There were several large tables covered with
maps and charts. On each table sat a young girl about ten years old. Her hair was long and
black and her eyes were bright blue. She wore a white dress and carried

LLAMA2-7B

Ko Itakura is the author of *The Artist’s Way* (4.06 avg rating, 12 ratings, 3 reviews),
*The Artist’s Way Workbook: A Course in Discovering and Recovering Your Creative
Self* (5/5(7)).

*The Artist’s Way* by Julia Cameron — Book Review | The Guardian

Julia Cameron has been an active artist for more than thirty years. She was born in London
but now lives in New York City with her husband, Martin. They have three children
together. In addition to writing books on creativity, she also writes plays and musicals.
Her latest book, *Finding Water*, will be published this fall.

She is currently working on another novel called *The Last Days Of Summer*. This article
contains affiliate links which means that if you click through from here we may receive
compensation at no extra cost to yourself! We only recommend products or services that
we believe are useful for our readers so please feel free to check them out before making
any purchases :) Thank you for reading our blog post today!! If there’s one thing I know
about myself it’s how much I love reading blog posts like these ones because they always
make my day better when someone
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Table 18: Example of input and output from the RAG model. The model is prompted using retrieved
documents and a user query.

Field

Content

Prompt Template

Answer the question or complete the prompt based on
the given document. The following are given documents:
[RETRIEVED_DOCUMENTS] \n [USER_QUERY]

Retrieved Documents

"Kang Ji-hwan" is a South Korean actor born Jo Tae-gyu on March
20, 1977. He began in musical theatre before transitioning to
television and film, with notable roles in dramas like "Be Strong,
Geum-soon!", "Capital Scandal", and "Hong Gil-dong".

"90 Days, Time to Love" is a 2006 South Korean TV series starring
Kang Ji-hwan, centered on a professor and scriptwriter who rekindle
a romance after discovering they are cousins.

Kang also produced and starred in the musical "Cafe In", becoming
the first Korean actor to perform at Tokyo Globe Theatre.

User Query

Tell me a bio of Kang Ji-hwan.

Model Input

Answer the question or complete the prompt based on the given
document. The following are given documents:

"Kang Ji-hwan" is a South Korean actor born Jo Tae-gyu on March
20, 1977. He began in musical theatre before transitioning to
television and film, with notable roles in dramas like "Be Strong,
Geum-soon!", "Capital Scandal", and "Hong Gil-dong".

"90 Days, Time to Love" is a 2006 South Korean TV series starring
Kang Ji-hwan, centered on a professor and scriptwriter who rekindle
a romance after discovering they are cousins.

Kang also produced and starred in the musical "Cafe In", becoming
the first Korean actor to perform at Tokyo Globe Theatre.
Tell me a bio of Kang Ji-hwan.

Model Output
(OPENAI/GPT2-
355M)

Kang Ji-hwan is known primarily for portraying characters with complex emotions like
"the heartbreak," which can be seen throughout most drama shows nowadays. His character
arc often involves both romantic relationships and difficult situations where people have
conflicting feelings about their own lives. For example during this season we see how
complicated it is for two men trying desperately not get divorced because there isn’t
enough time left before graduation! What do you think? Do your favorite actors play these
kinds/characters differently than others? Let us know what kind(ies?) I missed out below...

Model Output (LLAMA-
3.2-1B-INSTRUCT)

Kang Ji-hwan is a renowned South Korean actor known for his versatility and range in
various genres.

Early Life

Kang Ji-hwan was born on March 20, 1977, in Busan, South Korea. His full name is Jo
Tae-gyu.

Career Beginnings

He started his career in musical theater before transitioning into film and television. Kang
debuted in musical performances in 2001 with stints in productions like "The Rocky Horror
Show" and "Grease".

Breakthrough Roles

His breakthrough came in 2005 with the drama "Be Strong, Geum-soon!". He later starred
in "Capital Scandal", "Hong Gil-dong", and "90 Days, Time to Love", showcasing his
ability to play complex characters.

Film Career

Kang ventured into cinema with movies like "Rough Cut" (2008) and "My Girlfriend Is an
Agent" (2009).

Recognition

Throughout his career, Kang has received numerous awards and nominations, solidifying
his status in Korean entertainment.
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