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ABSTRACT

Unsupervised methods for dimensionality reduction of neural activity and behavior
have provided unprecedented insights into the underpinnings of neural information
processing. One popular approach involves the recurrent switching linear dynami-
cal system (rSLDS) model, which describes the latent dynamics of neural spike
train data using discrete switches between a finite number of low-dimensional
linear dynamical systems. However, a few properties of rSLDS model limit its
deployability on trial varying data, such as a fixed number of states over trials, and
no latent structure nor organization of states. Here we overcome these limitations
by endowing the rSLDS model with a semi-Markov discrete state process, with
latent geometry, that captures key properties of stochastic processes over partitions
with flexible state cardinality. We leverage partial differential equations (PDE)
theory to derive an efficient, semi-parametric formulation for dynamical sufficient
statistics to the discrete states. This process, combined with switching dynamics,
defines our infinite recurrent switching linear dynamical system (irSLDS) model
class. We first validate and demonstrate the capabilities of our model on syn-
thetic data. Next, we turn to the analysis of mice electrophysiological data during
decision-making, and uncover strong non-stationary processes underlying both
within-trial and trial-averaged neural activity.

1 INTRODUCTION

Parsing behavioral and neural dynamics into simpler alternating states is providing unprecedented
insights into the nature of computation in the brain (Wiltschko et al., 2015; Calhoun et al., 2019;
Ashwood et al., 2022; Bolkan et al., 2022). Such data, conventionally collected over multiple trials
and spanning considerable lengths of time, is often related to latent processes that exhibit complex
dynamics across multiple timescales (Cowley et al., 2020; Roy et al., 2021; Nassar et al., 2019; Yu
et al., 2009). Learning is one important example of such non-stationarity, but other changes may be
present, such as fatigue (Marcora et al., 2009) or arousal (Schriver et al., 2018). However, inferring
those latent processes from data, either within or across trials, remains challenging.

The state-space models that perform this segmentation into discrete states commonly revolve around
the hidden Markov model (HMM). This model posits an underlying, hidden, discrete Markov chain,
with a different observation model for each state giving rise to the data. Each discrete state can also be
extended to capture a different dynamical regime, governing the dynamics of some continuous-space
stochastic process. The resulting switching state-space models capture activity that alternate between
a discrete set of dynamical regimes, and have proved useful in the modeling of complex nonlinear
activity (Fox et al., 2010; Smith et al., 2021). A significant step in capturing online dependencies
in such models is through recurrence (Linderman et al., 2016; Zoltowski et al., 2020), where the
continuous dynamical variables govern switches between the discrete states. Such models have been
providing powerful insights into the time-dependence of those processes (e.g. Glaser et al. (2020)),
but suffer from training challenges due to the fixed cardinality of the discrete states and a lack of
geometry over states.

Indeed, traditional HMMs, and models built upon them such as switching state-space models, use a
fixed number of discrete states. This fixed cardinality is typically determined by cross-validation, a
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procedure that can prove computationally expensive. Furthermore, it does not encourage the use of
fewer discrete states on any subset of trials or sessions, so that they can be interpreted and determined
as needed. To overcome these limitations, multiple avenues have considered expending HMMs
with flexible state cardinality (Beal et al., 2001; Fox et al., 2011). These models revolve around
the Hierarchical Dirichlet Process (HDP), which places a flexible non-parametric prior over the
transition probabilities between the (theoretically infinite) states. Unfortunately, while the HDP and
its generalizations can capture state dependence and persistence (Teh et al., 2006; Fox et al., 2008),
in their standard formulation they do not allow for recurrence and other dependencies between the
discrete states allocations.

Furthermore, HMMs do not have any a priori state geometry. In particular, the discrete states are
permutation invariant, such that the model is equivalent under any permutation in the label ordering
of the discrete states (see schematic in Appendix Fig. 4B). This induces non-identifiability and limits
the interpretability of the inferred latent discrete states. While recent work has focused on variability
in discrete dynamical regimes (Nassar et al., 2019; Linderman et al., 2019; Costacurta et al., 2022)
yielding impressive results in terms of flexibility, most of these can be cast as “local” variations ; they
consider perturbations or parametrized variations of the parameters associated with each discrete
states. To our understanding, none specifically tackle the geometric nature of the discrete states space.

In this work, we use partial differential equations (PDE) theory to develop an alternate prior over
the discrete state transitions in recurrent switching state-space models. Our formulation allows us
to (1) capture important properties of the stochastic processes for flexible state cardinality, while
supporting the use of recurrent connections, (2) induce a geometry over the discrete states, and (3)
induce semi-Markovian discrete states dynamics to capture more intricate temporal dependencies.
After reviewing relevant background in Section §2, we present in Section §3 our model, the infinite
recurrent switching linear dynamical system (irSLDS), and provide details on its generative formalism
and inference procedure. In Section §4, we first validate the model on synthetic data and showcase its
properties, before turning to mice electro-physiology data from the International Brain Laboratory
(IBL). The PDE prior is defined by less parameters than the traditional HMM-based transitions model,
yet we show that it maintains or even outperform the traditional model while offering an interpretable
structure that is amenable to uncovering trial-varying structure.

2 BACKGROUND

We review in this section the key models considered in this work. We consider time-stamped data
{(tn,yn)}Tn=1 with time steps tn and data yn ∈ RM .

2.1 SWITCHING LINEAR DYNAMICAL SYSTEMS

Hidden Markov Models (HMM) posit an underlying discrete-state Markov chain with states zn ∈
{1, . . . ,K}, and conditionally independent observations p(xn|zn). Auto-regressive HMMs (AR-
HMM) extend this framework by endowing the observations xn ∈ RD with linear dynamics,
dependent on the discrete state zn. The generative model reads as

zn+1 ∼ P (zn+1|zn, n,xn) (1)

xn+1 ∼ N
(
A(zn)xn + a(zn),Σx

)
(2)

at time n ∈ {0, . . . , T}, with a different set of dynamics A(zn) ∈ RD×D and bias a(zn) ∈ RD

for each discrete state zn, and covariance Σx. The switching process in (eq. 1) is described by a
transition matrix, written in full generality, but is usually taken to be time- (n) and observation (xn)
independent such that P (zn+1 = j | zn = i) = Aij for some transition matrix A.

In this work, we are interested in leveraging those models to study possibly high-dimensional data
yn ∈ RM , M ≥ D, such as spike train data. We thus turn to Switching Linear Dynamical Systems
(SLDS) models, which model the AR-HMM observations xn as a (low-dimensional) representation
of the data, and model the data y1:T as conditionally independent linear Gaussian emissions

yn ∼ N (Cxn + c,Σy) (3)

for n ∈ {0, . . . , T}, with decoding weights C ∈ RM×D, c ∈ RM , and emission covariance Σy.
Finally, inputs un, e.g. the time steps tn, may be linearly encoded in the continuous dynamics (eq. 2)
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or directly along with the emissions in (eq. 3). Following Fox et al. (2010), we refer to AR-HMM and
SLDS models as instances of Markov switching processes, or generally switching state-space models.

A vital augmentation of Markov switching processes is to allow observations or internal states to guide
the switches in discrete states. Linderman et al. (2016) introduced such a xn → zn+1 dependency
(blue arrows in Fig. 1E) in the SLDS model class, coining it recurrence. Now in the recurrent SLDS
(rSLDS), in place of the general equation in eq. (1), the continuous states xn guide the switching
through

zn+1 | zn,xn ∝ R(zn)xn + r(zn)

for recurrent encoding matrices R(·) ∈ RK×D and biases r(·) ∈ RK . This is the central model we
consider in this work—see Fig. 1E for the graphical model.

2.2 DISTANCE DEPENDENT CHINESE RESTAURANT PROCESS

The switching process in (eq. 1) sets the discrete dynamical modes of the continuous dynamics.
Modeling and inferring trajectories under this process amounts to the problem of clustering the
dynamics in a discrete set of dynamical modes. As stated in the introduction, we wish to infer
the number of states K from the data, contrary to the formulation above. Dirichlet Processes (DP)
are a classical tool in this case, as they provide an infinite random measure over cluster partitions
(Ferguson, 1973; Antoniak, 1974). They can be described by the Chinese Restaurant Process (CRP,
a form of Pólya urn process, see primer in Appendix §A), which captures the self-reinforcing and
non-parametric structure of the prior. A key limitation is that points under the CRP are exchangeable
(Blei & Frazier, 2011) (see schematic in Appendix Fig. 4A)—under any permutation of the ordering,
the probability of a configuration is the same. The purpose of recurrence is to actively control the
dynamical mode transition, which fundamentally breaks exchangeability.

We seek a stochastic process over discrete state partitions that will allow us to capture recurrent (i.e.
online) dependencies on the data or latent states. To this end, we turn to the distance dependent
CRP (dist-CRP) from Blei & Frazier (2011). This variant of the CRP breaks exchangeability by
associating each time step to another, and then perform clustering based on pairwise assignments.
Specifically, at time step n, this process assigns time step i ∈ [n] with ci ∈ [n] following

p(ci = j|D,α, β) ∝
{
f(Dij ;β) if i ̸= j

α else
(4)

with distance matrix Dij , decay function f(·;β) and decay parameter β > 0. As we consider
time-stamped data, we consider the time difference Dij = ti − tj for i ≥ j, and enforce that no
step is assigned with future steps by setting f(Dij) = 0 if i < j. Finally, we use the entire history
c:n = {c:n−1, cn} of pairwise assignments to perform clustering: if ci = cj , then i and j are in the
same cluster zi. Applying this to the history c:n, we get z:n, thereby setting zn. The graphical model
for this process is illustrated in Fig. 1A.

3 INFINITE RECURRENT SWITCHING LINEAR DYNAMICAL SYSTEMS

Our technical contribution consists in using key properties of the dist-CRP to guide the switching
process in the rSLDS in a manner that supports efficient inference and generation. Section §3.1
presents the fallouts of a naive combination, providing details on how conventional methods relying on
Pólya-gamma augmentation yield intractable Bayesian inference in this case. Section §3.2 motivates
our alternative approach to modeling based on sufficient statistics and partial differential equations
(PDEs), and highlights key non-exchangeable and geometrical properties of our model. Finally,
Section §3.3 provides implementation details for both generation and inference.

3.1 PÓLYA-GAMMA AUGMENTATION YIELDS INTRACTABLE INFERENCE

Pólya-gamma augmentation (Polson et al., 2013; Linderman et al., 2015) is a powerful augmentation
strategy that handles non-Gaussian factors by introducing additional latent variables to obtain joint
Gaussian likelihoods. It was used in the original formulation of the rSLDS model by Linderman
et al. (2016) to allow tractable inference with message passing. We show in Appendix §C.1 that
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Figure 1: Modeling details. (A) Graphical model for the distance dependent CRP (dist-CRP) in its
conventional form. (B) The generative process of the dist-CRP can be summarized with a sufficient
statistic w(j, t) for state j at time t, showcasing a typical choice-driven exponential decay. (C) We
induce a geometry over the state space j ∈ J , and add a spatial smoothness prior. (top) Each time a
state is chosen (red bar), its probability is increased for future steps and so is the probability of nearby
states. (D) Modeling the influence function w(j, t) as a solution to the heat equation. (E) Graphical
model for the recurrent switching linear dynamical system (rSLDS). The recurrence is highlighted
by the blue arrows. (F) The infinite rSLDS model combines the heat-equation generalization of the
dist-CRP for the discrete states with the rSLDS switching linear dynamics emission process. (G)
The irSLDS discrete state prior better supports geometric analyses (top) and a variable number of
occupied states (bottom).

for appropriate choices of decay function f , we can also leverage Pólya-gamma augmentation to
similarly handle the non-Gaussian factors emerging from recurrence. However, the resulting Gaussian
augmentation grows linearly for each step n, making it computationally inefficient. Luckily as we’ll
see below, we can use sufficient statistics and recurrent dynamics to circumvent this problem.

3.2 PDE PRIOR FOR EFFICIENT PARAMETRIZATION AND NON-EXCHANGEABILITY

To remedy the challenges arising out of a naive combination of the original dist-CRP and SLDS
models, we rely on the following sufficient statistic to express the cluster allocations

p(zn = j|c:n, α, β) = p(zn = j|w(·, tn), α, β) ∝
{
w(j, tn;β) if j in history
α else

(5)

where w(j, t) denotes the influence function of state j at time t

w : J × R+ → R+, w(j, t) =
∑

{i : ti≤t,zi=j}

f(t− ti;β)

with distance function f(·;β) and decay parameter β > 0. Using this sufficient statistic makes the
entire process Markovian. Setting f(x;β) = κ exp(−βx) to be an exponentially decreasing function,
notice that we can rewrite w(j, t) above as a solution to the continuous time ODE

∂

∂t
w(j, t) = −βw(j, t) + κ1{zn=j}, ∀j ∈ J (6)

with càdlàg trajectories w(j, t) in time t. Each time tn a discrete state zn = j is chosen, its influence
function is bumped by κ > 0, increasing the weight of this state for future time steps (see Fig. 1B).
This has a similar effect as the “stickiness” parameter in the sticky HDP-HMM (Fox et al., 2008).
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In practice, we need to evolve in parallel the influence functions w for each state j. For any fixed t,
we make the modeling choice of relating these states to one another by using a smoothness prior (see
Fig. 1C). Inspired by the temporal dynamics in (eq. 6), we model the sufficient statistic to evolve
according to a partial differential equation (PDE), the heat equation (see Fig. 1)

∂

∂t
w(j, t) = γ

∂2

∂j2
w(j, t) (7)

with diffusion coefficient γ > 0 and with initial conditions for t ≥ tn
w(·, tn) = lim

t↑tn
w(·, t) + κ1zn , w(·, 0) = 0

over the state space j ∈ J . While many alternate priors could offer a form of spatial smoothness
with similar temporal dynamics, we choose the heat-equation for several reasons:

1. The temporal dynamics encompass the dist-CRP. Indeed, by standard separation of variables
argument, the temporal component of a solution w to (eq. 7) exhibits the exponential decay
desired in (eq. 6) for some appropriate β > 0.

2. The spatial dynamics offer an intuitive notion of diffusion of probabilities. Each time a
discrete state j is chosen, “nearby” states also become more probable at the next time step
(see Fig. 1C top).

3. The heat-equation as a differential operator on functions possesses numerous linearity
qualities, which makes general numerical behavior and approximations favorable.

We stress the meaning of “nearby”: in models based around an HMM, the states do not have an
inherent geometry1. In comparison, here discrete states can be interpreted as points on a continuous
state space J . We can restrain this space to a discrete number of states, and we discuss how to do so
in practice in the next subsection.

3.3 IMPLEMENTATION AND INFERENCE IN INFINITE RECURRENT SLDS

We proceed by describing some of the implementation implications of the PDE prior presented in the
previous section. We assume from now on regularly-sampled data in time, of difference ∆t, and drop
the inclusion of the time data tn to only consider the emissions data yn. The code for this work builds
on the SSM package (Linderman et al., 2020), and we present in Appendix C.2 the relevant modules.

PDE prior implementation with finite difference methods We use finite difference methods to
implement a sufficient statistic w solving the heat-equation prior. Let [wn+1]j+1 := w(j +∆j, (n+
1)∆t) be our discrete approximation. We use a forward difference of the time derivative and central
difference approximation to the second order spatial partial derivative to obtain the solution

wn+1 = Uwn, U = tridiag(β, 1− 2β, β) ∈ RK×K

where β = γ ∆t
∆j2 . We impose ∆t ≤ (∆j)2

4γ as a general requirement for stability, and let ∆j be
adjusted accordingly given γ (model parameter) and ∆t (data parameter). Inputs can be added to
drive the system, including (1) the desired κ1zn=j adding self-reinforcement to the system, and (2)
the past internal states encoded by a module of weight R ∈ RK×D and bias r ∈ RK for recurrence.
The dimension K of wn ∈ RK is a fixed hyperparameter. Importantly, however, the heat equation
dynamics capture properties of the dist-CRP, such that K rather acts as an upper bound on the
parsimonious number of states used per trajectory. In all, the dynamics of wn follow

wn+1 | {wn,xn, zn = i} = Uwn + κ1i +Rxn + r (8)
with parameters of diffusion and decay γ ∝ β > 0 and self-reinforcement κ ∈ R. The j-th entry of
the vector wn+1 in (eq. 8) defines, up to a necessary row-normalization factor, the ij-th entry of our
transition matrix [Wn+1]ij . Dynamical modes zn are then sampled according to (eq. 5), with final
random transition parameter α > 0. Now a few scalar parameters {α, γ, κ} govern the discrete state
zn process, contrasting with the K ×K matrix in the rSLDS. In all eqs. (8, 5) with the switching
continuous dynamics in (eq. 2) and emissions in (eq. 3) together define the infinite recurrent SLDS
(irSLDS, see graphical model in Fig. 1F). We refer to Appendix §D.3 for a study of the behavior of
the model as we scale K, the influence of {α, γ, κ}, and the values used for the latter.

1One can consider spectral clustering from the graph Laplacian defined from the transition matrix. This
however remains a transformation, and the underlying states originally have no geometry.

5

https://github.com/lindermanlab/ssm


Published as a conference paper at ICLR 2024

Inference with variational Laplace-EM The added sufficient statistic wn in (eq. 8) is determin-
istically determined given zn−1 and xn−1, thus adds no component to the posterior inference. We
follow prior work and perform inference in this model using variational Laplace-EM from Zoltowski
et al. (2020). As an overview, we posit the same structured mean-field approximation q(z1:T )q(x1:T )
to the states posterior. For our continuous states posterior, we use a Laplace approximation around
the most likely path x̂1:T (Paninski et al., 2009). Given a continuous states trajectory under this
posterior, the transition matrices W1:T can be computed to define our model joint p(y1:T , z1:T ,x1:T ).
From there, the discrete state posterior approximation is found by locally maximizing the expected
model joint under the continuous state posterior. Generally, conditioned on samples x1:T , the factor
graph for our z posterior is equivalent to that of an heterogeneous HMM. Common tools can then be
used, such as importantly the Viterbi algorithm to obtain the most likely discrete state sequence ẑ1:T
conditioned on x̂1:T , which we will consider below.

Discrete state geometry The support of wn is taken to be the set {∆j , 2∆j , . . . ,K∆j}, which
lives on the latent geometry J used in our PDE formalism. In this work we consider one possible
way to leverage this geometry: to define intermediate states. Indeed, the continuity of J allows
for interpolation between states. From any distribution on our discrete states zn ∈ {1, . . . ,K}, or
continuous interpolation thereof, one can define different statistics of interest such as the mean or the
mode. Such statistics can take continuous values in J , and are ill-defined for traditional HMM-based
models due to permutation invariance. In particular, given the most likely sequence ẑ1:T and our
posterior q(zn+1 | zn,xn) with interpolation function q̃ over J , we will consider the interpolated
sequence z̃1:T as the interpolated posterior modes

z̃n = argmax
z∈J

q̃(zn = z | ẑn−1, x̂n−1), n ∈ {1, . . . , T}, z̃0 = argmax q̃(z0) (9)

Parallelizing transition matrix dynamics with scans In both generation and inference, the core
computational difference in terms of complexity between the irSLDS and the (r)SLDS models is
that the transition matrix Wn for the discrete states zn now possesses its own recurrent dynamics
(from eq. (8), see Appendix eq. (13)). While the (r)SLDS models also have time-varying transition
matrices, they do not have such a recurrent term. To illustrate the difference, considering eq. (8) for
row i of the transition matrix Wn, the equivalent notation for the rSLDS would be

wn+1 | {xn, zn} = [w0]zn +Rxn + r.

Computing the zn transition matrices in the rSLDS thus amounts to the cost of encoding the continu-
ous state sequence x1:T , which can be distributed over different processors. In comparison, we are
forced to compute sequentially the transition matrices statistics Wn, naively taking O(K3T ) opera-
tions in addition to the sequential encoding of x1:T . Fortunately, notice that the dynamics (Appendix
eq. 13) are linear. In this case, as presented by Blelloch (1990), computing the transition matrices
can be cast as a scan operation (see Smith et al. (2023) for a recent application of this concept).
With this, we can efficiently parallelize our transition matrix dynamics and reduce the computation
to O(K3(T/L+ logL)) operations over L processors, resulting in similar time complexity as the
rSLDS model. We refer to Appendix C.2 for code and more details on our use of the parallel scan.

4 EXPERIMENTS

We train models by maximizing the Evidence Lower Bound (ELBO) using variational Laplace-EM
from Zoltowski et al. (2020). We compare model performance using the marginal log likelihood (LL)

log p(ỹ1:T ) =

∫
p(ỹ1:T |x1:T , z1:T )p(x1:T , z1:T )dx1:T dz1:T ,

which is the log-probability of held-out test data ỹ1:T under a given model, where test data arises
from a 4:1 train-to-test split of the full dataset (see details in Appendix §B). The required integral is
high-dimensional and intractable, and we thus resort to sequential Monte Carlo (SMC), also known
as particle filtering, to compute it (Del Moral et al., 2006; Kantas et al., 2009).

4.1 VALIDATION ON THE SYNTHETIC NASCAR TASK

We consider the synthetic NASCAR task as used by Linderman et al. (2016). In the original task,
the true underlying model is a rSLDS with K = 4 states, dissecting the 2-D state space in four
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Figure 2: Synthetic NASCAR experiments. (A-B) True flow field for the NASCAR task in A. The
extended NASCAR task alternates between the flow field in A and the extended flow field in B. (C)
Mean continuous trajectories x̂1:T under the variational Laplace posterior, per task. (D-E) Sample
continuous latent states x1:T trajectories per model (NASCAR in D, extended NASCAR in E). (F)
Most likely discrete state trajectories ẑ1:T for the rSLDS (top) and irSLDS (ours, bottom) for one
data trajectory in the extended NASCAR task (color scheme matches E), along with the interpolated
sequence z̃1:T (eq. 9) in black for the irSLDS.

Table 1: Performance metrics on NASCAR experiments. We report the marginal log-likelihood
on test data (Test LL), evaluated with SMC. Test data-sets consist of T = 200 excluded steps in
NASCAR, and excluded trajectory of T = 1000 steps in extended NASCAR. Column values for K
denote value set for the model. We also report the dynamical mean-square error (Dyn. MSE) between
the sample x state-space flow and true flow field. See Appendix Table 2 for dynamical MSE error
bars and number of parameters.

NASCAR Extended NASCAR
Test LL (↑) Dyn. MSE (↓) Test LL (↑) Dyn. MSE (↓)

Model K = 4 K = 8 K = 4 K = 8 K = 6

SLDS 1331.35 1592.81 0.930 305.046 7353.22 316.75
rSLDS 1628.57 1613.53 0.010 0.011 8015.93 0.35

irSLDS (ours) 1656.10 1611.45 0.015 0.011 8219.41 0.24

quadrants with rotational and bias dynamics (see Fig. 2A). The resulting continuous latent states xn

resemble car tracks on a NASCAR driving track (see Fig. 2C-left for corresponding mean posterior
estimates under variational Laplace-EM), and the data is obtained from high-dimensional (N = 10)
Gaussian emissions of the xn dynamics. We compare the irSLDS against the rSLDS and SLDS
models, presenting results over 5 random initialization seeds.

First, we found both our model, the irSLDS, and the true generative model, the rSLDS, to be similarly
able to generate accurate samples of the dynamics (see Fig. 2D). In terms of performance on held-out
time steps of the trajectory (T = 200), both models attained similar accuracy (see Tab. 1). The
irSLDS attained the higher mean on the true number of states K = 4, and both models performed
similarly for the over-complete K = 8. The SLDS however did not perform as well, as to be
expected—this NASCAR task was introduced to test the inclusion of recurrence in the rSLDS,
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compared to the standard SLDS. While the SLDS model attained relatively high test LL (see Tab. 1),
it struggled to accurately depict the true dynamics (see Fig. 2D-left). We refer to this generating
process accuracy as dynamical accuracy, which we quantify by reporting the mean squared error
(MSE) between the learned dynamics and the true, available, dynamics. We minimize the MSE over
reflections and rotations of the learned dynamics field. The SLDS model showed poor dynamical
accuracy (see Tab. 1), while the irSLDS matched the accuracy of the true rSLDS. In all, this validates
the incorporating of recurrence into our model, and furthermore provides evidence that the PDE prior
can mimick the performance and generative capabilities of the fully-trained HMM prior.

The original NASCAR task has a periodic temporal structure (a property unchanged by permutation
invariance) with a constant number of required states K—both stationary properties. Before turning
to our target experimental data, we assess the handling of non-stationary challenges by considering
an extended NASCAR task. In this new task, the dynamics alternate between the original dynamics
(Fig. 2A) and a set of new extended dynamics (Fig. 2B) where two additional bias dynamics are
introduced. This effectively changes the true number of discrete states from K = 4 → 6 during this
extended dynamics block. We consider B ∈ {2, 3} blocks of alternating dynamics, each of same
expected block lengths T/B. In this new task, we found the irSLDS to outperform the rSLDS, in turn
outperform the SLDS (Tab. 1). Looking into the learned solutions for the rSLDS and irSLDS models,
we observe that the sample trajectories (Fig. 2E) in the irSLDS more closely match the posterior
mean from data. Furthermore, the irSLDS model correctly identifies two new states after the switch
(see Fig. 2F-bottom). Interestingly, the posterior ends up attributing these two states to be in between
previous states, such that the sequence of discrete states exhibits this traversing trajectory. In contrast,
the rSLDS model mistakenly maintains only 4 active states after the switch to the alternate dynamics
( Fig. 2F-top). Together, this provides evidence for the performance of the irSLDS in non-stationary
tasks and an example on how we can leverage the discrete state geometry of the irSLDS.

4.2 THE IRSLDS UNCOVERS TRIAL-VARYING STRUCTURE IN NEURAL DYNAMICS REGIMES

Next, we turn our attention to an electrophysiological dataset from the International Brain Laboratory
(IBL), recorded in mice during a sensory-motor decision-making task. In this task, mice reported the
location of a sinusoidal grating stimulus by turning a wheel either left or right, with task difficulty
controlled by stimulus constrast (Fig. 3A) (Laboratory et al., 2021). We consider Neuropixels probe
recordings from the “Brainwide map” data release (Laboratory, 2022). For our analyses, we projected
spike train data onto the top principal components to obtain firing rates, making it amenable to
analysis by state-space models with Gaussian emissions (Fig. 3B-C) (further methodological and data
details can be found in Appendix §B, including firing-rate and continuous latent dimensions). As the
irSLDS directly expands on the rSLDS, we focus on comparing these two models in this section. We
picked K = 8 discrete states ( see Appendix Tab. 3 for test marginal LL values for K ∈ {2, 4, 8}).

First, we found that the models uncovered discrete latent states that switched at task-relevant event
times. Indeed, we did not provide the models with task event times such as the stimulus onset (“Stim
On”) or reward, or behavioral measurements such as the movement onset time (“First movement”).
Given that a task event occurred at time step t, we plot in Fig. 3D the estimated probability of a
switch a time-step t+ l for a lag l (p(switcht+l|eventt)), for the irSLDS. We compare this against
the baseline probability p(switcht), obtained by trial shuffling. The models learned task switches
significantly different from chance, capturing a switch in discrete states either preceding or following
a relevant task event. We thus posit that the statistical models capture relevant dynamics for the tasks.

Second, we found that the irSLDS uncovered differences in the discrete state distribution over trials.
In Fig. 3E we plot the number of active states used in the most likely ẑ1:T trajectories under the
variational posterior. We fit a spline function to this data for both models, determined from the
minimal p-value of the F -test for a comparison against a constant function (computed over various
degrees of smoothness and degree). While both models differed significantly from a constant function
(p ≪ 0.001), the irSLDS uncovered larger fluctuations in the number-of-discrete-states-per-trial
curve. Fluctuations were much smaller for the rSLDS model, and the spline provided a poorer fit (R2

of 0.16 v.s. 0.46 for irSLDS). This indicates that discrete state distribution over trials fluctuated more
dramatically and systematically under the irSLDS model, with substantially more discrete states
used in the middle of the session than at the beginning or end. The irSLDS attained a slightly higher
log-likelihood on held-out test trials (see Tab. 3), so in all this indicates that those fluctuations are
important, and might be missed by traditional HMM-based priors.
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Figure 3: Results on neural electro-physiology data from the IBL. (A) Experimental paradigm in the
IBL task, taken from Laboratory (2022). See text for further details. (B) Example spike train data,
plotting spike times per neuron, for one trial in one session. (C) The trial in B, pre-processed with
kernel smoothing and PCA, along with relevant trial events. (D) Switching probability as a function
of the time-step difference (lag l) for two key trial events, either conditioning on the event happening
at lag 0 (“conditional”, black), or without conditioning (“baseline”, gray). (E) Number of actives
states occupied by most likely discrete states trajectories per trial. Curve fits, either constant of spline,
are plotted against the number of states per trial in gray. The R2 for the spline fit is indicated top right.
(F) Most likely discrete states ẑ1:Ntrials

trajectories underlying per-trial average neural responses.

To further investigate the task-induced neural activity, we turn from trial-level modeling to session-
level modeling. Specifically, we focus on the average firing rate yt ∈ RD, averaging from 200ms
before the stimulus onset to the reward, for each trial n ∈ [Ntrials]. Fig. 3F shows the most likely
discrete state sequences ẑ1:Ntrials

under each model. Both models achieve similar training ELBO (see
Appendix Tab. 3). We observe that the irSLDS showcases a distinctive slow geometric drift in the
discrete states occupied, as observed from ẑ and further solidified by the trace of the interpolated z̃
(defined in eq. 9). Finally, we note how the interpolation also indicates the presence of uncertainty
between states 3 and 4 at the end of the session. Such conclusions cannot be drawn in the (r)SLDS, as
any permutation of the discrete states yields an equivalent visualization of the discrete state process.

5 CONCLUSION

In this work, we extend recurrent switching state-space models with an input-driven heat-equation
prior over the dynamics of the transition matrix. This results in a semi-Markov discrete state process
that capture the behavior of stochastic processes on partitions for a variable number of states per
trajectory, as well as inducing a continuous geometry on the discrete states. We show that while this
process is defined by less parameters than the traditional HMM models, it still matches or outperforms
the original model while providing insights into time-varying processes in data. We showcase the
model on a synthetic task, before turning to electrophysiological data from the IBL. The IBL hosts
extensive datasets covering multiple repeated- to brain-wide recordings (Laboratory et al., 2022;
Laboratory, 2022), and the modeling presented here provides grounds for further investigation into
the time-varying processes underlying neural data.

9
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Broader Impact The modeling here presented is targeted towards enhancing our understanding
of neural computation. Analysis of electrophysiological data can have long-term implications for
the treatment and understanding of medical treatment and neurological disorders. However, these
considerations are far removed for the preliminary analysis and modeling presented, and we foresee
no immediate societal consequences of this work.

Limitations We highlight a few limitations. First, in practice for our experiments, our implemen-
tation of the scan operation for parallel computing, as presented in section §3.3, does not support
the automatic differentiation used for our variational inference. We thus only use the scan partially—
we refer to section C.2 for more details on the manner. Second, we present early results on ephys
data, for a limited number of sessions, probe locations, animals, etc. We do not aim to make general
claims about computation in neural systems, but rather highlight the properties of our models in
uncovering time-dependent processes. Expanding to the aforementioned data modalities is grounds
for rich future work.

Compute All experiments were run on an external clusters. For reference, training on a single
session for the ephys IBL data might take up 12 hours for a single model, with some multiprocessing.
Training a single model for the synthetic NASCAR data can be accomplished on the order of 30
minutes.

A BACKGROUND

A.1 CHINESE RESTAURANT PROCESS

Dirichlet Processes (DP) mixture models provide a powerful random measure over clusterings. We
refer to Ferguson (1973); Antoniak (1974) for a measure-theoretic treatment of DPs, and Teh et al.
(2006) for a machine-learning overview. They can be alternatively defined through the Chinese
Restaurant Process (CRP), a process akin to the Pólya Urn process. The analogy goes as follows :
upon entering a restaurant, a customer i selects to sit at a table k with probability proportional to the
number of people already sat at that table. With some fixed rate α, they may decide to start a new
table. Put otherwise, for a new customer i, its table allocation zi follows

p(zi = k|z:i, α) ∝
{
nk if k ≤ K

α if k = K + 1
(10)

with nk the size of cluster k ∈ [K]. In this work, one should think of tables as clusters or dynamical
modes, and the customers i as time-steps. It can be easily seen that this process induces a joint
probability over cluster assignments that is invariant to the order of customers entering. We call this
property exchangeability. This enforces a strong and limited prior on distributions of partitions that
can arise from this model.

B TRAINING DETAILS

B.1 NASCAR TASK

Data generation We generate NASCAR track trajectories by instantiating the true model as
described, and generating a sample trajectory running for T = 1000 steps. We then split the first 800
steps as train data, and keep the last 200 steps as test data (4:1 split). We repeat this procedure for 5
random seeds. For all models, we use K = 4, D = 2 (xt dimension) and M = 10 (observation yt

dimension).

B.2 IBL TASK

Pre-processing Given spike train data from a given period, we first perform the following pre-
processing steps to obtain the firing rates over the period

1. Kernel smoothing against a Gaussian kernel to obtain firing rate graphs. We use a standard-
deviation of 100ms if the period is a whole trial, and of 30ms if the period is the Open-Loop
period.
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Figure 4: Schematic representation of (A) exchangeability, notably in the Chinese Restaurant Process,
and (B) permutation invariance, notably in HMMs and HMM-based models.

2. The firing rate graphs are evaluated over an evenly space grid over the period interval. The
bin size for the grid is determined following Algorithm 1 from Shimazaki & Shinomoto
(2007), taking the minimal value, after removing outliers, over trials. We define outliers as
values falling outside the [Q1− 1.5 ∗ IQR, Q3 + 1.5 ∗ IQR] quartile interval. The chosen
bin size is on the order of 40ms for whole-trial period, and 10ms for the Open-loop period.

After the firing rates are obtained, the next step in processing depends on the nature of the data
analyzed, and involves using PCA. If we consider trial-level modeling, then perform PCA to project
the firing rates onto the top PCs (M = 50 PCs, over 90% variance explained). If we consider
session-level modeling, we first average the firing rates from 200ms before to the stimulus onset to
the reward, then perform PCA to project the per-trial activity onto the top PCs from the concatenated
trials (M = 10 PCs, over 85% variance explained).

Finally set our internal states xn to be of dimension D = 4 for per-trial neural activity, and D = 2
for per-trial-averaged activity.

Ephys data details We use Neuropixels recordings tied to the Brainwide data release Labo-
ratory (2022). The results in this paper pertain to the first available session, with session id
ae8787b1-4229-4d56-b0c2-566b61a25b77. We refer the reader to the data release website
to obtain more information on the specific probe: https://viz.internationalbrainlab.
org/app.

Data we use a 4:1 train to test split for the per-trial spike train analysis. 20% of the trials are
randomly selected as test trials – these trials span the whole session.

C MODELING

C.1 PÓLYA-GAMMA AUGMENTATION FOR GIBBS SAMPLING IN INFINITE RECURRENT SLDS

We provide more details on inference challenges in an infinite recurrent SLDS model naively
combining the dist-CRP and the SLDS. Following previous methodologies, we could use Gibbs
sampling and leverage message passing to perform inference. It would require us to handle the
conditional density

p(x1:N |c1:N , z1:N , {y1:N , t1:N}) ∝
N∏

n=1

ψ(xn−1,xn, zn)ψ(xn−1, cn, t:n)ψ(xn,yn)

where ψ(xn,xn+1, cn+1) is the potential from the continuous recurrent dynamics, and ψ(xn, yn) the
evidence potentials. The recurrent connections introduce the dependencies captured in ψ(xn, cn+1),
which adds significant challenges for inference. Without it, in the standard SLDS, the potentials are
all Gaussian, allowing for analytical integration.

Following Linderman et al. (2016), we can leverage Pólya-gamma augmentation (Polson et al., 2013;
Linderman et al., 2015) to deal with these non-Gaussian factors. The key is that instead of performing
a categorical choice over a pre-determined set of K dynamical modes, we perform an association, a
categorical choice, with a previous time-step j ∈ {1, . . . , t}. Because of the conceptual categorical
similarities in updating, we find similarities in inference methodology with the rSLDS. This is where
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the choice of decay function f comes in, in enforcing that link. This non-Gaussian factor is

ψ(xn−1, cn, t:n) = p(cn|xn−1, t:n) ∝
n∏

j=1

f(tn − tj ;β(xn−1))
I[cn=j]αI[cn=n]

= αI[cn=n]
n−1∏
j=1

(
e[νn]j

1 + e[νn]j

)I[cn=j]

for νn ∈ Rn−1, [νn]j := β(xn−1) · (tn − tj). We can leverage the following integral quantity

(eν)a

(1 + eν)b
= 2−beκν

∫ ∞

0

e−ων2/2pPG(ω|b, 0)dω b > 0, κ = a− b

2

to introduce auxiliary variables {ωj}nj=1 such that the conditional density p(cn+1|xn, t:n+1, ωn)
becomes Gaussian

ψ(xn, cn+1, t:n+1, ωn) ∝ α N (νn | Ω−1
n κn,Ω

−1
n ) (11)

where Ωn = diag(ω1:t−1), and [κn]j =
1
2 I[cn = j], κn ∈ Rn. With this augmentation, the required

potentials are Gaussian and the integral can be calculated analytically. We refer the reader to Blei &
Frazier (2011) for subsequent details on how one handles the messages mn→n+1(cn+1).

While we do obtain an analytical expression for the augmented potentials in (eq. 11), such potentials
are multivariate Gaussians of size n for each time-step n ∈ {1, . . . , N}. This adds significant
computational complexity, both in handling the potentials and in any required marginalization.

C.2 IMPLEMENTATION OF THE IRSLDS

In this appendix subsection, we present code modules and functions relevant to the modeling.

Parallel scan We cast the linear dynamics of the transition matrices Wn as a scan operation to
efficiently parallelize the computation. The SSM package relies on Numba and autograd, the latter
not having a readily implemented associate scan operation. To this end, we implemented in Numba
and Numpy the scan operation, using numba for the parallization (Listing 1). Unfortunately, this
scan operation cannot leverage the automatic differentiation from autograd. We found however
that including the scan in the computation does not significantly change the learned solutions in
the irSLDS parameters. Thus in practice, we use the scan to do faster hyperparameter search or
gradient-free computation (e.g. generating samples, evaluating likelihoods), but rely on the full
sequential version for the final training.

1 @numba.jit()
2 def binary_operator(q_i, q_j):
3 r""" Binary operator for parallel scan of linear recurrence.
4 Args:
5 q_i: tuple containing U_i and b_i at position i (K,K,), (K,K,)
6 q_j: tuple containing U_j and b_j at position j (K,K,), (K,K,)
7 Returns:
8 new element ( U_out, bias_out )
9 """

10 U_i, b_i = q_i
11 U_j, b_j = q_j
12 return np.matmul(U_i, U_j), np.matmul(b_i, U_j) + b_j
13
14 @numba.jit(parallel=True, forceobj=True)
15 def apply_scan(U, bias_elements):
16 r"""
17 Apply parallel scan for a length T linear recurrence of the form
18
19 x[0] = bias_elements[0]
20 x[t] = U x[t-1] + bias_elements[t]
21
22 Args:
23 U: Recurrent matrix, np.ndarray (K,K,)
24 bias_elements: Additive bias elements, np.ndarray (T+1,K,)
25 First bias element is the initialization for x.
26 Returns:
27 X: State dynamics, np.ndarray (T,K,)
28 """
29 T = len(bias_elements) - 1
30 K = U.shape[0]
31
32 # Initalization
33 X = np.empty((T, K, K), dtype=np.float64)
34 q_i = ( np.eye(K), np.zeros_like(bias_elements[0]) )
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35
36 # Use numba prange for parallization
37 for i in numba.prange(T):
38 q_i = binary_operator(q_i, c_i)
39 X[i] = q_i[1]
40 return X[1:]

Listing 1: Numba implementation of associative scan

Transition module We implement the irSLDS within the SSM package from Linderman et al.
(2020). This can be accomplished by using the same SLDS parent class as the (r)SLDS mod-
els, and specifying a new discrete state process. We implement this discrete state process as a
ssm.transitions.Transitions module.

1 class HeatRecurrentTransition(Transitions):
2 """
3 Use w_t as a probability dist to sample z_{t+1} from.
4 w_t follows the heat equation: w_t \in L^1 satisfying
5 D_t w_t = \gamma D_xx w_t
6 """
7 def __init__(self, K, D, M=0, gamma=1.0, kappa=0.4, scan=False):
8 super().__init__(K, D, M)
9

10 # Parameters linking past state to current state distribution
11 self.beta = beta
12 self.scan = scan
13 self._set_beta()
14 self._set_U() # FDM matrix for heat equation
15 self.kappa = kappa
16
17 # Parameters linking past observations to state distribution
18 self.Vs = npr.randn(K, M) # Inputs encoding, per state
19 self.Rs = npr.randn(K, D) # Previous observations encoding, per state
20 self.r = npr.randn(K)
21
22 def _set_beta(self):
23 delta_t = 1.0 # assume regular emissions.
24 delta_x = np.sqrt((8 * self.gamma * delta_t)) # determine the delta x such that FMD is stable
25 assert delta_t <= (delta_x ** 2)/(4 * self.gamma) # general assertion for stability
26 self.beta = (self.gamma * delta_t) / (delta_x ** 2)
27
28 def _set_U(self):
29 self.U = self.beta*np.diag(np.ones(self.K-1), k=1) +\
30 (1-2*self.beta)*np.diag(np.ones(self.K)) +\
31 self.beta*np.diag(np.ones(self.K-1), k=-1)
32 if self.mod:
33 self.U[0,-1] = self.beta
34 self.U[-1,0] = self.beta
35
36 def get_sufficient_statistics(self, data, input, mask, tag, w_state=None, SCAN=False):
37 T, _ = data.shape
38
39 # Initialization
40 ws = []
41 if (w_state is None): # Init
42 wt = 1/self.K * np.ones((self.K, self.K))
43
44
45 # Dynamics
46 if SCAN:
47 # Use einsum to parallelize over time the biases encoding
48 kappa_U = np.einsum(’ij,jk->ik’, self.U, self.kappa*np.eye(self.K))
49 bias_elements = np.repeat(kappa_U[np.newaxis, :, :], T, axis=0) + \
50 np.repeat(np.einsum(’tm,mk->tk’, input, self.Vs.T)[:, np.newaxis, :], self.K, axis=1) + \
51 np.repeat(np.einsum(’td,dk->tk’, data, self.Rs.T)[:, np.newaxis, :], self.K, axis=1)
52
53 # Add initial condition to initial bias
54 bias_elements = np.concatenate([wt[np.newaxis, :, :], bias_elements], axis=0)
55
56 # Use the scan operation to parallelize the linear dynamics over time
57 ws = apply_scan(self.U, bias_elements)
58 return ws
59 else:
60 # Use sequential dynamics computation
61 for t in np.arange(T-1):
62 wt = np.dot(wt, self.U.T) # FDM
63 wt = wt + self.kappa*np.eye(self.K) # self reinforcement.
64 wt = wt + np.dot(input[t], self.Vs.T) + np.dot(data[t], self.Rs.T) # inputs
65 ws.append(wt)
66 ws = np.array(ws)
67 return ws
68
69 def log_transition_matrices(self, data, input, mask, tag, w_state=None):
70 ws = self.get_sufficient_statistics(data, input, mask, tag, w_state=w_state, SCAN=self.scan)
71 normalized_log_Ps = ws - logsumexp(ws, axis=2, keepdims=True)
72 if self.alpha>0.:
73 reweighted_log_Ps = (1-self.alpha)*normalized_log_Ps
74 out = reweighted_log_Ps - logsumexp(reweighted_log_Ps, axis=2, keepdims=True)
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75 else:
76 out = normalized_log_Ps
77 return out

Listing 2: Basic implementation of the transition matrix dynamics with heat-equation prior

C.3 TRANSITION MATRIX DYNAMICS

We explicit here the dynamics of the transition matrix Wn ∈ RK×K . The equation for the sufficient
statistic wn dynamics in (8), which we rewrite here for reference,

wn+1 | {wn,xn, zn = i} = Uwn + κ1i +Rxn + r,

refers to row i of the transition matrix Wn+1, so that

[Wn+1]i,j = [wn+1 | {xn, zn = i}]j . (12)

We note that all vectors are columns vectors.

To get the dynamics of the transition matrix itself, we must expand out the computation for each row.
Specifically, given Wn, we obtain

Wn+1 =


(
U [Wn]

⊤
1,:

)⊤

...(
U [Wn]

⊤
K,:

)⊤

+

κ1
⊤
1

...
κ1⊤

K

+

(Rxn + r)⊤

...
(Rxn + r)⊤



=

 [Wn]1,: U
⊤

...
[Wn]K,: U

⊤

+ κId + (Rxn + r)⊤ ⊗ 1

=WnU
⊤ + κId + (Rxn + r)⊤ ⊗ 1 (13)

as the dynamics of the transition matrix. One can find these dynamics in our implementation of the
transition module in Listing 2, lines 62–64. Unless otherwise noted, we use κ = 0.4, and β = 1.0 for
defining U .
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D RESULTS

D.1 ACCURACY METRICS

All models were trained for 100 iterations, for every task. We only report the “mean” test log-
likelihood, i.e. the log of the mean of the test likelihoods.

Table 2: Performance metrics on NASCAR experiments–Expanded. We report the marginal log-
likelihood on test data, evaluated with Sequential Monte Carlo. Test data-sets consist of T = 200
excluded steps in NASCAR, and excluded trajectory of T = 1000 steps in extended NASCAR. We
also report the dynamical mean-square error (MSE) between the sample x state-space flow and true
flow field. We first reflect and rotate the sample trajectories to best align them with the flow field.

Model K # parameters Test log-likelihood (↑) Dynamical MSE (↓)
(nats) Mean IQR

NASCAR
SLDS 4 92 1331.35 0.930 [0.247, 0.629]

8 176 1592.81 305.046 [0.058, 0.759]
rSLDS 4 100 1628.57 0.010 [0.005, 0.015]

8 192 1613.53 0.011 [0.010, 0.013]
irSLDS 4 88 1656.10 0.015 [0.007, 0.015]

8 136 1611.45 0.011 [0.006, 0.014]

Extended NASCAR
SLDS 6 130 7353.22 316.75 [0.29, 5.46]
rSLDS 6 142 8015.93 0.35 [0.04, 0.48]
irSLDS 6 112 8219.41 0.24 [0.10, 0.27]

Table 3: Performance metrics on IBL experiments: Marginal Log-Likelihood of held-out test data,
evaluated with Sequential Monte Carlo. Higher is better.

Per trial Per session
Test log-likelihood (↑) ELBO (↑)

Model K = 2 K = 4 K = 8 K = 8

rSLDS −1469.759 −1437.519 −1399.030 −6.67× 103

irSLDS −1446.692 −1461.777 −1392.508 −6.69× 103

D.2 EMPIRICAL RUNNING TIMES

Table 4: Empirical running times, in seconds per EM iteration, reported for the standard NASCAR
task and trial-level IBL. The experiments were ran on an AMD EPYC 7H12 64-Core Processor, on
10 cores. No GPU was used.

(s/iter) NASCAR Per trial IBL
Model K = 4 K = 2 K = 4 K = 8

SLDS 0.13± 0.02 6.02± 0.06 12.9± 0.2 8.7± 0.3
rSLDS 0.18± 0.03 7.32± 0.10 12.3± 0.6 18.2± 0.3
irSLDS 3.21± 0.71 48.47± 2.91 56.4± 3.1 70.0± 5.3

irSLDS (w/ scan) 0.54± 0.08 11.73± 0.50 14.0± 0.8 18.4± 1.0

D.3 HYPER-PARAMETER INFLUENCE

Scaling the number of states K We include results in Fig. 5 on the impact of scaling K across
models. We consider the standard NASCAR task, and evaluate model performance on T = 200
held-out time steps, averaged 5 random initialization seeds, and report mean and standard deviation.
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Figure 5: Impact of scaling K on model performance. Test log-likelihood on NASCAR task as a
function of the hyperparameter K. See text for details.

Figure 6: Impact of the hyperparameters {γ, κ} on the irSLDS model. We report test log-likelihood
on NASCAR task as a function of the hyperparameters, and plot example discrete state trajectories.
See text for details.

We trained and tested models using K ∈ {4, 8, 12, 16} states, thus considering the over-parametrized
regime over the true K = 4 states for the NASCAR task. We observe that the irSLDS maintains a
high performance across seeds, matched by and slightly over-performing the true rSLDS model class.
The SLDS model class exhibits more variability. Note that in contrast to Table 1, we generated new
train/test datasets for each seed.

Heat equation parameters in the irSLDS We consider the impact on performance of the self-
reinforcement parameter κ ∈ R and the parameter of decay γ > 0 in the heat equation prior of
eq. equation 8 in §3.3. For all experiments and results reported throughout the paper, we chose
γ = 1.0 and κ = 0.4, we let ∆t = 1.0, and we set ∆j =

√
8γ∆t = 2

√
2 (for stability). We report

in Fig. 6 test log-likelihood for the standard NASCAR task, on one random seed, over a grid of
hyper-parameter {γ, κ} combinations. In terms of performance, we observe that the specific choice
of hyper parameters has minimal effect for a low number of states K = 4. The impact becomes more
evident when increased to K = 16, as a consequence of the more fine grained discrete state space
support for the heat equation PDE. We plot prior sample trajectories, with α = 0., for two exemplar
combination of parameters to illustrate their influence.
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