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Abstract
Concept bottleneck models (CBMs) are a class
of interpretable neural network models that pre-
dict the target response of a given input based
on its high-level concepts. Unlike the standard
end-to-end models, CBMs enable domain experts
to intervene on the predicted concepts and rectify
any mistakes at test time, so that more accurate
task predictions can be made at the end. While
such intervenability provides a powerful avenue
of control, many aspects of the intervention pro-
cedure remain rather unexplored. In this work,
we develop various ways of selecting intervening
concepts to improve the intervention effective-
ness and conduct an array of in-depth analyses as
to how they evolve under different circumstances.
Specifically, we find that an informed intervention
strategy can reduce the task error more than ten
times compared to the current baseline under the
same amount of intervention counts in realistic
settings, and yet, this can vary quite significantly
when taking into account different intervention
granularity. We verify our findings through com-
prehensive evaluations, not only on the standard
real datasets, but also on synthetic datasets that we
generate based on a set of different causal graphs.
We further discover some major pitfalls of the cur-
rent practices which, without a proper addressing,
raise concerns on reliability and fairness of the
intervention procedure.

1. Introduction
While deep learning has made rapid strides in recent years
(LeCun et al., 2015; Jordan & Mitchell, 2015), the standard
neural network models are not quite explainable, in that
their decision-making process is neither straightforward to
account for nor easy to control. To tackle this issue, various
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Figure 1: (a) Given input data CBMs first predict its con-
cepts (g : x → c), and then based on which it makes a
subsequent prediction for the target response (f : c → y).
(b) Average task error (mis-classification rate) vs. the num-
ber of incorrectly predicted concepts (on the CUB dataset).
The task error increases rapidly as more mistakes are made
in concept prediction; e.g., making a single mistake yields
25% increase in task error.

interpretable models have been proposed including, for ex-
ample, those using concept activation vectors (Kim et al.,
2018; Ghorbani et al., 2019), relating pixel contributions
to image classification (Zhou et al., 2016; Selvaraju et al.,
2017), or building intrinsically interpretable architectures
(Alvarez Melis & Jaakkola, 2018).

Concept bottleneck models (CBMs) are among these to em-
power interpretability (Koh et al., 2020; Bahadori & Heck-
erman, 2021; Margeloiu et al., 2021; Mahinpei et al., 2021;
Sawada & Nakamura, 2022; Zarlenga et al., 2022). Unlike
standard end-to-end models, CBMs work in two steps: they
first predict human-interpretable properties of a given in-
put called concepts, and based on which, they subsequently
make the final prediction for the given task. For instance,
CBMs may classify the species of a bird based on its wing
pattern or leg color rather than straight from the raw pixel
values (see Figure 1a).

Revisited recently by Koh et al. (2020), this classic idea
further facilitates human-model interaction in addition to
plain interpretability, in that it allows one to intervene on
the predicted concepts at test time, such that the subsequent
prediction is made based on the rectified concept values.
Notably, such intervention must be treated attentively as
we find that correcting only a small number of mistakes on
mis-predicted concepts can lead to a significant increase in
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Work Selection Cost Level Imp. Data Rel.

Koh et al. (2020) ✗ ✗ △ △ ✗ ✗
Chauhan et al. (2022) ✓ △ △ △ ✗ ✗
Sheth et al. (2022) ✓ ✗ △ ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison between the studies on intervention
strategy of CBMs. △ represents that the corresponding
work provides only partial evaluations. Selection and Cost
represent concept selection criteria and their analysis in
terms of theoretical cost as will be discussed in Section 4.2.
We study the effects of Level, Implementation and Data
on intervention effectiveness in Sections 4.3, 4.4 and 5.
Reliability of intervention practice is discussed in Section 6.

the task performance (see Figure 1b). Considering the high
cost of intervention, i.e., having domain experts go over
each concept requires tremendous effort, this result further
indicates the necessity of efficient intervention procedures
to ensure the utility of CBMs.

Despite the great potential, the intervention procedure of
CBMs has not been studied much in the literature, quite
surprisingly. For example, previous works tend to focus on
increasing task performance (Sawada & Nakamura, 2022;
Zarlenga et al., 2022) and addressing the problem of con-
founding factors (Bahadori & Heckerman, 2021) or infor-
mation leakage (Margeloiu et al., 2021; Mahinpei et al.,
2021; Havasi et al., 2022; Marconato et al., 2022). While
a few concurrent works suggest new intervention methods
(Chauhan et al., 2022; Sheth et al., 2022), we find that many
critical aspects of the intervention procedure still remain
unexplored (see Table 1).

Our contributions are summarized as follows. First of all,
we develop various concept selection criteria as new inter-
vention strategies, improving the intervention performance
of CBMs quite dramatically given the same amount of in-
tervention counts. We also provide extensive evaluations to
analyze these criteria under a wide variety of experimental
settings considering the theoretical cost of each criterion,
levels of intervention related to test-time environments, and
how to train these models or conceptualize the concept
predictions. We further develop a new framework to gener-
ate synthetic data using diverse causal graphs and conduct
fully controlled experiments to verify the effectiveness of
intervention on varying data. These results reveal that data
characteristics as well as intervention granularity can affect
the intervention procedure quite significantly. Finally, we
identify some pitfalls of the current intervention practices,
which helps to take a step toward building trustworthy and
responsible interpretable models.

2. Related Work
Since the seminal work of Koh et al. (2020), CBMs have
evolved in many different ways. Bahadori & Heckerman
(2021) develop a debiased CBM to remove the impact of
confounding information to secure causality. Sawada &
Nakamura (2022) augment CBMs with unsupervised con-
cepts to improve task performance. Mahinpei et al. (2021);
Margeloiu et al. (2021) suggest addressing the information
leakage problem in CBMs to improve interpretability of
learned concepts, while Marconato et al. (2022); Havasi et al.
(2022) design new CBMs based on disentangled representa-
tions or autoregressive models. Zarlenga et al. (2022) pro-
poses to learn semantically meaningful concepts using con-
cept embedding models to push the accuracy-interpretability
trade-off. Both Chauhan et al. (2022) and Sheth et al. (2022)
present uncertainty based intervention methods to determine
which concepts to intervene on. We remark that previous
work is mostly focused on developing CBM variants for high
task performance from model-centric perspectives, whereas
our work provides in-depth analyses and comprehensive
evaluations on the intervention procedure of the standard
CBMs in greater granularity.

3. Intervention Strategies
3.1. Preliminary

Let x ∈ Rd, c ∈ {0, 1}k, y ∈ Y be input data, binary
concepts, and target responses, respectively; here, d and k
denote the dimensionality of input data and cardinality of
concepts, and we assume Y encodes categorical distribution
for classification tasks. Given some input data (e.g., an
image), a CBM first predicts its concepts (e.g., existing
attributes in the given image) using a concept predictor g and
subsequently target response (e.g., class of the image) using
a target predictor f : i.e., first ĉ = g(x) then ŷ = f(ĉ), where
ĉ and ŷ are predictions of concepts and target response.

In this process, one can intervene on a set of concepts S ⊆
{1, · · · , k} so that the final prediction can be made based on
rectified concept values, i.e., ŷ = f(c̃) where c̃ = {ĉ\S , cS}
denotes the updated concept values partly rectified on S with
ĉ\S referring to the predicted concept values excluding S.

3.2. Concept Selection Criteria

How should one select which concepts to intervene on?
This is a fundamental question to be answered in order
to legitimize CBMs in practice since intervention incurs
the cost of employing experts, which would increase as
with the number of intervening concepts |S|. In principle,
one would select a concept by which it leads to the largest
increase in the task performance. To address this question
and investigate the effectiveness of intervention procedure
in current practice, we develop various concept selection
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Criteria Ng Nf Cost in complexity

RAND 1 1 O
(
τg + τf + nτi

)
UCP 1 1 O

(
τg + τf + nτi

)
LCP 1 1 O

(
τg + τf + nτi

)
CCTP 1 3 O

(
τg + 3τf + nτi

)
ECTP 1 2k + 2 O

(
τg + (2k + 2)τf + nτi

)
EUDTP 1 2k + 2 O

(
τg + (2k + 2)τf + nτi

)
Table 2: Theoretical cost of employing concept selection
criteria to make final prediction with n number of inter-
vened concepts. Ng and Nf refer to the number of for-
ward/backward passes to run g and f , respectively.

criteria for which a selection score si for i-th concept is
defined. Then, intervening concepts will be done based on
the decreasing order of these scores.

Random (RAND) It selects concepts uniformly at random
as in Koh et al. (2020). We can treat this method as assigning
a random score for each concept, i.e., si ∼ U[0,1]. It will
serve as a baseline to study the effectiveness of concept
selection criteria.

Uncertainty of concept prediction (UCP) It selects con-
cepts with the highest uncertainty of concept prediction.
Specifically, it defines si = H(ĉi) where H is the entropy
function. When the concepts are binary, it follows that
si = 1/|ĉi − 0.5| as in Lewis & Catlett (1994); Lewis
(1995). Intuitively, uncertain concepts may have an adverse
influence on making the correct target prediction, and thus,
they are fixed first by this criterion.

Loss on concept prediction (LCP) It selects concepts
with the largest loss on concept prediction compared to the
ground-truth. Specifically, it defines si = |ĉi − ci|. This
scheme can be advantageous to increasing task performance
since a low concept prediction error is likely to lead to a cor-
rect target prediction. Nonetheless, this score is unavailable
in practice as the ground-truth is unknown at test time.

Contribution of concept on target prediction (CCTP) It
selects concepts with the highest contribution on target
prediction. Specifically, it sums up the contribution as
si =

∑M
j=1

∣∣ĉi ∂fj∂ĉi

∣∣ where fj is the output related to j-th
target class and M is the number of classes. This scheme is
inspired by methods to explain neural network predictions
(Selvaraju et al., 2017).

Expected change in target prediction (ECTP) It selects
concepts with the highest expected change in the target pre-
dictive distribution with respect to intervention. Specifically,
it defines si = (1 − ĉi)DKL(ŷĉi=0∥ŷ) + ĉiDKL(ŷĉi=1∥ŷ)
where DKL refers to the Kullback-Leibler divergence, and
ŷĉi=0 and ŷĉi=1 refer to the new target prediction with ĉi
being intervened to be 0 and 1, respectively. The intuition
behind this scheme is that it would be better to intervene on
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Figure 2: Different levels of intervention conducted on
concepts. Each number represents the order of intervention.

those concepts whose rectification leads to a large expected
change in target prediction (Settles et al., 2007).

Expected uncertainty decrease in target prediction
(EUDTP) It selects concepts with the largest expected
entropy decrease in target predictive distribution with re-
spect to intervention. Specifically, it defines si = (1 −
ĉi)H(ŷĉi=0)+ ĉiH(ŷĉi=1)−H(ŷ). Intuitively, it penalizes
the concepts whose expected decrease in the target predic-
tion entropy is low when intervened (Guo & Greiner, 2007).

3.2.1. COST OF INTERVENTION

Note that the cost of intervention may differ by the choice
of concept selection criteria. Specifically, let the theoretical
cost of intervening on a concept be τi (e.g., the time for
an expert to look at the input and fix its attribute), and the
theoretical cost of making inference on g and f be τg and τf ,
respectively. Then, the total cost of utilizing CCTP needed up
to making the final prediction with n number of intervened
concepts, for example, would be O(τg + 3τf + nτi); here
we assume that the cost of the backward pass on f is the
same as τf . We summarize the cost of all concept selection
criteria in Table 2.

3.3. Levels of Intervention

We find that intervention can be done at different levels given
some auxiliary information about the structure of concepts
or economic constraints put on practitioners. For example,
it is often the case that datasets used to train CBMs have the
grouping information for related concepts (Wah et al., 2011).
Another situation worth consideration is where one has
access to a batch of data to process with a budget constraint,
and the goal is to maximize the overall task performance
while minimizing the intervention effort (e.g., examining
medical images in a hospital). Taking into account these
scenarios, we extend the intervention procedure at various
levels to study the effectiveness of concept selection criteria.

Individual vs. Group intervention Intervention can be
done depending on concept association (see Figure 2a):

3



A Closer Look at the Intervention Procedure of Concept Bottleneck Models

• Individual (I): Concepts are assumed to be independent
of each other and thus selected individually one at a time.

• Group (G): A group of related concepts is selected at
once whose association information is subject to datasets.
The selection score is computed by taking the average of
selection scores of individual concepts within group.

Single vs. Batch intervention Intervention can be done
depending on data accessibility (see Figure 2b):

• Single (S): Every test case is allocated with the same
amount of intervention budget (e.g., intervention counts).
This could be useful for online systems where each test
data comes in sequentially, and experts need to process
as many cases as possible under a budget constraint.

• Batch (B): A batch of test cases shares a total intervention
budget. This scheme could be particularly useful when
the concept prediction is imbalanced toward easy cases,
and one wants to focus on intervening on hard cases so
as to maximize the overall task performance.

4. Evaluating Intervention Strategies
4.1. Experiment Settings

Dataset We experiment with three datasets: (1) CUB
(Wah et al., 2011) – the standard dataset used to study CBMs,
(2) SkinCon (Daneshjou et al., 2022b) – a medical dataset
used to build interpretable models, and (3) Synthetic – the
synthetic datasets we generate based on different causal
graphs to conduct a wide range of controlled experiments.
Extensive details of these datasets including preprocessing,
label characteristics, data splits, and the generation process
are provided in Appendix A.

Implementation We follow the standard implementa-
tion protocols as in previous works. The full de-
tails including model architectures and optimization
hyperparameters are provided in Appendix B. Our
code is available at https://github.com/ssbin4/
Closer-Intervention-CBM.

Training

We consider the following training strategies similarly to
Koh et al. (2020):

• IND: g and f are trained independently of each other. f
always takes ground-truth concept values as input.

• SEQ: g and f are trained sequentially, g first and f next.
f takes predicted concept values as input from trained g.

• JNT: g and f are trained jointly at the same time as a
multi-objective. This results in increased initial task accu-
racy but comes with the price of decreased intervention
effectiveness (Koh et al., 2020).

• JNT+P: similar to JNT but the input to f is sigmoid-
activated probability distribution rather than logits.

Conceptualization We consider different forms of con-
cept predictions as input to the target predictor at inference:

• SOFT: f takes real values of ĉ ∈ [0, 1]k as soft represen-
tation of concepts (Koh et al., 2020).

• HARD: f takes binary values of ĉ ∈ {0, 1}k as hard rep-
resentation of concepts based on 1[ĉ ≥ 0.5] (Mahinpei
et al., 2021). This prevents information leakage (Havasi
et al., 2022) in exchange for decreased prediction perfor-
mance.

• SAMP: m random samples are drawn by treating the soft
concept prediction scores as a probability distribution,
and the target prediction is made as an ensemble, i.e., ŷ =
1
m

∑m
i=1 f(ĉ) where ĉ is binarized concept prediction

(Havasi et al., 2022). We use m = 5 for the experiments.

4.2. Evaluating Concept Selection Criteria

We first evaluate the intervention effectiveness of concept
selection criteria and present the results in Figure 3. Across
all datasets, we find that the current practice of random
intervention (RAND) is easily outperformed by the other
alternatives in almost all cases with a significant margin.
Specifically, in the CUB experiment, correcting 20 con-
cepts by random intervention reduces the task error less
than 4% whereas correcting the same amount based on the
uncertainty of concept predictions (UCP) leads to more than
16% error reduction. To put it differently, RAND requires
to intervene on 43 concepts in order to reduce the error by
half, while it is only 12 concepts to fix for UCP to achieve
the same reduction. In the SkinCon experiment, selecting
concepts based on the expected change in target prediction
(ECTP) leads the way among others, and yet, the scale of
improvements over RAND is not as large. Note also that the
strategy of fixing concepts with the largest loss first (LCP)
performs exceptionally well in all cases. This is however
due to the help of the ground-truth knowledge on concepts
which is unavailable in practice. Nonetheless, we believe
this can serve as an indicator to guide a better intervention
strategy which we defer to future work.

4.2.1. REFLECTING COST OF INTERVENTION

As we discussed in Section 3.2.1, the cost of intervention
may differ by concept selection criteria. Taking into account
this aspect, we set up experiments where we can evaluate
the intervention effectiveness in terms of the theoretical cost.
Specifically, we model the relationships between τi, τg, τf
as τi = ατg and τg = βτf , which means that the cost of
intervention (e.g., time to fix a concept) is α-proportional
to the cost of making inference on g, and likewise, τg is β-
proportional to τf . Then we can evaluate the cost-reflected
intervention effectiveness with respect to arbitrary unit (υ),
and from which, we can further show how it transforms by
controlling α and β.
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Figure 3: Intervention effectiveness of concept selection criteria (task error vs. number of concepts corrected by intervention)
measured on I+S level. A more effective method would reduce the error more for the same number of concepts intervened.
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Figure 4: Effect of α on intervention (on Synthetic). We fix τi = 1, β = 100, k = 100. ECTP, the intervention method
strongly evaluated previously, becomes less effective as α decreases. Here, kinked shapes are due to the relatively high
initial cost on the first intervention before n becomes large.

First, the result of changing α is plotted in Figure 4. As α
becomes smaller RAND becomes very effective compared to
ECTP. This makes sense because with small α, τi becomes
relatively small and the other terms related to τg or τf dom-
inate the cost of ECTP which is O

(
τg + (2k + 2)τf + nτi

)
as seen in Table 2. ECTP thus becomes penalized when
it comes to the intervention effectiveness in the small α
regime. In contrast, when α becomes larger, τi dominates
the cost of ECTP as with increasing n, which in turn recov-
ers the effectiveness of ECTP. The former can happen in
extreme circumstances, for example, when using very large
models (i.e., large τg) or in places with a tight labor marker
(i.e., small τi in terms of monetized value). We clearly re-
mark, however, that this can be seen as a hypothetical case
and α will be much greater than 1 in realistic settings as
summoning a domain expert for intervention would require
more cost than a forward pass of neural networks.

We also experiment on changing β to control the relative
cost between τg and τf . As a result, we find that when β is
small ECTP can perform poorly while RAND can be effective
as it only requires a single forward pass of f to make the
final prediction. Furthermore, we extend this analysis to the
CUB experiment with more realistic settings where τg and
τf are set based on the wall-clock times of running each
model, and τi is set based on the actual concept annotation

time provided in the dataset. All of these results are put in
Appendix C with detailed analysis for space reasons.

4.3. Analyzing Intervention Levels

As seen in Figure 5a, most criteria still remain more effec-
tive than RAND in group-wise single (G + S) intervention.
Specifically, RAND needs 39.3% (11 out of 28), while UCP
needs 25.0% (7 out of 28) of the groups to be intervened
to decrease the task error by half. However, CCTP does not
outperform RAND this time. We also find a similar pattern
for the batch case G + B (see Figure 14 in Appendix D). We
suspect that calculating the mean of the scores loses some
discriminative information in some selection criteria and
perhaps a different surrogate needs to be designed.

In addition, we find that group-wise intervention is in gen-
eral less effective than individual counterpart with the same
budget of intervention expense (see Figure 5b). Intuitively,
correcting concepts within the same group may not provide
rich information as opposed to selecting concepts across dif-
ferent groups with the same intervention counts. Nonethe-
less, we remark that group-wise intervention can potentially
be cost-effective when concepts within the same group are
mutually exclusive, which depends on how the concepts are
annotated during the creation of datasets.
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Figure 5: Comparing the effects of different intervention levels using the CUB dataset. Here, intervention counts denote the
number of intervened groups and average number of intervened concepts for G and B, respectively. We fix the selection
criterion to be UCP in (b) and (d) while all other cases are provided in Appendix D.

The proposed concept selection criteria also remain effective
for batch intervention (B) as seen in Figure 5c. Interestingly,
batch intervention turns out to be more effective when com-
pared to single (S) as well as seen in Figure 5d. This trend
holds true for other criteria besides UCP except for CCTP
and extends to group-wise batch (G+B) intervention (see
Appendix D for full results).

4.4. Considering Training and Conceptualization

Effect of training scheme As seen in Figure 6a, interven-
tion is in general the most effective under the IND training
scheme. We believe that this is because f is not trained
with the ground-truth concept labels in the case of SEQ and
JNT(+P), and fixing concept predictions for these schemes
may not work as well. We also find that EUDTP becomes
much less effective under SEQ or JNT than other alterna-
tives and actually underperforms RAND (see Appendix E).
Hence, the effectiveness of a criterion can depend on which
training strategy to use, implying the need of comprehensive
evaluations for newly developed criteria.

For the SkinCon dataset, however, intervening on the con-
cepts under SEQ, JNT, JNT + P strategies rather increases
the average task error regardless of the concept selection
criteria. Specifically, training under JNT already achieves
low task error and applying intervention does not help re-
duce it further (see Figure 6b). We hypothesize that this is
due to some inherent characteristics of the dataset as well
as limited concepts provided in the bottleneck, resulting in
the negative influence on making correct task predictions
with binarized concepts. This can potentially correspond to
the known issue of information leakage in CBMs (Mahinpei
et al., 2021; Havasi et al., 2022).

Effect of conceptualization We find that HARD and SAMP
may begin with high task error compared to SOFT as ex-
pected. However, when making use of the developed con-
cept selection criteria such as UCP, the gap between these
conceptualization methods decreases much faster with more
intervention compared to RAND as seen in Figures 6c and 6d.

This result is consistent across different training strategies
and datasets (see Appendix F).

5. Analyzing Intervention with Synthetic Data
We have observed that intervention can often yield different
results over datasets. Precisely, intervening on all concepts
decreases the task error down to 0% on CUB, whereas the
amount of decrease is much less and the average task error
remains still high around 29% on SkinCon. Also, the rela-
tive order of effectiveness between concept selection criteria
can vary. We find that it is difficult to unravel these findings
if only experimenting on real datasets as in previous work
(Koh et al., 2020; Chauhan et al., 2022; Sheth et al., 2022;
Zarlenga et al., 2022). To provide an in-depth analysis, we
develop a framework to generate synthetic datasets based
on three different causal graphs that control the followings:
input noise, hidden concepts, and concept diversity.

5.1. Generating Synthetic Data

CASE 1: Noisy input Real-world data contains a lot of
random noise coming from various sources (e.g., lighting).
We construct a causal graph to consider this case where the
Gaussian noise is added on input data (see Figure 7a).

CASE 2: Hidden concept When a subset of concepts is
unknown or hidden, the target prediction is made incomplete
with only available concepts as deep representations are not
fully captured in the bottleneck layer. We design a causal
graph for this case and generate synthetic data for which
some concepts that are necessary to make correct target
predictions are hidden on purpose (see Figure 7b).

CASE 3: Diverse concept Examples within the same
class can have different values for the same concept in realis-
tic settings. For instance, simple concept-level noise or fine-
grained sub-classes (e.g., ‘black swan’ and ‘white
swan’ for ‘swan’ class) can make such diverse concept
values. We construct a causal graph to generate such data for
which concept values can vary probabilistically and inputs
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Figure 6: Comparing the effects of different training strategies (a,b) and conceptualization methods (c, d). We choose EUDTP
as the concept criterion for (a,b) and SkinCon as the dataset for (c, d). We provide all other results in Appendices E and F.
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Figure 7: Causal graphs for generating synthetic datasets. z,
h, and d represent factors of input noise, hidden concepts,
and concept diversity, respectively. The full details of the
data generation process are provided in Appendix A.3.
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Figure 8: Effects of data on intervention with UCP. Each
plot is with different values of the variance of noise (z), the
ratio of hidden concepts (h), and the probability to perturb
the concept values (d), respectively.
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(b) γ = 10

Figure 9: Intervention effectiveness with different sub-group
size γ. The relative order of effectiveness between selection
criteria changes significantly according to γ.

are produced according to these concepts (see Figure 7c).

5.2. Results

First, we display the effect of input noise in Figure 8a. The
initial task error increases with a level of noise (z) due to
the poor performance on concept prediction. Specifically,
we need 17 intervention counts to decrease the task error by
half with extremely noisy data (z = 2.0) while correcting
only 2 concepts yields the same effect for a moderate level
of noise case (z = 0.5). In contrast, the initial task error
is already near 0% with an extremely small level of noise
(z = 0.1) where we do not need intervention at all.

Next, we evaluate the effect of hidden concepts in Figure 8b.
The final task error increases with more hidden concepts,
and thus, intervention becomes less effective. Specifically,
the error is still high around 13% when half of the concepts
are hidden (h = 50%) while it reaches zero error without
hidden concepts (h = 0%). This is due to the fact that the
target prediction cannot be made with complete information
when there exist hidden concepts, which is often the case
for constructing CBMs in realistic settings.

We also find that generating more diverse concept values
within the same class increases both initial and final task er-
rors, making intervention less effective (see Figure 8c). This
is because learning discriminative representations for target
prediction would be a lot more difficult. To circumvent
this issue, many previous works (Koh et al., 2020; Zarlenga
et al., 2022; Havasi et al., 2022) attempt to preprocess the
data so as to force concepts within the same class have the
same value. However, this may have an adverse effect on
model fairness as we discuss in Section 6.

Furthermore, we discover that different sub-group sizes can
change the relative ordering of intervention effectiveness
between concept selection criteria. Here, we define a sub-
group as classes with similar concept values and denote its
size as γ. Interestingly, EUDTP becomes less effective with a
small group size (γ = 1) even compared to RAND whereas it
becomes the most effective when γ = 10 except for LCP as
seen in Figure 9. We believe that it is because classes within
the same sub-group are classified more easily by decreasing
uncertainty in target prediction using EUDTP when γ is large.
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Figure 10: Effect of NVC on task error. Intervention is done
on the CUB images for which concept prediction is 100%
accurate, and yet, NVC keeps on increasing the task error.
NVC O and NVC X each correspond to the result with and
without NVC.

The result indicates that the behavior of a criterion can vary
significantly across different datasets and again demonstrate
the necessity of a comprehensive evaluation of the newly
developed criteria. We refer to Appendix G for results on
the effect of some other factors on intervention.

6. Pitfalls of Intervention Practices
So far we have focused on analyzing the effectiveness of
intervention procedure in many aspects. In this section, we
add another dimension, namely, reliability and fairness of
the current intervention practices, to help advance toward
trustworthy and responsible machine learning models.

6.1. Nullifying Void Concepts Increases Task Error

Does intervention always help target prediction? Contrary
to expectation, we find that the answer is no, and in fact,
intervention can rather increase the task error. To verify this,
we set up an ablation experiment using the CUB dataset
where intervention is conducted only on the cases for which
all concepts are predicted correctly with zero error; ideally
intervention should have no effect in this case. The results
are quite the opposite as presented in Figure 10. The task
error keeps on increasing as with more intervention, and the
prediction error reaches to more than seven times as much
as that with no intervention.

It turns out that it is due to nullifying void concepts (NVC), a
common practice of treating unsure concepts by setting them
to be simply zero, which leads to this catastrophic failure.
For example, just because the wing part of a bird species is
invisible does not necessarily mean that the concept ‘wing
color:black’ should be zero valued; this bird can fall
in the class of ‘Black Tern’ whose wing color is actually
black. We identify that this seemingly plausible tactic can
in fact mistreat invalid concepts, and therefore, for invalid
cases applying NVC intervention should be avoided.
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Figure 11: Effects of majority voting (MV) on target predic-
tion. MV O and MV X each correspond to the result with and
without MV. (a) While it helps decrease task error on inter-
vention, (b) it yields biased predictions against minorities.

6.2. Majority Voting Neglects Minorities

Another common practice often taken by the community
(Koh et al., 2020; Zarlenga et al., 2022; Havasi et al., 2022)
is to coalesce concept values among the same class by forc-
ing them to have their majority votes (MV). As a prepro-
cessing, this tactic can dramatically improve the task per-
formance as we demonstrate in Figure 11a. This is quite
obvious by now as with our Synthetic experiment results in
Section 5.2 where we show that high concept diversity can
deteriorate the target prediction performance.

However, it turns out that MV can have a negative impact on
model fairness by ignoring minority samples. As a concrete
example, consider the CUB dataset in which the majority
of images of ‘black tern’ class have black underparts
while some minority samples have white underparts. When
MV is used in this case, we find that the underparts color
predictions for the minorities are mis-guided to be black,
which correspond to the majority-voted values, so as to yield
the correct target prediction; if the minorities follow their
own concept values before MV otherwise, it can lead to an
incorrect target prediction (see Figure 11b). Intervention
can even aggravate the situation since it can decrease the
task error for the minorities only when the predicted concept
value is changed to the majority-voted value (black). In this
sense, target predictions become biased toward the majority
when MV is used.

This scenario can be problematic in the real world when
the dataset contains sensitive concepts, e.g., gender or race.
Consider the case where the target task is to predict the
occupation of a person based on his/her look and ‘race’ is
included in the concepts. When most ‘physicians’ are Cau-
casians and if we apply MV in this case, then an ‘Asian
physician’ can be correctly classified only when he is pre-
dicted as a Caucasian; otherwise, it would lead to an in-
correct target prediction. While this might be somewhat
exaggerated, we remark that this kind of situation can hap-
pen in practice. Besides, MV also forces to misconduct
intervention at test time with the majority votes, which is
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neither available in practice nor considered fair. We defer
addressing the trade-off between performance and fairness
to future work.

7. Discussion and future work
In this section, we discuss our key findings, their potential
implications to the community, and possible future research
directions.

In-depth analysis of intervention procedure We design
and conduct a wide variety of new experiments from scratch
to investigate the effectiveness of the current intervention
procedure of CBMs. In a nutshell, our results reveal that
not only is it the specific way of selecting which concept
to intervene, but also how to intervene on what data under
which environments matters to the degree of drastically
changing results. Future works can extend our analysis to
theoretically investigate the intervention strategies in more
detail.

Benchmark for evaluating concept selection methods
Our evaluation protocol can serve as a way to evaluate any
newly developed concept selection methods for their effec-
tiveness. We also provide a framework to generate synthetic
data based on which the effectiveness of proposed methods
can be tested under various circumstances.

Analyzing the cost of intervention The effectiveness of
concept selection criteria can change when reflecting the
cost of intervention (see Section 4.2.1). Specifically, we find
that a strongly evaluated criterion can become less effective
in hypothetical cases considering the size of the models or
the status of the labor markets. This indicates that choosing
the concept selection criterion should reflect the available
budgets and environments at test time, especially in some
extreme environments.

Identifying the effect of data on intervention The ef-
fectiveness of the intervention procedure can vary quite
significantly depending on some unknown characteristics of
the real-world datasets (see Section 5). For example, inter-
vention becomes less effective on datasets containing more
hidden concepts or more diverse concept values within the
same class. Practitioners should take into account this aspect
when developing and deploying CBMs since intervention
may not work effective as expected.

Reliability and fairness of intervention While the cur-
rent trend is mostly focused on developing new intervention
methods, we discovered somewhat unexpected and previ-
ously unknown issues, which can be critical for ensuring
reliability and fairness of the intervention procedure (see
Section 6). To be more specific, intervention can sometimes
increase the task error contrary to the expectation and have
a negative impact on model fairness by making the predic-
tions biased toward the majority. We call for future work

to address these problems before blindly adopting CBMs in
practice.

Extension of our work to other settings We remark that
we have only focused on the classification tasks, consider-
ing the characteristics of the real-world datasets used in the
literature (Koh et al., 2020; Zarlenga et al., 2022; Havasi
et al., 2022) 1. Extension of the intervention strategies to
the regression problems with real-valued concepts or targets
can be a promising avenue for future works. Analyzing
intervention under more diverse settings could also be in-
teresting, such as introducing architectural variations with
hard autoregressive models (Havasi et al., 2022) or concept
embedding models (Zarlenga et al., 2022).

8. Conclusion
The intervention procedure of CBMs has been unattended
in previous work despite its critical impact on practitioners.
In this work, we study a wide range of aspects regarding
the procedure and provide an in-depth analysis for the first
time in the literature. Specifically, we develop various con-
cept selection criteria that can be used for intervention and
demonstrate that their behaviors can vary quite significantly
based on an array of factors including intervention levels,
cost, training, conceptualization, and data characteristics.
We also find several pitfalls in the current practices that need
a careful addressing to be deployed in realistic settings. We
plan to investigate further on developing more effective and
reliable intervention strategies in future work.
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A. Datasets
A.1. CUB

CUB (Wah et al., 2011) is the standard dataset used to study CBMs in the previous works (Koh et al., 2020; Zarlenga et al.,
2022; Havasi et al., 2022; Sawada & Nakamura, 2022). There are 5994 and 5794 examples for train and test sets in total, in
which each example consists of the triplet of (image x, concepts c, label y) of a bird species. All the concepts have binary
values; for example, the ‘wing color:black’ for a given bird image can be either 1 (for true) or 0 (for false). Following
previous works (Koh et al., 2020; Sawada & Nakamura, 2022; Zarlenga et al., 2022), we perform so-called majority voting
as pre-processing so that images of the same class always have the same concept values; for example, if more than half
of the crow images have true value for the concept ‘wing color:black’ then this process converts all concept labels
for images belonging to the crow class to have the same true value. Since the original concept labels are too noisy, this
procedure helps to increase the overall performance. However, it can be potentially harmful to model fairness in some cases
as we address in Section 6.2. We also remove concepts that are too sparse (i.e., concepts that are present in less than 10
classes) which results in 112 out of 312 concepts remaining. It is suggested in Koh et al. (2020) that including these sparse
concepts in the concept layer makes it hard to predict their values as the positive training examples are too scarce.

A.2. SkinCon

SkinCon (Daneshjou et al., 2022b) is a medical dataset which can be used to build interpretable machine learning models.
The dataset provides densely annotated concepts for 3230 images from Fitzpatrick 17k skin disease dataset (Groh et al.,
2021), which makes a triplet of (image x, concepts c, disease label y) of a skin lesion for each example. Since training and
test sets are not specified in the SkinCon dataset, we randomly split the dataset into 70%, 15%, 15% of training, validation,
and test sets respectively. The dataset provides various levels of class labels ranging from individual disease labels with
114 classes to binary labels representing if the skin is benign or malignant. Following the experiments with Post-hoc CBM
(Yuksekgonul et al., 2023) introduced in Daneshjou et al. (2022b), we use the binary labels for the target task and only use
22 concepts which are present in at least 50 images. Since the binary class labels are highly imbalanced (87% vs. 13%), we
train the target predictor f with weighted loss and use the average of per-class error as the metric instead of overall error for
a fair comparison.

A.3. Synthetic dataset

Algorithm 1 Generating synthetic data
1: Sample pi ∼ N (µα, σα) for i = {1, 2, · · · , k}
2: for group ℓ = 0, 1, · · · , k/γ − 1 do
3: Sample ζi ∼ U[0,1] and set ℓi = 1[ζi ≥ pi] for i = {1, 2, · · · , k}
4: for y = 1, · · · , γ do
5: Sample iy ∈ {1, 2, · · · , k} uniformly at random without replacement
6: Set cji = ¬ℓi if i = iy and cji = ℓi otherwise (class index j = γ ∗ ℓ+ y)
7: end for
8: end for
9: Generate Wx ∈ Rk×k with each element distributed according to the unit normal distribution N (0, σw)

10: for class j = 1, · · · , k do
11: Generate ν samples for class j as x = Wx · cj + z where z ∼ N (0, σz)
12: end for

We generate the synthetic data following Algorithm 1 to test the effect of dataset characteristics on intervention. Here,
we first assume that all examples within the same class share the same concept values and denote the i-th concept value
of j-th class as cji . We also assume for simplicity that the dimensionality of inputs and the number of target classes are
the same as the number of concepts k, following Bahadori & Heckerman (2021). In line 1, µα and pi = P (ci = 0)
each represent the overall sparsity level of the concepts (proportion of concepts with value 0) and the probability of
i-th concept taking value 0, respectively. We set µα to be 0.8 considering that 80% of the concepts have value 0 in the
CUB dataset. We then divide classes into k/γ sub-groups of size γ to make those within the same group have similar
concept values. Note that the classes within each sub-group only differ by two concept values as seen in line 6. We set
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γ = 2, k = 100, ν = 100, σα = 0.1, σw = 0.1, zα = 0.8 unless stated otherwise. We randomly divide the generated
examples into 70% of training sets, 15% of validation sets, and 15% of test sets.

To generate the data with hidden concepts, we randomly pick h% of the concepts and remove them from the concept layer
of CBMs. For training the models and intervention experiments, we only consider the remaining concepts. In addition, a
new dataset with diverse concepts can be easily produced by introducing a single variable d and reversing the value of each
concept from the previously generated dataset with probability d. In other words, d stands for a factor to give variations to
concept-target pairs that can exist in real world datasets, and it differs from the role of z which controls the noise level to the
input.

B. Architectures and Training
CUB For the CUB dataset, we use Inception-v3 (Szegedy et al., 2016) pretrained on Imagenet (Deng et al., 2009) for
the concept predictor g and 1-layer MLP for the target predictor f respectively following the standard setup as in Koh
et al. (2020). Here, both g and f are trained with the same training hyperparameters as in Koh et al. (2020). We used
λ = 0.01 for JNT and JNT+P whose values were directly taken from Koh et al. (2020). For the experiments without majority
voting (Figure 30 in Appendix H), we use Inceptionv3 pretrained on the Imagenet for g and 2-layer MLP for f with the
dimensionality of 200 so that it can describe more complex functions. We searched the best hyperparameters for both g and
f over the same sets of values as in Koh et al. (2020). Specifically, we tried initial learning rates of [0.01, 0.001], constant
learning rate and decaying the learning rate by 0.1 every [10, 15, 20] epoch, and the weight decay of [0.0004, 0.00004].
After finding the optimal values of hyperparameters whose validation accuracy is the best, we trained the networks with the
same values again over 5 different random seeds on both training and validation sets.

SkinCon For the SkinCon dataset, we fine-tune Deepderm (Daneshjou et al., 2022a) for the concept predictor g, which is
the Inception-v3 network trained on the data in Esteva et al. (2017), and train 1-layer MLP for the target predictor f . We
select hyperparameters that achieve the best performance (in terms of overall accuracy and average per-class accuracy for g
and f respectively) in the validation set. Specifically, we tried initial learning rates of [0.0005, 0.001, 0.005], and constant
learning rate and decaying the learning rate by 0.1 every 50 epoch. Here, we did not use the weight decay factor. For JNT
and JNT+P training strategies, we tried concept loss weight λ of [0.01, 0.1, 1.0, 5.0], but all of the values failed to decrease
the task error at intervention. As in the CUB dataset, we trained the networks with the best hyperparameters over 5 different
random seeds on the both training and validation sets.

Synthetic For the synthetic datasets, we use 3-layer MLP of hidden layer size {100, 100} for g and a single linear layer
for f , as similar to Zarlenga et al. (2022). For all the experiments, we tried constant learning rates of [0.01, 0.1, 1.0]
without learning rate decay or weight decay factor and trained the networks with the best hyperparameters over 5 different
random seeds on the training sets. We used λ = 0.1 for JNT and JNT+P whose values were determined by grid search over
[0.01, 0.1, 1.0].

C. More on Reflecting Cost of Intervention
As β becomes smaller RAND becomes more effective compared to ECTP (see Figure 12). This is because with small β, τg
becomes marginalized in the cost of ECTP which is O(τg + (2k + 2)τf + nτi), and therefore, the intervention effectiveness
of ECTP is penalized as with increasing k compared to RAND which only requires a single forward pass of f .

In addition, we experiment with more realistic settings for the CUB where we set τi as the concept annotation time (seconds)
provided in the dataset and τg, τf as the wall-clock times for the inference. Specifically, we set τi ≈ 0.7 by dividing
the annotation time into the number of concepts within the group and taking the average. In addition, τg ≈ 18.7 ∗ 10−3

and τf ≈ 0.03 ∗ 10−3 are acquired by measuring the inference time with RTX 3090 GPU and taking the average of 300
repetitions. In this setting, τi dominates the others, i.e., α is large, and the relative effectiveness between the criteria remains
the same as seen in Figure 13. Nonetheless, we remark that the result can change with different model sizes or GPU
environments in extreme cases. We also considered a more detailed case where we do not directly take the average of τi’s
(concept annotation time) at once but rather take the average per intervention step, reflecting differences of intervention
costs between different concepts. The relative rankings between RAND and ECTP do not change but interestingly we have
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Figure 12: Effect of β on intervention. We fix τi = 1, α = 1, k = 100. ECTP, the concept selection criteria strongly
evaluated previously, becomes less effective as β decreases.

0 25 50 75
Cost (s)

0

5

10

15

20

25

Ta
sk

 e
rro

r (
%

)

CUB
RAND
ECTP

(a) τi set as the average
among all concepts

0 25 50 75
Cost (s)

0

5

10

15

20

25

Ta
sk

 e
rro

r (
%

)

CUB
RAND
ECTP

(b) τi set as the average per
each intervention step

Figure 13: Comparison between concept selection criteria in terms of the intervention cost for the CUB. Here, cost represents
the seconds for concept annotation time and inference times for g, f .

found that ECTP first selects the concepts which require more intervention costs (i.e., more concept annotation time).

D. More Results on the Effect of Intervention Levels on Intervention
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(a) I+S
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(b) G+S
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(c) I+B
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(d) G+B

Figure 14: Comparison between intervention criteria under different levels for the CUB.
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Figure 15: Comparison between I+S vs. G+S for the CUB.

The comparison between I+S and G+S using different concept selection criteria is presented in Figure 15. Individual
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Figure 16: Comparison between I+B vs. G+B for the CUB.
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Figure 17: Comparison between I+S vs. I+B for the CUB.
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Figure 18: Comparison between G+S vs. G+B for the CUB. For G+B, each point is plotted when the average number of
intervened concepts per image first exceeds each integer value.

intervention is in general more effective than group-wise intervention except for RAND criterion. We find similar results for
the comparison between I+B and G+B (see Figure 16). We also note that CCTP becomes less effective in G levels as seen in
Figure 14.

Batch intervention is either more effective or at least as competitive as single intervention across different concept selection
criteria as seen in Figure 17. In Figure 18, we observe that G+B are also more effective than G+S level. CCTP does not show
much difference between S and B. It is because the target predictor f is a simple linear layer for our experiments and thus
∂fj
∂ĉi

= wij is fixed for all examples where wij is the weight of i-th concept to j-th class in f .

E. More Results on the Effect of Training Strategies on Intervention

0 20 40 60 80 100
Intervention counts

0

5

10

15

20

25

Ta
sk

 e
rro

r (
%

)

RAND
UCP
LCP

CCTP
ECTP
EUDTP

(a) IND
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(b) SEQ
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(c) JNT
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Figure 19: Comparison between concept selection criteria using different training strategies for the CUB. For JNT, JNT + P,
we present the results when λ = 0.01.

The results for the CUB dataset are presented in Figure 19. Note that EUDTP becomes even less effective than RAND in SEQ
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(a) RAND
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(b) UCP
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(c) LCP
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(d) CCTP

0 20 40 60 80 100
Intervention counts

0

5

10

15

20

25

Ta
sk

 e
rro

r (
%

)

IND
SEQ

JNT
JNT + P

(e) ECTP
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Figure 20: Comparison between different training strategies for a fixed concept selection criterion for the CUB.
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(c) JNT
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(d) JNT + P

Figure 21: Comparison between concept selection criteria using different training strategies for the Synthetic. For JNT, JNT
+ P, we present the results when λ = 0.1.
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(b) UCP
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Figure 22: Comparison between different training strategies for a fixed concept selection criterion for the Synthetic.

and JNT. For the synthetic datasets, EUDTP also becomes much less effective as in the CUB dataset (see Figure 21). Note
that when using JNT or JNT+P training schemes, LCP may not be the best choice as the target predictor f is not trained with
the ground-truth concept values and thus rectifying the concept with the highest prediction loss does not always guarantee
the decrease in the task error. Comparisons between different training strategies for a fixed concept selection criterion in the
CUB and Synthetic are presented in Figures 20 and 22.

F. More Results on the Effect of Conceptualization Methods on Intervention
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Figure 23: Intervention results under different conceptualization methods using various concept selection criteria. Here, we
used IND training strategy for the CUB.

Across all the datasets and concept selection criteria, utilizing effective criteria can reduce the gap between different
conceptualization strategies much faster than RAND criterion as seen in Figures 23 to 27.
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Figure 24: Intervention results under different conceptualization methods using various concept selection criteria. Here, we
used JNT + P training strategy for the CUB.
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(b) UCP

0 5 10 15 20
Intervention counts

28

30

32

34

36

38

Ta
sk

 e
rro

r (
%

)

SOFT
HARD
SAMP

(c) LCP

0 5 10 15 20
Intervention counts

30

32

34

36

Ta
sk

 e
rro

r (
%

)

SOFT
HARD
SAMP

(d) CCTP

0 5 10 15 20
Intervention counts

28

30

32

34

36

Ta
sk

 e
rro

r (
%

)

SOFT
HARD
SAMP

(e) ECTP

0 5 10 15 20
Intervention counts

28

30

32

34

36

Ta
sk

 e
rro

r (
%

)

SOFT
HARD
SAMP

(f) EUDTP

Figure 25: Intervention results under different conceptualization methods using other concept selection criteria. Here, we
used IND training strategy for the SkinCon.
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Figure 26: Intervention results under different conceptualization methods using various concept selection criteria. Here, we
used IND training strategy for the synthetic dataset.
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Figure 27: Intervention results under different conceptualization methods using various concept selection criteria. Here, we
used JNT + P training strategy for the synthetic dataset.

G. More Results on the Effect of Data on Intervention
We find that intervention on data with extremely high input noise or extremely high diversity makes developed concept
selection criteria less effective in general with a larger gap from LCP (see Figure 28). Specifically, UCP becomes less
effective than other criteria in these cases. We assume that concept prediction uncertainty is rather uncorrelated with concept
prediction loss when the concept predictor g achieves very low accuracy.

We also evaluate the effect of concept sparsity levels, i.e., probability of each concept having value 0, using CCTP criterion.
Note that intervention becomes less effective as the sparsity level gets closer to 50% as seen in Figure 29a. To understand
why, recall that this criterion aggregates the contribution of each concept to the target label prediction. When the sparsity
level is high and most concepts have value 0, target prediction is determined by only a few concepts and CCTP can work
effectively by first intervening on the concept with the highest contribution. In contrast, as the level gets closer to 50%,
target prediction is determined by almost half of the concepts and contribution on target prediction becomes no longer a
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(a) Data with extremely high
input noise
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Figure 28: Intervention results on the data with extremely high input noise (variance of 2.0) or concept diversity (perturbation
probability of 30%) respectively. In these cases, the proposed concept selection criteria work less effectively.
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Figure 29: (a) CCTP becomes more effective with a higher concept sparsity level. (b) Final task error increases, but
intervention becomes more effective with larger sub-group sizes.

discriminative feature of the concepts, thus decreasing the effectiveness of the criterion. Furthermore, we observe that the
final task error increases but intervention becomes more effective with a large sub-group size γ (see Figure 29b). Specifically,
we need 12 intervention counts to decrease the task error by half for the data with γ = 1, but correcting 5 concepts achieve
the same effect for γ = 10. This is because intervention can decrease the task error much faster for mis-classified examples
by distinguishing from similar classes when γ is large.

H. More Results on Fairness of Majority Voting
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(b) UCP
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Figure 30: Comparison of test-time intervention results with and without using majority voting.

When we do not use majority voting on the CUB dataset, intervention rather increases the task error as seen in Figure 30.
Specifically, intervention does not decrease task error at all with RAND, UCP. Even with LCP criterion, intervention does not
reduce the task error as much as when we use majority voting, and the error rather starts to increase after about 10 concepts
intervened. See Appendix B for the training details.
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