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Abstract

Lottery Ticket Hypothesis (LTH) posits the existence of winning tickets, i.e., sparse subnet-
works within randomly initialized dense neural networks that are capable of achieving test
accuracy comparable to the original, unpruned counterpart when trained from scratch, with
an optimal learning rate and in a similar training budget. Despite this promising conjecture,
recent studies (Liu et al., 2018; Frankle et al., 2020a; Su et al., 2020; Ma et al., 2021a) have
cast doubt on the feasibility of identifying such winning tickets at initialization, particularly
in large-scale settings. They suggest that in such expansive environments, winning tickets
exclusively and only emerge during the early phase of training. This observation, according
to Frankle and Carbin (2018), contradicts the core tenet of LTH as these winning tickets
do not truly win the initialization lottery. In light of recent findings, we address a critical
question: If winning tickets can only be obtained during early iterations, does the
initial training phase of a neural network encode vital knowledge, which we refer
to as lottery-ticket information, that can be utilized to generate winning tickets
at initialization, especially in large-scale scenarios?
We affirmatively answer this question by introducing a novel premise, Knowledge Distillation-
based Lottery Ticket Search (KD-LTS). Our framework harnesses latent response, feature,
and relation-based lottery-ticket information from an ensemble of teacher networks, employing
a series of deterministic approximations to address an intractable Mixed Integer Optimization
problem. This enables us to consistently win the initialization lottery in complex settings,
identifying winning tickets right from the initialization point at unprecedented sparsity levels
- achieving as high as 95% for VGG-16 and 65% for ResNet-20, and accomplishing this
19 times faster than Iterative Magnitude Pruning (IMP). Remarkably, without bells and
whistles, even winning tickets identified early in the training process using our technique
- consistently yield a performance gain of 2% for VGG-16 and 1.5% for ResNet-20 across
various levels of sparsity, thereby surpassing existing methods. Furthermore, our work is the
first in the literature to obtain state-of-the-art results in winning tickets at extreme sparsity
levels across diverse experimental setups, all while successfully passing the comprehensive
sanity checks referenced in prior work (Ma et al., 2021a; Frankle et al., 2020a; Su et al.,
2020), thereby reinstating the possibility for pruning at initialization.

1 Introduction

In the ever-evolving landscape of machine learning, the demand for integrating the intelligence of Deep Neural
Networks (DNNs) into diverse applications has surged. Recent breakthroughs in DNNs have facilitated
remarkable advancements in challenging domains such as, computer vision (Krizhevsky et al., 2012; Taigman
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Figure 1: Illustration of our Knowledge Distillation inspired Lottery Ticket Search (KD-LTS).

et al., 2014; Xiao et al., 2018) - enabling feats such as real-time facial recognition and autonomous vehicle
navigation; reinforcement learning (Silver et al., 2016; Mnih et al., 2015) - mastering complex games and
outperforming human experts; speech recognition (Graves et al., 2013; Hannun et al., 2014) - bringing us
virtual assistants; and in machine translation (Sutskever et al., 2014) - breaking language barriers, among
others. However, the pursuit of phenomenal performance has often come at a steep price to pay: excessive
overparameterization (Simonyan and Zisserman, 2014). This tendency towards deploying increasingly larger
and more complex networks, while sometimes necessary for achieving top-tier results, has raised legitimate
concerns. Consider the immense computational and storage costs - often needing billions of parameters;
the environmental impact - training models like BERT can have a carbon footprint comparable to a trans
America flight for one person; and the financial cost - training advanced models such as XLNet is estimated
to be around US $61,000 (Erion et al., 2022; Verdecchia et al., 2023; Heikkilä, 2022; Peng and Sarazen, 2019).
This issue has impeded practical deployment of DNNs in resource-constrained real-world environments, such
as on-device inference in mobile phones, and similar edge devices (Zhu and Gupta, 2017).

Post vs pre-training pruning. To tackle this challenge, network pruning has emerged as a promising
technique (Han et al., 2015; Hu et al., 2016; Mariet and Sra, 2015; Dong et al., 2017; Yang et al., 2017;
Louizos et al., 2017), allowing DNNs to be significantly pruned during inference without sacrificing test
accuracy. For instance, pruning techniques have achieved a 1.5x decrease in parameter count for Convolutional
Neural Networks Li et al. (2016), alongside a notable 20.79% cut in inference time for ResNet-50, now just
17.22 milliseconds (Gong et al., 2022), all while maintaining a minimal drop in accuracy, often less than
1%. Expanding the application of pruning beyond mere inference efficiency improvements, researchers are
additionally exploring early pruning in neural networks to reduce training costs (Strubell et al., 2019).
However, this strategy can result in less trainable architectures with decreased performance compared to
the original network, suggesting that a certain degree of overparameterization might still be necessary for
successful training (Livni et al., 2014).

Pruning at initialization: missing the mark? Towards early-stage pruning. Contrary to conventional
notion that sparse networks can only be obtained through post-training pruning, LTH (Frankle and Carbin,
2018) postulated a paradigm-shift by unveiling high-performing, sparse subnetworks - called winning tickets -
right at initialization. Employing the Iterative Magnitude Pruning (IMP) (Han et al., 2015) technique with
resetting mechanism, Frankle and Carbin (2018) successfully uncovered these winning tickets in Conv-2,
Conv-4, and Conv-6 architectures trained on MNIST and CIFAR-10, achieving high levels of sparsity (80-90%
or more). However, these promising results were predominantly limited to simpler settings. The practical
success of LTH has been profound, demonstrating wide applicability across various domains (Evci et al.,
2022; Yu et al., 2019; Kalibhat et al., 2021) and inspiring a multitude of follow-up studies to identify winning
tickets at initialization, (Lee et al., 2018; de Jorge et al., 2020; Wang et al., 2020; Sreenivasan et al., 2022;
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Figure 2: Comparative evaluation of KD-LTS’ winning ticket performance in VGG-16 and ResNet-20
architectures on the CIFAR-10 dataset, extracted at initialization and early epoch contrasted with LTH,
LTH-Rewind, and CS. Note: Scale of the accuracy axis has been adjusted to [0.7, 1].

Alizadeh et al., 2022; Tanaka et al., 2020). Despite practical success, recent studies (Gale et al., 2019; Frankle
et al., 2020c; Savarese et al., 2019; Frankle et al., 2020a) highlight the limitations of these pruning techniques,
including IMP, in more demanding large-scale settings. Specifically, for complex architectures like VGGs
and ResNets trained on CIFAR-10/CIFAR-100 and ImageNet, these methods struggle to identify winning
tickets with impactful sparsity levels. As illustrated in Figure 3, these methods only manage to extract
winning tickets at trivial sparsities - ∼ 20% or even less - in larger networks such as VGG-16, ResNet-18, and
ResNet-20, marking a stark contrast to the performance seen in smaller-scale scenarios.

Building on the critiques outlined by recent research, investigations (Su et al., 2020; Frankle et al., 2020b;
Sreenivasan et al., 2022; Ma et al., 2021a; Frankle et al., 2020a) into existing pruning-at-initialization techniques
have further underscored their limitations through baseline tests that incorporate both sensitivity and stability
analyses. These studies demonstrate that randomly sampled sparse subnetworks, when adjusted for carefully
chosen layer-wise sparsity, frequently outperform those identified by prevailing pruning-at-initialization
methods. Furthermore, these subnetworks exhibit significant vulnerability to perturbations introduced by
Stochastic Gradient Descent (SGD) noise, shedding light on their comparative under-performance. For an
in-depth examination and insights into sensitivity and stability analyses, readers are encouraged to refer to
Sections 6 and 6, respectively.

In addressing the challenges highlighted by these assessments, Frankle et al. (2020a) explored modifications
to the ‘IMP with resetting technique’ to better suit large-scale settings. Their modified approach successfully
identified winning tickets while passing both stability and sensitivity tests. However, this advancement
compromised the core premise of the LTH: the identification of winning tickets strictly at the network’s
initialization. Their revised methodology requires pre-training the dense network for a few initial epochs,
followed by rewinding the weights to these early epochs rather than resetting them to the original initialization
point. This departure from pruning-at-initialization necessitates substantial hardware and software resources
for pre-training the dense network for at least a few initial epochs.

Given the paramount importance of identifying winning tickets at initialization to significantly simplify training
costs for practical real-world deployments, the current state of affairs regarding pruning at initialization in
large-scale settings brings us to a critical juncture: Do winning tickets with non-trivial sparsity exist
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at initialization in complex settings? Moreover, can these tickets not only demonstrate tangible
accuracy advantages compared to the original, dense networks but also meet the standards of
stability and sensitivity analyses to ascertain their credibility? To date, to the best of our knowledge,
these two questions remain open problems.

Knowledge Distillation-based Lottery Ticket Search: Towards pruning at initialization. In this
study, we delve into these open questions by establishing a novel link between the valuable information
encoded within neural networks during their various training phases and the identification of winning tickets
at initialization - a connection that has not been explored before.

Key Insight

Knowledge Distillation-aided Lottery Ticket Search (KD-LTS) efficiently distills a rich tapestry of
critical response, feature, and relation-based heterogeneous information - referred to as lottery-ticket
information - from an ensemble of trained teacher networks, in addition to leveraging the information
contained in data labels, to identify subnetworks within a dense randomly initialized student network.
This pioneering approach facilitates the task of identifying winning tickets - a feat that existing
pruning-at-initialization techniques, which rely on traditional model training solely with labels, could
not accomplish.

In brief, the KD-LTS framework is structured around three key components. Phase-1 involves precise
identification of diverse lottery-ticket information across an array of trained teacher networks. In Phase-2,
KD-LTS introduces a series of deterministic relaxations to a Mixed Integer Optimization problem, a crucial
step to effectively train binary masks within a randomly initialized dense student network. This step facilitates
the efficient transfer of identified lottery-ticket information from the teacher models. The final component,
Phase-3, incorporates a unique custom-designed scoring function, wrapped around a Straight-Through
Estimator (STE), a freezing mechanism, and a regularization term. This combination effectively orchestrates
control of sparsity, playing a pivotal role in striking an optimal balance between sparsity and performance.
Ultimately, these three components synergize to equip subnetworks at initialization with the essential
lottery-ticket information, thus qualifying them as winning tickets. Detailed information about the KD-LTS
methodology can be found in Section 4, and an illustrative representation of this framework is provided in
Figure 14. The complete code is publicly available at https://github.com/gap48/Winning-the-lottery.

Contributions. We summarize our contributions as follows:

(i) Revitalizing pruning-at-initialization: We introduce KD-LTS, a novel methodology that harnesses
knowledge distillation to resurrect the potential for pruning at initialization. As highlighted in Figure
2, KD-LTS outperform state-of-the-art techniques, demonstrating Pareto-optimal performance in terms
of sparsity, accuracy, and computational efficiency. Through extensive experiments and comprehensive
evaluation of training settings and quality analyses, we formalize a strict definition of LTH in Section
6.3 to standardize and catalyze research on pruning at initialization, and rigorously validate KD-LTS
winning tickets’ compliance with this definition, thus ensuring their reliability and effectiveness.

(ii) Empirical validation above and beyond overall performance: KD-LTS framework facilitates the
identification of subnetworks that exhibit significant improvements over existing benchmarks, including
significant gains in test accuracy (↑ 2%), sparsity (↑ 40%) of winning tickets at initialization, test accuracy
(↑ 1%), sparsity (↑ 5%) of winning tickets at early epoch, and supermasks (↑ 3%). Additionally, we
observed nontrivial enhancements in mCE, ROC-AUC, adversarial robustness, ECE, NLL, Stability,
Fidelity, and Transferability (↑ 1-5%), thereby meeting the constantly advancing and contrasting demands
in applications of DNNs. Please refer to Sections 5, C, and D.1 for more details. Furthermore, we uncover
a surprising and non-intuitive interplay between specialized characteristics (e.g., adversarial robustness) of
teacher models and the properties of extracted winning tickets, as presented in Section A. This suggests
the potential for strategically embedding such traits beyond mere improvement in performance regarding
that trait.

(iii) Practical utility of KD-LTS: Advancing beyond the utility of KD-LTS as merely a research exploration
into the dynamics of pruning at initialization, this study broadens the scope, showcasing its effectiveness
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Figure 3: Comparative assessment of KD-LTS’ winning ticket performance across diverse networks and
datasets, juxtaposed against leading methods for pruning at initialization, including LTH, SNIP, Iterative
SNIP, GraSP, SynFlow, ProsPr, and GEM-MINER.

as a practical tool for the extraction of winning tickets. Comprehensive ablation studies on the key
components of KD-LTS, as illustrated in Section B, illuminate the technique’s capacity to identify
winning tickets with significant sparsity by utilizing just a single teacher model trained for merely three
epochs, using only 70% of the training time and 70% of the full dataset, and leveraging a bare minimum
response-based knowledge category.

(iv) Transforming knowledge distillation with KD-LTS: KD-LTS not only challenges conventional
approaches to pre-training pruning but also knowledge distillation, offering innovative new perspectives
within both fields. Diverging from traditional knowledge distillation methods that transfer knowledge
from large teacher models to smaller students through weight training, KD-LTS leverages large student
networks and employs a novel mask-training technique for knowledge transfer. As highlighted in Section
D.1, student networks pruned using KD-LTS demonstrate significant performance improvements and a
substantial reduction in parameter counts compared to small, dense student networks trained through
standard knowledge transfer methods.
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2 Related Works

Pruning after initialization. Studies (Zhang et al., 2021a; Du et al., 2018; Neyshabur et al., 2018;
Allen-Zhu et al., 2019) have underscored the requisite of overparameterization in the performance of DNNs.
To tackle the challenges associated with overparameterization, a range of model compression techniques have
been developed. These approaches include weight factorization (Denton et al., 2014), weight sharing (Wu
et al., 2018), quantization (Hubara et al., 2017), network architecture search (Zoph and Le, 2016), dynamic
inference (Wang et al., 2018), and notably, pruning (Han et al., 2015) and knowledge distillation (Hinton
et al., 2015). Conventional pruning methods typically employ saliency criteria such as weight magnitude (Han
et al., 2015), gradients (Molchanov et al., 2016; 2019), Taylor expansion (Molchanov et al., 2016), movement
analysis (Sanh et al., 2020), and second-order derivatives (LeCun et al., 1990) for the selective removal of
weights in neural networks. This study represents a notable shift from traditional methods, transcending
beyond the limitations of ad-hoc criteria and fixed pruning intervals typically associated with conventional
approaches. We implement a series of deterministic optimization problems within a framework that enables
the continuous re-calibration of pruned weights. This methodology not only facilitates the potential recovery
of pruned weights but also offers a more dynamic and adaptive approach to network sparsification.

Knowledge distillation. Alongside pruning, knowledge distillation has emerged as a potent strategy
to counter overparameterization, offering significant advancements in model compression since its initial
conceptualization by Ba and Caruana (2014) and Hinton et al. (2015). Knowledge categories have been
extensively studied, with notable strategies including: • Response-based soft target Knowledge Distillation
(KD) (Hinton et al., 2015) • Feature-based Mean Squared Error (MSE) loss (Ba and Caruana, 2014), and
first-order Jacobian information (Czarnecki et al., 2017) • Relational-based attention maps (Zagoruyko
and Komodakis, 2016), Contrastive Representation Distillation (CRD) framework (Tian et al., 2019), critical
period-aware mutual information between features (PKT) Passalis et al. (2020), (RKD) Park et al. (2019),
to leverage sample and feature diversity, the solution of the flow procedure (FSP) (Yim et al., 2017) to
exploit layer diversity, and Adaptive Ensemble Knowledge Distillation (AE-KD) (Malinin et al., 2019) to
utilize diversity within ensembles. We leverage this rich history of research and use the aforementioned
knowledge categories in our experiments. The selection of knowledge types plays a crucial role in shaping
the learning process of the student model. Consequently, the objective is to systematically identify key
latent information imprinted within a trained teacher model and carefully curate them according to specific
applications. The applications of knowledge distillation span diverse domains such as computer vision
(Kim and Rush, 2016; Papernot et al., 2016; Yu et al., 2017), sequence modeling (Kim and Rush, 2016),
semi-supervised learning (Tarvainen and Valpola, 2017), hyperparameter search (Liu et al., 2023), training
efficiency improvement(Blakeney et al., 2022), and multi-modal learning (Gupta et al., 2016), among others.
KD-LTS extends the applications of knowledge distillation to an unexplored domain - pruning at initialization.

Overall assessment of winning tickets. LTH impacted research on pruning at initialization, leading to
the development of techniques such as SNIP (Lee et al., 2018), GraSP (Wang et al., 2020), SynFlow (Tanaka
et al., 2020), Iterative SNIP (Verdenius et al., 2020; de Jorge et al., 2020), ProsPr (Alizadeh et al., 2022), and
GEM-MINER (Sreenivasan et al., 2022). This milieu of studies on extracting subnetworks has fostered the
practical applicability of LTH in image classification (Evci et al., 2022; You et al., 2019; Savarese et al., 2019),
object detection (Girish et al., 2021), natural language processing (Yu et al., 2019; Prasanna et al., 2020; Chen
et al., 2021a), generative adversarial networks (Kalibhat et al., 2021), graph neural networks (Chen et al.,
2021a), reinforcement Learning (Yu et al., 2019), lifelong learning (Chen et al., 2020), and the introduction of
supermasks (Zhou et al., 2019). In addition, this has stimulated the assessment of subnetworks in various
contexts, such as transferability across datasets, optimizers, and architectures (Chen et al., 2021b; Morcos
et al., 2019), enhancing fairness (Hooker et al., 2019; Paganini, 2020), improving robustness (Gui et al., 2019;
Ye et al., 2019; Chen et al., 2022), addressing privacy concerns (Wang et al., 2019), and providing tools for
uncertainty estimation (Venkatesh et al., 2020). Nonetheless, the majority of evaluations have predominantly
focused on tickets derived from the early training phase. Our work extends the horizon of LTH by identifying
supermasks that surpass existing methods (Sreenivasan et al., 2022; Ramanujan et al., 2020; Savarese et al.,
2019; Zhou et al., 2019), and showcasing that KD-LTS’ winning tickets, identified at initialization, can meet
or even exceed the benchmarks across a wide range of assessments typically associated with post-initialization
pruning or dense network training.
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Table 1: Overview of key attributes in initialization and early phase pruning methods, including winning the
jackpot (securing winning tickets at non-trivial sparsity levels).

Pruning method Stability Sensitivity Prunes at initialization Wins the jackpot Cost
IMP ✗ ✗ ✓ ✗ 2850 epochs
SNIP ✗ ✗ ✓ ✗ 1 epoch

GraSP ✗ ✗ ✓ ✗ 1 epoch
LTH-Rewind ✓ ✓ ✗ ✓ 3000 epochs

Synflow ✗ ✗ ✓ ✗ 3 epochs
ProsPr ✗ ✗ ✓ ✗ 200 epochs

Gem-Miner ✗ ✓ ✓ ✗ 220 epochs
CS ✓ ✓ ✗ ✓ 360 epochs

KD-LTS ✓ ✓ ✓ ✓ 150 epochs

3 Notation

We consider a C-class classification problem, where X ⊆ Rd represents the feature space and D = {(xi, yi)}I
i=1

is the dataset. Every sample xi is associated with a class c drawn from set {1, 2, . . . , C} and yi is a one-hot
vector which has a value of 1 in the c-th component to represent ground-truth label c, and a value of 0 in all
other components. Our objective is to identify winning tickets in a neural network that models the mapping
of input features to corresponding labels, denoted as f s

L(x; m⊙ θ) : X → RC . The parameters of this network
are represented as θ ∈ RP . Here, ‘s’ represents the student model, L represents the penultimate layer in
the set of layers {1, 2, . . . , L}, m is a trainable binary mask, i.e., m ∈ {0, 1}P and ⊙ refers to element-wise
multiplication. We denote a vector of all-ones as 1. In the context of a dense network, where m = 1, the
network is represented as f s

L(x; θ). We refer to a teacher model as f tk

L , where k ∈ {1, 2, . . . , K} represents
the index of the teacher model in the ensemble. To identify a specific element i in the feature map associated
with layer l of the neural network, we use the notation fil. The training process spans a total of E epochs.
For each epoch e ∈ {1, 2, . . . , E} the associated parameters are denoted as θ(e), and the corresponding binary
masks are represented as m(e). Sparsity S of the pruned network is calculated as S = 1− ∥m∥0

P .

4 Knowledge Distillation-based Lottery Ticket Search (KD-LTS)

Definition 4.1 (Subnetwork). For a dense network fL(x; θ) : X → RC , a subnetwork is denoted as
fL(x; m ⊙ θ) and is defined by a binary mask m ∈ {0, 1}P . Here, a parameter component θu is retained
if mu = 1 and removed otherwise. For any given configuration of m, the effective parameter space of the
resultant subnetwork is characterized by ∥m∥0 parameters.

A key limitation of current early-pruning practices is the necessity to train the network before it can be
pruned. The subsequent subsection elaborates on the multifaceted components of the KD-LTS framework,
which combines response-based, feature-based, and relational-based lottery-ticket information in addition to
learning from one-hot hard labels as output targets, allowing it to overcome this limitation. Harnessing this
heterogeneous information from trained teacher models, KD-LTS crafts a subnetwork within the student
network that mirrors the essential characteristics of the trained teacher model - the very attributes that
make this trained phase of the teacher model contain winning tickets, a phase that prevailing early-pruning
strategies specifically capitalize on.

4.1 First Stop: Distilling Knowledge

Learning from ground-truth label. The student network fL(x, (m ⊙ θ)) outputs a probabilistic class
posterior P(z|x; (m⊙ θ)) for a given sample x over class c, which is formulated as follows:

P(z|x; (m⊙ θ)) = Cat
(

efL(x;θ)∑C
c=1 efcL(x;θ)

)
.
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Figure 4: Hamming distance of masks across epochs within a KD-LTS framework for a LeNet-300-100/MNIST
experiment, with and without gradient normalization.
In this expression, z represents the logits or unnormalized log probabilities generated by the network, e(·)

denotes element-wise exponentiation and ‘Cat’ signifies Categorical distribution. The conventional objective
function for training a multi-class classification model is the cross-entropy measurement between the predicted
and ground-truth label distributions, defined as:

LCE(x; (m⊙ θ)) = 1
I

I∑
i=1

yT
i logP(zi|xi; (m⊙ θ)).

Here, T denotes the transpose operator. LCE guides the network towards predicting the correct class label
through maximum likelihood estimation.

Response-based distillation. Our response-based distillation aligns the logits of the student network with
those of the teacher network, softened by a high temperature T . This softening, achieved by higher values of
T , results in smoother distributions. This distillation loss function, accounting for the network response, is
expressed as:

LKD(x; (m⊙ θ)) = 1
IK

I∑
i=1

K∑
k=1

νk

 e
f tk

L (xi; θ)
T

∑C
c=1 e

f tk

cL(xi; θ)
T


T

log P(zi|xi; (m⊙ θ)).

In this formulation, νk is the weight assigned to the kth teacher, and log(·) is applied element-wise. LKD min-
imizes the Kullback-Leibler (KL) divergence to effectively transfer nuanced, class-discriminative information
from the teacher to the student.

Feature-based distillation. Inspired by Czarnecki et al. (2017), our feature-based distillation loss for aligning
internal representations goes beyond conventional considerations of target information by incorporating
Jacobian information alongside target information. In the pursuit of extracting winning tickets, the feature-
based loss, denoted as LFD utilizing Sobolev training, is formulated as follows:

LFD = 1
IK

I∑
i=1

K∑
k=1

νk

∥∥∥∥∥ ∇θf tk

L (xi; θ)∥∥∇θf tk

L (xi; θ)
∥∥

2
− ∇θ(0)f s

L(xi; (m⊙ θ(0)))∥∥∇θ(0)f s
L(xi; (m⊙ θ(0)))

∥∥
2

∥∥∥∥∥
2

2

.

Here, ∇θf t
L(x; θ) and ∇θ(0)f s

L(x; (m ⊙ θ(0))) represent the first-order Jacobian matrices of the final layer
outputs of the teacher and student networks with respect to their parameters, respectively. By employing the
Sobolev loss function, we encourage the student network’s parameters to replicate the gradient flow of the
trained teacher network. As a result, the parameters of the subnetwork identified within the student model
emulate a learning pattern similar to that of the teacher network, thereby fostering a stable learning platform
post-extraction.
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Algorithm 1: KD-LTS
Initialization: Initialize s(0), penalty λ, iterations T , α, γ, parameter θ(0), multiplication factor µ, ĉ
for epoch e in E do

for iteration n in N do
Solve for LM:

min
s(e)

LM

(
x; r

(
σ
(

β(e)s
))
⊙ θ(0) ⊙ q

)
+ λ

∥∥∥σ
(

β(e)s
)∥∥∥

1
.

/*** STE ***/
psorted ← Sort

(
σ
(
β(e)s

))
.

pbottom ← Bottom-(1− e−ĉe) fraction of psorted.
r ← r ⊙ 1pi /∈pbottom .
/*** STE ***/

end
β

(e)
l ← µlβ

(e)
l .

if mod(e, V ) = 0 then
I2 ← {i : qi = 1}.
wsorted ← Sort

(
σ
((

β(e)s
))
∈ I2

)
.

wbottom ← Bottom-(1− e−ĉe) fraction of wsorted.
q ← r ⊙ 1qi /∈wbottom .

end
end
Fix the masks and output f s

L(x; (H(β(E)s(E))⊙ θ(0))).
Solve min

θ
LCE

(
x; (H(β(E)s(E))⊙ θ)

)
to prove winning tickets.

Relational-based distillation. Drawing upon and significantly adding to the work by Yim et al. (2017) on
transferring layer diversity, our relational-based loss, denoted as LRD, captures and aligns the diversity in
feature representations between teacher and student networks. This relational-based loss is written as:

LRD(x; (m⊙ θ)) = 1
IK

I∑
i=1

K∑
k=1

L∑
l=1

νkD

(
P(t,l)

(i,j),P
(s,l)
(i,j)

)
.

where the probability distributions P(t,l)
(i,j) and P(s,l)

(i,j) are defined as follows:

P(t,l)
(i,j) =

Ker(f t
i(l−1), f t

jl)∑
i′,j′,i′ ̸=j′ Ker(f t

i′(l−1), f t
j′l)

, P(s,l)
(i,j) =

Ker(f s
i(l−1), f s

jl)∑
i′,j′,i′ ̸=j′ Ker(f s

i′(l−1), f s
j′l)

.

These equations define the pairwise similarity probabilities for features between layers l − 1 and l within the
teacher and student networks, normalized by the sum of all pairwise kernel similarities at the same layer,
excluding self-similarity (where i′ ̸= j′), thereby capturing the flow of information within each network. The
choice of kernel function Ker(·) , which evaluates the similarity between feature vectors, is crucial in this
computation. We systematically experiment and adopt an angle-wise metric: Ker(a, b) = 1

2

(
aTb

∥a∥2∥b∥2
+ 1
)

aimed at measuring cosine similarity to penalize structural differences in feature relations and enhance the
quality of transfer. The divergence D(·, ·) between the teacher’s and student’s relational distributions is
evaluated using the Jeffreys divergence, a symmetric version of the KL divergence, to ensure a balanced
knowledge transfer process:

LRD(x; (m⊙ θ)) = 1
KI(I − 1)

∑
i,j,i ̸=j

K∑
k=1

L∑
l=1

νk

(
P(tk,l)

(i,j) − P
(s,l)
(i,j)

) (
log P(tk,l)

(i,j) − log P(s,l)
(i,j)

)
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Through this approach, we facilitate the transfer of the teacher’s efficient learning patterns onto the student
network. As a result, the final holistic optimization objective of our knowledge distillation framework is to
minimize the following loss function:

LM(x; (m⊙ θ)) = αLCE(x; (m⊙ θ)) + T 2(1− α)LKD(x; (m⊙ θ)) + γLFD(x; (m⊙ θ)) + γLRD(x; (m⊙ θ)).

The weight coefficients, α and (1− α), are used for seamless integration of the cross-entropy loss LCE and
the response-based knowledge distillation loss LKD, respectively. Since gradient magnitudes from soft targets

e
fL(x; θ)

T are scaled by 1/T 2 during knowledge transfer, LKD is multiplied by a factor of T 2 to ensure
balanced contributions from LCE and LKD during training.

Supervision scheme for different facets of distillation. KD-LTS employs a dynamic weighting scheme
for the hyperparameter γ. This scheme prioritizes aligning the intermediate layer information flow during
the initial training phase, gradually shifting focus towards the task-specific knowledge in the teacher’s final
layer as training progresses. The weight γ is calculated as: γ(e) = γinitω

e where e is the current training
epoch, ω is a decay factor and γinit is the initial weight. Following Passalis et al. (2020), this tactic helps the
student network learn essential internal representations early on, before information plasticity diminishes,
thus facilitating the minimization of information flow divergence and the effective use of target labels.

4.2 Second Stop: Picking the Winning Ticket

Expanding on the knowledge distillation phase, the goal in this second step is to dynamically sparsify the
randomly initialized student network to assimilate the essence of lottery-ticket information derived from the
ensemble of trained teacher models. To achieve this, we formulate and solve the following Mixed-Integer
Optimization (MIO) problem:

min LM(x; m⊙ θ(0)) + λ∥m∥0

subject to m ∈ {0, 1}P

where λ ≥ 0 is the regularization coefficient.

Continuous approximation for tractability. Similar to Savarese et al. (2019), we tackle the tractability
issue of MIO by re-parameterizing the mask m as a function of a new variable s ∈ RP , and introducing an
approximation using a series of continuous sigmoid functions σ(s) = 1

1+e−s indexed by β ∈ [1,∞). This leads
to the reparameterization m = σ(βs). Specifically, for β = 1, σ(βs) = σ(s) and for limβ→∞σ(βs) = H(s),
where H(s) is the Heaviside function. Such an approximation approach facilitates a sequence of continuous
optimization problems, thus enabling effective learning of masks. The objective for each value of β is given
by:

LM

(
x; σ (βs)⊙ θ(0)

)
+ λ∥σ (βs)∥1.

This strategy represents a fully deterministic approximation, sidestepping the biases and noise typically
associated with stochastic approximation methodsLouizos et al. (2017); Srinivas et al. (2017). We employ
an exponential scheduling for β, denoted by the multiplication factor µ = (β(E)) 1

E for each training epoch
e ∈ {1, 2, . . . , E}, to progressively increase β from 1 to β(E). β(E) is chosen sufficiently large to ensure the
binarization of the learned masks, such that σ(β(E)s(E)) closely approximates the Heaviside function H(s(E))
by the end of training.

Gradient normalization for seamless learning. Nevertheless, this reformulation revealed a significant
challenge: as the parameter β increases, it induces early binarization - the premature selection of parameters
to be pruned early within the training process. To counteract this saturation in the mask learning process,
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we normalize the gradients of s by their l∞ norm prior to each gradient update. This approach mitigates
the learning plateau often observed in previous studies Savarese et al. (2019), thereby encouraging a more
dynamic and seamless progression of mask parameter learning. Since the magnitude of gradient updates
vary significantly across layers, this leads to varying saturation rates in mask learning as β increases. Using
the normalized gradient method and selecting distinct values of β

(E)
l for each layer l ∈ {1, 2, . . . , L} ensures

that s learns at comparable rates across the layers. This prevents premature saturation in layers that would
otherwise dominate due to larger gradient updates, promoting a smoother optimization landscape.

4.3 On the Path to Winning Tickets: Final Stop - Controlling Sparsity

It is important to recognize that while standard regularization, specifically the term ∥σ
(
βsθ(0))∥2, promotes

sparsity, it lacks the precision necessary for fine control over the sparsity levels, particularly when the goal is
to prune a predetermined fraction of parameters. On the other hand, constraint-based optimization methods,
despite offering theoretical guarantees, often fall short in achieving the desired sparsity levels and are observed
to compromise training accuracy. Subsequently, the objective in the final step is to incorporate effective
sparsity control not only to avoid the risk of layer collapse, as described by Tanaka et al. (2020) - which refers
to the premature pruning of an entire layer, rendering the network untrainable - but also to manage sparsity
in a way that ensures the unpruned network post-extraction is conducive to stable learning, comparable to
that of the original, dense network.

Dynamic and progressive scoring. We introduce a custom-designed element-wise scoring function r(·)
inspired by Edge-Popup (EP) (Ramanujan et al., 2020) and GEM-MINER (Sreenivasan et al., 2022). This
function enables efficient sparsity control offering flexibility for both global and gradual pruning across epochs.
Each parameter s is assigned a score reflecting its significance. We employ a strategic exponential function,
1− e−ĉe, where ĉ = 1

E ln 1
1−S , to progressively prune parameters based on the assigned scores throughout

training. This function determines the pruning percentile per epoch, ensuring the desired final sparsity level
S is reached by the final epoch E.

1. Sorting the Scores: Parameters are sorted according to psorted ← Sort(σ(βs)).

2. Selecting the Bottom Fraction of Scores: The bottom fraction of scores, pbottom, is determined by
pbottom ← Bottom-(1− e−ĉe) fraction of psorted.

3. Defining the Scoring Function: The scoring function r is updated as r ← r ⊙ 1pi /∈ pbottom.

4. Setting the Effective Parameters: The effective parameters are set as θ = θ ⊙ r(σ (βs)).

.

The scoring function retains parameters with higher absolute magnitudes. This ranking is then used to globally
select e−ĉe percentile of parameters to retain across all network layers in epoch e. f s

L

(
x; r(σ

(
β(e)s(e))

)
⊙ θ(0))

symbolizes the resultant subnetwork at epoch e. During each iteration, the forward pass involves effectively
utilizing a subnetwork of the original network. Given the inherent non-differentiability of the scoring
functionr(σ (βs)) we employ Straight Through Estimator (STE) to facilitate backpropagation as if the scoring
function were an identity function. This application of STE serves as an effective workaround, ensuring a
seamless computational process despite the non-differentiable nature of the scoring function. It is to be noted
that using this custom designed scoring function allows gradients to flow through even the pruned parameters
and allows the possibility for these pruned parameters to be revived in the future iterations. Moreover, the
gradual pruning process embedded within the scoring operation facilitates finer-grained decisions regarding
parameter retention.

Incremental freezing. Alongside the scoring function, our framework integrates an incremental freezing
mechanism. This mechanism sets the effective parameters as θ = θ ⊙ r(σ(βs)) ⊙ q. While the scoring
function is actively applied in each training iteration, the freezing operation is distinctively implemented at
regular intervals, specifically every V epochs. Unlike the scoring function’s dynamic approach, the freezing
mechanism plays a crucial role in blocking the gradients to pruned scores, thus entirely preventing the
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Figure 5: Comparative evaluation of KD-LTS winning ticket performance in VGG-16 and ResNet-20
architectures on the CIFAR-10 dataset, contrasted with prominent early epoch pruning methods, namely
LTH-Rewind and CS.

parameters’ influence on subsequent training iterations and negating the possibility of their future revival.
Selectively freezing certain parameters is instrumental in allowing each subnetwork to progressively learn
at every iteration, leveraging the learning dynamics of only the unpruned network. This step is crucial for
crafting a subnetwork that ensures the remaining unpruned weights are capable of being trained as efficiently
and seamlessly as during the initial training phase of the original, dense network.

The complete pseudocode of this carefully crafted KD-LTS framework is presented in Algorithm 1. Notably,
Allen-Zhu and Li (2020) discovered that an ensemble of independently trained neural networks can provably
enhance test accuracy, and this improvement can be distilled into a single student model by training it to
match the ensemble’s output - a feat that traditional training methods, which rely solely on true labels, could
not achieve. Building upon this foundation, we extend this unique characteristic of knowledge distillation
further into another novel domain, i.e., network pruning. By transferring heterogeneous information from
an ensemble of teacher networks into a single student network, we identify sparse, trainable subnetworks
at initialization that outperform the original, densely connected student network - a feat that existing
pruning-at-initialization techniques, relying solely on true labels, have not accomplished.

5 Experimental Observations

We conducted our experiments using PyTorch on NVIDIA A100 GPUs, spanning a diverse set of standard
image classification architectures: VGG-16, LeNet-300-100, ResNet-18, ResNet-20, ResNet-14, and a 6-layer
convolutional network. The conducted trials used popular datasets: MNIST, CIFAR-10, CIFAR-100, and
Tiny-ImageNet. Optimal training hyperparameters were employed to ensure standard and comparability
across experiments in the literature, as illustrated in Tables 4, 5, 6 and 7. For thorough benchmarking, the
approach was compared to state-of-the-art pruning methods: SNIP, GraSP, SynFlow, ProsPr, GEM-MINER,
LTH, LTH-Rewind, CS, SS, Edge-Popup, Smart Ratio, and Iterative SNIP. Comprehensive details regarding
the experimental setup, including data pre-processing, network architectures, implementation of comparative
techniques, optimizer settings, and configurations for the knowledge distillation framework, are provided in
Section G of the appendix.

Assessment criteria and metrics. Three core metrics form the foundation of our analysis: • Accuracy:
Measures post-training precision of subnetworks, evaluating the pruning process’s impact on performance
preservation or enhancement. • Parameter efficiency: Indicates the pruned network’s ability to maintain
performance with significantly fewer parameters. Expressed as the percentage of weights pruned, this reflects
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Table 2: Comparative evaluation of winning tickets extracted at initialization across diverse experiments: The
table uses an ✗ symbol to indicate the absence of sparsest winning tickets, signifying a technique’s failure to
extract winning tickets at sparsity levels under 20%. ’T.A.’ represents Test Accuracy.

Criteria Method VGG-16 ResNet-20 LeNet-300-100 ResNet-18

Sparsest
winning
ticket

T.A. (%) Sparsity (%) T.A. (%) Sparsity (%) T.A. (%) Sparsity (%) T.A. (%) Sparsity (%)
LTH 93 20 ✗ 20 98 20 51 36
SNIP 93 20 ✗ 20 98 20 51 73

GraSP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
ProsPr 93 20 91.3 20 N/A N/A 51 60

Random 93 20 ✗ ✗ ✗ ✗ ✗ ✗
SynFlow 93 20 ✗ ✗ ✗ ✗ 51 73

GEM-MINER 93 90 91.3 25 N/A N/A 51 80
Iterative SNIP 93 20 ✗ ✗ 98 20 51 60

KD-LTS 93 95 91.3 65 98 80 51 87

Best
performing
winning
ticket

LTH 93 20 91.15 20 98 32 51 36
SNIP 93 20 91.25 20 97.96 32 51 73

GraSP 92.5 20 90.45 20 97.8 20 50 20
ProsPr 93.1 48 91.45 20 N/A N/A 51 60

Random 93 20 91.15 20 97.92 20 50.1 20
SynFlow 92.9 20 91.05 20 97.92 32 51.2 20

GEM-MINER 93 55 91.3 20 N/A N/A 51.2 55
Iterative SNIP 93 20 91.15 20 98 20 51.2 73

KD-LTS 93.7 40 91.8 40 98.33 45 51.4 45

the network’s compactness. • Search cost: Quantifies the computational effort to find pruned subnetworks,
measured in epochs needed to reach a desired sparsity. This reflects the method’s practical efficiency.

This section compares the performance of KD-LTS winning tickets in sparse, large-scale settings, both at
initialization and early training stages. In this assessment, special attention is given to two distinct types of
subnetworks that demonstrate the efficacy of KD-LTS as an efficient pruning method: • Sparsest winning
ticket: Refers to the most aggressively pruned subnetwork that, when trained independently from an early
iteration, matches or exceeds the performance of the fully-trained dense network. • Best performing
winning ticket: Denotes the subnetwork, that when trained in isolation, achieves the highest performance
across all pruned networks, regardless of sparsity. These comparisons showcases KD-LTS’s ability to maximize
parameter efficiency, maintain accuracy, and minimize search costs, showcasing its real-world potential. Table
2 presents results for both sparsest and best-performing winning tickets across various pruning methods.

5.1 Winning Tickets That Really Win the Jackpot and Beyond

Winning tickets at initialization. To fully understand the potential of KD-LTS and initialization pruning,
a comprehensive comparitive analysis must extend beyond just test performance against existing initialization
methods. This analysis should evaluate search efficiency, parameter reduction, and accelerated learning
against both dense networks and early-phase pruning methods. Such a comparison, we believe, would facilitate
a research shift from early-stage to initialization pruning.

Figures 3, 22, and 6 provide crucial insights into these capabilities for KD-LTS winning tickets. Figures 3
and 22 illustrate the sparsity-accuracy trade-off of KD-LTS’s initialization-derived winning tickets. They
benchmark KD-LTS against established early pruning and pruning-at-initialization techniques across various
architectures and datasets (VGG-16/CIFAR-10, LeNet-300-100/MNIST, ResNet-18/Tiny-ImageNet, ResNet-
20/CIFAR-10, and ResNet-20/CIFAR-100). Figure 6 demonstrates the superior learning efficiency of KD-LTS
winning tickets across training epochs at various sparsity levels, benchmarked against dense networks.

Table 3: Comparative evaluation of winning tickets extracted at the third epoch across diverse experiments.
Criteria Method VGG-16 ResNet-20

Test Accuracy (%) Sparsity (%) Test Accuracy (%) Sparsity (%)

Sparsest winning ticket
CS 93 97 91.3 80

LTH-Rewind 93 89 91.3 73
KD-LTS 93 98 91.3 90

Best performing winning ticket
CS 94 60 92.2 73

LTH-Rewind 93.2 73 91.45 20
KD-LTS 94.2 94 92.4 48
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The following summary highlights key findings on KD-LTS winning tickets at initialization, emphasizing
advantages in test performance, parameter efficiency, and learning efficiency over previous benchmarks:

Key Findings

• Parameter efficiency: KD-LTS significantly outperforms previous state-of-the-art results in
sparsity across various models and datasets: VGG-16/CIFAR-10: 95% sparsity achieved (vs. previous
90%), ResNet-20/CIFAR-10: 65% sparsity (vs. previous 25%), LeNet-300-100/MNIST: 80% sparsity
(vs. previous 20%) and ResNet-18/Tiny-ImageNet: 87% sparsity (vs. previous 80%). • Test
efficiency: Our method demonstrates superior test accuracy compared to existing techniques: VGG-
16/CIFAR-10: 94% (vs. previous 93.1%), ResNet-20/CIFAR-10: 91.8% (vs. previous 91.4%), LeNet-
300-100/MNIST: 98.33% (vs. previous 98%) and ResNet-18/Tiny-ImageNet: 51.4% (vs. previous
51.2%). • Learning efficiency: Subnetworks identified by KD-LTS exhibit significantly accelerated
learning, converging on an average 1.2 times faster than the dense network, indicating a substantial
improvement in training speed and efficiency.

Supplementary benefit: Enhancing performance through early-phase extraction. Our method
represents a multifaceted approach to identifying sparse networks. Emphasizing the aspect of performance,
particularly in terms of accuracy, we showcase a complementary advantage: the winning tickets, identified not
only at initialization but also during early training epochs using KD-LTS, exhibit state-of-the-art performance.
While extraction of winning tickets at initialization follows the protocol outlined in Algorithm 1, a slight
adjustment is employed for extracting winning tickets at the early training phase: In this variant, the
student model’s weights and biases are trained up to the third epoch, mirroring the training settings used for
subnetworks post-extraction.

The results presented in Table 3 and Figure 22 aim to showcase the trade-off between resource conservation
(in terms of storage and computational costs saved by extracting winning tickets at initialization) and the
achievement of performance gains (in terms of accuracy and sparsity achieved by extracting winning tickets at
the third epoch) across experiments. This equilibrium demonstrates the versatility of our method, highlighting
its utility in various applications with diverse requirements and specifications, across the trade-off continuum
mentioned. For further insights into early-training extraction, Figures 5 and 2 provide detailed comparisons
of KD-LTS’s performance in ResNet-20/CIFAR-10 and VGG-16/CIFAR-10 settings. Figure 5 focuses on the
sparsity/accuracy efficiency, while Figure 2 emphasizes search cost efficiency.

Key Findings

• Parameter efficiency: KD-LTS significantly outperforms LTH-Rewind in terms of sparsest winning
tickets extracted at early epochs: VGG-16/CIFAR-10: 98% sparsity (vs. LTH-Rewind 89%) and
ResNet-20/CIFAR-10: 90% sparsity (vs. LTH-Rewind 73%). • Test efficiency: The best-performing
subnetworks achieve superior test accuracy compared to LTH-Rewind: VGG-16/CIFAR-10: 94.2%
(vs. LTH-Rewind 93.2%) and ResNet-20/CIFAR-10: 92.4% (vs. LTH-Rewind 91.45%). • Search
efficiency: This approach is significantly faster in identifying high-performance, sparse winning tickets:
3-4x faster than Continuous Sparsification (CS), 19x faster than LTH-Rewind. • Initialization
vs early epoch pruning: Winning tickets extracted from early epoch using KD-LTS demonstrate
improved performance over initialization-derived counterparts: Test accuracy increase of 0.6-0.9%
and sparsity reduction of 8-35%. • Comprehensive analysis of training and optimization
landscape: Subnetworks identified by our technique at initialization display learning patterns akin
to those identified at early epochs by current methods. This similarity substantiates their superior
performance and positions KD-LTS as a viable alternative to early epoch pruning.

Assessment of the training landscape. We present an in-depth analysis on the intricate dynamics of
KD-LTS’ subnetworks extracted at initialization against those extracted in early epochs, and with other
pruning at initialization methods, highlighting the superior performance of KD-LTS in fostering stable training
and enhanced generalization. In Figure 7, we illustrate the evolution of ResNet-20 during the initial training
phase, with a specific focus on the first 2112 iterations (equivalent to 6 epochs). Our first line of examination
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Figure 6: Learning efficiency of KD-LTS’ winning tickets juxtaposed with the dense network.

includes a range of pivotal telemetrics, encompassing average weight magnitude, the proportion of weights
that change sign after initialization, gradient magnitude, L2 distance measuring the deviation of weights from
their initial to current values, and the cosine similarity between initial and current weights. The research by
Frankle et al. (2020a) points out that large learning rates or complex experimental settings can disrupt the
optimization process by excessively perturbing weights, resulting in reduced stability to SGD noise. This
phenomenon is identified in the literature as a principal reason why existing initialization pruning techniques
struggle to discover winning tickets at the onset of training and in contrast why early-phase pruning methods
tend to be successful in this regard. The comprehensive telemetric assessment highlight the analogous training
behavior of KD-LTS’ subnetworks extracted at initialization to those identified in early epochs by current
methods, thereby underlining their training stability and transformative potential.

Examination across the optimization landscape. Second line of exploration plotted in Figure 8 includes
the concept of gradient predictiveness, as elucidated in Santurkar et al. (2018), this metric refers to the L2
change in gradient when moved along the gradient direction for different learning rates. In the context of
KD-LTS , the findings showcase a smoother gradient predictiveness akin to the characteristics observed in
subnetworks identified through early pruning techniques. The smoother gradient predictiveness suggests a
more predictable and stable gradient evolution in the training trajectory. Utilizing PyHessian, we plot the
Hessian eigen spectral density, examining the Hessian properties of subnetworks extracted using KD-LTS in
comparison to standard methods. The results demonstrate a notable capacity to evade saddle points, similar
to networks identified by early pruning methods. By measuring the variation in loss at each training step,
illustrated as a shaded region in our graphs, we observe how the loss fluctuates across iterations. This metric
not only indicates enhanced Lipschitz interpretability similar to early pruning methods. Following the insights
from (Jastrzębski et al., 2017; Sankar et al., 2021), a reduced value of Hessian trace correlates with a broader
optimum width, indicative of flatter minima and consequently, enhanced generalization capabilities. In an
effort to substantiate the superior generalization of KD-LTS subnetworks, we employ the 3D loss landscape
visualization technique, using tools from (Li et al., 2018) and the Paraview application. This visualization at
the optimum, presented in Figure 9, provides a compelling representation of our subnetworks’ generalization
strengths. Complementing this, Figures 27, 28 and 29 extends our analysis to additional networks.

Through these findings, our modest hope is to reinvigorate the concept of pruning at initialization and shift
the research focus from extracting winning tickets from early epochs towards initialization, thereby opening
up prospects for a significant decrease in both computational and storage complexities right from the start of
training.
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Figure 7: Training dynamics of weight parameters in ResNet-20 subnetworks on CIFAR-10 across the first
2112 iterations, for subnetworks extracted using KD-LTS, SNIP, and LTH-Rewind.

6 Validating the Quality of Winning Tickets

This study undertakes a comprehensive re-evaluation of LTH and addresses limitations of existing pruning-at-
initialization techniques, introducing the KD-LTS framework. The findings of Frankle and Carbin (2018)
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Figure 8: Observation of the optimization landscape through the lens of key Metrics in ResNet-20 subentworks
trained on CIFAR-10 across the first six epochs.

revealed that the subnetworks extracted using prevailing pruning-at-initialization techniques are often
susceptible to SGD noise and various random perturbations. This susceptibility was characterized in terms of
the stability (Frankle et al., 2020a) and sensitivity (Frankle et al., 2020b) of the subnetworks. It should be
noted that these assessments were critical in ascertaining why prevalent pruning-at-initialization techniques,
including IMP, fall short in effectively identifying winning tickets and have led to a shift in the focus of
pruning towards the early epochs. It’s essential that research efforts refocusing the pruning techniques toward
the initialization stage should involve subjecting the extracted subnetworks to established tests and quality
assessments. Consequently, our investigation extends beyond merely showcasing the superior performance of
KD-LTS identified winning tickets; it also encompasses a rigorous validation of their credibility. We begin by
providing formal definitions of stability and sensitivity analyses, followed by articulating a strict definition
of LTH to promote standardization in works on LTH. Our results demonstrate that KD-LTS subnetworks
align with this exacting definition of LTH, which we hope offers a promising path to revitalize pruning at
initialization.

Stability analysis. Stability analysis in a subnetwork, specifically fL(x; m(E) ⊙ θ(0)) with initial weights
θ(0), involves assessing its response to SGD noise. This is achieved by creating two copies of the network and
training each with different samples of SGD noise, such as through varying data order and data augmentation
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Figure 9: Visualization of the loss landscape at the optimum for ResNet-20 subnetworks, trained on CIFAR-10,
with subnetworks extracted via KD-LTS (left) and LTH-Rewind (right).
techniques. The resulting networks, fL(x; m(E) ⊙ θ(E)′) and fL(x; m(E) ⊙ θ(E)′′), are then analyzed for
stability. The test error of a network is denoted by ε(fL(x; m⊙ θ)). For a given point ζ within the range
[0, 1], the error εζ(fL(x; m(E) ⊙ θ(E)′), fL(x; m(E) ⊙ θ(E)′′)) is computed by interpolating between θ(E)′ and
θ(E)′′ , thus forming a network fL(x; m(E) ⊙ (ζθ(E)′ + (1 − ζ)θ(E)′′)) along the linear path connecting the
resulting networks fL(x; m(E) ⊙ θ(E)′) and fL(x; m(E) ⊙ θ(E)′′).

The maximum error observed during this interpolation, denoted as εsup, and the mean error, denoted as ε,
are key metrics to assessing stability. With this background, we define stability in the following terms:
Definition 6.1 (Stability). A subnetwork, denoted as fL(x; m(E) ⊙ θ(0)), is deemed ‘stable’ with respect
to SGD noise if it exhibits linear mode connectivity between the trained instances, fL(x; m(E) ⊙ θ(E)′)
and fL(x; m(E) ⊙ θ(E)′′). Stability is characterized by the difference between the maximum error measure,
εsup(fL(x; m(E)⊙θ(E)′), fL(x; m(E)⊙θ(E)′′)), and the mean error measure, ε(fL(x; m(E)⊙θ(E)′), fL(x; m(E)⊙
θ(E)′′)), observed along the linear path connecting the trained instances and is given by

εsup(fL(x; m(E) ⊙ θ(E)′
), fL(x; m(E) ⊙ θ(E)′′

))− ε(fL(x; m(E) ⊙ θ(E)′
), fL(x; m(E) ⊙ θ(E)′′

)) ≤ ∆,

with ∆ representing an acceptable threshold of deviation. A network is classified as ‘stable’ when this
difference is within the threshold, indicating minimal deviation due to SGD noise. Conversely, a substantial
deviation classifies the subnetwork as ‘unstable’, demonstrating its susceptibility to SGD noise. An allowance
for a tolerance margin is included to account for noise and error variations in the analysis.

Sensitivity analysis. Sensitivity analysis encompasses a range of perturbation studies, each designed to
assess the response of the subnetworks identified by various early pruning and initialization pruning methods
under various altered conditions. Given a subnetwork fL(x; m(E) ⊙ θ(0)) with initial weight parameters θ(0)

and trained masks m(E), the perturbation procedures include:

• Random reinitialization: Random reinitialization refers to the procedure in which θ(0), are reset
randomly, resulting in a new set of initial weights θ(0)′ . These reinitialized weights are then combined with
m(E), to form a randomly reinitialized subnetwork, expressed as fL(x; m(E) ⊙ θ(0)′). The test accuracy
achieved by training this randomly reinitialized network is denoted as ARR.

• Inversion: Inversion represents the operation of sign inversion of these weights, followed by the application
of m(E), yields a perturbed subnetwork. This subnetwork, featuring sign-inverted weights, is represented
as fL(x; m(E) ⊙−θ(0)). The test accuracy of this subnetwork, post-training, is denoted as AI.

• Random shuffling: Random Shuffling is a procedure that entails the random permutation of m(E) to
produce a shuffled variant, denoted as m(E)′ . These shuffled masks are then applied to θ(0) to form a
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Figure 10: Assessing the indication of stability in LTH, random pruning, and KD-LTS at various sparsity
levels in a ResNet-20 experiment on CIFAR-10, and evaluating linear mode connectivity, particularly at
non-trivial sparsity levels.

subnetwork, expressed as fL(x; m(E)′ ⊙ θ(0)). The test accuracy achieved by training this subnetwork
with the randomly shuffled masks is designated as ARS.

• Small-dense training: Small-Dense Training refers to the process of training a compact and densely
connected neural network, denoted as fL(x; θSD). This network is characterized by reduced width, while
maintaining the same depth as fL(x; m(E) ⊙ θ(0)), and is initialized with weight parameters θSD. The test
accuracy achieved following the training of this compact network is represented as ASD.

Definition 6.2 (Sensitivity). A subnetwork, denoted as fL(x; m(E) ⊙ θ(0)), is considered ‘sensitive’ with
respect to the procedures of Random Reinitialization, Inversion, Random Shuffling, and Small-Dense Training
if the following condition is satisfied:

min(ARR, AI, ARS, ASD) < AS

signifying that the subnetwork’s learning capability is significantly affected by the perturbations. Here, AS

denotes the test accuracy of the trained unaltered subnetwork.

In addition to stability and sensitivity analysis, effective network training requires consideration of factors,
such as appropriate learning rates and the duration of training epochs. For instance, selecting an optimal
learning rate (e.g., 0.1 versus 0.01) combined with a sufficient number of training epochs (e.g., 160 versus
85) can markedly enhance test accuracy (e.g., 91.3% versus 89.0% in a ResNet-20/CIFAR-10 experiment).
The literature (Frankle and Carbin, 2018; Liu et al., 2018) suggests that winning tickets often emerge under
conditions of smaller learning rates and fewer epochs. As noted, inadequate training durations and suboptimal
learning rates can lead to underperformance, thereby significantly undermining the potential for discovering
any sparse network in the context of insufficient training. Having underscored these essential factors for
assuring the quality of winning tickets, we now proceed to present the revised definition of the LTH.

Definition 6.3 (Lottery Ticket Hypothesis). Consider a subnetwork fL(x; m(E) ⊙ θ(0)), with a non-trivial
sparsity S, where m(E) is a binary mask obtained through a specific pruning algorithm applied to the initial
parameters θ(0). After training for E′-epochs, let ALT denote the test accuracy achieved by fL(x; m(E)⊙ θ(0)).
Furthermore, let AD represent the accuracy of the densely connected network fL(x; θ(0)), trained with an
optimal learning rate schedule over a sufficient duration of E epochs. The Lottery Ticket Hypothesis is then
stated as follows: ∃ a subnetwork fL(x; m⊙ θ(0)), which when trained for E′ ≤ E epochs, can achieve an
accuracy ALT such that ALT ≈ AD, and ALT > max{ARR, AI, ASD, ARS}, where “>” indicates a clear accuracy
gap. Additionally, εsup(fL(x; m(E)⊙θ(E)′), fL(x; m(E)⊙θ(E)′′))−ε(fL(x; m(E)⊙θ(E)′), fL(x; m(E)⊙θ(E)′′)) ≤
2. Such a subnetwork fL(x; m(E) ⊙ θ(0)), if identified, is referred to as a winning ticket.
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Figure 11: Perturbation studies on subnetworks extracted using LTH, SNIP, GraSP, SynFlow, GEM-MINER
and KD-LTS at initialization across experiments.

Figure 10 illustrates the linear mode connectivity of KD-LTS winning tickets, verified across 30 interpolation
points in a ResNet-20/CIFAR-10 setting. This analysis contrasts KD-LTS with subnetworks identified at
initialization by LTH and random pruning methods. The confirmation of a linear path between trained
instances of the KD-LTS identified subnetworks is consistent across experiments. Furthermore, Figure 11
elucidates the sensitivity of these winning tickets to perturbations, such as random shuffling, inversion,

20



and reinitialization, in contrast to subnetworks extracted by LTH, SNIP, GraSP, SynFlow, ProsPr, and
GEM-MINER, spanning diverse networks and datasets.

Key Findings

• Precise connection identification. The insensitivity of existing initialization pruning methods
to ablation studies, such as random shuffling, raises questions about the necessity of the fine-grained
operations performed by these algorithms. This observation suggests that a more coarse-grained, per-
layer approach to pruning might yield similar, if not superior, results. However, KD-LTS distinguishes
itself with its precision by adeptly discerning not only the optimal percentage of weights to prune per
layer but also by crucially identifying specific connections that are essential for forming a winning ticket.
• Randomization ambiguity exclusion. The response of KD-LTS subnetworks to perturbations,
such as inversion and reinitialization, convincingly demonstrates that randomization cannot substitute
for any critical stages in the KD-LTS process. • Assurance of search cost returns. By adhering
to an optimal training recipe and demonstrating the superior performance of KD-LTS winning tickets
compared to small-dense networks, this methodology guarantees a positive return on the computational
investment made in the pruning process. This establishes KD-LTS and knowledge distillation as guiding
principles for a highly efficient, real-world sparse network solution, especially in resource-constrained
environments.

7 Conclusion

The study challenges the conventional wisdom that highly efficient sparse subnetworks cannot be identified at
initialization. Through the proposed KD-LTS technique, we demonstrate the feasibility of initiating pruning
at the onset, particularly within demanding scenarios (deeper networks, larger datasets, and more rewarding
training settings). By showcasing superior overall performance and rigorous verification of the quality of
KD-LTS winning tickets, we aim to catalyze this paradigm shift, which holds immense potential to significantly
reduce training costs in terms of computation, storage, energy consumption, environmental impact, and
financial expenditures. Additionally, we spotlight the potential of KD-LTS in embedding specialized traits and
its capacity as a practical tool for pruning, leveraging the rich history of research in knowledge distillation.
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A Advancing Beyond Inheritance: Embracing Knowledge Distillation for
Comprehensive Assessment

Figure 12: A sketchmap of two counter-intuitive insights: It demonstrates how the KD-LTS model can
facilitate the identification of adversarially robust supermasks (on the left) and adversarially robust winning
tickets (on the right), utilizing an adversarially robust teacher, all while preserving test performance.

KD-LTS framework capitalizes on a synergy between ground truth label training and the rich, heterogeneous
information sourced from an ensemble of teacher networks. As highlighted in the previous section, this
innovative approach extends beyond merely enhancing the test accuracy of subnetworks derived from student
models. We strategically broaden the already laid out scope and utilize the knowledge distillation platform to
further enhance the traits of the subnetworks. This is achieved by utilizing a carefully chosen set of teacher
networks with unique attributes, as opposed to standard teacher networks.

Key Insight

KD-LTS uncovers an unexplored and non-intuitive connection: Knowledge distillation, when executed
with teacher networks that are robust to adversarial attacks, goes beyond simply identifying robust
supermasks, even when distillation is performed with standard data. These supermasks evolve into
winning tickets after training, with enhanced adversarial robustness while maintaining test performance,
achieved through standard training without any adversarial data. This contrasts with supermasks
and winning tickets derived from standard teacher networks, underscoring the distinctive advantage of
our approach.

Looking ahead, there is an intention to further explore the potential of KD-LTS framework. The aim is to
endow winning tickets with greater interpretability, reinforce confidence in their predictions, bolster their
overall reliability and improve transferability beyond adversarial robustness. This will be achieved by using
teacher networks that exhibit qualities such as interpretability, confidence, reliability, and those trained on
source optimizer, dataset, model or application, to enhance transferability.

Key Findings

• Transcending merely savoring overall performance: Actively embedding traits in
winning tickets. KD-LTS subnetworks derived using standard teacher models exhibit a 2-3%
enhancement over dense networks and subnetworks extracted using early-phase pruning. Figure 13
demonstrates that winning tickets derived from student networks, which incorporate lottery-ticket
information from adversarially robust teacher networks, achieve an additional 3% improvement in
adversarial robustness. This increment is in addition to the 2-3% improvement already observed
with standard teacher models. Furthermore, we have observed a 2-4% increase in the robustness of
supermasks.
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Figure 13: Adversarial accuracy of winning tickets obtained in a ResNet-20 network across datasets CIFAR-10
(left) & CIFAR-100 (right) using standard teacher and adversarially robust teacher.

B Ablation Studies: Key Observations and Insights for Future Research Directions

Figure 14: Dissection on the major components of KD-LTS framework.

This section details ablation studies within the KD-LTS framework, highlighting variations across knowledge
categories, distillation schemes, teacher model configurations, and the complexities in knowledge transfer.
These analyses are conducted using a modest experimental setup, leveraging the LeNet-300-100 architecture
trained on the MNIST dataset. Although extending these studies beyond this scale is outside this paper’s
purview, the ablation studies presented aim to map out multifaceted avenues for future research within
the KD-LTS platform. The exploration not only seeks to provide in-depth insights into the framework’s
effectiveness as a research tool - demonstrating the feasibility of model pruning at initiation - but also to
affirm its practical value in identifying effective winning tickets from the outset.
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Figure 15: Ablation studies on key componenets of KD-LTS framework in a LeNet-300-100 (MNIST)
environment.
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• Number of teacher models. Figure 15 demonstrate that leveraging representational and structural
insights from multiple teacher models helps in identifying high-performing winning tickets, notably in the
high sparsity regime. Interestingly, the accuracy improvements achieved through a multi-teacher distillation
strategy in the rare sparsity regime, compared to employing a single teacher model, are marginal. This
finding suggests that a singular teacher model is capable of encoding the crucial lottery-ticket information
necessary for identifying winning tickets. To facilitate the transfer of knowledge from an ensemble of
teacher models, we initially employed a straightforward averaging of their responses and features, a
technique that incurs a computational cost of O(n). Conversely, by implementing a strategy that involves
randomly selecting a single teacher model at each iteration, we significantly reduced the computational
requirements to O(1), while still tapping into the diversity offered by the ensemble. This computationally
efficient approach yielded results comparable to those of the vanilla multi-teacher averaging in terms of
winning ticket performance, underscoring the efficacy of simpler distillation methodologies in the context
of KD-LTS.

• Training phase of teacher models. Substantial research (Frankle et al., 2020c; Gur-Ari et al.,
2018; Achille et al., 2017) has dissected the complexities of DNNs across various training stages. This
study extends the exploration to assess the impact of different training stages on the identification of
high-performance winning tickets. By examining the teacher model at distinct phases of training, this
investigation aims to pinpoint the optimal stage for transferring critical information to the student network,
thereby facilitating the efficient discovery of winning tickets. Remarkably, it was found that teacher
models at intermediate training stages—specifically around the 10th epoch—yielded winning tickets
with superior performance compared to those at their early 3rd epoch or their later 40th epoch. This
observation aligns with findings from traditional knowledge distillation research on model checkpoints, as
reported by Wang et al. (2022). Surprisingly, this observation suggests that even teacher networks in the
early stages of training possess enough valuable information for the effective extraction of winning tickets,
challenging previous assumptions.

• Pruning efficiency and data efficiency. LTH and early-epoch pruning techniques have attracted
considerable attention for their promising performance. However, the computationally intensive cycles
required to identify winning tickets present a significant barrier to their wider practical deployment. While
You et al. (2019) and Zhang et al. (2021b). have made strides in addressing this issue - You et al. (2019).
by employing Hamming distance to track the evolution of masks across epochs, and Zhang et al. (2021b).
by introducing the Pruning -Aware Critical (PrAC) set to optimize data selection - their experiments
have predominantly focused on the realm of early-epoch pruning. Building upon this foundation, this
study expands into the domain of KD-LTS and pruning at initialization. Findings, depicted in the plots,
highlight the efficiency of KD-LTS in significantly reducing the number of training epochs required,
achieving comparable results with just 70% of the typical training duration. Furthermore, we demonstrate
data efficiency by successfully extracting winning tickets utilizing merely 70% of the full dataset.

• Distillation schemes. Ablation studies contrast offline and online distillation approaches, finding that
pre-trained teacher models are not essential for identifying high-performing winning tickets. A randomly
initialized teacher model and online transfer of knowledge also produce strikingly similar performance.

• Distillation temperature. Observations disclose that teacher models trained with varying levels of
distillation temperature T for soft-target response-based distillation result in distinct performances of
winning tickets, aligning with findings on conventional knowledge distillation by Müller et al. (2019).
Specifically, models trained with a T less than 1, which form less discernible clusters at the penultimate
layer activations, lead to the identification of higher-quality winning tickets. Conversely, teacher models
with T greater than 1, which form defined but broader clusters, correlate with a decrease in the performance
of winning tickets.

• Knowledge categories. We explore various knowledge domains to effectively identify winning tickets,
aiming to enrich the quality of our distillation framework by leveraging, diversity within ensembles
through Adaptive Ensemble Knowledge Distillation (AE-KD) (Malinin et al., 2019), first-order Jacobian
information (Czarnecki et al., 2017), attention maps, data diversity employing a Contrastive Representation
Distillation (CRD) framework (Tian et al., 2019), (Zagoruyko and Komodakis, 2016), critical period-aware
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mutual information between features Passalis et al. (2020); Park et al. (2019), layer diversity by exploiting
the solution of flow procedure (FSP) (Yim et al., 2017), and, feature-based simple Mean Squared Error
(MSE) loss (Ba and Caruana, 2014). A notable observation is that, although exploiting the diversity
among heterogeneous features and layers indicates that improved performance winning tickets can be
obtained, a simple response-based distillation with a KL-divergence loss on the logits of the student
and teacher models, along with cross-entropy, is sufficient for extracting winning tickets. This study
not only aids in understanding the effectiveness of KD-LTS framework but also analyses various signal
telemetry to identify optimal signals for future research in developing a scoring-based function for pruning
at initialization.

Key Findings

•Commensurate reduction in complexity. Ablation studies focusing on the number of teacher
models, training phases of the teacher model, data efficiency, and pruning efficiency underscore the
KD-LTS framework’s contributions to computational and storage efficiency, showcasing its practicality
as a real-world tool for identifying winning tickets. •Dynamics of pruning at initialization.
Ablation studies on knowledge distillation categories and schemes not only assist in deconstructing
the intricate dynamics of KD-LTS but also highlight critical signals that can systematically facilitate
the development of techniques for identifying winning tickets at initialization, thereby eliminating the
need to train the dense network altogether.

C Can You Win Everything with A Winning Ticket "at Initialization"?

In this paper, we meticulously evaluate the test accuracy of KD-LTS subnetworks across diverse state-of-the-
art DNNs (He et al., 2016; Simonyan and Zisserman, 2014), renowned for their exceptional real-world task
performance. However, we recognize the imperative need to assess neural networks beyond mere test accuracy.
In today’s world, where billions rely on DNN-powered technologies such as ChatGPT chatbots, known for
their advanced prompt learning capabilities (Brown et al., 2020; Radford et al., 2019), a comprehensive
assessment of neural network performance becomes crucial. A glimpse into key performance dimensions
and their practical applications reveals, •Interpretability: Paramount in sectors like medical diagnosis
(Gupta et al., 2021; Jiang et al., 2012), interpretability ensures model transparency and user trust by making
complex models understandable. •Confidence: Vital in safety-critical applications such as autonomous
driving (Tian et al., 2018; Bojarski et al., 2016), where the reliability of a model’s predictions is directly
linked to safety outcomes. •Robustness: Essential for security, robustness involves the network’s resilience
to adversarial attacks (Goodfellow et al., 2014) and noisy data, guaranteeing consistent performance under
uncertain conditions, such as in cybersecurity applications Pereira and de Carvalho (2019). •Transferability:
Critical for the versatility of neural networks, enabling models to effectively adapt across various domains
with minimal retraining (Long et al., 2015), like language model adaptation across different languages or
dialects Zampieri et al. (2020). •Out-of-Distribution (OoD) Performance: Crucial for reliability, OoD
performance measures a model’s ability to handle data significantly different from its training distribution,
ensuring competent operation in dynamic settings (Liang et al., 2017), such as in financial modeling Ma et al.
(2021b), where models must adapt to unforeseen conditions. Each of these dimensions is vital for ensuring
that neural networks meet the ever evolving demands of real-world applications.

Having underscored the necessity for a holistic evaluation framework, we now meticulously analyze the
performance of KD-LTS subnetworks extracted right from initialization across a wider array of critical
performance dimensions, as outlined in (Chen et al., 2022; Morcos et al., 2019; Chen et al., 2021b).

C.1 Generalization to Distribution Shifts

In the forthcoming subsections, we first define the metrics employed for evaluation, ensuring a clear un-
derstanding of our assessment criteria. We then present the principal findings, thoroughly discussing the
implications and insights derived from the experiments. The following examination evaluates how KD-LTS
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subnetworks fare against altered or shifted data distributions, focusing particularly on their adaptability to
scenarios involving natural corruptions, adversarial perturbations, and OoD data.
Definition C.1 (Accuracy). The accuracy of a pruned student network, denoted by f s

L(x; m ⊙ θ), and
parameterized by weights θ and a binary mask m, is the ratio of the number of correctly predicted labels to
the total number of input samples. Formally, accuracy is defined as:

Accuracy = 1
I

∑
(x,y)∈D

δ
(

arg maxc∈{1,...,C} f s
cL(x; m⊙ θ) = arg maxc∈{1,...,C} yc

)
where δ(·) is the indicator function, which evaluates to 1 if the predicted label matches the true label and 0
otherwise. Here, arg maxc∈{1,...,C} f s

cL(x; m⊙ θ) signifies the predicted label and arg maxc∈{1,...,C} yc denotes
the ground-truth label for the input sample x.

The following concepts, directly related to evaluating a model’s test accuracy, are integral in validating its
capacity to generalize across distribution shifts:

• Generalization Gap: It is the discrepancy between the accuracy on the training data Dtrain ⊂ D and
the testing data Dtest ⊂ D, reflecting the model’s ability to generalize from the training data to data
unseen over the course of training.

• Natural Corruption Robustness: The mean corruption error (mCE) assesses the model’s robustness
to various natural corruptions and is defined as:

mCE = 1
NC

NC∑
κ=1

[∑5
ρ=1 Em⊙θ

ρ,κ∑5
ρ=1 Eθ

ρ,κ

]
.

Here, NC represents the total number of corruption types considered,κis used as the variable to iterate
over the corruption types. The metric leverages the top-1 error rates Em⊙θ

ρ and Eθ
ρ for the sparse and

dense models, respectively, across a range of corruption types such as noise, blur, weather, digital process
applied across input samples x. Each corruption type has five corruption severity levels (i.e., 1 ≤ ρ ≤ 5).
CIFAR-10/100-C from (Hendrycks and Dietterich, 2019) are adopted in our experiments for corrupted
data.
Type of natural corruptions. (Hendrycks and Dietterich, 2019) provides 19 natural corruptions:
“gaussian noise", “shot noise", “impulse noise", “defocus blur", “glass blur", “motion blur", “zoom blur",
“snow", “frost", “fog", “brightness", “contrast", “elastic transform", “pixelate", “jpeg compression", “speckle
noise", “gaussian blur", “spatter", “saturate". More information can be found in the official repository
https://github.com/hendrycks/robustness/tree/master/ImageNet-C/imagenet_c.

• Adversarial Robustness: The model’s robustness against adversarial attacks is gauged by its accuracy
on adversarially perturbed images. These perturbations for input samples x are crafted using a targeted
Projected Gradient Descent (PGD) attack (Madry et al., 2017), formulated as:

xn+1 = Πx+υ (xn + ϵadvsgn (∇xnLCE (xn; (m⊙ θ))))

where ϵadv is the magnitude of the perturbations, Π is a projection operator, υ ∈ Rd represents the set of
perturbations illustrating the model’s stability under adversarial conditions. The epsilon value (ϵ) and
the number of iterations i employed in this iterative targeted PGD attack are detailed alongside the
experimental plots.

• Out-of-Distribution (OoD) Performance: The model’s ability to make reliable predictions on OoD
data is assessed using the ROC-AUC metric. ROC-AUC stands for the area under the receiver operating
characteristic (ROC) curve. This evaluation is crucial for comprehending the model’s predictive confidence
when confronted with data that exhibits statistical characteristics divergent from those present in the
training set. Such an understanding is indispensable to ensure reliability in real-world applications where
data distribution may constantly change. Following (Hendrycks and Gimpel, 2016; Krizhevsky et al.,
2009), for CIFAR-10 experiments, CIFAR-100 is regarded as the OoD dataset; for CIFAR-100 experiments,
CIFAR-10 is selected as the OoD dataset.
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Figure 16: Juxtaposition of KD-LTS subnetworks on metrics such as Natural Corruption Robustness
(mCE), Out-of-Distribution (OoD) performance (ROC-AUC), Expected Calibration Error, Negative Log
Likelihood, Fidelity, and Stability, against early pruning, initialization pruning, and dense networks in a
ResNet-20/CIFAR-10 environment.
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The results related to natural corruption robustness and out-of-distribution (OoD) performance are presented
in Figure 16, while the findings on adversarial robustness are comprehensively detailed in Figure 17. It is
well-established that sparse networks typically demonstrate superior generalization to distribution shifts, a
characteristic often linked to their improved Lipschitz interpretability. Therefore, in our experiments designed
to showcase the KD-LTS subnetworks’ generalization to distribution shifts, we extend our comparisons
beyond dense networks to include sparse networks extracted through existing early and initialization pruning
methods. This extension offers a comprehensive understanding and thorough evaluation of their competitive
performance.

Key Findings

•Robustness. KD-LTS subnetworks demonstrate a significant 3-4% improvement in Mean Corrup-
tion Error (mCE), a 1-2% increase in ROC-AUC, and a 2-3% enhancement in adversarial robustness
compared to subnetworks derived through pruning at initialization. Furthermore, they attain per-
formance comparable to subnetworks extracted by early pruning methods, highlighting KD-LTS’s
superior efficacy across various sparsity levels.

How does KD-LTS assert generalization to distribution shifts? Figure 17 showcases sample
classifications of KD-LTS winning tickets on adversarial examples, demonstrating how misclassification only
occurs when the features of the sample appear closer to the adversarial target class compared to random
subnetworks and the dense network. Figures 23, 24, and 25 delineate the robust decision-making capabilities
of KD-LTS subnetworks against random subnetworks and the dense network in a LeNet-300-100/MNIST
experiment, as examined through the lens of the LIME explainer (Ribeiro et al., 2016). This serves to
substantiate their inherent robustness. Figures 26 and 18 focus on the activations of the penultimate
layer in KD-LTS, dense, and random subnetworks. In KD-LTS subnetworks, our experiments reveal that
projections form well-defined, tight clusters indicating clear class boundaries. In contrast, for dense and
random subnetworks, these projections appear more scattered and less discernible, highlighting the superior
adaptability of KD-LTS subnetworks to distribution shifts.

C.2 Calibration and Reliability

Confidence calibration (Guo et al., 2017; Venkatesh et al., 2020) is of paramount importance to ensure
reliability in situations where incorrect predictions could lead to serious consequences. To evaluate the
calibration of confidence in the predictions made by KD-LTS subnetworks, we adopt the following standard
metrics:
Definition C.2 (Confidence). Let f s

L(x; m⊙ θ) denote the prediction of a pruned student model for a given
input x from a dataset D. The confidence of this prediction is defined as the predicted probability that the
model assigns to the most likely class. Formally, for a dataset D, the average confidence over the set of
predictions is given by:

Confidence = 1
I

∑
x∈D

efs
c∗L(x;m⊙θ)∑C

c=1 efs
cL

(x;m⊙θ)
,

where c∗ represents the class with the highest probability predicted by the model for the input x.

Leveraging both accuracy and confidence, we present explanations of the following metrics associated with
confidence calibration.

• Expected Calibration Error (ECE): ECE (Naeini et al., 2015) is defined as the weighted average of
the differences between accuracy and confidence across Z bins:

ECE =
Z∑

z=1

NBz

I
|Accuracy(Bz)− Confidence(Bz)| ,

where I represents the number of samples in the dataset D and NBz
is the number of samples in the

z-th bin. This metric serves as a proxy for the mismatch between the model’s confidence and its actual
performance.
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Pred: 2 Pred: 9 Pred: 3 Pred: 3 Pred: 7 Pred: 0 Pred: 7 Pred: 6 Pred: 4 Pred: 6 Pred: 9 Pred: 3

Pred: 2 Pred: 2 Pred: 9 Pred: 3 Pred: 7 Pred: 5 Pred: 6 Pred: 9 Pred: 2 Pred: 3 Pred: 6 Pred: 3

Pred: 1 Pred: 0 Pred: 0 Pred: 0 Pred: 8 Pred: 7 Pred: 0 Pred: 9 Pred: 4 Pred: 6 Pred: 3 Pred: 7

Pred: 6 Pred: 3 Pred: 6 Pred: 1 Pred: 7 Pred: 4 Pred: 0 Pred: 2 Pred: 7 Pred: 3 Pred: 6 Pred: 3

Pred: 2 Pred: 8 Pred: 2 Pred: 6 Pred: 3 Pred: 0 Pred: 3 Pred: 8 Pred: 7 Pred: 8 Pred: 3 Pred: 6

Pred: 3 Pred: 3 Pred: 9 Pred: 3 Pred: 2 Pred: 3 Pred: 9 Pred: 7 Pred: 7 Pred: 2 Pred: 2 Pred: 3

Pred: 3 Pred: 3 Pred: 3 Pred: 4 Pred: 3 Pred: 5 Pred: 3 Pred: 6 Pred: 5 Pred: 0 Pred: 3 Pred: 3

Pred: 3 Pred: 5 Pred: 3 Pred: 2 Pred: 8 Pred: 3 Pred: 1 Pred: 6 Pred: 3 Pred: 3 Pred: 3 Pred: 3

Pred: 3 Pred: 3 Pred: 3 Pred: 3 Pred: 3 Pred: 0 Pred: 4 Pred: 1 Pred: 3 Pred: 3 Pred: 3 Pred: 3

Figure 17: Sample classification of adversarial examples in an MNIST data perturbed using a targetted PGD
attack (target label ‘3’) by a dense LeNet-300-100, KD-LTS extracted 45% sparse winning ticket, and 45%
sparse randomly pruned subnetwork.

• Negative Log Likelihood (NLL): NLL is a measure of how well the log probability distribution
outputted by the model, aligns with the true labels:

NLL = −
∑

(x,y)∈Dval

yT log (P(z|x)) ,

where Dval is a validation subset of the dataset D. NLL (LeCun et al., 2015) is minimized when the
predicted distribution converges to the true distribution of the labels, indicating optimal calibration.

The results for ECE and NLL in the ResNet-20 experiment on CIFAR-10 are illustrated in Figure 16. Similarly,
the outcomes of these metrics for the CIFAR-100 experiment are depicted in Figure 30.
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Figure 18: Visualization of penultimate layer’s activations across the ten classes in KD-LTS subnetwork,
random subnetwork, and unpruned VGG-16 network trained on CIFAR-10.

Key Findings

•Reliability. KD-LTS subnetworks demonstrate the ability to maintain or enhance confidence
levels compared to dense and early-pruned subnetworks, across a range from denser 20% to rarer
60% sparsity levels. This attribute renders KD-LTS subnetworks viable for reliable deployments in
real-world settings.

C.3 Interpretability

We investigate the capability of winning tickets identified by KD-LTS to preserve interpretability. The
assessment involves a quantitative analysis of explainability, grounded in functional representation, employing
the most widely-recognized metrics: namely, fidelity (Plumb et al., 2020) and stability (Ghorbani et al., 2019).

• Fidelity: Given a validation dataset Dval, fidelity quantifies the extent to which the local explanations
of a model’s predictions align with the actual outcomes of the model. Formally, it is defined as the
expected difference in the model’s predictions for the original input and a perturbed input within a defined
neighborhood, and is given by:

Fidelity = Ex∈Dval

[
Ex′∼Nx

[
|g(x′)− f(x′)|2

]]
,

where g(x′) represents the explanation of model’s prediction, and f(x′) denotes the target model’s
prediction for the perturbed input x′.

• Stability: Stability S focuses on the consistency of local explanations under input perturbations, reflecting
the robustness of the explanation model. It is defined as:

Stability = Ex∈Dval

[
Ex′∼Nx

[
∥e(x, f)− e(x′, f)∥2

2

]]
,

where e(x, f) and e(x′, f) are the embeddings of the explanations for the original and perturbed inputs,
respectively.

Following Chen et al. (2022), to compute these metrics, we first perturb each input image x and build its
neighborhood set Nx with a size of 1, 000 samples. Then, we generate a class of interpretable functions
G = {gx ∈ G|x ∈ Dval}, where gx is a linear function obtained from a regression to the corresponding model’s
output on Nx. In the above formulation, f(·) denotes the target model we want to interpret, e(x, f) and
e(x′, f) are the learned weights of linear models gx and g̃x. Each training sample x̃ ∈ Nx is weighted by
the Hamming distance of (x̃, x) and (x̃, x′), respectively. All our experiments replicate the implementation
detailed in (Ribeiro et al., 2016). Intuitively, fidelity quantifies how accurately the explainer gx models the
target network f in a neighborhood Nx; Stability measures the degree to which the explanation changes
across points in Nx.
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Figure 19: Adversarial accuracy of winning tickets obtained in a ResNet-20 network across datasets CIFAR-10
(left) & CIFAR-100 (right).

The stability and fidelity results from the ResNet-20/CIFAR-10 experiment are presented in Figure 16, while
the corresponding results for the CIFAR-100 experiment are shown in Figure 30

Key Findings

•Stability and precision. KD-LTS winning tickets showcase a 2-5% improvement in stability and
fidelity compared to LTH-Rewind, reaffirming our claim that KD-LTS is not just an alternative but a
viable replacement for early pruning techniques, ensuring both software and hardware cost reduction.

C.4 Transferability

We expand on the conjecture proposed in (Morcos et al., 2019; Chen et al., 2021b) regarding the transferability
of winning tickets across various datasets, optimizers, and architectures. While LTH-Rewind has been the
dominant method for identifying transferable winning ticket, our research re-evaluates and broadens this
concept to extract transferable subnetowrks right at the initialization stage. Our empirical findings clearly
demonstrate that winning tickets identified through the KD-LTS framework are indeed transferable across
different datasets, optimizers, and architectures. Notably, they even exhibit performance that is comparable,
and in most instances, superior to those identified by LTH-Rewind experiments.

Key Findings

•Versatility. KD-LTS subnetworks show an improvement of 0.6%, 0.7%, and 0.42% in performance
when transferred across datasets (CIFAR-10 ← CIFAR-100 and CIFAR-100 ← CIFAR-10), optimizers
(Adam ← SGD), and architectures (ResNet-14 ← ResNet-20), respectively, compared to LTH-Rewind
transferability. •Universality. The results underscore the existence of shared and transferable
patterns in DNNs that make sparse networks trainable, not just from early epochs but right from the
initialization stage. Furthermore, they demonstrate the KD-LTS framework’s capability in identifying
these patterns.

In summary, KD-LTS subnetworks, extracted right from the onset of training, not only enjoy superior test
performance but also provide sparse networks that are accurate, transferable, interpretable, reliable, secure,
and confident.
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Figure 20: Test accuracy of winning tickets transferred across datasets (CIFAR-10 & CIFAR-100), architectures
(ResNet-20 & ResNet-14) and Optimizers (Adam & SGD).

D Supermasks

Definition D.1 (Supermask). A supermask is a subnetwork, derived from a randomly initialized neural
network, represented as fL(x; m⊙ θ(0)), capable of achieving a test accuracy surpassing the chance accuracy
without the need for training the underlying parameters. Here, the term chance accuracy refers to the test
accuracy achieved by the original, untrained dense network, denoted as fL(x; θ(0)).

Recent theoretical studies (Malach et al., 2020; Orseau et al., 2020; Ramanujan et al., 2020) have substantially
strengthened the proposal of LTH. These works suggest that a sufficiently overparameterized neural network
contains a subnetwork that, with only logarithmic increase in size compared to the target network, can achieve
comparable accuracy to the large network - even without any training. In response to these groundbreaking
insights on LTH, a considerable amount of experimental research has been conducted. Efforts include CS
(Savarese et al., 2019), Stochastic Sparsification (SS) (Zhou et al., 2019), Edge Popup (EP), Smart Ratio (Su
et al., 2020), and GEM-MINER (Sreenivasan et al., 2022), all aimed at developing algorithms for identifying
supermasks. This burgeoning area of research underscores the latent potential of subnetworks at initialization.

These theoretical results indicate that pruning alone might suffice as a training method. This challenges the
conventional belief that binary mask training, perceived as having lesser representational power compared to
continuous parameter training, cannot yield comparable outcomes. Supermasks confer a notable advantage in
terms of storage efficiency, necessitating only the binary mask and a single random seed for the reconstruction
of the entire network’s weights. KD-LTS further strengthens this characteristic, obtaining high-quality
supermasks that can be harnessed for their own line-up of applications in real-world scenarios.

Exploration into a novel avenue of knowledge distillation. KD-LTS paves the way for various
avenues of exploration, extending beyond pruning to include a pioneering premise in knowledge distillation.
Unlike traditional knowledge distillation methods that transfer knowledge from larger teacher models to
smaller student networks via weight training, KD-LTS involves mask-training large student networks using
heterogeneous information from teacher networks. The pruned larger networks, known as supermasks, exhibit
exceptional standalone performance without any supplementary training. These supermasks are not only
receptive to further weight-training from scratch but also exceed the accuracy levels and parameter efficiency
of dense, small student models trained through conventional knowledge distillation methods. For example,
consider the case of ResNet-50, with its approximately 24 million parameters. Utilizing KD-LTS for pruning
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at initialization, we obtain a subnetwork with 90% sparsity that exceeds the performance of a fully-trained
ResNet-18, which has around 12 million parameters and is trained using standard knowledge distillation
techniques. This achievement is particularly remarkable, considering that the KD-LTS-identified subnetwork
benefits from an 80% reduction in parameter count. Notably, our knowledge distillation framework highlights
that these winning tickets not only achieve a notable 3.4% improvement in test accuracy but also demonstrate
that supermasks, even without any additional training, experience only a marginal 3% reduction in accuracy
compared to their traditional knowledge distillation counterparts.

Key Findings

• Test efficiency. Among the comparative techniques, IMP and SR produce supermasks with
accuracy levels barely surpassing random guessing, SS struggles to learn masks with sparsity exceeding
50%, and EP identifies subnetworks with high pre-training accuracy but faces limitations in the high
sparsity regime, particularly beyond 95%. In stark contrast, KD-LTS method stands out, with its
highest-performing supermasks achieving 94%, 66.4%, 90.1%, and 74.4% test accuracy at 98% sparsity
for LeNet-300-100, ResNet-20, VGG-16, and a 6-layer CNN, respectively. These results significantly
surpass the leading results presented in the current literature using other techniques, which are 60%,
61.5%, 88.2%, and 68.2%, establishing a marked improvement over existing methods. • Unexplored
arena. KD-LTS not only pioneers new avenues in the field of neural network pruning at initialization
but also offers a novel perspective on knowledge distillation, significantly contributing to the realm of
knowledge distillation-assisted model compression.
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Figure 21: Evaluating the supermask performance of KD-LTS in comparison to CS, SS, GEM-MINER,
Edge-Popup, Smart Ratio, and LTH.
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E Future Work

Acknowledging room for improvement within KD-LTS, the key areas for our future investigation include:
• Extend KD-LTS beyond computer vision to diverse domains such as natural language processing. •
Investigate the transferability of winning tickets across applications for broader impact, surpassing the
current focus on optimizers, networks, and datasets. • Integrate KD-LTS to identify subnetworks specifically
optimized for modern libraries and hardware, achieving tangible computational reductions. • Examine the
structure, patterns, and characteristics of KD-LTS identified subnetworks to investigate their efficacy and
potential as a powerful initialization technique. (Intriguing Observation: We observed that KD-LTS, by
transferring information on the SVD of parameters (KD+SVD+CE), identified winning tickets achieving an
adversarial accuracy of 79% after training. This contrasts with subnetworks identified using cross-entropy
and label information alone, which achieved 63% adversarial accuracy. Importantly, both sets of subnetworks
underwent only standard training with standard data. This demonstrates the surprising capability of a
pruning-at-initialization technique like KD-LTS to embed specialized traits, such as adversarial accuracy,
using only standard data - traits previously thought to be achievable solely through computationally intensive
training methods, such as adversarial training with adversarial data). • Develop effective techniques for
efficient sparsity control within the Phase-3 of KD-LTS.
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F Additional Experiments
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Figure 22: KD-LTS’ winning ticket performance, extracted at initialization and early epoch.
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Figure 23: Highlighting the positive/negative regions for classifications of MNIST data by trained KD-LTS
subnetwork, unpruned network and a random subnetwork in a LeNet-300-100.
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Figure 24: Explaining the positive/negative regions for classifications of MNIST data by trained KD-LTS
subnetwork, unpruned network and a random subnetwork in a LeNet-300-100.
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Figure 25: Explaining the classifier: A KD-LTS subnetwork, unpruned network, and a random subnetwork in
a LeNet-300-100 in terms of positive regions associated with classification of a ground truth label against
positive regions for misclassification.

Figure 26: Visualization of penultimate representations in KD-LTS subnetwork, Random subnetwork, and
Unpruned VGG-16 network trained on CIFAR-10.
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Figure 27: Training dynamics of weight parameters analyzed through the lens of pivotal metrices in a
LeNet-300-100 network across the first 2580 iterations.
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Figure 28: Analyzing the optimization landscape in LeNet-300-100 subnetwork trained on MNIST over the
first six epochs.

Figure 29: Visualizing the Loss landscape: Comparing LeNet-300-100 subnetworks at the optimum extracted
via KD-LTS, Random, and LTH-Rewind, trained on the MNIST dataset
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Figure 30: Comparative analysis of KD-LTS subnetworks on Key Metrics: Natural Corruption Robustness
(mCE), Out-of-Distribution performance (ROC-AUC), Expected Calibration Error, Negative Log Likelihood,
Fidelity, and Stability against early pruning, initialization Pruning, and dense networks in a ResNet-20/CIFAR-
100 environment.
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Figure 31: Per-layer sparsities achieved by each pruning at initialization method for a specified sparsity level
across various experiments.
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G Experimental Setup

This section provides a detailed description of the experimental settings and configurations utilized to evaluate
the effectiveness of proposed KD-LTS technique in detecting winning tickets at initialization.

G.1 Datasets

Experiments are conducted on four well-established datasets, each possessing unique characteristics, to
comprehensively evaluate winning tickets. For the MNIST database, 55,000 examples were utilized for
training and 5,000 were reserved for validation, with images normalized on a per-channel basis. In the case
of CIFAR-10 and CIFAR-100 datasets, per-channel normalization, random horizontal flipping, and random
pixel shifts of up to four pixels in any direction were applied. The training sets were partitioned into 45,000
training examples and 5,000 validation examples. The model demonstrating the highest validation accuracy
was chosen for further evaluation on the test set. For the Tiny-ImageNet dataset, augmentation included
per-channel normalization, selection of a patch with a random aspect ratio between 0.8 and 1.25 and a
random scale between 0.1 and 1, cropping to 224x224, and applying random horizontal flipping.

G.2 Network Architectures

Four distinct neural network models were deployed, carefully chosen to underscore the versatility and
robustness of the approach. This selection includes architectures suitable for both small-scale and large-scale
settings, aligning with classifications from the work of Frankle et al. (2020a) and further informed by our
research considerations. The first model, LeNet-300-100, is characterized by its 266K parameters. Progressing
to a larger scale, VGG-16, featuring 14.7M parameters, is specifically utilized in the CIFAR-10/CIFAR-100
experiments. ResNet-20, introduced for the CIFAR-10/100 datasets with 20 layers and 274K parameters in
(He et al., 2016), adds diversity to the selection. Lastly, ResNet-50, tailored for the ImageNet dataset with 50
layers and 25.5M parameters, further emphasizes the range of architectures in the experimental framework.
The implementations of ResNet-20 and ResNet-50 were sourced from the OpenLTH repository, while the
LeNet-300-100 and VGG-16 networks were leveraged from the TorchVision implementations.

G.3 Training Settings

Table 4 offers a comprehensive overview of the training settings used in experiments to assess both KD-LTS
and other comparative techniques for extracting subnetworks, both at initialization and from early epochs.

Table 4: Training Settings
Network Dataset Epochs Batchsize Iterations per epoch Rewind Iteration

LeNet-300-100 MNIST 40 256 469 1407
ResNet-20 CIFAR-10/100 180 128 391 1173
VGG-16 CIFAR-10/100 180 128 391 1173

Tables 5 and 6 detail the optimizer settings for the post-extraction training of subnetworks and mask training,
respectively.

Table 5: Optimizer settings for training weight and bias parameters
Network Batchsize Optimizer Momentum LR LR Drop Weight decay Initialization

LeNet-300-100 MNIST SGD - 0.01 - - Orthogonal
ResNet-20 CIFAR-10/100 SGD 0.9 0.1 10x at 90, 135 2e-4 Orthogonal
VGG-16 CIFAR-10/100 SGD 0.9 0.1 10x at 80, 120 2e-4 Orthogonal

Table 6: Optimizer settings for training mask parameters
Network Dataset Optimizer Momentum Max LR Base LR Weight decay Initialization

LeNet-300-100 MNIST SGD - 0.1 0.001 - Orthogonal
ResNet-20 CIFAR-10/100 SGD 0.9 0.1 0.001 - Orthogonal
VGG-16 CIFAR-10/100 SGD 0.9 0.1 0.001 - Orthogonal
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Next, we present the hyperparameters for our knowledge distillation framework in Table 7. These are the
general settings used across all our experiments unless otherwise stated. The hyperparameters for response-
based, feature-based, and relational-based knowledge distillation techniques mentioned in the ablation studies
are specified in the respective sections.

Table 7: Hyperparameters for the knowledge distillation framework
Network Dataset α β(0) k νk T

LeNet-300-100 MNIST 0.9 1 3 0.34 0.6
ResNet-20 CIFAR-10/100 0.9 1 3 0.34 2
VGG-16 CIFAR-10/100 0.9 1 3 0.34 30

H Benchmarking Sparsification Techniques: A Comparative Study

We conduct a comprehensive evaluation of multiple baseline methods and various state-of-the-art sparsification
techniques to demonstrate the advantages of our approach in extracting supermasks, conducting pruning at
initialization, and performing early training pruning. Additionally, we carry out a series of sanity checks,
sensitivity analyses, and stability assessments across the strategies to distinguish the quality of our winning
tickets. In this section, we briefly describe the key features of these juxtaposed techniques and the critical
parameters in their implementation.

Lottery Ticket Hypothesis: Frankle and Carbin (2018) adopted and customize the popular IMP to an
iterative process to obtain subnetworks at initialization. We refer to the standard LTH procedure that
involves resetting the weights to their random initial values, as ‘LTH’ in our plots. As an alternative, when
the weights are rewound to an earlier epoch, we denote it as ‘LTH-Rewind’. Throughout all LTH-Rewind
experiments presented in this study, we rewind the weights specifically to the 3rd epoch (unless otherwise
specified). For our experiments, the LTH implementation from the OpenLTH repository is employed. Also,
to ensure the functionality of the pruned subnetwork, its weights are proportionally scaled to account for the
fraction of weights pruned, as described in Algorithm 2.

Algorithm 2: LTH
1: Randomly initialize a neural network fs

L(x; (m⊙ θ(0))) where m = 1: m is a vector of all-ones with the
same dimension as θ(0).

2: Train the network for E epochs with an optimal learning rate to minimize LCE and obtain
fs

L(x; (m⊙ θ(E))).
3: Prune 20% of the parameters with the least absolute magnitude |θ(E)|, creating an updated mask m′.
Here, | · | represents element-wise application of absolute value.

4: Reset the weights of the remaining portion of the network to their values in θ(0) for ‘LTH’ experiments
and to their values in θ(3) for ‘LTH-Rewind’ experiments.

5: Rescale the values of weights based on the sparsity of the network: θ(0) ← θ(0)/(1− ∥m′∥0
P ) for ‘LTH’

experiments and θ(3) ← θ(3)/(1− ∥m′∥0
P ) for ‘LTH-Rewind’ experiments.

6: Let m = m′ and repeat steps 2 through 4 until a sufficiently pruned network has been obtained.

SNIP (Single-shot Network Pruning): SNIP, introduced by Lee et al. (2018), is another pruning
at-initialization technique designed to calculate importance scores based on gradients, preserve weights with
the most significant impact on the loss function, and thereby selectively eliminate redundant connections in a
data-dependent manner. In the standard implementation of SNIP, all of those operations are executed in a
single iteration. To facilitate a fair comparison, we consider a recently introduced iterative variant of SNIP
proposed by de Jorge et al. (2020). In our experiments, we utilize the implementation of this iterative SNIP
available at https://github.com/hoonyyhoon/Synflow_SNIP_GraSP. Also, with 100 iterations performed,
weights are gradually pruned in accordance with an exponential schedule as proposed in (de Jorge et al.,
2020), ensuring that the final desired level of sparsity is achieved at the 100th iteration.

GraSP (Gradient Signal Preservation): GraSP, introduced by Wang et al. (2020), calculate the Hessian-
gradient product for each layer to selectively eliminate weights that diminish gradient flow and prunes
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weights whose removal results in the least decrease in the gradient norm. We utilize the code available at
https://github.com/hoonyyhoon/Synflow_SNIP_GraSP for the implementation of GraSP, and adopt the
same strategy as implemented by (Wang et al., 2020) for creating the mini-batch used to compute GraSP
scores in CIFAR-10 and CIFAR-100 experiments. Specifically, we randomly sample ten examples from each
class, aligning with their approach for both CIFAR-10 and CIFAR-100 experiments.

SynFlow: SynFlow, proposed by Tanaka et al. (2020), is a data-agnostic pruning at initialization algorithm
designed to preserve the total flow of synaptic strengths through the network and achieve Maximum Critical
Compression. Our implementation of SynFlow in our experiments follows the strategy outlined in the
repository https://github.com/hoonyyhoon/Synflow_SNIP_GraSP. To streamline the process, we conduct
100 iterations, mirroring the approach employed by (Tanaka et al., 2020)

Algorithm 3: Iterative Synaptic Flow Pruning (SynFlow)
Randomly initialize a neural network f s

L(x; (m⊙ θ(0))) where m = 1.
for n in N do

Replace all parameters θ(0) with their absolute values |θ(0)|.
Sample a mini-batch of training data Db = {(xi, yi)}b

i=1 ⊂ D.
Forward propagate an input of all ones 1 through the network f s

L(1; (m⊙ |θ(0)|)).
Prune (1− Sn/N ) fraction of the parameters according to the criterion

∣∣∇θ(0)f s
L(x; m⊙ |θ(0)|)⊙ θ(0)

∣∣,
creating an updated mask m′.

Let m = m′.
end
Rescale the values of weights based on the sparsity of the network: θ(0) ← θ(0)/(1− S).
Train the network f s

L(x; (m⊙ θ(0))) for E epochs with the optimal learning rate to obtain
f s

L(x; (m⊙ θ(E))).

ProsPr: Alizadeh et al. (2022) present ProsPr, a method that leverages meta-gradients, and incorporates
an estimation of the higher-order effects of pruning on the loss function and the optimization trajectory
to pinpoint trainable sparse models during initialization. For our comparative analysis, we utilize their
implementation at https://github.com/mil-ad/prospr.

GEM-MINER: GEM-MINER, introduced by Sreenivasan et al. (2022), represents a recent advancement
in identifying subnetworks at initialization, revealing winning tickets within initialized subnetworks. It is
based on one-shot pruning method, edge-popup (EP) (Ramanujan et al., 2020) for identifying supermasks.
The code implementation of GEM-MINER from https://github.com/ksreenivasan/pruning_is_enough
is used for the experiments.
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Algorithm 4: GEM-MINER
Initialize f s

L(x; (m⊙ θ(0))), q.
for epoch e in E do

for iteration n in N do
/*** STE ***/
Train f s

L(x; (r(m)⊙ θ(0))⊙ q).
/*** STE ***/
m← proj[0,1]P m.

end
if mod(e, V ) = 0 then

I1 ← {u | qu = 1}.
msorted ← Sort {mu, u ∈ I1}.
mbottom ← Bottom- 20% of msorted.
q ← q ⊙ 1mu /∈mbottom .

end
end
Rescale the values of weights based on the sparsity of the network: θ(0) ← θ(0)/(1− S).
Train the network f s

L(x; (q ⊙ θ(0))) for a total of E epochs using an optimal learning rate, resulting in
f s

L(x; (q ⊙ θ(E))).

Continuous Sparsification (CS): Continuous Sparsification (CS) (Savarese et al., 2019) is designed to
identify sparse subnetworks during the early training phases by approximating l0 regularization through a
series of continuous sigmoid functions. We utilize their publicly available code from https://github.com/
lolemacs/continuous-sparsification to replicate CS results. In our experiments replicating CS, we set
the rewinding epoch to the 3rd epoch, employ 3 rounds of training to identify winning tickets, and use
hyperparameter values λ = 10−8, β(0) = 1, β(E) = 300. We initialize mask parameters to different constants
for varying the sparsity levels across experiments.

Algorithm 5: Continuous Sparsification
for round r in R do

Initialize β ← 1
Train min

s,θ
LCE(x; σ(βs)⊙ θ) + λ∥σ(βs)∥1 for E epochs, while increasing β by factor µ each epoch.

If round r = R, output f s
L(x; H(s(E))⊙ θ(3)).

Otherwise, set s← min{β(E)s(E), s(0)}, β ← 1. Here, min{·, ·} represent element-wise application of
the minimum function to compare corresponding elements of the two vectors.

end
Rescale the values of weights based on the sparsity of the network: θ(3) ← θ(3)/(1− ∥H(s(E))∥0

P ).
Train the network f s

L(x; (H(s(E)))⊙ θ(3))) for E epochs with optimal learning rate to obtain
f s

L(x; (H(s(E))⊙ θ(E))).
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