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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated significant ca-
pabilities in image understanding, but long-video are constrained by context win-
dows and computational cost. Uniform frame sampling often leads to substan-
tial information loss. Meanwhile existing keyframe selection methods such as
text-frame retrieval or RL-based frame optimization typically yield sparse and
temporally disjointed frames, overlooking scene continuity and lacking flexibil-
ity for multi-scale frame selection. To address these limitations, we introduce
K-frames, a novel paradigm for scene-driven keyframe selection that preserves
temporal continuity. Instead of selecting individual frames, K-frames predicts
semantically coherent, query-relevant clips, which enables any-k keyframes se-
lection to meet diverse user budgets. To achieve this approach, we first introduce
PeakClips, a dataset of 200K video highlights conditioned by query. Building on
this dataset, K-frames learns clip2frame selection using a three-stage progressive
curriculum. It involves two Supervised Fine-Tuning stages for temporal ground-
ing and key-clip perception, followed by a Reinforcement Learning stage that
directly optimizes the scene-driven prediction policy for downstream task without
further annotations. Extensive experiments on major long-video understanding
benchmarks demonstrate that K-frames provides an effective, interpretable, and
plug-and-play solution for keyframe selection at various scales. Our dataset and
model will be available.

1 INTRODUCTION

Recent progress in Multimodal Large Language Models (MLLMs) (Bai et al., 2025; Wang et al.,
2025) has come from coupling Large Language Models (LLMs) with vision encoders via a cross-
modal projector that maps visual features into the language token space. This design enables unified,
instruction-following multimodal reasoning across diverse text-image tasks. However, extending
these models from image to video remains challenging. As treating a video as a sequence of frames
greatly increases the number of visual tokens, especially for long videos. On the one hand, finite
context windows cannot accommodate all video frames. On the other hand, the quadratic compu-
tational complexity of standard Transformer attention (Vaswani et al., 2017) makes longer inputs
dramatically more expensive in computation and in token-metered API usage. Therefore, frame
downsampling is practically necessary for video inputs.

Current MLLMs typically process videos via uniform frame sampling. But for long videos, the
challenge is that sampling only a small subset of frames risks a critical loss of context, highlighting
the need for keyframe selection. Existing methodologies for keyframe selection are predominantly
categorized into two paradigms: text-frame retrieval and Reinforcement Learning (RL)-based opti-
mization. The former computes the similarity of frames and text query to rank frames (Tang et al.,
2025), treating video as independent images. This neglects temporal context and struggles with
instruction-heavy or compositional queries. The latter, RL-based methods, optimize frame subsets
for downstream objectives. But the resulting selections are typically sparse, which harms scene
continuity, thereby degrading video understanding performance. And it also fails to accommodate
personalized user budgets due to the lack of flexibility for multi-scale selection.

To address these limitations, we propose K-frames, a query-conditioned and interpretable paradigm
that reframes keyframe selection as clip2frame prediction. Instead of selecting isolated frames,
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K-frames Output
<time>7-13, P2,</time><reason>It shows the first event: the man 
in the red cap standing outside the barbershop talking;</reason>
<time>13-35, P1,</time><reason>It shows the man pretending to 
be asleep during his haircut, which is the second event. | 
It further shows the man pointing out the cameras to the barber, 
which is the third event;</reason>
<time>35-52, P2,</time><reason>It shows the man appearing to 
fall out of the chair, which is the fourth event ;</reason>

Query: What the correct order for the events in video?

(1) The man in red cap stands outside a barbershop talking; 

(2) The man pretends to be asleep during his haircut; 

(3) The man points out the camera and explains it to barber; 

(4) The man appears to fall out of the chair.

A.2→1→3→4  B.3→2→1→4  

C.1→2→4→3  D.1→3→2→4

Downstream Prediction: C. 1→2→4→3

Rel 

Score

Origin

Video

UNI

Ours

scene1 scene2 scene3 scene4 sceneN

[2 key frames]

[8 key frames]

Figure 1: Visualization of our K-frames paradigm. Unlike uniform sampling (UNI), our model first
predicts query-relevant key clips along the video timeline, assigning them importance levels of P1
(top-priority) or P2 (secondary-priority). Keyframes are then selected based on these key clips.

K-frames first localizes semantically coherent, temporally contiguous clips aligned with the query,
and then selects any-k keyframes based on those clips. As illustrated in Figure 1, this clip-first de-
sign preserves scene continuity, focuses computation on informative regions, making the selection
process interpretable. As a model-agnostic front-end, K-frames enhances the efficiency and perfor-
mance of existing MLLMs in long video understanding with no modifications to their architecture.

The main challenge in scene-driven keyframe selection is the lack of scene-level relevance anno-
tations. To close this gap, we construct a new dataset, PeakClips, with hierarchical captions and
detailed video highlight annotations. PeakClips is built via a three-stage pipeline: (1) scene seg-
mentation partitions videos into scene-aware temporal units based on changes in visual content; (2)
hierarchical captioning at the scene/chapter/video levels supplies multi-granular descriptions that
link local scene to the global narrative; and (3) LLM-guided relevance scoring aligns scenes with
the query through Gemini 2.5 Pro (Comanici et al., 2025), and using frame–query similarity further
refines relevance score to the frame level. By annotating these scenes, we ultimately aim to supply
keyframe selection, temporal localization, and hierarchical understanding in long-term video.

Building on the PeakClips dataset, we employ a three-stage progressive curriculum to tecach K-
frames. We use a lightweight MLLM (Qwen2.5-VL-3B) as the backbone. The initial Supervised
Fine-Tuning (SFT) stage prepares the model for our scene-driven paradigm by instilling founda-
tional capabilities in temporal localization and scene understanding. Then during the second SFT
stage the model learns with supervised data to perceive query-relevant video clips with reason, en-
abling our clip2frame prediction. Finally, the SFT-trained model serves as a cold-start policy for
Reinforcement Learning, where the scene-driven keyframe selection policy is directly optimized to
ensure the selected scenes are maximally effective for downstream task. This entire process yields a
model that outputs query-conditioned key clips rather than disconnected frames, naturally enabling
interpretable and flexible any-k keyframe selection.

To sum up, the main contributions are: (1) We construct PeakClips, a 200K query-conditioned high-
light dataset built via scene segmentation, hierarchical captioning, and LLM-guided relevance scor-
ing, providing supervision for temporal grounding, scene perception, and keyframe prediction. (2)
We propose K-frames, a new interpretable paradigm that reframes keyframe selection as clip2frame
prediction, preserving scene continuity and enabling any-k keyframe selection. (3) Extensive ex-
periments on major long-video understanding benchmarks demonstrate that K-frames provides an
effective, interpretable, and plug-and-play solution for keyframe selection at multi-scales.

2 RELATED WORK

2.1 MULTI-MODAL LARGE LANGUAGE MODELS FOR VIDEO UNDERSTANDING

Existing MLLMs such as ChatGPT-4o Hurst et al. (2024), Gemini 2.5 Pro Comanici et al. (2025) and
Qwen-VL 2.5 Bai et al. (2025) have made significant progress in multimodal understanding (Achiam
et al., 2023; Team et al., 2023; Bai et al., 2023). However, adapting these models to the video domain
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introduces the added complexity of modeling temporal information. Early efforts in video-MLLMs
primarily relied on uniformly sampled frames and simple connectors, such as MLPs (Lin et al.,
2023; Ataallah et al., 2024; Maaz et al., 2024b), discrete visual tokenizers (Jin et al., 2024) and
Q-formers (Zhang et al., 2023; Li et al., 2024b) to link visual encoders with LLMs. Subsequent
models focus on enhanced video-instruction data (Li et al., 2024a; Wang et al., 2024), efficient
spatio-temporal feature compression methods (Shen et al., 2024; Tan et al., 2024) and video-specific
encoders (Wang et al., 2024; Maaz et al., 2024a). Specifically, processing long videos remains a
significant bottleneck due to MLLMs’ context limits and prohibitive computational costs. Current
strategies to mitigate this challenge include directly extending the LLM’s context window (Zhang
et al., 2024a), developing memory management mechanisms (He et al., 2024) or keyframe selection
algorithms (Tang et al., 2025; Lee et al., 2025; Xu et al., 2025) for identifying representative frames.

2.2 EXISTING KEYFRAME SELECTION METHODS

Efficient keyframe selection has become a critical component for long-video understanding, evolv-
ing from traditional approaches like query-agnostic clustering-based methods (Zhang et al., 2013)
or uniform sampling (Xu et al., 2024) to modern query-adaptive strategies. They are predominantly
divided into two paradigms: text-image retrieval and RL-based frame optimization. Text-image re-
trieval methods calculate the independent video frame-query similarity to localize important frames.
MLLM Based Frame Selection (Hu et al., 2025) employs spatial-temporal importance scoring to
boost performance, and Frame-Voyager (Yu et al., 2024) ranks frame combinations via pretrained
Video-LLMs. Concurrently, there have been endeavors to integrated RL into keyframe selection
for policy optimization. ReFoCUS (Lee et al., 2025) proposed a frame-level policy optimization
framework that shifts the optimization target from textual responses to visual input selection, and
ViaRL (Xu et al., 2025) leverages the downstream model’s answer accuracy as a reward signal,
enabling a trial-and-error learning that requires no explicit frame selection annotations. Yet, these
approaches prioritize frame-level semantics, largely ignoring a video’s crucial temporal structure.
In contrast, our method K-frames redefines this task through clip2frame prediction, a paradigm that
preserves the narrative flow of events and supports versatile any-k selection.

3 METHOD

In this work, we propose K-frames, which reframes keyframe selection as the task of predicting
query-relevant key clips and sampling frames. To achieve this, our model needs to understand
scene-level semantics and their temporal boundaries. A main challenge, however, is the lack of
datasets with scene-level relevance annotations. To address this, we first present the construction of
our large-scale dataset, PeakClips, which provides the necessary supervision (Sec. 3.1). Building on
this dataset, we train K-frames using a novel three-stage progressive curriculum. We begin with two
stages of Supervised Fine-Tuning to equip the model with the fundamental capabilities of temporal
grounding and key-clip perception (Sec. 3.2). Finally, we employ Reinforcement Learning to align
the model’s clip2frame selection policy with downstream long-video understanding tasks, without
the need for further annotations (Sec. 3.3). The overall system is illustrated in Figure 3.

3.1 PEAKCLIPS DATASET

To enable our clip-to-frame learning paradigm, we introduce PeakClips, a large-scale dataset com-
prising over 200K query-conditioned relevance annotations on video clips. The source videos are
drawn from LLaVA-Video-178K (Zhang et al., 2024b), NeXT-QA (Xiao et al., 2021), and Percep-
tionTest (Patraucean et al., 2023). As illustrated in Figure 2, we follow a three-stage pipeline: given
a video v and a text query q, we first segment v into candidate clips, then estimate the relevance of
each clip to q, and finally retain only the most relevant ones. This yields, for each video v, a set of
Nv key clips,

Cv =
{
c(i)v = [s(i)v , e(i)v ]

}Nv

i=1
,

where the superscript i indexes the key clips within video v, s(i)v and e
(i)
v denote the start and end

frame indices of the i-th key clip, and Nv is the number of selected key clips for video v.

3
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Hierarchical Captioning LLM-Guided Relevance Scoring

Instructional  Prompt:  As a professional
video content analyst, please  create a
detailed description (OCR + visual analysis) 
for each scene. Group scenes into chapters
(title, range, summary). Conclude with a
video_summary.

clip 1

clip 2

clip n

…

cos 𝑉𝑖, 𝑄

clip-level relevance score

frame-level       relevance score

Query: In which direction do the two individuals ride their horses?\nA.
From left to right\nB. Towards the camera\nC. Away from the camera……

Clip1: He wearing a black
suit, walks into a modern,
brightly lit room with
white shelving units...

Clip2:  A wide shot of dance 
studio. Five dancers (three 
men, two women) dressed 
in matching vintage …

Clipn:  Conan with long red
hair rides a black horse
alongside a woman …

clip by clip

Instructional Prompt: Analyze the provided video scenes 
and assign a relevance score (1-5) to each, based on how 
well it helps answer the question with candidates. 

Chapter1: 
include clip1-4,
Conan O‘Brien
introduces the 
project, and he 
celebrating 25

video_sum:
This video 
mainly focus 
on the 
celebration 
of ...

𝑆𝑐𝑜𝑟𝑒𝑐𝑙𝑖𝑝 =
𝜔1
𝑁
෍

𝑖=1

𝑁

cos 𝑉𝑖, 𝑄

+𝜔2𝑆𝑐𝑜𝑟𝑒𝐿𝐿𝑀

𝑆𝑐𝑜𝑟𝑒𝑓𝑟𝑎𝑚𝑒𝑖 = 𝛼 cos 𝑉𝑖, 𝑄

+𝛽𝑆𝑐𝑜𝑟𝑒𝐿𝐿𝑀

𝑉𝑖

𝑄

clip 1

frame

query

vision encoder

text encoder

scene-boundary score

video input

scene-split

Hierarchical Captions: clip chapter video

clip1, score 1, This scene shows Conan O'Brien introducing the video and does not 
contain any individuals riding horses….
…….
clipn, score 5, This scene contains the critical visual evidence. In a brief archival clip, 
Conan and a woman are shown riding horses, moving across …

Scene Segmentation

Figure 2: The three-stage framework for constructing the PeakClips dataset. The process involves
(1) Scene-aware Segmentation to partition the video, (2) Hierarchical Captioning to generate multi-
level descriptions, and (3) LLM-guided Relevance Scoring to identify query-conditioned relevance.

Scene-aware Segmentation. We first decompose each video into a set of temporally contigu-
ous and semantically coherent scenes. To achieve this, we calculate the change in visual content
throughout the video by computing the histogram difference between consecutive frames (Sheena &
Narayanan, 2015). This process generates a scene-boundary score for each frame transition, where
high scores correspond to abrupt changes in visual content. By segmenting the video at these high-
scoring boundaries {b0v = 1, b1v, . . . , b

M
v }, we obtain a set of scene clips sjv = [bj−1

v , bjv].

Hierarchical Captioning. To provide multiscale context for relevance scoring, we generate cap-
tions through Gemini 2.5 Pro (Comanici et al., 2025) at three granularities: fine-grained clip-level
descriptions, chapter-level summaries (grouping related clips), and a video-level synopsis. This
hierarchy allows relevance to be assessed by connecting local events to the global narrative, which
is crucial for handling complex queries.

LLM-guided Relevance Scoring. With the segmented clips and captions, we first use Gemini 2.5
Pro to assign a base relevance score (1-5) with a reason to each clip based on a detailed instructional
prompt (see Appendix C.2). This LLM-generated score is then refined using the text-frame simi-
larity. Specifically, we compute a final clip-level score by taking a weighted average of the LLM
score and the mean SIGLIP (Zhai et al., 2023) similarity between the query and the clip’s frames.
We are able to extend the relevance score to frame level by weighting the parent clip’s Gemini score
with each frame’s individual SIGLIP-query similarity. But in our work, we only use the clip-level
relevance. Clips with a final score greater than or equal to 4.9 are annotated as top-priority (P1)
highlights, while those with scores in the range [4.3, 4.9) are labeled as secondary-priority (P2)
clips.

PeakClips Dataset. In summary, the three-stage construction pipeline yields the PeakClips
dataset, a comprehensive resource for video understanding. Each entry provides videos anno-
tated with temporally coherent scene boundaries, multi-level hierarchical captions (clip, chapter,
and video), and query-conditioned highlight clips. The dataset also includes the dense, continuous
clip-level relevance scores and LLM-generated rationales that informed the final selections. Collec-
tively, these rich annotations make PeakClips a versatile resource for supervising a wide spectrum
of tasks, including temporal grounding, scene-level perception, keyframe selection.

3.2 SUPERVISED FINE-TUNING FOR KEY-CLIP PREDICTION

Building on the PeakClips dataset, K-frames learns scene-driven keyframe selection through a three-
stage progressive curriculum (Bengio et al., 2009). As illustrated in Figure 3, it includes two-stage
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MLLM

K-frames

<time>16-28,P1</time><reason>This scene 
directly show the bald man talking to the 
man</reason><time>156-164,P2，</time> 
<reason>This scene show the blonde…

①Localization: <time>16-28</time>
②Scene Caption: This scene shows a woman….
③Scene Relevance: <time>44-78,P3</time>

① Localization: Based caption, when does it happen
② Scene Caption: caption <time>44-78</time>
③ Relevance adjust: <time>44-78</time>, What is the 
relevance of this scene and query…

Given the video and the (query      ) you need to
predict key scenes helpful to answer the query. For
each key clip, add a relevance tag and reason: P1 =
directly answers; P2 = strongly supports

Query(          ) : 

What is the blonde woman doing

when the bald man comes? 

(A) Eating

(B) Taking a bath

(C) Sleeping

(D) Doing makeup

Stage-1(SFT)

similar with stage2

similar with stage2

Key-frame Selection

K-frames K-frames

Stage-2(SFT) Stage-3(RL)

Native ViT

Projector

Large Language Model

1 2 3 4

Tokenizer

text

video

video token

text token

0 temporal token

R = tanh
1

𝜏
log

𝑝 ans

Τ1 𝑌 −1 σ𝑦≠ans 𝑝 𝑦
 

GRPO Rule-based Reward

update

<time>16-28,P1</time>

origin

video

key

frames

key clips

…

<time>156-164,P2</time> 

3
…

1 2 3 256 3
…

1 2 3 256 1

(A) Eating             

(B) Taking a bath

(C) Sleeping         

(D) Doing makeup

<think>

<think>

<think>

<ans>A

<ans>B

<ans>D

Policy Model

… …

R1

R2

Rn

…

A1

A2

An

…

Reward Adv.

A =
𝑅𝑖 −𝑚𝑒𝑎𝑛(𝑅)

𝑠𝑡𝑑(𝑅)

Figure 3: An overview of the K-frames framework. It features a two-stage Supervised Fine-Tuning
(SFT) curriculum for temporal grounding and key-clip perception, followed by a Reinforcement
Learning (RL) stage to align the selection policy with downstream task performance.

Supervised Fine-Tuning (SFT) and one-stage Reinforcement Learning (RL). The first two stages is
to equip a lightweight MLLM(Qwen2.5-VL-3B) with two core capabilities essential for our task:
temporal localization, and query-conditioned key clips perception.

Temporal Grounding and Relevance Judge. In the first SFT stage, K-frames leverage the hier-
archical captions and clip-query relevance annotations in PeakClips to learn Temporal Grounding.
To enhance the K-frames’ ability to align visual content with its time span, we employ two tem-
poral prompting techniques throughout all three stages training. Following prior work (Wu et al.,
2025), Visual Prompts render the frame index t directly onto each frame ft, providing a direct visual
cue for time. Concurrently, we inject Textual Prompts preceding the visual tokens vt,t+1 for each
frame. Building on these temporal cues, our curriculum is designed to instill robust localization and
perception abilities.

To directly enhance the model’s temporal localization capabilities, we design a caption-to-scene
localization task, where the model receives the video and a scene description to locate its temporal
span. As a dual task, we introduce a scene-to-caption generation, requiring the model to generate
a description for a given temporal span. Moreover, we incorporate a clip-query relevance scoring
task. In this task, the model is required to predict how relevant a specific clip from the whole video
is to a given query. The full specific instruction prompt for these three tasks see Appendix D.1.

Query-Conditioned Key-Clip Prediction. Building upon the foundational abilities learned in
stage 1, the second SFT stage teach our model with parameters θ for its ultimate goal: given a
long video V = {ft}Tt=1 and a query Q, it learns to perceive and predict a set of relevant key clips
C = {ci}Ni=1. Each predicted clip ci consists of a temporal span and a textual rationale. In this
training phase, the model is conditioned on the full video V , the query Q, and a specific instruction
prompt I . The prompt instructs the model to select query-relevant video clips, assigning a priority
tag (P1 for direct answers, P2 for strong support), and providing a brief rationale for each selection
(see Appendix D.1 for the full prompt text).

The training in both SFT stages is unified under a standard auto-regressive language modeling ob-
jective. The model is optimized to maximize the likelihood of generating the ground-truth sequence
Ygt (Mao et al., 2023):

LSFT = − logP (Ygt|V,Q, I; θ) (1)

This holistic training compels the model to predict key clips conditioned on query. This process
yields a well-initialized policy for the subsequent Reinforcement Learning stage and provides a
strong, standalone model for key clip selection.

5
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3.3 REINFORCEMENT LEARNING FOR DOWNSTREAM TASK ALIGNMENT

To bridge the gap between mimicking annotations from Supervised Fine-Tuning and maximizing
downstream task performance, we introduce a Reinforcement Learning stage. This stage directly
optimizes the K-frames policy by aligning it with the final task objective, using the SFT-trained
model as the initial policy. This alignment process requires no further annotations.

Scene-driven Keyframe Selection. The RL process begins with our SFT-trained K-frames, which
functions as the actor model. For a given video V and query Q, the actor model predicts a set of key
clips. From these predicted clips, which represent the most informative segments, we then sample a
fixed budget of k keyframes using uniform sampling. This clip-first, sample-second strategy ensures
that the selected frames are both semantically relevant and temporally coherent. These k keyframes,
along with the original query, are then fed into a powerful, frozen downstream MLLM (Qwen2.5-
VL-7B) to generate a final answer to the query. The goal of our RL curriculum is to optimize the
actor’s clip2frame selection policy to maximize the quality of this final answer.

Policy Optimization with GRPO. To optimize our scene-driven keyframe selection policy, we
employ Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which eliminates the need
for an explicit critic model by rolling out multiple candidate key clip selections and estimating their
relative advantages. Instead of relying on a separate reward model, we compute a reward signal
directly from the downstream model’s output using a rule-based reward function. We perform this
RL optimization exclusively on multiple-choice question-answering datasets to ensure a stable and
reliable reward signal. Given a query q and G groups of rollout outputs {o1, ..., oG} by our keyframe
selector. The reward R evaluates answer quality by comparing the log-probability of the correct
token against the average log-probability of incorrect ones, smoothed via a tanh transformation and
a temperature hyperparameter τ :

R(q, oi) = tanh

(
1

τ
log

pt=ŷ
1

|Y |−1

∑
pt̸=ŷ

)
(2)

where |Y | is the size of the candidate answer set and the probabilities p(·) are from the frozen
downstream MLLM. We adopt the Dr. GRPO (Liu et al., 2025) variant to improve training stability
and shorten the reasoning length. The group-relative advantage Ai for each rollout defined in GRPO
is calculated by:

Âi,t = R(q, oi)−mean
(
{R(q, o1), . . . , R(q, oG)}

)
(3)

Overall, the training objective for the RL stage is:

LRL =
1

G

G∑
i=1

|oi|∑
t=1

{
min

[
πθ

(
oi,t | q, oi,<t

)
πθref

(
oi,t | q, oi,<t

) Âi,t, clip

(
πθ

(
oi,t | q, oi,<t

)
πθref

(
oi,t | q, oi,<t

) , 1− ϵ, 1 + ϵ

)
Âi,t

]}
,

(4)
where πθref and πθ denotes the reference model and the actor model in the GRPO framework.

(a) Video duration distribution. (b) Scene count distribution. (c) Scene score distribution.

Figure 4: Statistics about our proposed PeakClips dataset.
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Any-K Keyframe Sampling. The full training pipeline yields the final, optimized K-frames
model, which serves as a versatile, plug-and-play model for long-video understanding at inference.
The process begins with K-frames predicting query-relevant key clips. Based on these predictions,
we support two flexible keyframe sampling strategies: Focused Sampling (exclusively from key
clips) and Hybrid Sampling (densely from key clips, sparsely from the rest of the video). This pro-
vides a flexible trade-off between deep focus and broad context. More detailes see in Appendix
D.2. These two strategies offer a flexible trade-off between concentrating on critical moments and
maintaining broader video context.

4 EXPERIMENTS

4.1 PEAKCLIPS STATISTICS

The PeakClips dataset consists of more than 200k annotations, derived from 6,702 randomly se-
lected videos from the LLAVA-Video-178K (Zhang et al., 2025) and labeled by Gemini 2.5 Pro.
Specifically, our dataset consists of 108,221 scenes with 281,643 corresponding scene-query rele-
vance annotations, and 19,070 chapters, with an average of 16.15 scenes and 2.85 chapters per video.
As shown in Figure 4a, video durations vary notably across sources: PerceptionTest and NextQA
clips are generally short, typically below 100 seconds, while Academic and YouTube videos ex-
hibit a wider range with both short and long instances represented. Figure 4b illustrates the scene
count distribution per video: the majority fall within 5–15 scenes (43.8%), while 10.1% contain
fewer than 5 scenes and 8.1% exceed 35 scenes, indicating a balanced decomposition into seman-
tically meaningful units. Finally, Figure 4c reports the scene–query relevance scores produced by
the LLM. PerceptionTest videos achieve the highest consistency with a median above 4.5, YouTube
clips show broader variance with lower medians, and Academic and NextQA datasets lie between
these extremes. For more dataset statistics please refer to Appendix C.2.
4.2 EXPERIMENT SETUP

Evaluation Benchmarks. We conduct experiments on three public benchmarks to evaluate our
approach. Video-MME (Fu et al., 2025) comprises 900 videos and 2,700 multiple-choice Question-
Answer pairs, categorized into three subsets based on video duration: short (<2 minutes), medium
(4-15 minutes), and long (30-60 minutes). MLVU (Zhou et al., 2025) includes videos ranging from 3
minutes to 2 hours and spans 9 tasks, with 2,174 multiple-choice VQA pairs. LongVideoBench (Wu
et al., 2024) features videos with an average duration of 4,101 seconds per video, which is the
longest. It contains 1,549 multiple-choice VQA pairs across 6 tasks. Importantly, all datasets are
human-annotated, ensuring high-quality labels for evaluation. To verify model-agnostic generality,
we evaluated downstream tasks with open-source models, including Qwen2.5-VL-7B, Qwen2.5-
VL-72B (Bai et al., 2025) and Intern3.5-VL-8B (Wang et al., 2025); and closed-source models
comprise ChatGPT-4o and Gemini 2.5 Pro (Comanici et al., 2025).

Implementation Details. We train K-frames with Qwen2.5-VL-3B as the backbone. For each
training and evaluation instance, we uniformly sample T = 256 frames per video as inputs. K-
frames predict continuous index ranges [s, e] as highlight clips together with rationales. These key
clips then guide the selection of k keyframes for the downstream task. Specifically, when the number
of keyframes set to k = 8, we employ Focused Sampling (exclusively from key clips). When
k = 32/64, we employ Hybrid Sampling (details in Appendix 12). As described in Sec. 3.1, we
construct PeakClips for our Supervised Fine-Tuning, and randomly select 20K samples from original
LLaVA-Video-178K for our Reinforcement Learning optimization. During all 3 stages training, we
freeze the vision encoder and update only the multimodal projector and the LLM. The first two
supervised phase takes 36 hours, and the RL phase 40 hours. We use a learning rate of 1.0 × 10−5

for both supervised phases, and 1.0× 10−6 for RL with a KL penalty coefficient of 0.01.

4.3 PERFORMANCE ACROSS GENERAL VIDEO BENCHMARKS

Temporal Localization. We first evaluate our K-frames on the Needle QA (a subset of MLVU).
It constructs each example by randomly inserting a short “needle” segment containing evidence into
a longer background video and annotating a corresponding pair of questions and answers, thereby
directly probing temporal grounding. As shown in Table 1, compared to uniform sampling, our
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Table 1: Main results on long-video understanding benchmarks. Our method (K-frames) consis-
tently improves the performance of various open-source and closed-source MLLMs across different
frames. The red text indicates the performance improvement over the baseline (uniform smpling).
And the purple background highlights the largest improvement over the baseline.

Models Size Frames MLVU VideoMME LVBench
Needle-QA M-Avg Short Medium Long Avg

VideoChat2 7B 16 - 44.5 48.3 37.0 33.2 39.5 -
VideoLLaVA 7B 8 - 47.3 45.3 38.0 36.2 39.9 -
Video-CCAM 14B 96 73.2 63.1 62.2 50.6 46.7 53.2 -

Video-XL 7B 128 73.8 64.9 64.0 53.2 49.2 55.5 -
Kangaroo 7B 64 - - 66.1 55.3 46.7 56.0 -
VideoTree - - - 60.4 67.8 59.9 54.2 60.6 -

ViaRL 3+7B 8 8 73.5 58.2 65.1 56.1 50.8 57.3 -
open-sourced model

Qwen2.5-VL 7B 8 58.6 53.9 61.7 50.6 46.9 53.0 52.8
+ languagebind 7B 8 51.6 52.3 54.3 49.2 45.9 49.8 52.2

+ ours 3+7B 8 77.5 (↑18.9) 60.4 (↑6.5) 68.9 55.3 47.9 57.4 (↑4.4) 57.7 (↑4.9)

Qwen2.5-VL 7B 32 63.4 61.7 71.8 60.8 50.1 60.2 59.3
+ languagebind 7B 32 79.0 64.0 61.7 55.2 49.0 55.3 55.2

+ ours 3+7B 32 79.4 (↑16.0) 65.9 (↑4.2) 74.1 61.4 51.7 62.1 (↑1.9) 60.5 (↑1.2)

Qwen2.5-VL 7B 64 67.7 65.6 73.9 62.3 52.2 62.8 59.9
+ ours 3+7B 64 78.9 (↑11.2) 67.8 (↑2.2) 75.9 63.7 53.9 64.5 (↑1.7) 61.6 (↑1.7)

Qwen2.5-VL 72B 8 51.6 56.3 65.6 56.6 51.1 57.7 55.6
+ ours 3+72B 8 77.2 (↑25.6) 63.3 (↑7.0) 70.2 58.9 52.8 60.6 (↑2.9) 59.3 (↑3.7)

Qwen2.5-VL 72B 32 67.3 64.0 74.3 63.4 58.1 65.3 60.8
+ ours 3+72B 32 78.3 (↑11.0) 67.6 (↑3.6) 75.2 66.0 57.8 66.3 (↑1.0) 63.2 (↑2.4)

close-sourced model
Gemini2.5Pro – 8 43.4 54.2 77.7 67.4 62.1 69.1 57.8

+ ours – 8 71.6 (↑28.2) 56.6 (↑2.4) 79.7 67.2 62.8 70.0 (↑0.9) 62.2 (↑4.4)

Gemini2.5Pro – 32 74.6 66.0 87.1 74.9 69.6 77.2 64.2
+ ours – 32 80.9 (↑6.3) 69.0 (↑3.0) 87.1 76.1 70.9 78.0 (↑0.8) 67.0 (↑2.8)

GPT-4o – 8 58.3 55.38 67.2 58.6 53.5 59.7 49.4
+ ours – 8 75.2 (↑16.9) 60.5 (↑5.1) 72.4 60.8 54.6 62.6 (↑2.9) 54.5 (↑5.1)

GPT-4o – 32 71.3 59.6 69.3 61.1 55.8 62.1 49.9
+ ours – 32 76.9 (↑5.6) 61.9 (↑2.3) 70.6 62.7 54.8 62.7 (↑0.6) 51.3 (↑1.4)

K-frames significantly improves performance on this task. For example, when using the Gemini
2.5 Pro as the downstream model with the number of frames set to k = 8, our method boosts the
accuracy from 43.4% to 71.6%, achieving a notable improvement of 28.2%. This is because our
model can effectively align visual evidence to time span and then locate the relevant scenes.

Quantitative Analysis. We evaluate K-frames on several challenging long-video benchmarks. As
shown in Table 1, our method consistently and significantly exceeds the baseline performance in
different open-source and closed-source models. For example, when applied to the open source
QwenVL-2.5-7B with k = 8 frames, our approach achieves a improvement of 6.5% on MLVU (M-
Avg). Similarly, when integrated with the closed-source GPT-4o with k = 8, it boosts the LVBench
score by a significant 5.1%. This is because our model can effectively localize relevant scenes by
aligning visual evidence with its correct time span, enabling it to effectively extract keyframes.

Furthermore, our method demonstrates robust performance gains even as the number of sampled
keyframes increases. Taking the Qwen2.5-VL-72B’s performance on LVBench as an example, the
baseline score scales from 55.6 with 8 frames to 59.9 with 64 frames. Our method also improves
upon these scores at each step—achieving 59.3 (+3.7) and 61.1 (+1.2) respectively. This demon-
strates the scalability and effectiveness of our K-frames across different sampling densities.
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Input

Video

UNI

Ours

Scene

Clips

Rel

Score

K-frames Output:
<t>118-128, P1,</t><r>It 
shows a black funeral car 
driving on a dirt road </r>
<t>128-138, P2,</t><r>It 
shows a man in suit 
walking next to the black 
car</r>

C. Blue
[0 key frame] 

Query: 
What color is the car 
in the video?

B. Black
[7 key frames]  

…

Query: 
What type of beach is 
shown in the video?

K-frames Output:
<time>202-217,P1,</time>
<reason>It shows a clear, 
aerial view of the beach 
with wild rocks</reason>

A. Sandy beach
[1 key frame] 

C. Wild rocky beach
[8 key frames]  

Figure 5: Qualitative comparison between uniform sampling and our K-frames method.

Using the same QwenVL2.5-3B backbone for frame selection, we compare our method against
ViaRL (Xu et al., 2025). It requires an iterative update strategy that involves jointly optimizing the
downstream QwenVL2.5-7B model. In contrast, our method is truly plug-and-play, eliminating the
need for costly downstream model optimization. As illustrated in Table 1, our approach outperforms
ViaRL by 4.0 points on Needle-QA and 2.2 points on the MLVU M-Avg score. Moreover, unlike
ViaRL’s fixed 8-frame selection, our method can select any-k keyframes, which showcases the en-
hanced flexibility and superiority of our clip2frame paradigm. Unlike VideoTree—a training-free
agent that relies on ChatGPT to caption and select video clips, resulting in high inference costs—our
K-frames method adopts a lightweight QwenVL2.5-3B backbone for frame selection and can be
plugged directly into any downstream MLLM. When integrated with GPT-4o, our approach sur-
passes VideoTree by 2.1 points on VideoMME.

Qualitative Analysis. Figure 5 presents a qualitative analysis that visually contrasts the perfor-
mance of K-frames against the widely used uniform sampling baseline. For instance, when asked to
identify the car’s color in the video, uniform sampling method is blind to the query, selecting frames
from various irrelevant scenes. In contrast, K-frames showcases a more sophisticated understand-
ing. Its relevance score identifies two distinct but semantically related scene clips: one showing the
“black funeral car driving” and another showing a “man in suit walking next to the black car”, which
provides the downstream model with comprehensive and unambiguous visual evidence. These ex-
amples demonstrate how K-frames successfully identifies and leverages critical visual evidence and
leads to more accurate and well-grounded video understanding.

4.4 ABLATION STUDY

Table 2: Ablation on training stages. Baseline
is uniformly sampling. Downstream MLLM is
Qwen2.5-VL-7B with k = 32 frames.

MODEL SFT 1 SFT 2 RL Needle-QA MLVU

baseline - - - 63.4 61.7
SFT - ✓ - 75.8 64.1
SFT ✓ ✓ - 76.3 64.5
RL ✓ ✓ ✓ 79.4 65.9

Table 3: Ablation on temporal prompts, per-
formed on SFT2 model for efficient validation.
The baseline uses a uniform sampling strategy.

MODEL TP VP Needle-QA MLVU

baseline - - 63.4 61.7
SFT2 ✓ - 75.5 63.9
SFT2 - ✓ 70.4 62.2
SFT2 ✓ ✓ 75.8 64.1

Ablation on Training Stages. We first analyze the contribution of each stage in our multi-stage
progressive curriculum. As shown in Table 2, training with only the second SFT stage yields a score
of 64.1 on MLVU. SFT2 is a necessary course because the model learns to predict query-conditioned
key clips during SFT2, making it a prerequisite for the keyframe selection. SFT1 is a preliminary
curriculum focused on foundational skills. Incorporating SFT1 provides a further gain, reaching
64.5 on MLVU and 76.3 on Needle-QA, which demonstrates this phase enhanced K-frames tem-
poral grounding, which helps to final secene-driven keyframe selection. Moreover, adding the final
Reinforcement Learning (RL) stage achieves a significant improvement, boosting performance by
1.4% on MLVU and 3.1% on Needle-QA. This is because RL stage directly optimizes its clip2frame
selection policy to align with the downstream tasks.
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Table 4: Main Inference-time on EgoSchema and MLVU. The (*) indicates an estimated time.

Method Dataset Length (s) Acc. Inf. Time (s)

LangRepo EgoSchema 180 60.8 87.2
VideoTree (Mistral-7B) EgoSchema 180 63.0 24.3
VideoTree (Mistral-8×7B) EgoSchema 180 71.0 50.3
K-frames EgoSchema 180 – 12.8

VideoTree* (Mistral-7B) MLVU 930 – >24.3
LanguageBind MLVU 930 52.3 11.2
K-frames MLVU 930 60.4 10.6

Ablation on Different Temporal Prompts. Given the importance of temporal cues, we next ex-
plore the individual contributions of our two temporal prompts: Visual Prompt (VP) and Textual
Prompt (TP). As shown in Table 3, using only VP or TP results in suboptimal performance. This
limitation suggests that relying on a single type of prompt provides an incomplete representation of
the video’s temporal structure. In contrast, combining both VP and TP attains a final score of 64.1%
on MLVU. It is because our two prompts capture complementary information. The VP directly pro-
vides visual evidence, while the TP offers fine-grained, position-specific guidance for each frame.
This synergy allows K-frames to build a more comprehensive understanding of temporal dynamics,
enhancing its scene-driven keyframe selection performance.

4.5 INFERENCE-TIME ANALYSIS

Table 4 compares the accuracy-latency trade-off of K-frames against other keyframe selecting meth-
ods. On MLVU, K-frames raises accuracy from 52.3 to 60.4 compared to LanguageBind, while
slightly reducing inference time from 11.2s to 10.6s—demonstrating that our scene-driven selector
improves performance with Limited computational overhead. In contrast, VideoTree relies on cap-
tioning multiple candidate shots and repeated LLM queries, incurring substantially higher latency.
On EgoSchema, K-frames requires only 12.8s per video, compared to 24.3s for VideoTree (Mistral-
7B). For longer videos, such as those in MLVU (average 930s), VideoTree’s captioning cost scales
up, leading to even higher estimated runtimes (denoted as “VideoTree*” in Table 4). K-frames, by
contrast, maintains stable inference time due to its lightweight clip-to-frame selector.

5 LIMITATION

While K-frames significantly enhances long-video understanding, it still faces certain limitations.
First, the current selector relies on Qwen2.5-VL-3B with a input budget of 256 frames, which may
be too sparse for extremely long videos (e.g., over two hours), potentially causing important events to
be undersampled. Scaling to such scenarios may require hierarchical or streaming mechanisms that
process frames in multiple passes or incorporate long-term memory. Second, K-frames is scene-
driven and works best for long videos with diverse scenes. For short clips with minimal scene
changes, dense retrieval or exhaustive frame-combination strategies may be more effective. Future
work could explore integrating K-frames with such complementary approaches.

6 CONCLUSION

In this work, we introduce K-frames, a new scene-driven paradigm for long-video understanding. It
reframes keyframe selection as a clip2frame prediction task, preserving scene continuity while en-
abling flexible any-k sampling. To realize this paradigm, we first construct PeakClips, a new 200K
query-clip relevance dataset. We then propose a three-stage SFT-RL training framework designed
to produce a powerful key clip predictor that is highly optimized for downstream tasks. Exten-
sive experiments show K-frames acts as an effective, interpretable, and model-agnostic front-end,
consistently boosting MLLM performance on major long-video benchmarks.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistant. The primary application of the LLM was for language enhancement, which included
improving grammar, refining wording for conciseness, and rephrasing sentences to improve clarity
and flow.

In accordance with the established ethical guidelines, we, the authors, affirm that we are fully respon-
sible for the content of this submission. All text, including any passages refined with the assistance
of the LLM, has been critically reviewed, edited, and validated by the authors. The scientific claims,
results, and conclusions presented herein are our own. We are solely responsible for any potential
errors, inaccuracies, or ethical violations in this work.

B COMPARISON WITH PRIOR WORK

(a) text-frame retrieval

(b) RL-based frame optimization (c) scene-driven optimization
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Figure 6: Comparison with existing keyframe selection methods.

As illustrated in Figure 6, our scene-driven K-frames paradigm addresses the main limitations of
existing approaches. Text–frame retrieval methods treat videos as independent frame sets and rank
them by query similarity, overlooking temporal context and offering limited interpretability. RL-
based frame optimization considers selection as a combinatorial search that often yields a sparse,
disconnected set of frames, breaking scene continuity and degrading downstream performance. They
are also typically tuned for a fixed number of frames, lacking flexibility for any-k selection and mak-
ing it difficult to meet personalized compute budgets. In contrast, our K-frames predicts semantically
coherent, query-relevant clips and then samples keyframes, inherently preserving temporal continu-
ity and providing interpretable clip-level rationales. Moreover, it supports flexible any-k selection,
allowing users to balance performance and computational cost.

C DATASET CONSTRUCTION AND ANALYSIS

C.1 IMPLEMENTATION DETAILS

In this section, we present how we organize our prompt to generate labels using LLM.

Caption Generation. To obtain fine-grained scene-level descriptions after video segmentation,
we employed an instruction-following style prompt, in which the model is explicitly assigned the
role of a Professional Video Content Analyst. The prompt enforces a strict JSON output format
containing three components: scenes, chapters, and video summary.

As shown in Figure 7, our Instructional Prompt for caption generation is designed to guide the LLM
through a structured, multi-stage analysis. The prompt instructs the model to first perform an initial
skim for overall context, followed by a detailed scene-by-scene analysis that combines OCR of
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on-screen text with a compositional description of visual elements . Subsequent instructions direct
the model to refine scene boundaries by merging or splitting segments, aggregate related scenes
into thematic chapters, and conclude with a high-level video summary . This step-wise, instruction-
based format enforces a highly structured analytical process, resulting in objective and detailed video
descriptions suitable for our dataset.

Relevance Scoring. To evaluate the relevance of each scene in the context of video question an-
swering (VideoQA), we employed a second evaluation-oriented Instrutional Prompt, positioning the
model as a Video QA Relevance Analyst. The output is again required to follow a strict JSON
structure, including the fields scene id, relevance score, and reason.

As illustrated in Figure 8, the procedure begins by providing the model with the question and the cor-
responding gold-standard answer, which serve as the reference criteria. Each scene is then assessed
with respect to its contribution toward answering the question. Relevance is assigned according to a
five-point ordinal scale:

• 5 (Directly Relevant): the scene contains critical visual evidence that directly resolves the
question;

• 4 (Highly Relevant): the scene provides strong supporting context, though it is not the
single most essential frame;

• 3 (Moderately Relevant): the scene depicts related subjects or environments but lacks the
decisive information;

• 2 (Slightly Relevant): the scene has only weak or indirect connection to the question;
• 1 (Not Relevant): the scene provides no information useful for answering the question.

Each score must be accompanied by a concise justification (reason), ensuring interpretability and
consistency across all annotations. This prompt design enforces rigorous evaluation criteria, quanti-
tative scoring, and machine-readable outputs that are suitable for large-scale automated processing.

C.2 DATASET STATISTICS

In this section, we present additional statistical details of the PeakClips dataset. We randomly
sampled 6702 videos from LLAVA-Video-178K and adopted Gemini for the labeling. As listed in
Table 5, the PeakClips dataset comprises over 200k annotations in total, including 6,702 annotated
videos, 108,221 scenes with 281,643 corresponding relevance scores, and 19,070 chapters, with
an average of 16.15 scenes and 2.85 chapters per video. Since the PeakClips dataset is derived
from four sources—NextQA, Academic, YouTube, and PerceptionTest—we present in Table 6 the
number of videos, scenes, and relevance scores associated with each source.

Table 5: Annotation statistics of the PeakClips dataset.

Annotation Type Count Average per Video
Video-level Summarization 6,702 1
Chapter-level Description 19,070 2.85
Scene-level Description 108,221 16.15
Relevance Query 16,883 2.52
Scene-level Relevance Scores 281,643 42.02

Total Annotations 281,643

Below are two sample entries from the PeakClips dataset, illustrating (i) scene/chapter/video-level
annotations (Figure 9) and (ii) scene–query relevance annotations (Figure 10).

D TRAINING DETAILS

D.1 INSTRUCTIONAL PROMPTS

This section provides the detailed instructional prompts used during the different stages of our train-
ing curriculum for K-frames.
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Figure 7: Prompt used for generating scene-level captions.

Table 6: Scene relevance score statistics of PeakClips dataset across sources.

Source Videos Scenes Score 1 Score 2 Score 3 Score 4 Score 5 Total
Global 6,702 281,643 88,588 67,842 28,154 36,220 36,263 281,643

NextQA 716 10,444 2,004 2,460 1,453 1,713 1,648 10,444
Academic 1,512 72,961 17,791 16,168 8,436 11,676 11,817 72,961
YouTube 4,086 193,976 68,594 48,833 17,816 21,903 21,624 193,976
PerceptionTest 388 4,262 199 381 449 928 1,174 4,262

Instructional Prompts for SFT1. In the first SFT stage, we employ three task-specific prompts to
instill foundational temporal grounding capabilities in the model. Each prompt is designed to teach
a core sub-task.

Caption-to-Scene Localization. This task trains the model to identify the temporal boundaries (start
and end frames) of a scene given its textual description. The prompt used is:
Scene-to-Caption Generation. As a dual task, this prompt instructs the model to generate a concise
and accurate description for a given temporal segment of the video. The prompt used is:
Clip-Query Relevance Scoring. This task requires the model to assess and score the relevance of a
specific video clip in relation to a given query, helping it learn to weigh the importance of different
scenes. The prompt used is:

Instructional Prompts for SFT2 and RL. The second SFT stage uses a comprehensive prompt
to train the model for its primary goal: predicting a complete set of highlight clips for a given video
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Figure 8: Prompt used for generating scene-level query relevance scores.

Figure 9: An example data of Scene/Chapter/Video-level annotation by LLM in PeakClips.
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Figure 10: An example data of scene relevance score labeled by LLM in PeakClips.

Figure 11: Instructional prompt for Caption-to-Scene Localization.

Figure 12: Instructional prompt for Scene-to-Caption Generation.

Figure 13: Instructional prompt for Clip-Query Relevance Scoring.

and query. This same prompt is then used by the actor model during the Reinforcement Learning
(RL) stage to generate actions (i.e., predict key clips).

The prompt instructs the model to identify all relevant clips, assign a priority level (P1 or P2) to
each, and provide a brief rationale for its selection. The prompt used is:

Figure 14: Instructional prompt for Clip-Query Relevance Scoring.
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D.2 INFERENCE DETAILS

After predicting the initial set of query-relevant key clips, a subsequent step is required to select the
final k keyframes. This section details the two methodologies we propose for this task: Focused
Sampling, which selects keyframes exclusively from the predicted clips, and Hybrid Sampling,
which dynamically samples from both the predicted clips and the background regions.

Focused Sampling. Given a video frame sequence {f1, . . . , fT }, K-frames first predicts a set of
query-relevant key clips c = {([aj , bj ], tj)}Mj=1, where tj ∈ {P1,P2} denotes the importance type
and ℓj = bj − aj + 1 is the length. We select k keyframes exclusively from these predicted clips.
Let (wP1, wP2) = (2, 1) be class weights (P1 is twice as important as P2). We allocate the per-clip
budget by weighted proportion:

kj = round

(
K · w(tj) ℓj∑M

i=1 w(ti) ℓi

)
,

{
wP1, t = P1,

wP2, t = P2.
(5)

To prevent short P1 clips from receiving zero frames, we enforce a P1-at-least-1 guarantee by
borrowing from donors with ki > 1 (prefer P2 donors); if the global budget is insufficient, the
guarantee is relaxed. Inside each clip, we sample Uniformly: pick kj equally spaced frames from
{faj

, . . . , fbj} under a chronological constraint (strictly increasing frame indices across clips). If
the total selected frames are fewer than k due to rounding or chronology constraints, we top up
uniformly from the non-key region after the last picked index.

Algorithm 1: Focused Sampling

1 Require Predicted clips c = {([aj , bj ], tj)}Mj=1, target k, weights (wP1, wP2) = (2, 1);
2 Merge adjacent same-type clips within tolerance τ = 2 (reasons concatenated);
3 Compute kj by equation equation 5, fix rounding so that

∑
j kj = k;

4 Enforce P1-at-least-1 by borrowing from donors with ki > 1 (prefer P2 donors);
5 last id← −∞;
6 foreach j ← 1 to M do
7 Cj ← {faj

, . . . , fbj} restricted to frame id > last id;
8 Select kj equally spaced frames from Cj ;
9 Update last id to the largest picked id;

10 if selected < K then
11 Top up uniformly from non-key frames with id > last id;
12 Return k frames sorted by index;

Table 7: Focused Sampling hyperparameters.

Merge tolerance τ 2
Segment weights wP1 = 2, wP2 = 1
P1 guarantee at least one frame for P1 if budget allows
Chronology constraint strictly increasing frame indices

Hybrid Sampling. We partition all candidate frames F into predicted frames p (inside key clips)
and background frames b (the rest). We first allocate a global share between p and b, then distribute
the predicted share across clips as in Focused Sampling (uniform only). Let apred be the prediction-
to-background length weight (apred : 1 = 4 : 1 in our default) and let rmin ∈ [0, 1] be a lower bound
on the predicted share (e.g., rmin = 0.5). With |p| and |b| the available counts, we compute

krawp = round

(
K · apred |p|

apred |p|+ |b|

)
, (6)

kp = min
(
|p|, max

(
⌈Krmin⌉, krawp

))
, (7)

kb = min
(
|b|, K − kp

)
. (8)
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If kp + kb < k due to upper caps, remaining slots are assigned to the side that still has capacity.
Inside p, we further allocate kp across clips using equation 5 with the P1-at-least-1 guarantee, and
select frames uniformly within each clip. From b, we select kb frames uniformly. The final set is
deduplicated and sorted by frame index.

Algorithm 2: Hybrid Sampling
1 Require Predicted clips s, full candidates F , target k, weight apred = 4, minimum ratio rmin

(e.g., 0.5);
2 Build a mask from s to partition F into p and b;
3 Compute kp by equation 6–equation 7; set kb = k − kp and cap by availability; top up if

needed;
4 Distribute kp across clips via equation 5 with P1-at-least-1;
5 Uniformly select frames within each predicted clip to meet its allocation;
6 Uniformly select kb frames from b; union, deduplicate, sort;
7 Return k frames.

Table 8: Hybrid Sampling hyperparameters and defaults.

Pred:background weight apred : 1 4 : 1
Minimum predicted ratio rmin 0.5 (configurable)
Within-pred clip weights P1:2, P2:1; P1-at-least-1 guarantee
Chronology constraint strictly increasing frame indices

E MORE EXPERIMENTAL RESULTS

In this section, we provide additional quantitative and qualitative experimental results on long-video
understanding benchmarks to further validate the effectiveness and generalizability of our proposed
keyframe selection method.

E.1 MORE RESULTS ON LONG-VIDEO BENCHMARK

Table 9: More results on long-video understanding benchmarks. The red text indicates the perfor-
mance improvement over the baseline (uniform sampling).

Models Size Frames MLVU VideoMME LVBench
Needle-QA M-Avg Short Medium Long Avg

InternVL3.5 8B 8 60.3 60.5 68.0 56.7 49.7 58.1 57.7
+ ours 8B 8 72.7 (↑12.4) 60.4 (↑6.5) 71.4 59.0 50.7 60.4 (↑2.3) 60.0 (↑2.3)

InternVL3.5 8B 32 72.4 67.0 75.7 64.3 53.9 64.6 60.1
+ ours 8B 32 74.9 (↑2.5) 68.4 (↑1.4) 75.9 64.2 55.1 65.1 (↑0.5) 61.8 (↑1.7)

As shown in Table 9, we further assess our method’s generalizability by pairing it with InternVL-3.5.
The consistent gains show that our scene-driven keyframe selection paradigm provides a provides
an effective, interpretable, and plug-and-play solution for long video understanding.

As illustrated in Figure 15 and Figure 16, We further provide detailed visualizations of the results
showing the sub-category performance on the MLVU and VideoMME datasets evaluated with the
Qwen2.5-VL 7B model using 8 input frames. These results show that our model consistently im-
proves performance across different task types on the evaluation benchmarks, with particularly no-
table gains on the Needle-QA localization task in MLVU. This result underscores the core strength
of our approach: by predicting query-relevant clips, K-frames preserve the temporal continuity and
focus on informative clips. Moreover, we observe no improvement in the Topic Reasoning task of
MLVU and Information Synopsis task of VideoMME. This is likely because such tasks typically
require a holistic understanding of the entire video to reach a conclusion. In these global-level
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queries, our method appropriately predict relevant content spans with broader temporal coverage,
often encompassing nearly the entire video. As a result, the subsequent keyframe selection reduces
to uniform sampling over the whole video, yielding comparable performance. This observation
highlights a specific scenario where our approach converges with the baseline.

Figure 15: Performance on some MLVU sub-
tasks. The downstream model is Qwen2.5-VL-
7B with frames k = 8.

Figure 16: Performance on VideoMME sub-
tasks. The downstream model is Qwen2.5-VL-
7B with frames k = 8.

E.2 MORE ABLATION ANALYSIS

Table 10: Ablation study on the utility of including K-frames’ generated reason text in the down-
stream model’s prompt. “+ ours” refers to using our keyframe selection method. “+ ours*” indicates
that in addition to using our selected frames, the textual reason for each clip’s selection was also
included in the prompt for the downstream model.

Models Size Frames MLVU VideoMME LVBench
Short Medium Long Avg

InternVL3.5 8B 8 60.5 68.0 56.7 49.7 58.1 57.7
+ ours* 8B 8 65.6 67.7 57.8 47.9 57.8 52.5
+ ours 8B 8 64.4 71.4 59.0 50.7 60.4 60.0

InternVL3.5 8B 32 67.0 75.7 64.3 53.9 64.6 60.1
+ ours* 8B 32 65.3 68.0 58.3 46.9 57.7 53.8
+ ours 8B 32 68.4 75.9 64.2 55.1 65.1 61.8

Ablation of Including Reason Text in Downstream Prompts. We conducted an ablation study
to determine whether the textual explanations generated by K-frames for clip selection could further
improve downstream task performance. To do this, we appended the reason text to the prompt given
to the final downstream QA model. The results, presented in Table 10, shows: while our K-frames
selection method (+ ours) significantly outperforms the baseline, including the reason text (+ ours*)
degrades performance across most benchmarks.

We attribute the observed performance degradation to the design of K-frames. The selector is a
lightweight MLLM whose core strength is relevance discrimination—identifying query-relevant
segments—rather than accurate answer generation. Consequently, the accompanying reason text,
although correctly indicating relevance, may include the selector’s own preliminary reasoning or
partial answers. These artifacts can introduce distracting or misleading cues that interfere with the
downstream model’s more sophisticated reasoning process, leading to reduced end-to-end perfor-
mance.
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Input

Video

UNI

Ours

Scene

Clips

Rel

Score

Query: 
What is the girl's 
emotion in the elevator?

K-frames Output:
<time>246-256,P1,</time>
<reason>It shows the girl 
being confronted in the 
elevator, her face contorted 
in pain and fear as she 
pleads her case.</reason>

D. Neutral
[0 key frame] 

C. Crying
[8 key frames]  

…

Figure 17: Qualitative comparison between uniform sampling and our K-frames method with the
number of frames set to k = 8.

…

Input

Video

UNI

Ours

Scene

Clips

Rel

Score

Query: 
What is the blonde 
woman doing when the 
bald man comes?

K-frames Output:
<time>1-51,P1,</time>
<reason> It clearly shows 
the blonde woman taking a 
bath in a tub filled with rose 
petals when the bald man 
comes to find her </reason>
<time>130-142,P2,</time>

A. Eating
[0 key frame] 

C. Taking a bath
[6 key frames]  

…

Figure 18: Qualitative comparison between uniform sampling and our K-frames method with the
number of frames set to k = 8.

E.3 MORE QUALITATIVE ANALYSIS

To further illustrate the robustness and interpretability of our method across different number of
frame set, we provide additional qualitative comparisons in this subsection. As shown in Figure 17
and 18, when operating with the number of frame set k = 8, K-frames concentrates its selection
entirely within the highest-scoring scene clips to capture the most critical visual evidence. When the
frame set is increased to k = 32, K-frames showcases its flexible, multi-scale selection capability.
As seen in Figure 19 and 20, our model continues to densely sample the most relevant clips, such as
the man digging goods from ice or the couple surrounded by cardboard boxes. It also dynamically
allocates a portion of its larger budget to select frames from other, less critical scene clips. This
strategy provides a richer and more comprehensive visual context to the LLM while still prioritiz-
ing the most query-relevant information, further demonstrating the adaptability of our clip2frame
paradigm.
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K-frames Output

<time>84-89, P2,</time><reason>This scene provides the most critical visual evidence, showing the man in black 
(the thief) actively digging the goods out of a large vat filled with ice. This directly answers the question.</reason>
<time>102-115, P1,</time><reason>This scene shows the immediate aftermath of the digging, with the man in 
black struggling with the ice-covered items he just pulled out of the vat, reinforcing the answer.<reason>

Query: In the video, what did the man in black dig the goods out of ?

Downstream Prediction:                                   [18 key frames] D. Ice

Input Video:

Uniform Sampling:

Relevant Score

K-frames (Ours)

A. CabinetDownstream Prediction:                                          [2 key frames] 

Figure 19: Qualitative comparison between uniform sampling and our K-frames method with the
number of frames set to k = 32.
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K-frames Output

<time>84-89, P2,</time>
<reason>This scene provides a clear, direct view of the couple sitting on a couch. Around them, on the couch 
cushions and a pillow on the armrest, there are several cardboard boxes, which directly answers the 
question.</reason>

Query: What are the couple surrounded by while sitting on the couch?

Downstream Prediction:                                                      [18 key frames] D. Cardboard boxes

Input Video:

Uniform Sampling:

Relevant Score

K-frames (Ours)

A. PillowsDownstream Prediction:                                         [1 key frames] 

Figure 20: Qualitative comparison between uniform sampling and our K-frames method with the
number of frames set to k = 32.
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