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Abstract
Representation learning in high-dimensional
spaces faces significant robustness challenges
with noisy inputs, particularly with heavy-tailed
noise. Arguing that topological data analysis
(TDA) offers a solution, we leverage TDA to en-
hance representation stability in neural networks.
Our theoretical analysis establishes conditions un-
der which incorporating topological summaries
improves robustness to input noise, especially for
heavy-tailed distributions. Extending these re-
sults to representation-balancing methods used in
causal inference, we propose the Topology-Aware
Treatment Effect Estimation (TATEE) framework,
through which we demonstrate how topological
awareness can lead to learning more robust rep-
resentations. A key advantage of this approach
is that it requires no ground-truth or validation
data, making it suitable for observational settings
common in causal inference. The method remains
computationally efficient with overhead scaling
linearly with data size while staying constant in
input dimension. Through extensive experiments
with α-stable noise distributions, we validate our
theoretical results, demonstrating that TATEE
consistently outperforms existing methods across
noise regimes. This work extends stability prop-
erties of topological summaries to representation
learning via a tractable framework scalable for
high-dimensional inputs, providing insights into
how it can enhance robustness, with applications
extending to domains facing challenges with noisy
data, such as causal inference.

1. Introduction
Robust representation learning is critical across domains,
including those involving high-dimensional data, yet devel-
oping methods that handle noisy inputs remains challenging,
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especially for heavy-tailed noise—prevalent in finance and
signal processing (Barkat & Stanković, 2004; Kim et al.,
2008; Stoyanov et al., 2011; Simsekli et al., 2019; Gorbunov
et al., 2020; Yang et al., 2022). Techniques for improving
robustness without requiring ground-truth are particularly
valuable for observational settings where validation data is
unavailable, typical in causal inference applications. Topo-
logical Data Analysis (TDA) offers a principled solution
through the stability properties of topological summaries,
enabling a purely structural approach to robustness. We
leverage these properties to enhance the robustness of repre-
sentation learning, demonstrating their effectiveness through
representation-balancing neural networks for treatment ef-
fect estimation (Johansson et al., 2016; Shalit et al., 2017;
Kazemi & Ester, 2024; Wang et al., 2024). Our approach
addresses the challenge of representations’ robustness to
noise, and building on our theoretical results, we introduce
a topology-aware framework for treatment effect estimation
that demonstrates these stability benefits while maintaining
computational scalability with high-dimensional inputs.

Machine learning methods have shown promise for causal
inference (Morgan & Winship, 2015; Louizos et al., 2017;
Yoon et al., 2018; Shi et al., 2019; Cui et al., 2020; Shi et al.,
2021; Ghosh et al., 2023), with representation-balancing
approaches gaining popularity for treatment effect estima-
tion (Johansson et al., 2016; Shalit et al., 2017). How-
ever, noisy observations present a key challenge (Wickens,
1972; Kuroki & Pearl, 2014), and despite progress (Kallus
et al., 2018; Shu & Yi, 2020), techniques for handling noise
remain limited, with significant gaps in addressing non-
Gaussian noise. Our work addresses this gap by integrating
topological summaries in treatment effect estimation, en-
hancing robustness in a scalable fashion. Topological Data
Analysis (TDA) offers a compelling approach to robust
representation learning by characterizing the shape of data
through its global topology, which remains stable under lo-
cal geometric perturbations (Carlsson, 2009). A standard
tool for this characterization is persistent homology, which
effectively summarizes topological invariants (Edelsbrun-
ner et al., 2002; Edelsbrunner & Harer, 2008), with well-
established stability theorems demonstrating how the result-
ing topological signatures can enhance robustness in data
analysis pipelines (Cohen-Steiner et al., 2005; 2007; 2010).
Recent work suggests that incorporating these topological
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summaries into deep learning frameworks can improve their
resilience to noise (Gabrielsson et al., 2020; Southern et al.,
2023), motivating our work and making it the first to bridge
TDA and treatment effect estimation.

We leverage the stability properties of topological sum-
maries to enhance the robustness of representations against
noise through an approach that is both purely structural
and computationally scalable—critical advantages for ob-
servational and high-dimensional settings. In Section 3,
we derive conditions under which topological summaries
enhance representations’ robustness by improving metric
stability, especially with heavy-tailed noise. This underpins
our Topology-Aware Treatment Effect Estimation (TATEE)
framework proposed in Section 4, which improves the ro-
bustness of counterfactual regression (CFR) (Shalit et al.,
2017) by imposing both topological and distributional simi-
larities between the representations of treatment and control
groups. TATEE’s implementation is scalable, with complex-
ity linear in data size and constant in input dimension, once
the dimensionality of the representations is fixed—making it
suitable for high-dimensional applications. Our experiments
confirm that TATEE consistently outperforms existing meth-
ods across a range of α-stable noise distributions, including
Gaussian and heavy-tailed cases. In conclusion, we estab-
lish how topological properties enhance representations’
robustness under noise, provide theoretical conditions for
this improvement, and demonstrate the benefits in practice.

Main Contributions:
A) Conceptual. We argue that incorporating topological
awareness into representation learning offers a principled
path to robust deep learning. Our approach is computation-
ally scalable, making it suitable for high-dimensional data,
and requires no ground-truth or validation data—a critical
advantage for observational settings. To our knowledge,
this is the first work to integrate TDA with representation-
balancing neural networks for causal inference, demonstrat-
ing its effectiveness across diverse noise regimes.

B) Theoretical. We establish new stability-type results for
representations learned from noisy data, extending founda-
tional stability theorems from TDA to deep learning frame-
works. We identify regimes where persistent homology
enhances metric stability in representation learning, particu-
larly under heavy-tailed noise, providing a rigorous founda-
tion for the robustness gains achieved by our method.

C) Methodological. We introduce Topology-Aware Treat-
ment Effect Estimation (TATEE), a scalable framework that
integrates persistence diagrams into representation balanc-
ing to improve counterfactual regression’s robustness to
noise. Extensive experiments across α-stable noise dis-
tributions, including Gaussian and heavy-tailed, validate
TATEE’s ability to meet the conditions for robustness in
practical settings, outperforming existing methods.

2. Preliminaries and Related Work
Topological Data Analysis and Persistent Homology.
Topological Data Analysis (TDA) utilizes algebraic topol-
ogy to extract shape-based features from data across scales
(Carlsson, 2009). Persistent homology, a central tool in
TDA, captures topological features, such as connected com-
ponents and holes (Edelsbrunner & Harer, 2008). These
features are characterized by their lifespan through varying
scales, represented as points in a persistence diagram, where
each point corresponds to a feature’s birth and death in a fil-
tration of the input—a series of nested simplicial complexes
determined by the image of a filtration function (Ghrist,
2008). Figure 1 visualizes this concept, with further details
in Appendix A. Resulting from the stability theorem and
fundamental to our work, stability of persistence diagrams
is a key property ensuring robustness of these topological
summaries to perturbations in data (Cohen-Steiner et al.,
2007). Consider a triangulable compact metric space (Z, d)
for some metric d, and let f, g : Z → R be Lipschitz filtra-
tion functions. The following generalization of the stability
theorem holds under conditions in Appendix A.3.

Theorem 2.1 (Cohen-Steiner et al. (2010)). For some con-
stants k ≥ 1 and C, we have for all l,

Wp

(
µl
f , µ

l
g

)
≤ C

1
p ∥f − g∥1−

k
p

∞ , (1)

where µl
f and µl

g are measures on the space of persistence
diagrams corresponding to the l-dimensional homology
classes (Mileyko et al., 2011), Wp denotes the Wasserstein-
p distance, and constants C and k are described in Appendix
A.3. Since this inequality holds for all l, we shall drop the
superscript l from here on for ease of notation.

Figure 1: A visualization of the Vietoris-Rips filtration of a
pointcloud and the corresponding persistence diagram. The
zeroth and first homology groups (H0 and H1) correspond
to the connected components and 1-dimensional holes.

Causal Inference. Causal inference aims to determine
the effect of a treatment on an outcome Y given covariates
X . This effect can be quantified by the conditional average
treatment effect (CATE), when conditioned on features. For
individuals with covariates x, CATE is given by

τ(x) = E [Y (1)− Y (0)|X = x] , (2)
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where Y (1) and Y (0) denote the potential outcomes. The
challenge in estimating τ(x) arises from the unobservability
of counterfactual outcomes, leading to the fundamental
problem of causal inference.

Related Work. Causal inference and deep learning have
been integrated in various contexts (Cui et al., 2020; Luo
et al., 2020; Schölkopf et al., 2021), with representation-
balancing frameworks showing effectiveness in treatment ef-
fect estimation (Louizos et al., 2017; Shalit et al., 2017) and
counterfactual reasoning (Johansson et al., 2016; Pawlowski
et al., 2020). Prior work on robust causal effect estimation
(Kallus et al., 2018; Shu & Yi, 2020) provides important ad-
vances but assumes finite variance noise and often requires
large observation counts or validation data. Despite recent
progress (Lagemann et al., 2023; Pöllänen & Marttinen,
2023), methods for robust treatment effect estimation with
heavy-tailed noise or limited data remain underdeveloped.
TDA, which captures the intrinsic shape of data (Carlsson,
2009; Chazal & Michel, 2021), has been integrated into ma-
chine learning to improve robustness (Bronstein et al., 2017;
Gabrielsson & Carlsson, 2019; Papamarkou et al., 2024).
We extend these applications to representation balancing for
causal inference, introducing a framework that enhances ro-
bustness without ground-truth, clean, or large datasets, and
accommodates noise beyond finite-variance distributions.

3. Learning Robust Representations via
Persistence Diagrams

How can we improve the robustness of representations
learned by neural networks under noise—particularly heavy-
tailed noise? Here, we introduce a new stability result
characterizing when incorporating persistent homology into
learning improves metric stability. Our theorem establishes
a condition on neural networks’ Lipschitz constants that
leads to persistence diagrams of representations being more
robust to noise than the raw representations themselves.

Problem Setup. Let X and E be random variables repre-
senting features and noise, respectively, and define the noise-
corrupted features as X̃ := X +E. Denote by X, E, X̃ the
corresponding finite-sample matrices. We are interested in
the stability of the representations φ(X) and φ(X̃) where
φ : X → Z , is a neural network mapping to a representation
space Z . Observe that φ(X) and φ(X̃) induce measures
on Z , which we denote by µ and µ̃. Furthermore, suppose
that there exist filtration functions f and f̃ , which satisfy
f̃(φ(X)) = f(φ(X̃)), yielding persistence diagrams for
both clean and noisy representations and allowing us to
invoke the stability theorem. The explicit construction of
such filtration functions is provided in Appendix B. While
the filtration is typically fixed once the data is given, the
network φ remains trainable. We therefore seek conditions
on φ that improve robustness of the persistence diagrams.

Importantly, we exploit the Lipschitz continuity of standard
neural networks (Virmaux & Scaman, 2018; Gouk et al.,
2021) to derive the intended condition on φ.

Finite-Sample Stability and Noise Distribution. Let φ
be a Kφ-Lipschitz network. Then Lipschitz continuity
arguments yield a finite-sample upper bound M̂ on the
Wassertein distance Wp(µ, µ̃) between the representations
of clean and noisy inputs. Similarly, under standard assump-
tions on the filtration functions, Theorem 2.1 provides a
bound K̂topo on the Wasserstein distance between their per-
sistence diagrams, Wp(µf , µf̃ ). These bounds, detailed in
Appendix B.1, lead to the following.

Theorem 3.1. If Kφ < Λ, then K̂topo < M̂ , where Λ
depends on the noise distribution. In particular, Λ is in-
creasing in ∥E∥p/k−1

∞
¯∥E∥−p/k

, where ¯∥E∥ and ∥E∥∞ are
the sample average and∞-norm of the error.

In the statement above, p is the degree of the Wasserstein
distance and k is the constant in Theorem 2.1. The proof
and details about Λ are provided in Appendix B.1. Intu-
itively, the condition asserts that if the Lipschitz constant of
φ is smaller than Λ, the upper bound K̂topo is smaller than
that on the representations, M̂. This suggests that with the
appropriate neural network, the Wasserstein space over the
persistence diagrams of the representations is more robust
than that over the representations themselves–a metric stabil-
ity which enhances robustness to input noise. Notably, the
condition that determines if a neural network is an ‘appropri-
ate’ one depends on the distribution of the error, particularly,
its tail. Theorem 2.1 leads to the promised stability prop-
erties for p > k. In this case, the ratio ∥E∥p/k−1

∞
¯∥E∥−p/k

is larger for heavy-tailed distributions. Since Λ is linear in
this ratio, a slow-decaying tail of the empirical distribution
of the noise corresponds to a more easily achievable neural
network that satisfies the condition in Theorem 3.1.

Implications. Theorem 3.1 establishes that topological sum-
maries can enhance representations’ robustness, particularly
with heavy-tailed noise. This insight directly informs our
approach to robust causal inference through TATEE. Our
experiments in Section 5 confirm that neural networks in
TATEE can be trained to satisfy the theoretical conditions
and achieve the predicted robustness benefits in practice.

4. Topology-Aware Treatment Effect
Estimation

Building on the stability results from Section 3, we
introduce Topology-Aware Treatment Effect Estimation
(TATEE), which incorporates topological awareness into
representation-balancing neural networks for estimating
causal effects. TATEE enhances robustness to input noise by
leveraging the stability properties of persistence diagrams
in a scalable fashion, showcasing the benefits of topologi-
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cal summaries for robust representation learning. Here, we
discuss the main aspects of TATEE’s design, analysis, and
implications. More details are included in Appendix C.

Figure 2: The neural network architecture and loss terms
used in TATEE, which adopts the two-headed network, out-
come loss, and balancing loss from CFR (Shalit et al., 2017).
The topological signature is incorporated as the regulariza-
tion term Ltopo, based on the output of φ.

Architecture and Training. TATEE incorporates topo-
logical awareness in representation-balancing neural net-
works for counterfactual regression (CFR) (Shalit et al.,
2017) through a regularization term in the training ob-
jective, using the Wasserstein distance between persis-
tence diagrams of treatment and control representations.
The architecture follows CFR’s two-headed design with
a shared encoder φ that maps inputs to a representation
space, from which two separate heads h1 and h0 estimate
the potential outcomes for the treatment and control groups.
In addition to prediction accuracy, the training objective
LTATEE = LOutcome + λLBalance + λtopoLtopo encourages dis-
tributional and topological similarities between the inputs
of h1 and h0. Complete implementation details are pro-
vided in Appendix C.2. This implementation ensures com-
putational scalability by computing persistence diagrams
on mini-batches and applying topological regularization to
representations rather than raw inputs, resulting in linear
overhead with respect to data volume and constant overhead
with input dimensionality, as long as the dimensionality of
the representations is fixed. Figure 3 illustrates this via a
simulation, where overhead elapsed time remains nearly
constant as input dimensionality increases from 16 to 256
(with a fixed representation dimensionality), and scales lin-
early as data volume varies from 800 to 12800 samples.

Robustness of TATEE. Using the stability results pre-
sented before, we show that TATEE can improve the ro-
bustness of counterfactual regression under the conditions
of Theorem 3.1. In particular, this theorem implies that
TATEE’s training objective is more stable under input noise
than the original CFR’s. This is shown by Proposition C.1
in Appendix C, which is informally stated below.

Proposition 4.1 (Informal). If the neural network φ satisfies
the constraint from Theorem 3.1, then the upper bound of
the noise-induced change in TATEE’s training objective is
smaller than CFR’s.

Figure 3: The average overhead elapsed time for computing
Ltopo per epoch of training TATEE. As the dimensionality
of the input (left) and input volume (right) increases, the
overhead cost remains constant and scales linearly, respec-
tively. The elapsed times are averaged over 20 runs.

As in Theorem 3.1, the constraint on the neural network for
achieving this robustness becomes more permissive when
the noise distribution has a heavier tail. Figure 4 demon-
strates TATEE’s enhanced robustness in a simple example
where treatment and control groups have distinct topologies
(line vs. circle). While CFR enforces distributional similar-
ity but allows topological divergence, TATEE enforces both
distributional and topological similarities. Notably, noise
considerably impacts CFR’s ability to enforce distributional
similarity, while TATEE achieves its objective equally well
in both noisy and clean environments.

Figure 4: The representations learned by φ in CFR and
TATEE throughout 20 epochs of training for the control
(gray) and treatment (turquoise) groups, starting without
input noise (top rows) and with Gaussian noise (bottom
rows). Epoch 0 shows the representations before training.

5. Experimental Results
We evaluate TATEE’s capability to enhance robustness in
neural networks for causal effect estimation, as indicated
by our theoretical analysis. Our experiments across stan-
dard causal inference benchmarks confirm that incorporat-
ing topological awareness consistently improves robustness
to input noise compared to CFR and other deep learning
methods for treatment effect estimation. Details of the ex-
perimental setup, thorough discussion of the results, and
additional experiments are included in Appendix D.
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Figure 5: Evaluation of TATEE’s robustness when estimating CATE on noise-corrupted features from the IHDP, Twins, Jobs,
and ACIC datasets (from left to right) for a range of (α, β) parameters of α-stable distributed noise. The Feller-Takayasu
diamond (shaded) marks valid (α, β) values. The relative gain in robustness from using TATEE, quantified by ρTATEE−ρCFR.
The green and orange squares mark positive/negative gain; the size of each square is proportional to the magnitude.

Experimental Setup. We evaluate TATEE’s robustness
to various input noises sampled from the family of α-
stable distributions, characterized with tail and skewness
parameters—α and β. We use standard causal inference
benchmarks (IHDP, Twins, Jobs, and ACIC) and mea-
sure both performance and robustness. The performance
is evaluated via CATE estimation error, which is quanti-
fied by the Precision in Estimation of Heterogeneous Ef-
fect (PEHE), denoted ϵPEHE, following the conventions in
causal inference (e.g., Hill (2011); Louizos et al. (2017);
Shi et al. (2019)). We evaluate robustness using ρ =
1− (ϵPEHE with noise/ϵPEHE without noise), quantifying re-
sistance to performance degradation under noise. Complete
details, an elaborate discussion of these results, and addi-
tional results are provided in Appendix D.

Main Results. Our experiments confirm that TATEE
achieves superior robustness to input noise while maintain-
ing comparable performance without noise. Figure 5 shows
this for our main comparison against TATEE’s counterpart
without topological awareness—the original CFR—with α-
stable noise distributions across 25 valid (α, β) values on
four datasets. The gains are most pronounced with heavier-
tailed noise (α closer to 1), reaching near 12, 0.3, 51.0,
and 68.6 percents for the IHDP, Twins, Jobs, and ACIC
datasets (respectively). Moreover, pairwise comparisons
against seven other causal inference methods further confirm
TATEE’s superior robustness across various noise conditions
and datasets. This is demonstrated via the matrix visual-
ized in Figure 6, whose (i, j) entry shows the proportion of
dataset-parameter pairs in which the model corresponding to
row i is more robust than the one for column j, evaluated by
having a weakly larger ρ. 1 Complete performance metrics
and detailed comparisons are provided in Appendix D.

6. Discussion
We proposed incorporating topological awareness into rep-
resentation learning to enhance robustness against input
noise, particularly with heavy-tailed distributions. By lever-

1We consider a model to be weakly more robust than itself in
all cases, hence the value 1.0 on the diagonals.

Figure 6: Comparing the robustness of TATEE with 7 other
methods. Each entry shows the proportion of noise parame-
ter and dataset cases (over 25 (α, β) values for 4 datasets)
where the ρ for the model in the row is at least as large as the
ρ for the model in the column. A larger value in row i and
column j means method i is more robust than method j in a
larger proportion of the cases. TATEE achieves more large
values in its row than the other methods, with the largest
row average of 0.80, indicating its superior robustness.

aging the stability properties of persistence diagrams, we
showed that using topological summaries can improve rep-
resentation stability in a scalable fashion without requiring
ground-truth or validation data—critical advantages for ob-
servational settings. This concept is rooted in foundational
stability theorems from TDA and extended through our work
to neural networks and the TATEE framework we introduced
for treatment effect estimation. Our theoretical analysis es-
tablishes conditions for topological awareness to enhance
metric stability, especially with heavy-tailed noise, and our
experiments validate that TATEE meets these conditions
in practice, consistently outperforming existing methods
across noise regimes. While we demonstrated our arguments
through a causal inference framework, the theoretical results
underpinning TATEE have broader implications for robust
deep learning. Future work can explore additional topologi-
cal features and investigate topology-aware methods across
a wider range of representation learning problems.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Topology-Aware Robust Representation Balancing for Estimating Causal Effects

References
Athey, S. and Wager, S. Estimating treatment effects with

causal forests: An application. Observational Studies, 5
(2):37–51, 2019.
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A. Topological Data Analysis, Persistent Homology, and Stability Theorems
In this appendix we provide further details on topological data analysis (TDA) and in particular the key concept of persistent
homology, which crucially helps with understanding complex data structures (Edelsbrunner & Harer, 2008). Before doing
so, we provide a brief review of the basics of TDA. While a more concise review of the preliminaries on TDA was provided
in Section 2, here we repeat that review with additional elaborations in order to better familiarize interested readers.

A.1. Review of the Preliminaries

Topological Data Analysis (TDA) applies the principles of algebraic topology to extract informative features from data. It is
particularly adept at uncovering invariants such as the shape and connectivity of data across multiple scales (Carlsson, 2009;
Papamarkou et al., 2024). Persistent homology, a central tool in TDA, provides a multiscale representation of topological
features (Edelsbrunner & Harer, 2008). Applications of persistent homology span from feature extraction in computer vision
to the analysis of complex datasets in machine learning, which benefit from its intrinsic metric and coordinate-free approach
(Carrière et al., 2017).

Persistent homology captures the persistence of topological features such as connected components and holes as a scale
parameter varies. These features are represented in a persistence diagram, a collection of points in the plane, each point
corresponding to a feature’s birth and death in a filtration of the input (Ghrist, 2008). The construction of a filtration, a
series of nested simplicial complexes determined by the image of a filtration function, is the first step in applying persistent
homology to a dataset. The persistent homology of this filtration is then computed, yielding a persistence diagram, which,
again, it represents the lifespan of topological features as points marking their birth and death (Zomorodian & Carlsson,
2005). Figure 1 visualizes this in a simple example. We delve into further details on persistent homology in the following
subsection.

Resulting from the stability theorem, stability of the persistence diagram is a key property that ensures the robustness of
these topological summaries to perturbations in the data (Cohen-Steiner et al., 2007). This theorem states a bound on the
bottleneck distance between two persistence diagrams obtained via filtration functions f and g.2 Perhaps regarded as the
most central theorem underlying the applicability of persistent homology, the stability theorem provides a guarantee that the
persistence diagram is stable under small perturbations, making it particularly conducive to analyzing noisy data (Chazal
et al., 2014). A generalization of the stability theorem used in our analysis is stated in Section 2, and further details are
discussed in the Appendix section A.3.

A.2. Persistent Homology

Persistent homology, a fundamental tool in TDA, helps in quantifying the topological features of data. This section aims
to define and elucidate key concepts related to filtration functions and persistence diagrams, providing a background for
discussing the stability of these constructs and the assumptions behind our theoretical results. We begin with filtration,
which yields a multi-scale representation of data, essential for understanding the evolution of topological features.

A.2.1. FILTRATION

A filtration is a nested collection of subspaces {Za}a∈R of a topological space Z , such that Za ⊆ Zb whenever a ≤ b.
This process can be driven by a real-valued function f : Z → R, referred to as the filtration function, which assigns a
real number to each point in Z . Considering a bounded continuous function f : Z → R, the sublevel sets f−1(−∞, ai]
at various thresholds a0 ≤ a1 ≤ . . . ≤ an give rise to a filtration. The filtration captures the evolution of the topological
structure of Z as the threshold varies, revealing critical values where topological features appear or disappear.

Given a filtration function, for every pair of threshold values a ≤ b, the inclusion relationship between their corresponding
subspaces, Za ⊂ Zb, induces homomorphisms of the l dimensional homology groups Hl(Za) and Hl(Zb). If there exists
a dimension l, a threshold value c ∈ R, and a value δ > 0, such that for all ϵ ∈ (0, δ) the homomorphism induced by
Hl(Zc−ϵ) ⊂ Hl(Zc+ϵ) is not an isomorphism, c is called a homological critical value. These critical values mark the levels
where the homology of the sublevel sets changes (Cohen-Steiner et al., 2005).

Definition A.1 (Cohen-Steiner et al. (2005)). A filtration function, f : Z → R, is tame, if it only has a finite number of
homological critical values, and if for all threshold values a ∈ R and dimensions l, the homology groups Hl

(
f−1(−∞, a]

)
2The bottleneck distance between two diagrams is the cost of the optimal matching between their points.
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are finite dimensional.

The filtration function could be any mapping to a meaningful real-valued representation of the data. Studying how topology
changes through the filtration gives insight into the structure of data at different scales. The stability theorem assumes the
filtration function is tame.

A.2.2. PERSISTENCE DIAGRAM

Given a filtration, the persistence diagram compactly represents the lifespan of homological features through their birth
and death thresholds. Homology classes are born at critical threshold values where new features appear in the filtration.
Subsequently, some classes die at larger thresholds. The lifespan of a class that is born at threshold a and dies entering
threshold b is characterized by the persistence value of the corresponding point, x, in the persistence diagram, defined as
pers(x) := b− a (Edelsbrunner et al., 2002). Classes with larger persistence values are considered to be more prominent
features. The birth and death of homology groups can be represented in a 2-dimensional persistence diagram as follows
(Cohen-Steiner et al., 2007): Points (a, b) denoting classes born at threshold value a and dying at threshold value b, and
points of the form (a,∞) representing essential homology classes that never die. This low-dimensional representation
allows us to easily interpret and analyze the topological features of the data over different scales. Figure 7 visualizes an
example of a Vietoris-Rips filtration (Carlsson, 2009) and the corresponding persistence diagram of 0- and 1-dimensional
homology classes. As the figure demonstrates, the persistence diagram shows the birth and death of topological features of
the data with the points farther from the diagonal marking more persistent features.

Figure 7: A visualization of the Vietoris-Rips filtration of an example pointcloud and the corresponding persistence diagram.

Before discussing key stability properties of persistence diagrams, we state two definitions related to properties of the
filtration function. These definitions relate to Degree-k total persistence of a persistence diagram corresponding to a filtration
function f . Degree-k total persistence, which sets one of the assumptions for the stability theorem, is defined as the sum of
the kth powers of the persistence values of all points in the persistence diagram of f .
Definition A.2 (Cohen-Steiner et al. (2010)). Given a filtration function f : Z → R, let Dgmf denote the corresponding
persistence diagram. The degree-k total persistence is given by

Persk(f) =
∑

x∈Dgmf

pers(x)k.

Definition A.3 (Cohen-Steiner et al. (2010)). We say that a space Z implies bounded degree-k total persistence, if there
exists a constant CZ that depends only on Z , such that for every tame Lipschitz function f : Z → R with Lipschitz constant
Kf , we have

Persk (f) ≤ CZK
k
f . (3)

A.3. Stability Theorems

The stability properties of persistence diagrams are crucial, as they imply that the topological signature captured by these
diagrams is robust to small perturbations and noise in the data. As such, they serve as the main justification for using
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persistence diagrams in order to improve the robustness of deep learning frameworks to input noise.

The stability theorem —the main theoretical result regarding the stability of persistence diagrams— bounds the bottleneck
distance between two diagrams as follows.

Theorem A.4 (Cohen-Steiner et al. (2005)). Let Z be a triangulable space with continuous tame filtration functions
f, g : Z → R. Then the corresponding persistence diagrams satisfy

dB (µf , µg) ≤ ∥f − g∥∞,

where dB is the bottleneck distance, and µf and µg are the probability measures induced by Dgmf and Dgmg .

Stating that the distance between the persistence diagrams is controlled by the L∞ distance between the corresponding
filtration functions, this theorem ultimately suggests that the persistence diagram is more stable than the geometry of the
data it represents.

In a generalization of this statement, the Wasserstein Stability Theorem, extends this result to the Wasserstein-p distance
between the diagrams for p ≥ k ≥ 1, when Z implies bounded degree-k total persistence.

Theorem A.5 (Cohen-Steiner et al. (2010)). Let Z be a triangulable, compact metric space that implies bounded degree-k
total persistence, for some k ≥ 1. Let f, g : Z → R be two tame Lipschitz filtration functions with Lipschitz constants Kf

and Kg . Then for all l-dimensional homology classes and all p ≥ k we have

Wp

(
µl
f , µ

l
g

)
≤ C

1
p ∥f − g∥1−

k
p

∞ .

The constant C is given by C = CZ max{Kk
f ,K

k
g }, where CZ is the constant in Equation 3.

Note that as p→∞, this generalized formulation gives the statement in Theorem A.4. To conclude, these stability results
show persistence diagrams are robust topological summaries for analyzing complex data.

B. Learning Robust Representations via Persistence Diagrams
Here we provide additional details regarding the theoretical results discussed in Section 3. In particular, while providing the
proofs and the background leading to the theorems, we detail the conditions and elaborate on the formulations of the bounds
stated in the theorems. Theorem 3.1 offer insight into the conditions under which using persistence diagrams corresponds to
enhanced robustness of the representations, depending on the properties of the neural network. In particular, this theorem
constrains the Lipschitz constant of the neural network by a term that contains information on the empirical distribution of
the noise, including the sample average and the infinity norm of the sample noise. Importantly, the combination of sample
average and infinity norm establishes a connection with the tail of the noise distribution, enabling our analysis of TATEE’s
robustness through Proposition C.1 in Section C.5, which in turn provides theoretical grounds for TATEE’s advantage, and
validated in empirical settings by the experimental results observed in Section 5. Below, we provide the proof and additional
details about the bounds in Theorem 3.1.

Notation. Following the notation in Section 3, X , E, and X̃ := X + E denote the random vectors of features, noise, and
noise-corrupted features on a sample space Ω; and we use X, X̃, and E to refer to their corresponding sample matrices.
φ : Ω → Z is the neural network mapping X and X̃ to φ(X) and φ(X̃) in the representation space Z , µ and µ̃ are the
measures induced by these representations, and f, f̃ : Z → R are tame and Lipschitz filtration functions used to compute
the persistence diagrams inducing the measures µf and µf̃ on the space of persistence diagrams. For ease of notation, we
denote the distances Wp(µ, µ̃) and Wp(µf , µf̃ ) by ∆ and ∆topo, and their corresponding sample equivalents by ∆̂ and
∆̂topo.

Main Assumptions. The main assumptions for Theorem 3.1 are related to Lipschitz continuity of the functions involved
and the bounds of their co-domains. In particular, following the standard assumptions for stability theorems, we assume
the filtration functions are Lipschitz. We also assume that Z implies bounded degree-k total persistence, as defined in
Appendix A; another assumption that is made for the stability theorems. Additionally, we assume the neural network φ is
Lipschitz, which, as we discussed in Section 3, is not a restrictive assumption and is satisfied in many standard scenarios.
The restrictive assumption for the proofs of our theorem, which is only technical and for simplicity, is due to the formulation
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of f̃ and its Lipschitz continuity. Recall that we consider f and f̃ which satisfy f̃(φ(X)) = f(φ(X̃)). For simplicity and to
avoid auxiliary constructions, we require f̃ = f ◦φ ◦ S ◦φ−1, where S(X) := X +E, so that f̃(φ(X)) = f(φ(X̃)) holds
exactly.

We remind the reader that these assumptions are technical and serve to enable the derivation of the proofs through
simple expressions of the quantities of interest. With that in mind, for clarity, we discuss the assumption that allows
f̃ = f ◦ φ ◦ S ◦ φ−1 to hold exactly. Strictly speaking, this is restrictive since it requires f̃ to be Lipschitz continuous
and φ to have a Lipschitz inverse, which is typically violated by commonly-used neural networks. However, the specific
formulation of f̃ that requires this assumption is only to simplify the derivation and expression of the bounds on ∥f − f̃∥∞.
That is, the assumption allows us to avoid tedious constructions and keep the formulation of the variables used and the steps
of the proof simple, concise, clear, and focused, and otherwise could be replaced with a less restrictive assumptions, to
derive effectively similar results. While this relaxation is not trivial to the authors’ knowledge and hence beyond the scope
of this discussion, one such relaxation could be done by assuming that ϕ(.) is only locally invertible on the input sample
and adding an approximation error term with the f̃ that is defined for the local Lipschitz pseudo-inverse. Moreover, our
experimental results indicate that while the assumptions facilitate the steps for our theoretical analysis in a simplified setting,
the overall intuition and implications hold more broadly in practical scenarios. With this in mind, we state the theorem,
which provide significant insights, validated and confirmed by our experiments.

B.1. Finite Sample Stability and Error Distribution

Let us denote the empirical estimators of the Wasserstein distance of Wp(µ, µ̃) by ∆̂, and its upper bound by M̂, as defined

in Section 3. We denote the upper bound on C
1
p

∥∥∥f − f̃
∥∥∥1− k

p

∞
by Ktopo, which bounds Wp(µf , µf̃ ), as stated in Section

3. Furthermore, let us denote its finite sample equivalent from Theorem 2.1 by K̂topo. Under the assumptions discussed
above, Theorem 3.1 states the following: Given a bounded degree-k total persistence and a Kf -Lipschitz filtration function,
if the Lipschitz constant of the neural network is smaller than Λ for a value Λ, then K̂topo < M̂. Importantly, the value Λ,

described below, is linear in ∥E∥p/k−1
∞

¯∥E∥−p/k
, which speaks to the impact of the empirical distribution of noise on the

gain in robustness through use of persistence diagrams. The proof of this theorem is presented next.

Proof. The upper bound M̂ can be derived using the Lipschitz continuity of φ. In the finite sample regime, this bound
becomes

∆̂ ≤ M̂ = Kφϵ̂, (4)

where ϵ̂ is the sample average. For Btopo = C
1
p

∥∥∥f ◦ φ− f̃ ◦ φ
∥∥∥1− k

p

∞
, using Lipschitz continuity of f and φ, we can derive

the following finite sample bound,

∆̂topo ≤ B̂topo ≤ K̂topo = C
1
p (KfKφϵ̄)

1− k
p , (5)

where, for ease of notation, we use ϵ̄ = ∥E∥∞ to denote the finite sample infinity norm of the noise matrix. Additionally,

note that C = CZL, where L := max
{
Kk

f ,K
k
f̃

}
, as explained in Appendix Section A. Comparing the right hand sides of

the inequalities 4 and 5, it follows that if

Kφ < C1/kKf

p
k−1 ϵ̄

p
k−1

ϵ̂
p
k

,

then, K̂topo < M̂, which completes the proof of Theorem 3.1. □

C. Topology-Aware Treatment Effect Estimation
Building on the stability results established in Section 3, in Section 4 we introduced Topology-Aware Treatment Effect
Estimation (TATEE)—a framework designed to improve the robustness of deep learning approaches to counterfactual
regression. TATEE incorporates topological regularization by embedding the persistence diagram of the learned representa-
tions into the training objective. We briefly described the main aspects of TATEE’s design, analysis, and implications in
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Section 4. In this aspect, we elaborate and expand on the discussion in Section 4, delving into details of the structure of the
CATE estimation network used in TATEE, along with its training procedure, scalability, and conceptual motivation and
implications. We further provide a detailed theoretical analysis of TATEE’s robustness properties formally stating results
mentioned in the informal Proposition 4.1, which connects the stability benefits of topological summaries to improved
treatment effect estimation. Note that, as in prior works (Shalit et al., 2017; Louizos et al., 2017; Shi et al., 2019), we focus
on the binary treatment setting for clarity, though TATEE is in principle extensible to multi-valued treatments.

C.1. Representation-Balancing Neural Network for CFR
TATEE builds on the two-headed architecture introduced in the CFR framework Shalit et al. (2017), consisting of a shared
encoder followed by separate branches for the treatment and control groups. The shared encoder φ maps inputs to a
representation space where the distributions of treated and control units are approximately aligned—enabling the learning of
treatment-agnostic representations. These shared representations are then passed to two distinct heads, h0 and h1, which
learn the potential outcomes under control and treatment, respectively. This structure corresponds to a T-Learner (Künzel
et al., 2019) —the potential outcome heads for each group— to learn the factual and counterfactual outcomes separately
for estimating CATE. Figure 2 visualizes this architecture, showing the shared neural network, φ, and two separate heads
h0 and h1 which learn the potential outcomes from φ’s output. As we detail in Section C.3, the weights are trained with
respect to the outcome, the distribution of the representations, as well as the topological summaries of the representations as
captured by the persistence diagram of the 1−dimensional homology class.

C.2. Implementation

The architecture of the neural network in TATEE is described in Section 4, where we explain the role of each component of
the model in the CFR-type architecture shown in Figure 2. We also specified the training objective in Section C.3, which,
critically, incorporates topological awareness into the CFR framework and is the core distinguishing component of TATEE.
In this appendix, we include the details of the implementation of the neural network and state the full algorithm.

The skeleton of the neural network in TATEE follows that of CFR, described in Shalit et al. (2017). As we mention in
Appendix G, adopting the hyper-parameters used by Shalit et al. (2017), we use three fully connected layers with ELU
(for exponential linear unit) activation functions for all three components —φ, h0, and h1. Each shared representation
layer has 200 neurons, while the layers in h0 and h1 have 100 neurons each. Since the outcome in the Twins dataset takes
binary values, we use a sigmoid activation function on the final layer, this affecting the loss function used as LOutcome in
Equation 6, which is binary cross entropy for Twins dataset and mean squared error for the others. The central term in
the loss function, Ltopo, uses the Wasserstein-2 distance between the persistence landscapes of the representations of a
mini-batch of size 256 for the IHDP dataset, and size 128 for the others. We use the Vietoris-Rips complex (Carlsson, 2009)
for computing the persistence diagrams, which are obtained using the Ripser package (Tralie et al., 2018; Bauer, 2021).
The distance between the persistence landscapes for the 1-dimensional homology class are then approximated using the
Sinkhorn divergence (Séjourné et al., 2019) —an efficient and differentiable approximation of the Wasserstein distance
which is amenable to gradient descent for training the neural network. The GeomLoss package (Feydy et al., 2019) is used
for computing the Sinkhorn divergence. The full algorithm is stated in Algorithm 1, which clarifies how the topological
signature, as described in Section 4, is incorporated in the CFR framework to obtain TATEE. Note that we used a fixed
number of epochs of training, hence, in our implementation, the convergence criterion in Algorithm 1 is simply completing
the specified number of epochs.

C.3. Training TATEE
The effectiveness of TATEE in enhancing the robustness of learning treatment-agnostic representations is primarily owed to
incorporating the topology of the shared representations in the training process. This is achieved by adding a topological
regularization term based on the Wasserstein distance between the persistence diagrams of the treatment and control groups.
The CFR network architecture in Shalit et al. (2017) is predicated on the minimization of a loss function that encapsulates
both the prediction accuracy and the distributional balance between treated and control groups. Incorporating the topological
regularization, for a sample of size N , TATEE’s training objective is as follows:

LTATEE = LOutcome + λLBalance + λtopoLtopo, (6)

The three components of LTATEE are given by:
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Algorithm 1 TATEE Training

1: Input: Neural network composed of the components φ and h(·, ti) := (1− ti)h0(·) + tih1(·) with initial weights θφ
and θh, sample data (x1, t1, y1), . . . , (xN , tN , yN ), regularization parameters λ, λtopo > 0, and loss function L.

2: Compute N1 =
∑N

i=1 ti and N0 = N −N1.
3: Compute sample weights wi =

Nti
2N1

+ N(1−ti)
2N0

for i = 1 . . . n.
4: while not converged do
5: Take mini-batch IM := {i1, i2, . . . , iM} ⊆ {1, 2, . . . , N}
6: Compute representations Φ0 := {φ(xj) : tj = 0, j ∈ IM} and Φ1 := {φ(xj) : tj = 1, j ∈ IM}
7: Compute the predicted outcomes {ŷj = h(φ(xj), tj) : j ∈ IM}
8: Compute the persistence diagrams Dgm1(Φ0) and Dgm1(Φ1)
9: Compute the gradient of the empirical LBalancing as δBalancing = ∇θφWp(Φ0,Φ1)

10: Compute the gradient of the empirical Ltopo as δtopo = ∇θφWp(Dgm1(Φ0),Dgm1(Φ1))
11: Compute the gradients of the empirical LOutcome as

δφ,Outcome = ∇θφ
1
M

∑
j∈IM

wjL(yj , ŷj)
δh,Outcome = ∇θh

1
M

∑
j∈IM

wjL(yj , ŷj)
12: Determine the step size η using Adam
13: Update weights

θφ ← θφ − η [δφ,Outcome + λδBalancing + λtopoδtopo]
θh ← θh − η(δh,Outcome)

14: Check for convergence
15: end while

LOutcome =
1

N

N∑
i=1

wiℓ
(
ŷi, yi

)
, LBalance = Wp

(
Φ0,Φ1

)
, Ltopo = Wp

(
Dgm1

(
Φ0

)
,Dgm1

(
Φ1

))
,

where Φ0 and Φ1 are the representations of the control and treated groups, respectively; yi the true outcome of unit i,
ŷi := h

(
φ(xi), ti

)
the predicted outcome with the feature vector xi and treatment ti, ℓ(·) the outcome prediction loss

function, Dgm1(·) the 1-homology class persistence diagram, and Wp(·, ·) the Wasserstein-p distance. The weight wi aims
to deal with the imbalance in the size of the treatment and control groups, and is given by Nti

2N1
+ N(1−ti)

2N0
where N1 and N0

are the sample sizes of the two groups. The function h(·, ti) := (1− ti)h0(·) + tih1(·) combines the two potential outcome
functions. While our theoretical analysis in Equation (1) holds for any homology class, we use the first homology group in
practice. This choice is motivated by simplicity and the goal of capturing holes, thereby characterizing topological features
beyond connected components. We include the full algorithm in Appendix C.2, describing the implementation of TATEE in
details.

C.4. Scalability of TATEE

TATEE incorporates topological summaries in a computationally scalable fashion, due to two key factors in our imple-
mentation: First, topological regularization operates on representations rather than raw inputs, making computational cost
constant with respect to input dimensionality, once the dimensionality of the representations are fixed. Second, we compute
persistence diagrams on mini-batches, hence, with a batch size of b and for N total data points, the cost of computing Ltopo
for each of the N/b batches remains fixed, allowing the overhead to scale linearly with data volume. As a result, despite
topological methods typically being expensive for high-dimensional or large inputs, TATEE’s implementation ensures the
topological component does not become a computational bottleneck. Figure 3 illustrates this scalability via a simulation,
confirming that overhead elapsed time remains nearly constant as input dimensionality increases from 16 to 256 (with a fixed
representation dimensionality), and scales linearly as data volume varies from 800 to 12800 samples. These results further
support the fact that the topological component introduces a scalable computational overhead while providing significant
robustness benefits, making TATEE practical for real-world applications.
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C.5. Robustness of TATEE’s Training to Noise
Using the stability results presented before, we now show that under the conditions of Theorem 3.1, TATEE can improve the
robustness of counterfactual regression to input noise. In particular, we show that Theorem 3.1 implies that TATEE’s training
objective in Equation 6 is more stable than the original CFR’s objective. Consider the problem setup and notation in Section
3, and let us label the variables corresponding to the treatment and control groups by superscripts ·0 and ·1, respectively. By
the triangle inequality, the terms λ

(
M̂1 + M̂0

)
+ λtopo

(
K̂1
topo + K̂0

topo

)
and λCFR

(
M̂1 + M̂0

)
upper-bound the noise-induced

change in λLBalance + λtopoLtopo and λCFRLBalance, for loss coefficients λ, λtopo, and λCFR. Using Theorem 3.1, we derive the
following result (proof in Appendix E).

Proposition C.1. If the Lipschitz constant of φ satisfies the constraint in Theorem 3.1, for any given λCFR > 0, with
sufficiently small choices of λ and λtopo, we have

λ
(
M̂1 + M̂0

)
+ λtopo

(
K̂1
topo + K̂0

topo

)
≤ λCFR

(
M̂1 + M̂0

)
.

The inequality in Proposition C.1 indicates that the upper bound on the sum of the balancing and topological terms in
TATEE’s loss undergoes a smaller change due to input noise, compared to that on the balancing term in CFR’s loss. In other
words, this proposition implies that, when φ in TATEE’s architecture (Figure 2) satisfies the conditions of Theorem 3.1,
TATEE is trained using a loss that can be more stable under additive noise than its counterpart CFR. As in Theorem 3.1, this
robustness is easier to attain when the noise is heavy-tailed—i.e., the constraint on φ’s Lipschitz constant becomes more
permissive. This highlights TATEE’s particular suitability for robustness under heavy-tailed perturbations. Our experiments
in Section 5 provide empirical evidence that TATEE can meet the theory-indicated conditions and gain the anticipated
robustness in practical settings, outperforming the original CFR from Shalit et al. (2017) and other standard causal inference
baselines.

C.6. TATEE in Action
According to our theoretical results, the topological regularization term in Equation (6) could help train φ such that the
total loss becomes more robust to noise. To complement the theoretical analysis, we examine the intuition behind this
improvement through a simple example of how the network learns the representations. As we explained earlier, the CFR
framework is based on the principle of balancing the representations of treated and control groups through enforcing a
distributional similarity between the two. TDA on the other hand, characterizes data using topological features which are
invariant to smooth deformations. This allows TDA-based methods to capture qualitative properties of the shape of the data
at a global level, while limiting their sensitivity to local geometric perturbations, hence leading to the resulting robustness.
This understanding provides an explanation as to why informing a representation balancing framework with the topology of
the representations could enhance robustness.

To see how this works in a simple example, we simulate features such that the 2-dimensional representations corresponding to
the treated and control groups have distinct topologies: one forming a line and the other a circle—a simple difference in their
1-dimensional homology class. Figure 4 compares how φ learns to balance these representations in TATEE versus standard
CFR, with and without noise. Visually confirming our understanding, CFR forces distributional similarity between groups
while topological differences persist, even widening after 10 epochs of training without topological awareness. TATEE,
however, enforces both distributional and topological similarities through the distance between the persistence diagrams,
resulting in representations that converge to similar shapes with matching topologies. In other words, while the Wasserstein
loss of LBalance may allow the representations to qualitatively diverge, Figure 4 illustrates that the topological signature
captured by Ltopo effectively prevents that. Notably, noise considerably impacts CFR’s ability to enforce distributional
similarity, while TATEE achieves its objective equally well in both noisy and clean settings.

D. Experiments
Section 5 discusses our main experimental results, showing TATEE’s superior robustness. In this appendix, we provide
comprehensive details on our experimental setup, elaborate on our main results, and present additional results that com-
plement the findings described in the main paper. We begin by describing the experimental setup, including datasets,
evaluation metrics, noise distributions, and implementation. We then review our main experimental results on robustness of
TATEE in more detail, followed by a report on its performance. We also elaborate on the distinction between evaluating
robustness and performance on noisy inputs and comment on an expected tradeoff therein. We then discuss our experiments
benchmarking TATEE against other treatment effect estimation methods, showing its superior robustness. Additional details
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on the implementation of these experiments including hyperparameter values, and a more detailed description of each
benchmark dataset are provided in appendices G and H.

D.1. Experimental Setup
Models and Evaluation Metrics. We implement TATEE with the network architecture and training algorithm described
in Section 4. In this implementation, we use the Wasserstein-2 distance in the balancing and topological terms in the training
objective. We also use persistence landscapes (Bubenik et al., 2015), which maintain a one-to-one correspondence with
persistence diagrams while offering differentiability and better statistical tractability. Other implementation details and
hyperparameters are provided in Appendices C.2 and G. Since TATEE incorporates a topological signature in CFR (Shalit
et al., 2017), to evaluate the resulting improvement in robustness, we compare their performances with and without input
noise. We complement our experiments by several other causal inference models included in Figure 6 and listed in Appendix
G. Following the conventions in causal inference (e.g., Hill (2011); Louizos et al. (2017); Shalit et al. (2017); Shi et al.
(2019)), we use the Precision in Estimation of Heterogeneous Effect (PEHE) to quantify the CATE estimation error. The
empirical PEHE is given by ϵ̂PEHE = 1

N

∑N
i=1

(
τ(xi)− τ̂(xi)

)2
, where τ(xi) is the true CATE from Equation (2) and τ̂ is

the estimated CATE. While PEHE can be used on noisy input to assess the performance in noisy regimes, we are primarily
interested in judging TATEE’s robustness. To evaluate the robustness of the models to noise, we use the following metric,
denoted by ρ,

ρ = 1− ϵ̃PEHE

ϵ̂PEHE
. (7)

ρ compares PEHE on noisy and noise-free data, which we denote here by ϵ̃PEHE and ϵ̂PEHE. Unless the noise itself helps the
training, ρ should take negative values; more negative when less robust. In order to quantify the gain in robustness from
TATEE, we compare the increase in ρ by computing ρTATEE − ρCFR, which takes positive values if TATEE is more robust
than CFR. Given the main objective of our work, our evaluation of the experiments is primarily focused on robustness, while
we also inspect the performance of TATEE on both clean and noisy datasets to make sure the enhanced robustness does not
cost a considerable decline in performance. Note the distinction between the robustness and performance metrics: a larger
(worse) ϵ̃PEHE can still yield a higher (better) ρ, when the noise-induced deterioration of performance, captured by ϵ̃PEHE

ϵ̂PEHE
, is

lower. In other words, ρTATEE − ρCFR can be positive, reflecting better robustness, even if both ϵ̃PEHE and ϵPEHE are larger for
TATEE, as long as the increase from ϵ̂PEHE to ϵ̃PEHE remains smaller.

Data. We use four standard benchmark datasets in causal inference: IHDP, Twins, Jobs, and ACIC (Hill, 2011; Louizos
et al., 2017; Shalit et al., 2017; Athey & Wager, 2019). The Twins dataset has the rare quality of having real-world values for
both potential outcomes. The other datasets are semi-synthetic, with empirical values for features and simulated potential
outcomes. All datasets are described in details in Appendix H. Note that using semi-synthetic data in experiments on
estimating CATE is standard, and inevitable due to the fundamental problem of causal inference. This also dictates the use
of synthetic noise as the only means to introduce noise to the treatment effect estimates. The Twins dataset stands out in this
regard, allowing us to evaluate TATEE on intrinsic noise in empirical measurements.

Noise Distribution. We use the family of stable distributions (Mainardi, 2007) to simulate input noise for the feature matrix.
This allows us to evaluate the robustness of TATEE in learning from features corrupted with various noise distributions
of interest in empirical contexts (Kim et al., 2008; Stoyanov et al., 2011; Gorbunov et al., 2020; Yang et al., 2022). In
particular, α−stable distributions are characterized by a tail parameter α and an asymmetry/skewness parameter β. Larger
values of α correspond to slower decay of the tail of the distribution, and positive/negative values of β correspond to
positive/negative asymmetry. The valid parameter values fall within the Feller-Takayasu diamond, where α ∈ (0, 2] and
|β| ≤ min {2− α, α} (Mainardi, 2007), giving the Gaussian distributions at α = 2 and β = 0. Appendix F contains a more
detailed review of stable distributions.

Noise Configuration. For α < 2, the noise follows a heavy-tailed distribution with infinite moments of integer order
higher than 1, and for α ≤ 1, the mean is infinite. We therefore focus on noise distributions with finite mean, as well as
α = 1, which corresponds to the Cauchy distribution for β = 0. Varying the two parameters of this family of distributions
allows us to empirically test the theoretical implications of Theorem 3.1. Here we report the average results over 30 trials.
Since the Central Limit Theorem in its classical formulation does not hold for α < 2, the standard sample size criteria for
statistical confidence does not apply, as discussed in Appendix F.
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D.2. Main Results on Enhanced Robustness
Our experiments showcase the utility of TATEE and speak to its superior robustness, validating the applicability of our
theoretical analysis in empirical settings. Reviewing our main empirical results from Section 5 with more details, we begin
by confirming that TATEE has a performance comparable with CFR in the absence of synthetic noise, and then turn our
attention to the main focus of this paper, showing the superior robustness of TATEE.

Performance without Noise. TATEE is consistently on-par with the original CFR in the noise-free regime, with 1.977×10−2,
4.976 × 10−4, and 2.631 × 10−3 increase in ϵPEHE for IHDP, Jobs, and ACIC datasets (respectively), and 1.007 × 10−2

decrease for Twins. Note that the theory-informed advantage of TATEE is its robustness. In fact, adding Ltopo in the loss
is expected to lead to a more challenging path for optimizing the remaining terms, and hence, an increase in ϵPEHE is not
unexpected. Nevertheless, the evaluation mentioned above indicates that TATEE’s superior robustness does not come at the
cost of a noticeable decline in performance. Additional experiments in Appendix D.3 indicate that TATEE also maintains a
comparable or better performance on noisy data in most cases, with up to 6.9% improvement on IHDP, and 1.37%, 45.1%,
and 42.3% on the Twins, Jobs, and ACIC datasets, as measured by reduction in PEHE. As clarified in our discussion on
the evaluation metrics following Equation (7), a better performance in the noisy regime could still correspond to a lower
robustness, if the noise-driven degradation is larger. While due to the semi-synthetic nature of all but one dataset we can
only experiment with synthetic noise, the Twins dataset contains empirical treatment effects, which are computed under the
assumption that a pair of twins have the same covariates. This assumption, as well as empirical measurement noise in the
features, are likely to lead to real intrinsic noise in the Twins dataset, even before injecting synthetic noise. Notably, on this
dataset TATEE achieves the lowest (best) ϵ̂PEHE than all other benchmarks without simulated noise (see Appendix D.4) and
outperforms CFR in all cases, including performance without synthetic noise, as well as both performance and robustness
with simulated noise for all noise distribution parameters.

Robustness to Noise. Sampling additive feature noise from α−stable distributions for 25 (α, β) pairs in the right half of
the Feller-Takayasu diamond, we compute the relative gain in ρ on the test set after training on noisy features. The results
(Figure 5) strongly confirm that TATEE is more robust than CFR. Aligned with the theoretical discussion following Theorem
3.1, the experiments also show that the largest values of gain in robustness (larger ρTATEE − ρCFR) are observed when α is
closer to 1, corresponding to a heavier tail of the noise distribution, reaching near 12, 0.3, 51.0, and 68.6 percents of gain for
the IHDP, Twins, Jobs, and ACIC datasets (respectively), when α > 1. 3

D.3. Performance on Clean and Noisy Data

While TATEE aims to improve the robustness of treatment effect estimation, our experiments confirm that TATEE also has a
performance comparable with CFR both in the absence of noise and on noisy inputs. Here we report the experimental results
on the performance of TATEE compared to CFR, complementing the discussion on robustness. The main performance
metric measuring CATE estimation error is PEHE, which we denote by ϵPEHE for noise-free input and by ϵ̃PEHE for input with
synthetic additive noise, as described in Appendix D.1. To compare the performances of TATEE and CFR on noisy features,

we assess the relative gain in reduction of PEHE due to TATEE, given by 1−
ϵ̃PEHE,TATEE

ϵ̃PEHE,CFR
and report the percentage point gains

in PEHE. Figure 8 visualizes the performance of TATEE across all four datasets under various noise distributions. These
results underscore the efficacy of incorporating topological awareness into representation learning, enhancing robustness
against diverse noise distributions while maintaining performance on both clean and noisy data. Altogether, the performance
and robustness improvements observed across all four datasets align with our theory-informed expectations and demonstrate
the practical utility of the TATEE framework in robust treatment effect estimation.

Empirical Results on Performance. On clean data, TATEE is consistently on par with CFR, with minimal deviations in
ϵ̂PEHE across all four datasets, showing 1.977× 10−2, 4.976× 10−4, and 2.631× 10−3 increase for IHDP, Jobs, and ACIC
(respectively), and 1.007× 10−2 decrease for Twins. This indicates that the integration of topological summaries does not
compromise performance in noise-free scenarios. When subjected to additive noise from α-stable distributions in the inputs,
TATEE demonstrates superior performance by reducing ϵ̂PEHE compared to CFR in most cases. On the IHDP and Twins
datasets, TATEE consistently outperforms CFR across the entire range of noise parameters. For the Jobs and ACIC datasets,
while the improvements are less consistent, TATEE still offers better performance in almost as many cases as CFR, while

3Recall that the first absolute moment of the noise distribution is infinite for α = 1, hence, we need to be cautious about interpreting
the average of trials at α = 1.
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consistently exhibiting more robustness, as illustrated in Figure 5 and discussed in Section 5 and Appendix D.2.

Distinguishing Performance and Robustness. Note the distinction between the performance and robustness metrics: a
worse (higher) ϵ̃PEHE on noisy inputs can still yield a better (higher) ρ if the noise-induced deterioration, ϵ̃PEHE/ϵ̂PEHE, is
comparatively smaller. In other words, ρTATEE − ρCFR can be positive even if both ϵ̃PEHE and ϵ̂PEHE for TATEE exceed those
of CFR, as long as TATEE’s increase in error due to noise remains more modest. This subtlety underscores why TATEE
might show higher ϵ̂PEHE overall, yet still achieve superior robustness as reflected by a larger ρ. Consequently, we observe
scenarios where TATEE exhibits a smaller gap between its clean and noisy performances, reinforcing the principle that our
method’s primary goal is to mitigate noise-driven degradation.

Expected Performance Trade-offs. The theory-informed advantage of TATEE lies in improving robustness to noise
by including Ltopo in the loss. Since this regularization term can complicate the path toward minimizing other objectives,
such as ϵ̂PEHE on clean inputs, making a slight performance decline is not unexpected. Nonetheless, the evaluation above
affirms that TATEE’s enhanced robustness does not come at the cost of a significant decline in performance: our experiments
show only minimal increases in ϵ̂PEHE without noise, and in many settings, TATEE even outperforms CFR when noise
is injected in terms of ϵ̃PEHE. Additionally, the Twins dataset—featuring empirical treatment effects and inherent real
noise—exemplifies TATEE’s robustness, as it achieves the lowest (best) ϵ̂PEHE among all methods tested, with or without
synthetic noise injection. This finding implies that in contexts where empirical noise exists, TATEE can achieve lower
treatment effect estimation error, aligning with our theoretical claims.

Figure 8: Evaluation of TATEE’s performance when estimating CATE on noise-corrupted features from the IHDP, Twins,
Jobs, and ACIC datasets (from left to right) for a range of (α, β) parameters of α-stable distributed noise. The Feller-
Takayasu diamond (shaded) marks valid (α, β) values. The relative gain in ϵ̂PEHE from using TATEE is visualized by the
circles. The green and orange circles mark improvement/deterioration; the size of the circles is proportional to the magnitude
of relative change.

D.4. Benchmark Comparisons

Benchmark Models. To conduct a more thorough evaluation of the performance and robustness of TATEE, we compare it
against several causal inference models. These benchmark models encompass a range of methodologies, ensuring a thorough
assessment across different approaches. In the main text of the paper we discussed CFR (Shalit et al., 2017), the most closely
related model to TATEE, on which we base our main empirical evaluations. Here we name the other benchmark models
used in our experiments described below and in Section 5. Dragonnet (Shi et al., 2019) is a neural network architecture
designed to jointly model treatment assignments and potential outcomes by estimating propensity scores from the features,
and GANITE (Yoon et al., 2018) leverages generative adversarial networks to generate counterfactual outcomes. SLearner,
TLearner, and XLearner (Künzel et al., 2019) utilize meta-learning approaches that adapt base learners to estimate treatment
effects. TARNet (Shalit et al., 2017) is a CFR-type framework, learning separate representations for treated and control
units, without the balancing loss term. Each of these models introduces unique mechanisms for addressing causal inference
challenges. By benchmarking TATEE against these diverse models, we demonstrate its effectiveness and superior robustness
across a broad spectrum of causal inference methods.

Results. Our experiments confirm TATEE’s enhanced robustness compared to the benchmark models in pairwise compar-
isons. As mentioned in Section 5, this superior robustness is shown in Figure 6, whose (i, j) entry shows the proportion
of dataset-parameter pairs in which the model corresponding to row i is more robust than the one for column j, TATEE
consistently demonstrates better robustness across most datasets and noise parameters. Figure 9 provides additional evidence
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by showing the average robustness rank of each model (among the 8 models) for each pair of noise distribution parameters,
as measured by ρ, averaged over the four datasets. A smaller number in row i and column j means, on average, the model
corresponding to column j is more robust than others for the noise distribution parameters in row i. These results further
confirm TATEE’s superior robustness. Meanwhile, the ϵ̂PEHE values reported in Table 1 show that this gain in robustness
does not come at the cost of a noticeable decline in performance. While the main purpose of TATEE is enhancing robustness,
and in general, TATEE is not expected to perform better than CFR on noise-free inputs, the results indicate that TATEE
has competitive performance in noise-free regimes as well, achieving the best or second best ϵ̂PEHE on three out of four
datasets. Notably, on the Twins dataset–the only dataset where we suspect intrinsic noise exists without injecting synthetic
noise–TATEE achieves the best ϵ̂PEHE without simulated noise.

Figure 9: Comparing robustness of TATEE and the benchmark models: The quantity in column j and row i shows the
average rank of the model corresponding to column j (out of 8), averaged over the model’s rank across all 4 datasets, for the
noise distribution’s (α, β) values in row i.

Table 1: ϵ̂PEHE on input without synthetic noise. Lower means better performance, with best in bold and second best
underlined. TATEE is best or second best (second to CFR) across all but one dataset. Notably, TATEE performs best on the
Twins dataset—the only dataset which contains empirical values for ground-truth treatment effects, and hence can have
real-world noise.

IHDP Twins Jobs ACIC

TLearner 0.596 ± 0.000 0.454 ± 0.000 4.546 ± 0.000 0.264 ± 0.000
SLearner 0.863 ± 0.000 0.418 ± 0.000 0.004 ± 0.000 0.255 ± 0.000
XLearner 0.596 ± 0.000 0.453 ± 0.000 4.546 ± 0.000 0.264 ± 0.000
DragonNet 1.234 ± 0.435 0.493 ± 0.105 0.457 ± 0.409 0.334 ± 0.259
GANITE 4.184 ± 0.216 0.727 ± 0.271 0.013 ± 0.013 0.457 ± 0.229
TARNet 1.268 ± 0.456 0.504 ± 0.147 0.456 ± 0.462 0.220 ± 0.152
CFR 0.870 ± 0.089 0.414 ± 0.017 0.002 ± 0.003 0.006 ± 0.005
TATEE 0.888 ± 0.088 0.404 ± 0.029 0.003 ± 0.004 0.009 ± 0.010
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E. Analysis of TATEE’s Robustness
In Appendix C.5 we present a detailed analysis of the stability of TATEE’s learning objective, relying on Theorem 3.1 to
derive conditions which correspond to TATEE’s enhanced robustness in counterfactual regression, stated in Proposition
C.1. This proposition suggests that under the assumptions of Theorem 3.1 and when the constraint stated in this theorem is
satisfied, for a suitable choice of training parameters, TATEE’s loss function (Equation 6) is more robust than the CFR’s loss,
which does not account for the topology of the representations. Here we provide a proof for this proposition. Unless stated
otherwise, the derivation here follows the problem setup and the notation defined in Section 3 and Appendix B.

Notation.

Following a similar notation as in Theorem 3.1, let µi be the measure over the representations of the control (i = 0) and
treatment (i = 1) groups and µf

i the measure over the persistence diagrams with a filtration function f . Also, similar to the
notation used in Section 3.1, we use ·̃ to denote the variables corresponding to the noisy input. Let W 0,1 := Wp(µ

0, µ1),
W̃ 0,1 := Wp(µ̃

0, µ̃1), W̃ 0 := Wp(µ̃
0, µ0), W̃ 1 := Wp(µ̃

1, µ1), Wtopo
0,1 := Wp(µf

0, µf
1), W̃ 0,1

topo := Wp(µf̃
0, µf̃

1),
W̃ 0

topo := Wp(µf̃
0, µf

0), W̃ 1
topo := Wp(µf̃

1, µf
1) denote the Wasserstein-p distances. Following the notation used for the

upper bounds in Section 3, for i ∈ {0, 1}, we use Mi and Ki
topo to denote the upper bounds on W̃ i and W̃ i

topo, and M̂i and
K̂i

topo for their final sample equivalents.

Proof. Given any positive balancing loss coefficient for the CFR loss, λCFR > 0, a suitable choice of λ and λtopo loss term
coefficients of TATEE can always lead to satisfying the inequality below.

1 ≤ λCFR − λ

λtopo
. (8)

Meanwhile, by Theorem 3.1, when φ satisfies the constraint stated in the theorem, we have K̂0
topo < M̂0 and K̂1

topo < M̂1,
hence, using Inequality 8, we can write

1 ≤ λCFR − λ

λtopo

M̂0 + M̂1

K̂0
topo + K̂1

topo

.

Rearranging the terms in this inequality gives

λ
(
M̂1 + M̂0

)
+ λtopo

(
K̂1
topo + K̂0

topo

)
≤ λCFR

(
M̂1 + M̂0

)
, (9)

completing the proof for Proposition C.1.

Notice that the result in Inequality 9 shows that the upper bound on the noise-induced change in the sum of the balancing
and topological loss terms of TATEE is smaller than the upper bound on the change in the balancing term of CFR due to
noise. These upper bounds are due to the triangle and quadrilateral inequalities (or applying the reverse triangle inequality
and then the triangle inequality), which yield the following.∥∥∥W̃ 0,1 −W 0,1

∥∥∥ ≤ W̃ 0 + W̃ 1 ≤ M0 +M1,∥∥∥W̃ 0,1
topo −Wtopo

0,1
∥∥∥ ≤ W̃ 0

topo + W̃ 1
topo ≤ K0

topo + K1
topo,∣∣∣(λW̃ 0,1 + λtopoW̃

0,1
topo

)
−
(
λW 0,1 + λtopoWtopo

0,1
)∣∣∣ ≤ λ

∣∣∣λW̃ 0,1 −W 0,1
∣∣∣

+ λtopo

∣∣∣λtopoW̃
0,1
topo −Wtopo

0,1
∣∣∣ ,

≤ λ
(
M0 +M1

)
+ λtopo

(
K0

topo + K1
topo

)
.

F. α-Stable Distributions
α-stable distributions are a rich class of probability distributions that allow modeling data with heavy tails and asymmetry.
Their flexible parametric form is particularly suitable for data that exhibit extreme values. Random variables with α-stable
distributions do not necessarily have finite mean or variance. This family of distributions facilitate a generalization of the
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central limit theorem (CLT): While the normal distribution arises as the limit distribution when summing independent,
thin-tailed random variables with finite second moment, α-stable distributions with the tail parameter α < 2 arise as the
limit when the random variables have infinite variance (Mainardi, 2007; Gnedenko & Kolmogorov, 2021).

The characteristic function of a random variable with an α-stable distribution is as follows,

φ(t) =

{
exp

{
itm− |ct|α

(
1− iβsgn(t) tan πα

2

)}
α ̸= 1

exp
{
itm− |ct|α

(
1 + iβ 2

π sgn(t) log |t|
)}

α = 1.
(10)

The parameters α, β, c ≥ 0, and m ∈ R, which we refer to as the characteristic exponent or the tail parameter, skewness or
asymmetry parameter, scale parameter, and location parameter, determine the distribution of the random variable.

Note that the main parameters of interest, determining the shape of the distribution, are the tail and skewness parameters.
These parameters take values in a region of the plane where α ∈ (0, 2] and |β| ≤ min {α, 2− α}, which is referred to as
the Feller-Takayasu diamond (Mainardi, 2007). The skewness parameter β ∈ [−1, 1] introduces asymmetry; a symmetric
α-stable distribution has β = 0. The parameter α determines how fast the tail decays, with smaller values meaning heavier
tails. The normal distribution is the special case when α = 2, and α = 1 corresponds to the Cauchy distribution. Except the
Gaussian case, other α−stable distributions have infinite moments of order greater than or equal to α, i.e., infinite variance
for all α < 2, and infinite absolute mean for α ≤ 1. Most statistical models rely on the CLT to justify using Gaussian
distributions as the asymptotic distribution of the sum/mean of an independent and identically distributed (i.i.d.) sequence of
random variables. However, the CLT does not hold for α-stable distributions with α < 2. This fact is consequential for the
sample size criterion and significance level of statistical tests (Pitera et al., 2022).

G. Implementation Details
Recall that the main purpose of our experiments is to evaluate the change in robustness to input noise due to our proposed
topological regularization in TATEE. To this end, in order to assess the impact of incorporating the regularization term based
on persistence diagrams into the training of the model, and not the CFR-type model architecture, we adopted the same
parameters and overall configuration utilized by Shalit et al. (2017) for CFR, for all implementation and training purposes of
TATEE, as well as the CFR model we compared against TATEE. Each of φ, h0, and h1 have 3 fully connected layers of size
200 for φ and 100 for h0 and h1. Following Shalit et al. (2017), we used the value

√
10 for the λ regularization coefficient

for the balancing term of the training objective in Equation 6, which Shalit et al. (2017) found to yield the lowest ϵPEHE on
the IHDP dataset. After a standard grid search 4 fine-tuning of λtopo, we used λtopo =

√
10
4 for the topological regularization

coefficient in Equation 6, in the case of IHDP dataset. We also performed a grid search fine tuning over batch size, λ, and
λtopo for the Twins and Jobs datasets, with a parameters grid of size 80, from which we obtained the values 128, 10, and
2
√
10 for the Twins dataset, 128, 0.1, and 1 for the Jobs dataset, and 256, 10, and 0.1 for the ACIC dataset. The learning

rate is 10−2 for mini-batch training using an Adam optimizer (Kingma & Ba, 2015) with weight decay parameter value of
10−5. The system specification for the computations is provided in Table 2.

Table 2: System specifications for the computations.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz
GPU Nvidia A100 SXM4 40GB
OS Ubuntu 22.04.3 LTS
Architecture x86 64

H. Datasets
Infant Health and Development Program (IHDP). The IHDP dataset is a semi-synthetic benchmark widely used in
causal inference studies (Hill, 2011). It combines real-world covariates from a randomized experiment with simulated
counterfactual outcomes, providing a ground truth for evaluating treatment effect estimation methods.

Twins. The Twins dataset uniquely contains both factual and counterfactual outcomes, as it includes data on twin pairs
(Louizos et al., 2017). By treating one twin as treated and the other as control, the dataset provides real-world values for both

4In this case the search is in fact over a line, as we fine tuned only a single parameter.
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potential outcomes, eliminating the need for synthetic counterfactuals. This characteristic allows for evaluation of treatment
effects estimation against empirical ground-truth, making it the only dataset for assessing the robustness of methods in the
presence of intrinsic empirical noise, without injecting synthetic noise. Notably, TATEE outperforms all benchmarks on this
dataset (see Appendix D.4) in experiments without simulated noise, achieving the lowest (best) ϵPEHE .

Jobs. The Jobs dataset, originally collected by LaLonde (1986) and later curated for causal inference benchmarking by
Shalit et al. (2017), includes both randomized controlled trial (RCT) and observational data. The dataset combines treated
units from the RCT subset with a control sample from Dehejia & Wahba (1999), ensuring that treatment assignment depends
on covariates.

Atlantic Causal Inference Conference (ACIC) 2018. The ACIC-18 dataset (Athey & Wager, 2019) is based on data
from the National Study of Learning Mindsets (Yeager et al., 2016). Assuming an RCT design, the dataset allows for the
computation of the true average treatment effect on the treated (ATT). To introduce covariate shift, a mask variable sampled
from a Bernoulli distribution based on a feature is applied to control units, making treatment assignment dependent on the
covariates.
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