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Hyperparameter optimization (HPO) is a critical component of machine learn-
ing pipelines, significantly affectingmodel robustness, stability, and generalization.
However, HPO is often a time-consuming and computationally intensive task. Tra-
ditional HPO methods, such as grid search and random search, often suffer from
inefficiency. Bayesian optimization, while more efficient, still struggles with high-
dimensional search spaces. In this paper, we contribute to the field by explor-
ing how insights gained from hyperparameter importance assessment (HIA) can
be leveraged to accelerate HPO, reducing both time and computational resources.
Building on prior work that quantified hyperparameter importance by evaluating
10 hyperparameters on CNNs using 10 common image classification datasets, we
implement a novel HPO strategy called ’Sequential Grouping.’ That prior work as-
sessed the importance weights of the investigated hyperparameters based on their
influence on model performance, providing valuable insights that we leverage to
optimize our HPO process. Our experiments, validated across six additional image
classification datasets, demonstrate that incorporating hyperparameter importance
assessment (HIA) can significantly accelerate HPO without compromising model
performance, reducing optimization time by an average of 31.9% compared to the
conventional simultaneous strategy.

1. Introduction
In recent years, the rapid advancement of deep learning has led to significant breakthroughs across
a wide range of applications, from computer vision to natural language processing, where hyper-
parameter optimization (HPO) has become increasingly vital in constructing models that achieve
optimal performance. As the demand for HPO has been growing, the computational and time
costs associated with it have become a significant bottleneck [1]. In this context, Hyperparame-
ter Importance Assessment (HIA) has emerged as a promising solution. By evaluating the im-
portance weights of individual hyperparameters and their combinations within specific models,
HIA provides valuable insights into which hyperparameters most significantly impact model per-
formance [2]. With this understanding, deep learning practitioners can focus on optimizing only
those hyperparameters that have a more pronounced effect on performance. For less critical hy-
perparameters, users can reduce the search space during optimization or even fix them at certain
values, thereby saving time in the model optimization process [3]. Although there has been consid-
erable exploration of HIA, most existing studies have primarily focused on introducing new HIA
methods or determining the importance rankings of hyperparameters for specific models within
certain application scenarios. However, there has been limited exploration of how these insights
can be strategically applied to enhance the efficiency of the optimization process.
To address the challenges in the current research landscape, this paper aims to use Convolutional
Neural Networks (CNNs) as the research case to introduce HIA into the deep learning pipeline,
demonstrating that the insights gained from HIA can effectively enhance the efficiency of hyper-
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parameter optimization. On a deeper level, this approach can also contribute to a more profound
understanding and increased transparency of these "black box"models to some extent. From a prac-
tical perspective, it has the potential to become a foundational component for constructing machine
learning pipelines. This could foster advancements in automated machine learning and contribute
to the development of more interpretable and efficient deep learning models.
In this paper, the main contributions are as follows:

• Wepropose a novel Grouped Sequential optimization strategy (GSOS), which leverages hy-
perparameter importance weights obtained through Hyperparameter Importance Assess-
ment (HIA) on CNN models. These importance weights, derived from the evaluation of
10,000 models trained across 10 datasets, provide constructive guidance for hyperparame-
ter grouping and optimization sequencing.

• We integrate this strategy into Tree-structured Parzen Estimator (TPE)-based Bayesian op-
timization, which is awell-established hyperparameter optimizationmethod introduced by
Bergstra et al. [4]. Building on this foundation, we validate our GSOS strategy across six
image classification datasets. To ensure robust results andmitigate the effect of randomness
from initial sampling, we conduct five independent runs of HPO on each dataset, with 100
iterations per run. Our results show that the Grouped Sequential strategy reduces the time
to find optimal hyperparameters by 19.69% and the overall optimization time by 31.90%
compared to traditional simultaneous strategies.

2. Related Work
Many Hyperparameter Importance Assessment (HIA) studies draw inspiration from Feature Se-
lection techniques, which aim to reduce computational costs by identifying impactful input fea-
tures [5]. While Feature Selection focuses on input features, HIA targets hyperparameters. Early
HIA methods, such as Forward Selection and Functional ANOVA, have high time complexity [6].
This prompted the development of N-RReliefF to reduce computational time while maintaining
ranking consistency [7]. N-RReliefF has shown efficiency advantages without sacrificing quality,
with studies indicating consistent importance rankings for hyperparameters such as "gamma" for
SVM and "split criterion" for Random Forest [2, 7].
In deep learning, HIA research has followed two main directions. The first direction involves in-
troducing new HIA methods, ensuring they match or improve upon established baselines, such as
Functional ANOVA, in terms of both consistency and efficiency. For instance, the Plackett-Burman-
based QIM method achieved similar hyperparameter rankings to Functional ANOVA on CIFAR-10
andMNISTdatasets but improved computational efficiency threefold [8]. Otherwork has leveraged
sensitivity analysis frameworks based onMorris and Sobolmethods, showing that hyperparameters
such as learning rate decay and batch size play crucial roles in complex datasets like CIFAR-10 [9].
Recently, HyperDeco-based e-AutoGR effectively identified hyperparameter importance for graph
representation learning by removing confounding effects [10]. N-RReliefF has also been applied to
deep learning, confirming the influence of hyperparameters such as number of convolutional layers,
learning rate, and dropout rate on model performance [11].
The second direction applies HIA to specific deep learning models, such as ResNet and quantum
neural networks (QNNs). Functional ANOVA identified the most impactful hyperparameters for
ResNet across image classification datasets, including learning rate and weight decay [12]. For
QNNs, key hyperparameters such as learning rate and data encoding strategy have been shown to
influence performance on small datasets [13]. Additionally, a Bayesian optimization with Hyper-
band (BOHB) approach was employed to jointly search for neural architecture and hyperparame-
ters, demonstrating performance gains on CIFAR-10 and reduced computational costs [14].
While much of HIA research focuses on identifying hyperparameter rankings, there is limited work
on directly leveraging these insights to improve hyperparameter optimization efficiency. Our study
addresses this gap by integrating HIA results into the optimization workflow, demonstrating that
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a strategic application of HIA insights can lead to efficient model tuning without compromising
performance.

3. TPE-based Bayesian Optimization

This section does not present TPE-based Bayesian optimization as a novel concept; instead, it builds
upon the foundational work of Bergstra et al. and provides a more detailed derivation and oper-
ational description in this chapter to enhance understanding and facilitate practical application of
the algorithm [4].

3.1. Acquisition Function in TPE Algorithm

TPE-based BO models the objective function by dividing the search space into two regions, rep-
resented by the "good distribution" l(x) and the "bad distribution" g(x), estimated using Parzen
window density estimation based on observed objective values [15]. The data are partitioned into
favourable and unfavourable regions based on a quantile threshold γ.
Qualitatively, the "good region" represents hyperparameter configurations that have shown promis-
ing performance, i.e., achieving objective values below the threshold y∗. This region corresponds
to areas in the search space that are likely to yield better model performance and are therefore pri-
oritized during optimization. Conversely, the "bad region" includes configurations with objective
values above y∗, which are less likely to improve the objective and serve primarily as a reference for
guiding the search away from suboptimal areas. By focusing exploration on the "good region" while
maintaining awareness of the "bad region," the TPE algorithm effectively balances the exploitation
of promising configurations with the broader exploration of the search space.
The acquisition function in TPE-based Bayesian optimization is reformulated from Expected Im-
provement (EI) to maximize the ratio between the good and bad distributions, guiding the search
toward more promising regions. Starting from the EI formula, EI can be rewritten using Bayes’
theorem as EIy∗(x) =

∫ y∗

−∞(y∗ − y)p(y|x) dy =
∫ y∗

−∞(y∗ − y)p(x|y)p(y)p(x) dy.
Here, EIy∗(x) represents the expected improvement for y over the threshold y∗ for a configura-
tion x, where y < y∗ represents an improvement extent. Typically, y∗ is set by a threshold pro-
portion γ (often 0.15 or 0.25), and the new configuration x∗ is then selected by maximizing EI:
x∗ = argmaxx EIy∗(x).
To partition the search space based on γ, we redefine p(x|y) as l(x) = p(x|y) if y < y∗ and g(x) =
p(x|y) if y > y∗.
Next, we relate l(x), g(x), and p(x|y) through p(x):

p(x) =

∫
R

p(x|y)p(y) dy (1)

=

∫ y∗

−∞
l(x)p(y) dy +

∫ +∞

y∗
g(x)p(y) dy (2)

= γl(x) + (1− γ)g(x) (3)

Substituting this expression into the equation for EIy∗(x), we can obtain:
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EIy∗(x) =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy (4)

=

∫ y∗

−∞
(y∗ − y)

l(x)p(y)

γl(x) + (1− γ)g(x)
dy (5)

=
l(x)

γl(x) + (1− γ)g(x)

∫ y∗

−∞
(y∗ − y)p(y) dy (6)

To maximize EIy∗(x), we focus on the term containing x, yielding EIy∗(x) ∝
(
γ + g(x)

l(x) (1− γ)
)−1

.
Since γ is constant, this result shows that the acquisition function in the TPE algorithm favours
candidate points closer to the good distribution l(x) and further from g(x).

3.2. Optimization Algorithm Steps and Parzen Window Density Estimation
As discussed previously, Parzen Window Density Estimation is used to construct the “good” dis-
tribution l(x) and the “bad” distribution g(x). In this work, we apply a smooth kernel function,
specifically the Gaussian kernel, to estimate the density, which is commonly referred to as Kernel
Density Estimation (KDE) in the context of this algorithm.
The KDE is computed as follows:

KDE(x) = 1

nh

n∑
i=1

K

(
x− xi

h

)
where n is the total number of samples, h is the bandwidth parameter controlling the smoothness
of the density estimate (a larger h results in a smoother estimate), xi is the i-th observation in the
sample data, andK

(
x−xi

h

) is the kernel function that determines the influence of each sample point
xi on the estimate at x. Here, we use the Gaussian kernel function, defined as

K(u) =
1√
2π

exp

(
−u2

2

)
which provides a smooth, bell-shaped influence for each sample.
This approach provides an efficient mechanism for exploration and exploitation in high-
dimensional, often non-convex hyperparameter spaces. The algorithm 1 outlines these steps in
detail.
In the algorithm1, since each hyperparameterHj is assumed to be independent of each other, we can
model eachHj ’s KDE based on Sgood and Sbad, and stack them together to form the joint distribution
over the entire hyperparameter configuration, enabling us to find the optimal hyperparameters that
improve the objective function.

x∗ = argmax
x

J∏
j=1

l(hj)

g(hj)
= argmax

x

l(x)

g(x)
(7)

4. Grouped Sequential Optimization Strategy
GSOS leverages hyperparameter importance values to sequentially optimize groups of hyperparam-
eters in a structuredmanner. This approach groups hyperparameters by importance, withmore im-
pactful parameters being optimized earlier in the sequence. After optimizing each group, the best
values from that group are incorporated into the default hyperparameter configuration, allowing
subsequent groups to benefit from previously optimized values. This strategy effectively balances
efficiency and performance by focusing on the most critical hyperparameters first while retaining
flexibility for subsequent optimizations.
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Algorithm 1 TPE Optimization
1: Input: Objective function f(x), search space of hyperparameters P = {H1, H2, . . . ,HJ}, max

iterations m, initial sample size n = 15, quantile r = 0.25
2: Output: Optimized hyperparameter configuration xopt = {hopt1, hopt2, ..., hoptJ} thatminimizes

f(x)
3: Initialize sample set S = ∅
4: for i = 1 to n do
5: Randomly sample xi from P and evaluate f(xi)
6: Add (xi, f(xi)) to S
7: end for
8: for iter = 1 tom do
9: Sort S by f(x) in ascending order
10: Get threshold y∗ based on the r-th quantile of f(x) values in S
11: Sgood = {x | f(x) ≤ y∗}
12: Sbad = {x | f(x) > y∗}
13: Initialize l(x) = 1 and g(x) = 1
14: for each hyperparameter Hj in P do
15: Construct l(hj) using KDE on Hj values in Sgood
16: Construct g(hj) using KDE on Hj values in Sbad
17: l(x) = l(x) · l(hj)
18: g(x) = g(x) · g(hj)
19: end for
20: Select x∗ = argmaxx

(
γ + g(x)

l(x) (1− γ)
)−1

21: Evaluate f(x∗)
22: Add (x∗, f(x∗)) to S
23: end for

Algorithm 2 Grouped Sequential Optimization Strategy (GSOS)
1: Input: Objective function f(x), search spaces of each hyperparameter group {P1, P2, . . . , PK}

sorted by importance, max iterations for each group {m1,m2, . . . ,mK}, default hyperparameter
configuration xdefault = {x1, x2, . . . , xD}

2: Output: Optimized hyperparameter configuration xoptimal = {xopt1, xopt2, . . . , xoptD}
3: Initialize xcurrent = xdefault
4: for each group Pk in {P1, P2, . . . , PK} do
5: Define fPk

(x) = f(x)with hyperparameters outside Pk fixed to xcurrent
6: Optimize Pk using TPE to obtain x∗

Pk
= TPE Optimization(fPk

(x),mk, Pk)
7: Update xcurrent with x∗

Pk

8: end for
9: Set xoptimal = xcurrent

To facilitate understanding, we have provided explanations for some key steps in Algorithm 2.
Line 5 (Objective Function Set Up): In each iteration, the objective function fPk

(x) needs to be
reset up, where only the hyperparameters in the current group Pk are the optimized target. All
other hyperparameters are fixed with the corresponding values in xcurrent.
Line 6 (TPEOptimization): Alogrithm1 is applied to fPk

(x), with Pk as the search space andmk as
the maximum number of iterations. This produces the optimal values x∗

Pk
for the hyperparameters

within the group Pk.
Line 7 (Updating the Current Configuration): The optimized values x∗

Pk
for the group Pk are then

used to update the corresponding hyperparameters in xcurrent. This ensures that subsequent groups
are optimized based on the current best configuration, iteratively improving the overall hyperpa-
rameter setup.
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This demonstrates how GSOS serves as an outer framework, sequentially invoking the TPE-based
Bayesian Optimization subroutine to optimize each hyperparameter group. After completing the
optimization of each group, the optimal hyperparameter values for that group are updated in the
global configuration, allowing subsequent groups to be optimized based on the current best config-
uration.

5. Experimental Setup
Note that all experiments are conducted on a system equipped with five NVIDIA GeForce RTX
3090 GPUs and 64 GB of RAM, providing robust computational resources for efficient training and
optimization.

5.1. Grouping Hyperparameters

To establish a solid foundation for hyperparameter grouping and sequential optimization, we refer-
ence the hyperparameter importance weights from the study byWang et al. [11]. This study evalu-
ated the relative impact of various hyperparameters on CNN performance, providing quantitative
importance scores based on empirical experiments.

Figure 1: Grouping of HyperparametersFigure 1 illustrates the normalized
importance weights of the investi-
gated CNN hyperparameters, orga-
nized into three distinct groups based
on their relative impact. The hor-
izontal axis represents the normal-
ized weights on a [0,1] scale, provid-
ing a clearer view of the differences
in hyperparameter influence across
groups. The number of convolutional
layers emerges as the most influential
hyperparameter (weight: 0.385), un-
derscoring the critical role it plays in
CNN optimization. The learning rate
closely follows a weight of 0.228, aligning with well-established research that emphasizes the im-
portance of a carefully tuned learning rate for model convergence and stability. The dropout rate,
with the third highest importance weight of 0.131, further demonstrates the necessity of regulariza-
tion in preventing overfitting, especially for complexmodels. Other hyperparameters, including the
optimizer type and the number of epochs, have comparatively lower weights but still contribute to
the training dynamics. Conversely, parameters with the lowest weights, such as batch size (0.015),
exhibit minimal impact on performance, suggesting that these parameters can be optimized later
to prioritize computational resources for higher-impact hyperparameters. Moreover, these results
affirm common practices in machine learning and align well with empirical insights, validating the
heuristic strategies often used by practitioners during hyperparameter tuning.

5.2. Search Space and Model Architecture Limitation

Table 1: Hyperparameter Search Space
Variable Search Space Default Value

num_conv_layers [2, 3, 4] 3
lr [1e-5, 1] 0.01

dropout_rate [0, 0.9] 0.0
optimizer {adam, sgd} adam
epoch [10 to 100] 10
stride [1, 2] 1

padding {valid, same} same
kernel [3, 5] 3

num_fc_units [64 to 256] 64
batch_size [32, 64, 128, 256] 32

The hyperparameter search space is defined to
explore various configurations within a specified
range. Table 1 outlines the search space for each hy-
perparameter, including the range or set of values
being searched, and its default value. In this search
space, each hyperparameter’s value range was cho-
sen to balance exploration efficiency and compu-
tational feasibility. The default values represent a
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baseline configuration, providing a starting point for
the optimization process.
The architecture of the CNN model adapts dynamically throughout while preserving several core
design principles. Specifically: (1) Each convolutional layer is immediately followed by a ReLU
activation and a pooling layer. If the structural hyperparameter, specifically the number of convo-
lutional layers, is set to more than one, each additional convolutional layer is followed by a corre-
sponding ReLU and pooling layer. (2) All pooling layers consistently use a max-pooling approach.
(3) The final output layer employs a Softmax function to generate predictions. (4) Prior to the Soft-
max layer, the network includes two identical blocks in sequence, each consisting of a dropout layer
followed by a fully connected layer, with the same dropout rate applied across both dropout layers.
(5) A ReLU activation follows the first fully connected layer. (6) In general, unless stated other-
wise, hyperparameters such as padding, stride, and dropout rate are uniformly configured across
all relevant layers.

5.3. Datasets

In this study, hyperparameter optimizationwas performed using both GSOS and a baselinemethod
on six different datasets: AHE [16], Intel Natural Scene [17], Rock Paper Scissors [18], Dog Cat [18],
Flowers [19], and Kuzushiji-49 [20]. These datasets span various domains and offer diversity in
terms of data volume, image dimensions, class count, and colour channels, making themwell-suited
for evaluating the general applicability of GSOS. If GSOS can demonstrate efficiency across all these
datasets compared to traditional parallel hyperparameter optimization techniques, it would sup-
port its broader applicability across different data types. Table 2 provides an overview of the key
characteristics of each dataset.

Table 2: Summary of Datasets Used for Hyperparameter Optimization

Dataset Number of Data Points Image Dimensions Number of Classes Color Channels
AHE [16] 7,599 224x224 4 3

Intel Natural Scene [17] 25,000 150x150 6 3
Rock Paper Scissors [18] 2,892 300x300 3 3

Dog Cat [21] 25,000 256x256 2 3
Flowers [19] 4,242 224x224 5 3

Kuzushiji-49 [20] 270,912 28x28 49 1

5.4. Experimental Group vs. Control Group

To evaluate the effectiveness of the GSOS compared to traditional parallel Bayesian optimization,
we designed an experimental group and a control group. In Bayesian optimization, the initial sam-
pling within the search space is inherently stochastic, which introduces a degree of variability in the
results due to randomness. To mitigate this, both the experimental and control groups will execute
multiple rounds on each dataset to provide a robust comparison.
For the experimental group, we employ the GSOS approach on the six datasets, with each trial run-
ning 100 iterations across five rounds. Within each round, the hyperparameters are grouped by
importance into Group 1, Group 2, and Group 3, with iteration ratios of 4:3:3, respectively. This
prioritization of iteration counts allows the strategy to focus more on high-impact hyperparameters
early in the optimization process. For each iteration in every round, we record accuracy, loss, and
time spent. These metrics will be further analyzed to assess the efficiency and stability of GSOS
across diverse datasets. In contrast, the control group applies traditional parallel Bayesian opti-
mization on the same six datasets, with the same configuration of 100 iterations across five rounds.
This approach treats all hyperparameters equally in parallel without grouping, thus serving as a
baseline to evaluate the added value of GSOS’s sequential grouping.
By conducting these comparative experiments on identical datasets with consistent iteration set-
tings, we aim to observe and analyze whether GSOS achieves higher efficiency and better perfor-
mance stability than the conventional parallel approach.
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6. Evaluation and Results

6.1. Comparison of Optimization Strategies

Table 3: Comparison Results on Various Datasets
Dataset Strategy Avg Time to Find the Optimal HP Avg Optimizing Time Avg Val Accuracy Avg Test Accuracy
AHE grouped_sequential 00:27:19 00:37:22 0.7433 0.7267
AHE simultaneous 00:37:37 00:52:00 0.7646 0.7298

Intel_Natural_Scene grouped_sequential 00:22:28 00:51:05 0.7369 0.7605
Intel_Natural_Scene simultaneous 00:49:21 01:18:32 0.7647 0.7513
Rock_Paper_Scissors grouped_sequential 00:22:10 00:32:18 0.9890 0.9784
Rock_Paper_Scissors simultaneous 00:19:11 00:51:38 0.9959 0.9858

Dog_Cat grouped_sequential 01:32:01 02:13:30 0.7577 0.7404
Dog_Cat simultaneous 02:01:16 03:01:09 0.7929 0.7538
Flowers grouped_sequential 00:48:57 01:04:20 0.6665 0.6651
Flowers simultaneous 01:10:31 01:32:15 0.6823 0.6669

Kuzushiji_49 grouped_sequential 03:04:42 03:26:41 0.9613 0.9260
Kuzushiji_49 simultaneous 03:17:11 05:15:47 0.9650 0.9307

In this section, we analyze the effectiveness of theGrouped SequentialOptimization Strategy in com-
parison to the traditional simultaneous hyperparameter optimization approach. Our comparison
focuses on four core metrics: Average Time to Find the Optimal Hyperparameters, Total Optimiza-
tion Time, Validation Accuracy, and Test Accuracy. Table 3 presents these metrics, averaged over
five runs for each dataset and strategy. The results indicate that GSOS consistently outperforms the
simultaneous approach in terms of time efficiency across all datasets, and achieves faster conver-
gence toward optimal configurations. However, there is a slight trade-off in accuracy, with minor
reductions in validation and test accuracy observed for GSOS in most datasets.

6.2. Analysis of Time Reduction and Accuracy Change

Table 4: Time Reduction and Accuracy Change
Dataset Time Reduction (%) Val Accuracy Change Test Accuracy Change
AHE 28.141 -0.02133 -0.00308

Intel_Natural_Scene 34.953 -0.02781 0.00019
Rock_Paper_Scissors 37.444 -0.00685 -0.0074

Dog_Cat 26.304 -0.0352 -0.01346
Flowers 30.262 -0.01576 -0.00183

Kuzushiji_49 34.549 -0.00374 -0.00476

To quantify the advantages of GSOS
in terms of time efficiency, Table 4
summarizes the percentage reduc-
tion in optimization time and the
changes in validation and test accu-
racy for GSOS compared to the simul-
taneous approach. On average, GSOS achieves a 19.69% faster time to find the optimal hyperpa-
rameters and a 31.90% reduction in the total optimization time. However, there is a trade-off with
accuracy, as GSOS results in an average decrease of 2.23% in validation accuracy and 0.44% in test ac-
curacy compared to the simultaneous approach. This trade-off highlights the potential of GSOS for
applications where optimization time is a priority and minor reductions in accuracy are acceptable.
The results demonstrate that GSOS offers a significant time-saving advantage while maintaining
competitive performance levels across various datasets, making it a viable alternative for hyperpa-
rameter optimization in time-sensitive scenarios.

6.3. Analysis of Search Efficiency Across Datasets between GSOS and
Simultaneous Strategy

Figure 2 presents a comparative analysis of GSOS and Simultaneous Strategy across multiple
datasets, showing the progression of accuracy over iterations. The colour gradient in Figure 2 visu-
ally highlights the concentration of evaluations over iterations, with red representing high-density
regions and blue indicating low-density regions. In GSOS, high-density areas (red regions) often
have two: early iterations tend to focus on low-performance regions, while later iterations concen-
trate on high-performance regions. In contrast, the Simultaneous strategy usually displays a sin-
gle, less intense high-density region concentrated in the high-performance area. The red colour in
this region is lighter compared to GSOS’s red zones, suggesting that the Simultaneous approach,
although achieving concentration, explores with a lower density and less refinement. This pattern
indicates broader, less focused exploration throughout the search space, whichmay sometimes limit
its efficiency in finding optimal hyperparameter configurations compared to the GSOS approach.
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Figure 2: Scatter plot comparisons of the two strategies (Accuracy vs. Iterations).

Across most datasets, GSOS achieves higher accuracy levels more quickly. In datasets like AHE and
Intel Natural Scene, GSOS shows significant accuracy improvements within the first 50 iterations,
while the Simultaneous approach requires more iterations to reach similar accuracy. Furthermore,
in datasets such as Dog Cat and Flowers, GSOS displays a more stable and consistent improvement
in accuracy, contrasting with the Simultaneous strategy, which exhibits greater fluctuation and scat-
tered accuracy values across iterations.
Overall, these results indicate that GSOS effectively balances exploration and exploitation by focus-
ing on grouped hyperparameters, leading to faster convergence to high-performing configurations.
This visual comparison supports the conclusion that GSOS offers enhanced search efficiency, re-
duced fluctuation in accuracy, and quicker identification of optimal hyperparameters, demonstrat-
ing the advantages over the Simultaneous approach on some datasets.

7. Conclusions and Future Work

This paper presented the Grouped Sequential Optimization Strategy (GSOS) as an enhancement
to conventional hyperparameter optimization methods. Leveraging insights from Hyperparame-
ter Importance Assessment (HIA), GSOS sequentially optimizes grouped hyperparameters based
on their relative impact on model performance, aiming to improve efficiency in high-dimensional
hyperparameter spaces. Our experiments on six diverse image classification datasets demonstrated
that GSOS can significantly reduce both the time to find optimal hyperparameters and the total opti-
mization timewithout compromisingmodel performance substantially. On average, GSOS achieved
a 19.69% reduction in time to reach optimal hyperparameters and a 31.9% reduction in total opti-
mization time. Additionally, GSOS displayed faster convergence and greater stability across itera-
tions on some datasets. Despite these advantages, GSOS presents aminor trade-off in accuracy, with
slight decreases observed in validation and test accuracies across some datasets. This trade-off may
be acceptable in scenarioswhere the primary goal is to optimize computational efficiency rather than
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maximize absolute accuracy. Nonetheless, GSOS offers a promising framework for time-sensitive
applications or for cases where model tuning must be balanced against resource constraints.
Future research on GSOS can further enhance its applicability and efficiency by exploring its exten-
sion to othermodel architectures such as RecurrentNeural Networks (RNNs) or Transformer-based
models, which would demonstrate the versatility of GSOS across various deep learning applica-
tions. Additionally, integrating GSOS with optimization techniques like Hyperband or reinforce-
ment learning could dynamically allocate resources to different hyperparameter groups, enhancing
search efficiency. Applying GSOS within AutoML pipelines could also improve automated model
tuning, reducing the time to achieve high-performing models in production environments. These
avenues suggest GSOS’s potential for broad applications and its promise in advancing efficient hy-
perparameter optimization.
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A. Appendix: Time Analysis of TPE-based Bayesian Optimization
To investigate the computational overhead in TPE-based Bayesian optimization, we decomposed
the total optimization time into two main components:
Model Evaluation Time (Teval): The time required to evaluate the objective function, which typi-
cally involves training and validating a machine learning model.
TPE Process Time (Ttpe): The time spent by the TPE algorithm to suggest the next sampling point.
The total time per iteration can be expressed as:

Titer = Teval + Ttpe (8)
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We simulated a simple model evaluation process and varied the number of hyperparameters in the
search space from 1 to 12. The optimization objective is defined as:

L(x) = random loss value, x ∈ Rd (9)
where d is the number of hyperparameters. The objective function returns a random value to simu-
late loss, and the model evaluation time is approximated by adding a constant delay of 0.01 seconds
per evaluation.
The search space for d hyperparameters is defined as:

x = {x1, x2, . . . , xd}, xi ∼ U(0, 106) (10)

For each configuration, we performed 100 iterations using the Tree-structured Parzen Estimator
(TPE) as the optimization algorithm:

x∗ = argmin
x∈X

L(x) (11)

The measured TPE process time (Ttpe) for different numbers of hyperparameters is summarized in
Table 5.
From the results, we observe that the computational complexity of TPE’s internal sampling remains
efficient even in higher-dimensional search spaces. In our simulated experiments, Teval was fixed to
0.01 seconds per iteration. For large-scale machine learning tasks, Teval can easily range from several
seconds to hours, making Ttpe negligible in comparison.

Table 5: TPE Process Time Excluding Model
Evaluation
Number of Hyperparameters (d) Ttpe (seconds)

1 1.267
2 1.496
3 1.569
4 1.618
5 1.662
6 1.818
7 1.762
8 1.884
9 1.820
10 1.815
11 1.590
12 2.050

This analysis demonstrates that TPE-based
Bayesian optimization is computationally effi-
cient in determining the next sampling point,
as Ttpe contributes minimally to the total time.
However, the overall optimization efficiency
heavily relies on reducing Teval, for instance, by
parallelizing model evaluations or employing
surrogate models.
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