
Under review as a conference paper at ICLR 2024

ACTIVATION FUNCTION MATTERS IN GRAPH TRANS-
FORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Following the success of Transformers in deep learning, Graph Transformers have
emerged as one of the most prominent architectures for graph representation learn-
ing. At the heart of Graph Transformers lies the self-attention mechanism, which
aims to elevate information from nodes similar to the query node while suppress-
ing information from others. However, this paper has unveiled a critical limitation:
the attention mechanism in MPNN-based Graph Transformers cannot effectively
discern the number of neighbors, resulting in a restricted expressive capacity. To
address this limitation, we investigate three activation functions for the attention
mechanism: softmax, tanh, and sigmoid, and show that sigmoid is the most
powerful. Our study culminate in the development of an enhanced variant of the
Graph Transformer, known as the Expressive Graph Transformer (EGT), and we
prove that EGT effectively distinguish number of neighbors without restricted ex-
pressive capacity. Extensive evaluations on graph classification and node classifi-
cation demonstrate the effectiveness and robustness of EGT. Our code is released
at https://anonymous.4open.science/r/EGT-98CA/.

1 INTRODUCTION

Graphs are widely applicated for representing relations between entities, such as social networks
(Leskovec et al., 2008) and protein networks (Borgwardt et al., 2005). In the realm of graphs, entities
and their interconnections are abstracted as nodes and edges, respectively. As efficient approaches
to model information in graph data, Graph neural networks (GNNs) (Gori et al., 2005; Duvenaud
et al., 2015) have witnessed a surge in popularity over recent years as efficient methodologies for
modeling information within graph data.

A prevalent technique for modeling graphs is the message-passing algorithm, wherein nodes itera-
tively accumulate information from their neighbors (Kipf & Welling, 2017) and the aggregation is
usually permutation-invariant. The GNN which follows message passing paradigm are commonly
referred to as message passing neural networks (MPNNs). Research efforts in the domain of MPNNs
mainly focus on the way of each node aggregating information (Veličković et al., 2018; Hamilton
et al., 2017; Brody et al., 2022) and sampling mechanism (Chen et al., 2018; Zeng et al., 2019) of its
neighbors. In particular, Xu et al. (2019) utilize Weisfeiler-Lehman (WL) test (Weisfeiler & Leman,
1968) to explore the expressive power of GCN and GraphSAGE and propose GIN to achieve WL
test. However, the expressiveness of attentive MPNNs has not been investigated.

Recently, as Transformer (Vaswani et al., 2017) achieves success in natural language processing
since its superiority in fitting data in Euclidean space and capturing interaction, Graph Transformers
(Yun et al., 2019; 2020; Hu et al., 2020b) are proposed to model information in graphs and become
one of the most popular GNN architectures. Specifically, Dwivedi & Bresson (2021) propose GT
adhering to the message passing scheme, which outperforms traditional MPNNs. Inspired by Trans-
former, most Graph Transformers ignore the selecting of attentive activation function and adopt
softmax. Nevertheless, we observe that use inappropriate activation function (such as softmax)
lacks the capacity to distinguish the number of neighbors, resulting in the loss of crucial information
and limited expressive power.

In this work, we propose theoretical derivations to illustrate that MPNN-based Graph Transformers
(Yun et al., 2019; Hu et al., 2020b; Dwivedi & Bresson, 2021) suffer from constrained expressive ca-
pacity and inadequacy in passing the WL test. Our key insight is that the non-injective attentive acti-

1

https://anonymous.4open.science/r/EGT-98CA/

Under review as a conference paper at ICLR 2024

vation function lead to restricted expressivity. Specifically, the widely used softmax is non-injective,
thereby limiting the expressive power of mainstream MPNN-based Graph Transformers. Addition-
ally, we delve into studying two potentially competitive activation functions, tanh and sigmoid, and
provide evidence to substantiate the superiority of sigmoid as the most potent activation function
among them.

Based on these observations, we develop a variant of Graph Transformer with high expressive power,
namely Expressive Graph Transformer (EGT), which is proved to be as powerful as WL test. EGT
leverages the sigmoid activation function in the attention mechanism and incorporates improve-
ments in feed-forward layers. Our primary contributions can be summarized as follows:

• We show that the MPNN-based Graph Transformers cannot achieve the same level of ex-
pressive power as the WL test.

• We conduct an in-depth exploration of the expressivity of attentive functions and identify
specific graph structures that cannot be effectively distinguished by both the softmax and
tanh activation functions.

• We propose an improved architecture of Graph Transformer and show that its expressive
power is equal to the power of the WL test.

• Our extensive experimental evaluations, spanning graph classification and node classifi-
cation tasks, show the efficiency of our model and its ability to significantly outperform
state-of-the-art methods. Additionally, analyses focusing on noise and hyperparameters
demonstrates the effectiveness and robustness of EGT.

2 RELATED WORK

Attention in GNNs. Attention in GNNs modeling pairwise interactions between elements in graph-
structured data can be traced back to interaction networks (Battaglia et al., 2016) and relational
reasoning (Santoro et al., 2017). A notable work is GAT (Veličković et al., 2018), which learns from
Transformer and is a simple and general framework with attention. However, Brody et al. (2022)
recently discover that GAT is limited to static attention and introduced GATv2 to enable dynamic
attention, addressing this constraint.

Graph Transformer. Various Graph Transformers have been proposed for node classification and
graph classification tasks. For node classification, Graph Transformers usually adopt the message
passing structure that enables them to handle large graphs effectively (Yun et al., 2019; Hu et al.,
2020b; Dwivedi & Bresson, 2021). Recent efforts have predominantly focused on enhancing com-
putational efficiency (Wu et al., 2022; Chen et al., 2023) and structural embedding (Mao et al., 2023).
In the context of graph classification, Graph Transformers resemble traditional Transformers, em-
ploying attention mechanisms to capture interactions between pairs of nodes. These approaches
utilize structural encodings, also referred to as biases, to incorporate connectivity information (Ying
et al., 2021; Zhang et al., 2023).

Expressive capacity of MPNNs. Since the seminal work (Xu et al., 2019) discussing the expres-
sive power of GCN and GraphSAGE, and proposing GIN which matches the expressiveness of the
WL test, numerous works studies high-order expressivity (Morris et al., 2019; Maron et al., 2019;
Bevilacqua et al., 2022) by subgraph MPNNs. Wijesinghe & Wang (2021) extended MPNNs be-
yond the WL test by calculating connectivity within subgraphs. However, the expressive capacity of
attentive MPNNs, such as GAT and GT, remains unexplored.

3 PRELIMINARY

A graph G can be defined as a tuple (V,E), where V represents the set of nodes within G, and E
denotes the set of edges. The connectivity of the graph is represented by the edges where each
entry eu,v indicates the presence of an edge connecting nodes u and v. For a given node u ∈ V, its
neighbors can be denoted as N (u) = {v ∈ V | eu,v}.

The Weisfeiler-Lehman test (Weisfeiler & Leman, 1968), referred to as WL test for notation sim-
plicity, is a well-established algorithm utilized to determine the isomorphism between two graphs.

2

Under review as a conference paper at ICLR 2024

The WL algorithm maintains a state for each node that is iteratively refined by aggregating the states
of its neighboring nodes. In details, it hashs the multiset of the states into unique states, which can
be represented as

ct(u) = HASH
(
ct−1(u), {{ct−1(v) | v ∈ N (u)}}

)
. (1)

The WL algorithm continues to refine the states of the neighbors until ct(u) = ct−1(u) for all nodes
u ∈ V. It can be applied to test the expressiveness of GNNs as well. The aggregating procedure
is similar to MPNNs: for each node, it aggregate and calculate the neighbors iteratively, and the
aggregated structure looks like a rooted subtree.

For the purpose of embedding graphs, the predominant approach involves the utilization of mes-
sage passing mechanisms to aggregate information from neighboring nodes, such as GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), etc. Here we reformulate MPNNs as follows:

at(u) = AGGREGATEt
(
{{f t−1(v) | v ∈ N (u)}}

)
,

f t(u) = COMBINEt
(
f t−1(u),at(u)

)
,

(2)

where f t(u) denotes the feature vector of node u at t layer and {{·}} is the multiset. AGGREGATEt

and COMBINEt are custom functions in GNNs. For GT, a standard Graph Transformer, the
AGGREGATEt and COMBINEt are

AGGREGATEt =
H∥∥ (∑

v∈N (u)

wt
v(u)v

t
v(u)

)
,

COMBINEt = FFNt
(
f t−1(u) + at(u)

)
,

(3)

where FFNt(·) denotes the feed-forward layers including non-linear activation function, normaliza-
tion and dropout. ∥ signifies matrix concatenation. The aggregation function employs multi-head
attention, treating the node itself as queries, while considering its neighbors as keys and values.
Specifically, vt

v(u) = W t
V f

t−1(v) is the linear transformation of f t−1(v), which denotes the rep-
resentation of neighbors from the previous aggregation iteration, with W t

v being a learnable matrix.
wt

v(u) is the attention weight of the node v, one neighbor at a t-hop distance from node u, that can
be computed by

wt
v(u) = softmax

(qt(u)kt⊤
v (u)√
dh

)
. (4)

where qt(u) = W t
Qf

t−1(u), kt
v(u) = W t

Kf t−1(v) are the queries and keys of the attention. dh is
the number of attention heads.

4 THE EXPRESSIVE POWER OF GRAPH TRANSFORMER

Following the remarkable success of Transformers, attention mechanisms have been extensively em-
ployed in MPNN-based Graph Transformers. However, most of them use non-injective activation
function in attention mechanism (softmax) leading to the constrained expressive capacity which is
lower than WL test. In our study, we perform analyses involving two alternative attention variants:
the utilization of the tanh and sigmoid activation functions in place of softmax. Surprisingly, we ob-
serve that both softmax and tanh encounter difficulties in distinguishing remarkably simple graphs,
underscoring their inferiority. We provide theoretical proofs and engage in a comprehensive dis-
cussion of their implications. Additionally, we introduce an expressive graph transformer for more
proficient modeling of nodes and their neighbors.

4.1 EXPRESSIVE CAPACITY OF SOFTMAX

The softmax function is the predominant choice as the activation function to compute attention

coefficients. Through softmax(x) =
exp(xi)∑
j exp(xj)

, the keys similar to the query are amplified,

while the others are suppressed. This guarantees the attention coefficients of all keys are positive

3

Under review as a conference paper at ICLR 2024

versus versus

(a) Softmax fails

versus versus

(b) Tanh fails

Figure 1: Examples of graph structures that softmax and tanh activation functions fail to discrim-
inate. Between the two graphs, the target nodes (depicted as blue nodes) get the same embedding
despite the disparities in their graph structures.

and sum up to 1. However, due to this characteristic, it lacks the ability to discern the number of
neighbors, as it is not sensitive to the count of keys when calculating coefficients.

In Figure 1(a), when presented with a target node and its neighbor nodes bearing identical labels,
softmax assigns equal weights to all the neighbors. Consequently, when aggregating the weighted
contributions of the neighbors, the outcomes remain identical, irrespective of the number of neigh-
bors. This observation intuitively illustrates that softmax is not an injective attentive function.

Theorem 1. The expressive capacity of the MPNN-based Graph Transformers using softmax as an
attentive function is inferior to that of the WL test.

Proofs of all Theorems and Corollaries can be found in the Appendix. Nonetheless, it is important
to acknowledge that softmax retains its effectiveness when the number of computed components
remains constant, as seen in applications like image or natural language processing. In such cases, it
can efficiently compress component representations, regardless of their quantity, rendering it well-
suited for multi-layer attention stacking in Transformers. Neighbor sampling mechanisms can be
employed to mitigate the associated limitations.

4.2 EXPRESSIVE CAPACITY OF HYPERBOLIC TANGENT

What happens if we replace softmax with hyperbolic tangent function in the attention mecha-

nism? tanh(x) =
ex − e−x

ex + e−x
maps any value into the interval (−1, 1) and it is also permutation-

invariant. Most importantly, the mapping procedure is injective. Nevertheless, when applied to the
AGGREGATE operation in Graph Transformer, tanh loses its injectivity.

In Figure 1(b), considering that the neighbors of the target node have opposite values, tanh assigns
opposite weights to these neighbors as well. Specifically, taking the simplest matrix transformation
where k1

v(u) = v1
v(u) = f0(v) as an example, we notice that w1

v(u)v
1
v(u) = w1

v′(u)v1
v′(u) holds

true for any v and v′, regardless of the sign of their values.

Theorem 2. The expressive capacity of MPNN-based Graph Transformer using tanh as attentive
function is inferior to that of the WL test.

In contrast to softmax, tanh exhibits sensitivity to the number of neighbors. One approach to address
this limitation is by introducing an additional dimension to indicate whether the input is positive.
However, this approach suffers from poor scalability and is unsuitable for multi-layer MPNNs.

4.3 EXPRESSIVE CAPACITY OF SIGMOID

Utilizing sigmoid as the activation function for attention has the potential to be injective when con-
sidering information from neighbors. It possesses the ability to distinguish both the number and sign

of neighbors. Moreover, sigmoid(x) =
1

1 + exp(−x)
scales and confines the correlation between

the given node and its neighbors within the range of (0, 1). This range offers greater flexibility
compared to summation (Xu et al., 2019) and enhances generalization capabilities.

4

Under review as a conference paper at ICLR 2024

Theorem 3. The expressive capacity of MPNN-based Graph Transformer using sigmoid as attentive
function can be as powerful as WL test.

In comparison to softmax and tanh, sigmoid is a more suitable choice for the activation function in
attention mechanisms. The key to injectiveness lies in selecting a mapping function g(·) which guar-
antees g

(
Qt(u)Kt⊤

v (u)
)
V t
v (u) is injective. With this theoretical foundation, we introduce a Graph

Transformer with enhanced expressive capacity, namely Expressive Graph Transformer (EGT).

4.4 EXPRESSIVE GRAPH TRANSFORMER

Here, we provide a detailed introduction to the proposed EGT. The primary distinction between
EGT and vanilla Graph Transformer lies in the activation function used in the attention mechanism
and the introduction of learnable parameters in the Feed-Forward Network (FFN). Additionally, we
incorporate several techniques to facilitate smoother convergence and enhance overall performance.
The structure of EGT is illustrated in Figure 2.

Background Node

Hop Subgraph

𝑡1

Effective Graph Transformer

Query

Key

Value

Effective Multi-Head Attention

A
d

d
 &

 N
o

rm

Fe
ed

 F
o

rw
ar

d

P
re

d
ic

t

P
ro

d
u

ct

Si
gm

o
id

W
ei

gh
te

d
 S

u
m

Effective Multi-Head Attention

× 𝐾 Expressive Graph Transformer Layers

Target Node

Neighbors … A
d

d
 &

 N
o

rm

× 𝐻 Heads

Figure 2: The framework of the Expressive Graph Transformer (EGT). EGT aims to extract infor-
mation from nodes and neighbors with higher expressive capacity in a message passing manner.

Similar to Graph Transformer, EGT adopts a message passing architecture to progressively accu-
mulate information from the neighborhood. In EGT, each layer t is responsible for capturing infor-
mation at the t-th hop. Given the representation of node u and its neighbors at the t-th iteration,
we transform them into queries qt(u), keys kt(u), and values vt(u), respectively. When computing
attention coefficients wt

v(u), we employ the sigmoid activation function.

wt
v(u) = sigmoid

(qt(u)kt⊤
v (u)√
dh

)
. (5)

The aggregated neighbor representation can be computed by at(u) =
H∥∥ (∑

v∈N (u) w
t
v(u)v

t
v(u)

)
.

For the combination step, we utilize a feed-forward layer with layer normalization and a non-linear
activation function to extract more profound representations. The combination process can be for-
mulated as:

f̃ t(u) = FFNt
(
Norm

(
(1 + ϵt1)f

t−1(u) + at(u)
))

,

f t(u) =Norm
(
(1 + ϵt2)f

t−1(u) + f̃ t(u)
)
.

(6)

In the combination process, we introduce learnable parameters ϵt1 and ϵt2 to distinguish each node
and enhance the high expressive capacity of EGT. Similar to all MPNNs, EGT can be stacked for K
layers to integrate information from K-hop neighbors. All of these computations can be performed
in the form of sparse matrices to enhance efficiency.

Corollary 4. EGT has the same discriminative power as WL test.

The node representations at the final layer of EGT are passed through a linear layer to make the final
decisions. The model is supervised using a classification loss function to update the parameters.

5

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

5.1 GRAPH CLASSIFICATION

Datasets. We use four datasets from GIN (Xu et al., 2019) for graph classification: MUTAG, PTC,
PROTEINS, and NCI1 (Debnath et al., 1991; Yanardag & Vishwanathan, 2015). A summary of
dataset statistics can be found in Table 1.

Table 1: Statistics of graph classification datasets.
MUTAG PTC PROTEINS NCI1

Graphs 188 344 1113 4110
Avg. Nodes 17.9 25.5 39.1 29.8
Avg. Relations 57.5 77.5 184.7 94.5
Node Feature 7 19 3 37
Classes 2 2 2 2

Baseline and evaluation settings. We evaluate the classification performance by accuracy on these
datasets. Consistent with Xu et al. (2019), we employ 5-fold cross-validation to ensure the accuracy
and reliability of our results. Our proposed model is compared against four models designed for
general graphs (GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GATv2 (Brody et al.,
2022), GraphSAGE (Hamilton et al., 2017)), one model with high expressive capacity (GIN (Xu
et al., 2019)), and two Graph Transformers (GT (Dwivedi & Bresson, 2021), Graphormer (Ying
et al., 2021)). We apply virtual nodes for MPNNs to aggregate information from graphs, following
the approach in Hu et al. (2020a). General settings, including the embedding layer, hidden dimen-
sions, etc., remain consistent across all models to ensure a fair comparison. The number of hops for
all models is set to 4.

Table 2: Performance comparison of accuracy on graph classification
MUTAG PTC PROTEINS NCI1

GCN 96.22% 86.77% 79.64% 88.73%
GAT 96.22% 86.77% 79.28% 91.89%
GATv2 97.30% 87.02% 80.18% 92.20%
GraphSAGE 95.68% 90.88% 79.10% 89.39%
GIN 97.30% 93.82% 83.33% 92.29%
GT 96.22% 92.94% 80.18% 88.52%
Graphormer 95.68% 80.29% 83.15% 83.70%

EGTsoftmax 96.22% 94.41% 80.81% 91.90%
EGTtanh 97.30% 94.71% 85.68% 92.92%
EGT 98.38% 96.18% 86.76% 96.47%

Result. Table 2 provides an overview of performance comparisons on graph classification datasets.
With the virtual node framework, the graph classification capability of MPNNs is significantly en-
hanced compared to Xu et al. (2019). It even surpasses Graphormer on the PTC and NCI1 datasets,
despite Graphormer can be more expressive than the WL test. Thanks to dynamic attention, GATv2
outperforms GAT, but still falls short when compared to GIN due to limited expressive power. As a
GNN with high expressive capacity, GIN surpasses all other baselines. However, EGT offers better
convergence with the help of FFN and normalization. EGT consistently exhibits the best perfor-
mance among the baselines in all cases, confirming its effectiveness in graph classification.

Ablation study. To further investigate the improvements stemming from the activation function,
we replace the sigmoid in EGT with softmax and tanh, denoted as EGTsoftmax and EGTtanh,
respectively. With softmax, there is a significant decrease in accuracy and the model degenerate to
the architecture similar to GT. The results from tanh is better than softmax since it can recognize
the neighbor counts. However, its expressivity is limited as well.

6

Under review as a conference paper at ICLR 2024

5.2 NODE CLASSIFICATION

Datasets. The node classification experiments encompass a range of popular datasets, including
the citation network datasets (Pubmed, Cora) (Yang et al., 2016), coauthor datasets (CS, Physics)
(Shchur et al., 2018), co-purchase datasets (Computer, Photo) (McAuley et al., 2015), and the image
category dataset (Flickr) (Zeng et al., 2019). Statistical details of these datasets are presented in
Table 3.

Table 3: Statistics of node classification datasets.
Pubmed Cora CS Physics Computer Photo Flickr

Nodes 19,717 2,708 18,333 34,493 13,752 7,650 89,250
Relations 88,651 10,556 163,788 495,924 491,722 238,163 899,756
Node Feature 500 1,433 6,805 8,415 767 745 500
Classes 3 7 15 5 10 8 7

Baseline and evaluation settings. We partition the datasets into training, validation, and test sets,
following a ratio of 60%, 20%, 20%, respectively. Each experiment is repeated three times with
different random seeds to ensure the credibility of the results. In contrast to graph classification, we
replace Graphormer with the latest state-of-the-art work on node classification, NAGphormer (Chen
et al., 2023), for comparison. The number of neighbor hops is set to 2.

Result. Table 4 displays the performance of baseline methods and our proposed approach in the
task of node classification, establishing a new state-of-the-art. Among the baseline models, NAG-
phormer, a Graph Transformer that treats each node and its neighbors as a sequence, outperforms
other baseline models and highlights the effectiveness of Graph Transformers. Among all MPNNs,
GT demonstrates the most competitive performance. However, the architectural and attention func-
tion enhancements in EGT lead to improved results.

Ablation study. When comparing EGT with EGTsoftmax and EGTtanh, it becomes evident that
sigmoid outperforms softmax and tanh in most cases, underscoring the significance of fully capturing
information from neighbors in node classification. In node classification scenarios, information
from node features holds greater importance. Therefore, the performance gap between EGT and its
variants is relatively smaller compared to the gap observed in graph classification. Besides, due to
EGTtanh cannot differentiate sign of features, it may display poor performance in some scenarios,
like the performance on the Cora dataset.

Table 4: Performance comparison of accuracy on node classification
Pubmed Cora CS Physics Computer Photo Flickr

GCN 83.29% 80.38% 91.86% 95.66% 87.40% 93.16% 50.53%
GAT 83.48% 81.67% 91.30% 95.34% 88.48% 93.59% 49.36%
GATv2 83.62% 81.24% 91.46% 95.70% 89.97% 94.05% 50.38%
GraphSAGE 85.45% 84.47% 91.63% 95.64% 86.22% 92.53% 50.36%
GIN 87.33% 84.19% 91.48% 95.84% 86.32% 93.40% 50.03%
GT 86.90% 84.13% 94.00% 95.92% 89.45% 94.75% 51.86%
NAGphormer 88.08% 84.26% 94.69% 96.65% 89.05% 94.81% 52.13%

EGTsoftmax 88.16% 85.08% 95.56% 97.03% 90.03% 94.88% 51.41%
EGTtanh 88.78% 77.49% 95.62% 97.04% 90.31% 94.66% 52.03%
EGT 88.63% 84.93% 96.73% 96.92% 90.54% 95.64% 52.40%

Result when downsample neighbors. What happens when we downsample neighbors instead of
performing full sampling in EGT? In this scenario, the information related to the number of neigh-
bors is weakened because we only select a predetermined number of neighbors. We assess the
performance of EGT with up to 5 one-hop neighbors and 15 two-hop neighbors. The remarkable
results are presented in Table 5.

From Table 5, we can observe a performance decline across all models when downsampling neigh-
bors. Surprisingly, there does not exist pronounced change of EGT in performance than the others.

7

Under review as a conference paper at ICLR 2024

Table 5: Performance comparison of accuracy on node classification in the downsampling setting
Pubmed Cora CS Physics Computer Photo Flickr

GCN 82.10% 79.46% 90.99% 95.50% 86.97% 92.75% 48.28%
GAT 82.22% 81.49% 91.32% 95.12% 86.31% 92.37% 48.51%
GATv2 82.49% 81.18% 91.30% 95.63% 87.16% 92.66% 48.83%
GraphSAGE 84.91% 83.73% 91.87% 95.52% 85.99% 91.96% 48.84%
GIN 86.98% 83.61% 91.92% 95.88% 86.70% 92.83% 49.30%
GT 83.93% 83.76% 93.91% 96.77% 89.17% 94.14% 50.32%
NAGphormer 87.08% 82.66% 94.34% 96.64% 87.77% 93.92% 49.38%

EGTsoftmax 88.14% 85.06% 95.44% 97.05% 89.82% 94.90% 50.24%
EGTtanh 88.61% 77.12% 95.58% 97.01% 89.81% 94.77% 50.82%
EGT 88.49% 84.89% 95.90% 97.08% 90.12% 95.42% 50.92%

This phenomenon can be attributed to the sigmoid function’s ability to allocate arbitrary weighted
sums to neighbors, whereas softmax restricts the sum to be 1. Consequently, sigmoid is more
flexible than softmax even if the neighbors counts of nodes are the same. Additionally, softmax
may exhibits unstable behavior when it comes to differently sampled neighbors, whereas sigmoid
is not affected.

5.3 ROBUSTNESS TO NOISE

We examine the robustness of EGT to noise to validate the superiority from considering number
of neighbors. Specifically, we focus on structural noise following the approach in GATv2 (Brody
et al., 2022): given a graph G = (V,E) and a noise ratio 0 ≤ p < 1, we randomly sample |E| ×
p non-existing edges E′ from V× V \ E. Subsequently, we train the GNN on the noisy graph
G′ = (V,E ∪ E′). We experiment with various noise levels p ∈ 0, 0.1, 0.2, 0.3, 0.4 on the Cora,
Computer, and Flickr datasets. We compare the results with competitive baseline models (GATv2,
GraphSAGE, GT, and NAGphormer).

0% 10% 20% 30% 40%
Noise Rate

70.0
72.0
74.0
76.0
78.0
80.0
82.0
84.0

A
cc

ur
ac

y(
%

)

(a) Cora

0% 10% 20% 30% 40%
Noise Rate

76.0
78.0
80.0
82.0
84.0
86.0
88.0
90.0

A
cc

ur
ac

y(
%

)

(b) Computer

0% 10% 20% 30% 40%
Noise Rate

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

A
cc

ur
ac

y(
%

)

(c) Flickr

GATv2 GraphSAGE GT NAGphormer EGT

Figure 3: The performance when it comes to structural noise on node classification

The results in Figure 3 reveal that all models experience natural declines in accuracy as p increases.
However, EGT demonstrates a milder degradation compared to the baseline models, underscoring
the effectiveness of modifying the attention function. Among the baselines, GT and NAGphormer
exhibit substantial robustness, thanks to the Transformer architecture. When compared to GT and
NAGphormer, EGT exhibits more significant improvements as p increases, particularly on the chal-
lenging Flickr dataset.

In summary, we conclude that softmax is more susceptible to noise due to its normalized nature. The
attention results of softmax are more likely to be dominated by extreme noise edges. Conversely,
since sigmoid assigns individual weights to each edge, it proves to be more robust to noise. Although
GATv2 exhibits better stability than GAT in noisy settings, as verified in Brody et al. (2022), it does
not outperform other stronger baseline models and maintains similar performance to GraphSAGE.

8

Under review as a conference paper at ICLR 2024

5.4 HYPERPARAMETER STUDY

We further evaluate the performance of EGT on Cora, Computer and Flickr dataset with respect to
the number of Transformer layers, hidden dimension and number of heads in the attention mecha-
nism to evaluate the sensitivity.

1 2 3 4 5 6 7 8 9 10
Transformer Layers

50.0

60.0

70.0

80.0

90.0

A
cc

ur
ac

y(
%

)

(a)

16 32 64 128 256
Hidden Dimension

50.0

60.0

70.0

80.0

90.0

A
cc

ur
ac

y(
%

)

(b)

1 2 4 8 16 32 64
Number of Heads

50.0

60.0

70.0

80.0

90.0

A
cc

ur
ac

y(
%

)

(c)

Cora Computer Flickr

Figure 4: Sensitivity analysis for different Transformer layers, hidden dimensions, and the number
of attention heads on node classification

We conducted experiments with varying numbers of layers, ranging from 1 to 10, while simultane-
ously adjusting the number of neighbor hops. The results in Figure 4(a) reveal that EGT exhibits
stability concerning the number of Transformer layers. However, a notable drop in performance is
observed when using only 1 layer on the Flickr dataset, indicating that insufficient information is
captured in this scenario. Next, we investigated the impact of the hidden dimension by evaluating
various hidden dimension values, ranging from 16 to 256. The results in Figure 4(b) demonstrate
that performance initially improves with an increase in hidden dimension. However, if the hidden
dimension becomes excessively large, it may lead to convergence challenges. Regarding the number
of heads in the attention mechanism, we varied the head counts from 1 to 64, and the corresponding
results are presented in Figure 4(c). EGT exhibits robustness to changes in the number of heads.

It’s worth noting that the results of these experiments surpass those listed in Table 4, indicating
that the performance of EGT can be further enhanced through parameter fine-tuning. Overall, these
experiments shed light on the factors that influence the performance of EGT, providing insights into
optimizing configurations.

5.5 DISCUSSION ABOUT THE EXPRESSIVE POWER OF GATS

Apart from GT, GAT and GATv2 are also attentive MPNNs. As discussed in Brody et al. (2022),
GAT employs static attention, where the ranking of attention coefficients is solely determined by the
neighbors and is not conditioned on the query node. On the other hand, GATv2 utilizes dynamic
attention, making it strictly more expressive than GAT. Nevertheless, due to the restriction imposed
by softmax, both GAT and GATv2 cannot judge the number of neighbors accurately, resulting in
lower expressiveness than the WL test.

6 CONCLUSION

In this paper, we identify a limitation in the expressive capacity of the attention mechanism used in
Graph Transformers. To overcome this constraint, we introduce the Expressive Graph Transformer
(EGT), which exhibits the same level of expressive power as the WL test. Our comprehensive
evaluations on graph classification and node classification consistently demonstrate the effectiveness
of EGT. Through additional analyses, we show that EGT displays robustness to structural noise and
hyperparameters. EGT is poised to become a new benchmark for the graph classification and node
classification task, and its simplicity in architecture allows for easy extension to other tasks such as
link prediction. We encourage the community to adopt EGT as an alternative to Graph Transformers
and consider using the sigmoid activation function instead of softmax in attentive MPNNs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In International Conference on Learning Representations, 2022.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? International
Conference on Learning Representations, 2022.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950. PMLR,
2018.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph trans-
former for node classification in large graphs. In Proceedings of the International Conference on
Learning Representations, 2023.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI’21 Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pp. 2704–2710, 2020b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic evolution of social
networks. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 462–470, 2008.

10

Under review as a conference paper at ICLR 2024

Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Representation learning on
heterogeneous information networks with graph transformer. In Proceedings of the ACM Web
Conference 2023, pp. 599–610, 2023.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. Ad-
vances in neural information processing systems, 30, 2017.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS
2018, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning Representations, 2021.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374,
2015.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

11

Under review as a conference paper at ICLR 2024

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023.

A PROOF FOR THEOREM 1

Proof. Prior to delving into the expressiveness of the attentive function, we first discuss the prereq-
uisites for an MPNN to attain the upper bound of the expressiveness equivalent to the WL test, as
outlined by Xu et al. (Xu et al., 2019):

• The MPNN aggregates and updates all nodes and their neighbors iteratively by
AGGREGATE and COMBINE operations which must be injective.

• The graph-level readout on the multiset of node features must be injective.

Therefore, to achieve expressive power as WL test, it is crucial for the AGGREGATE and
COMBINE operations in Graph Transformers to be injective.

Now, let’s proceed to prove the Theorem 1. Given a non-injective function as an attentive function,
there exists different v ensuring equal wt

v(u). prove that the softmax activation function is not
injective by presenting a counterexample. Consider two nodes, u and u′, along with their respective
sets of neighbors, N (u) and N (u′). We assume that 2 · card(N (u)) = card(N (u′)), and for any
node v ∈ N (u), there exist two nodes, v′1, v

′
2 ∈ N (u′) such that f0(v) = f0(v′1) = f0(v′2),

where f0(·) represents the initial node features, and card(·) denotes the number of elements in the
multiset.

Under these conditions, it follows that for every node v, there exists two nodes v′1 and v′2 such that
w1

v(u) = 2 ·w1
v′
1
(u′) = 2 ·w1

v′
2
(u′) where w1

v(u),w
1
v′
1
(u′),w1

v′
2
(u′) are softmax attention weights

as defined in Equation 4. Furthermore, the aggregated results of N (u) and N (u′) are identical.
In summary, the AGGREGATE operation is not injective when the attentive function is softmax,
thereby establishing the purposed theorem.

B PROOF FOR THEOREM 2

Proof. Before proving the theorem, we first illustrate that the attention mechanism with tanh fails to
differentiate between positive and negative inputs. In this scenario, the computation of each neighbor
in the AGGREGATE function follows:

wt
v(u)v

t
v(u) = tanh

(
qt(u)kt⊤

v (u)
)
vt
v(u)

= tanh
(
qt(u)

(
W t

Kf t−1(v)
)⊤)

W t
V f

t−1(v).
(7)

Here we omit 1/
√
dh for brevity. Since W t

Kf t−1(v) and W t
V f

t−1(v) are linear projections, we
can conclude that W t

Kf t−1(v′) = −W t
Kf t−1(v) and W t

V f
t−1(v′) = −W t

V f
t−1(v) for any v

where f t−1(v′) = −f t−1(v). According to the nature of tanh that tanh(x) = −tanh(−x), we
have

wt
v(u)v

t
v(u

′) = tanh
(
qt(u)

(
W t

Kf t−1(v′)
)⊤)

W t
V f

t−1(v′)

= −tanh
(
− qt(u)

(
W t

Kf t−1(v)
)⊤)

W t
V f

t−1(v)

= tanh
(
qt(u)

(
W t

Kf t−1(v)
)⊤)

W t
V f

t−1(v).

(8)

Thus, attention mechanism with tanh remains agnostic to positive and negative inputs. Conse-
quently, The attention is not injective and lead to a non-injective AGGREGATE.

C PROOF FOR THEOREM 3

Proof. We begin by presenting evidence for the injectiveness of the attention mechanism with sig-

moid. The function sigmoid(x) =
1

1 + exp(−x)
maps any value x to a positive range, implying

12

Under review as a conference paper at ICLR 2024

that for any node u and its neighbor v, wt
v(u) is positive. Suppose that there exists a neighbor v′ ̸= v

such that wt
v(u)v

t
v(u) = wt

v′(u)vt
v′(u) for any W t

Q,W
t
K ,W t

V , we can obtain vt
v(u) = vt

v′(u) = 0

or
wt

v(u)

wt
v′(u)

=
vt
v′(u)

vt
v(u)

. Since vt
v(u) is linear projection, we can conclude that the v and v′ have

the same sign. Considering both the linear projection and sigmoid function are monotonic, for

qt(u) > 0, W t
K = W t

V ̸= 0 and v > v′, there must exist
wt

v(u)

wt
v′(u)

> 1 and
vt
v′(u)

vt
v(u)

< 1. Hence we

have reached a contradiction. Thus, there exists W t
Q,W

t
K ,W t

V ensuring that attention mechanism
with sigmoid is injective.

The set of neighbors can be regarded as a multiset with a bounded size. Since the size of node
features is countable, there exists a function that maps neighbor nodes to natural numbers. More-
over, given the bounded cardinality of the neighbor multiset, there exists a function that ensures∑
v∈N (u)

wt
v(u)V

t
v (u) is unique, thereby proving the injectivity of AGGREGATE.

For COMBINE, we modify the vanilla function in the graph transformer by introducing a parameter
γ. The modified function is defined as follows:

COMBINEt = FFNt
(
(1 + γ)f t−1(u) + at(u)

)
. (9)

Following Xu et al. (Xu et al., 2019), when γ is irrational, there exists a function such that (1 +
γ)f t−1(u)+

∑
v∈N (u) f

t−1(v) is unique. Since FFN can work as a universal approximator (Hornik
et al., 1989; Yun et al., 2020) used to model and learn the composition of functions, our modified
combination function can be injective as well.

Hence, by using multi-layer perceptrons to learn a graph-level readout, attention with the sigmoid
activation function can achieve the expressiveness of the WL test.

D PROOF OF COROLLARY 4

Proof. We know that the expressive capacity of a MPNN can be as powerful as WL test when its
AGGREGATE and COMBINE operations are injective. As proved in Theorem 3, the COMBINE
with sigmoid in EGT is injective. Now, let’s consider the entire combination process in EGT, which
includes (1 + ϵt1)f

t−1(u) + at(u). This combination process can also be regarded as injective
because it involves both the irrational ϵt1 and the aggregated neighbor representation at(u), which
are both unique and distinct for each node and its neighbors. Consequently, we can conclude that
the expressive power of EGT is equal to that of the WL test.

E IMPLEMENTATION DETAILS

All experiments of this model are carried out on a Linux server equipped with one RTX 3090 GPU.
PyTorch 1.12.0 and DGL 1.1.1 deep learning libraries is applied to build and train our neural net-
work. The hidden size d of all modules is 64. Adam optimizer (Kingma & Ba, 2014) is applied
while training the model. On graph classification, we train models for 100 epochs by batch size
of 256 and learning rate of 0.005 with scheduler changing learning rate to 0.0025 at epoch 50. On
node classification, we train models for 100 epochs by batch size of 65,536 and learning rate of
0.001. To evaluate precisely, we conduct five-fold cross-validation on graph classification and re-
peat every experiment 3 times with different random seeds on node classification. For implementing
Graphormer and NAGphormer, we use 2 layers of encoder for them, which is the best result by
trying multiple values. The NAGphormer is not suitable for graph classification. The number of
heads of all attentive models (GAT, GATv2, GT, Graphormer, NAGphormer, and EGT) are all 4 to
compare fairly.

F COMPUTATION COMPLEXITY AND SCALABILITY

When it comes to computation complexity and scalability, EGT has the similar complexity to
MPNNs, which is linear, as it involves aggregating information from neighboring nodes iteratively.

13

Under review as a conference paper at ICLR 2024

For scalability, EGT does not compute statistics like Graphormer, which requires computing global
statistics across the entire graph. This means that EGT can be more scalable across different graphs,
as it doesn’t depend on calculating global statistics that might become prohibitively expensive for
large graphs.

Overall, EGT’s computational complexity and scalability characteristics make it a suitable choice
for a wide range of graph-based tasks, particularly when dealing with large and diverse graphs.

14

	Introduction
	Related Work
	Preliminary
	The Expressive Power of Graph Transformer
	Expressive Capacity of Softmax
	Expressive Capacity of Hyperbolic Tangent
	Expressive Capacity of Sigmoid
	Expressive Graph Transformer

	Experiments
	Graph Classification
	Node Classification
	Robustness to Noise
	Hyperparameter Study
	Discussion about the expressive power of GATs

	Conclusion
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3
	Proof of Corollary 4
	Implementation Details
	Computation Complexity and Scalability

