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ABSTRACT

Cryogenic electron microscopy (cryo-EM) has become an essential tool in struc-
tural biology for determining dynamic biomolecular structures at high resolution.
However, state-of-the-art VAE-based reconstruction methods such as CryoDRGN
do not generalize to new particle images: its encoder overfits to the training data
due to the presence of high amounts of noise. In this work, we propose a sim-
ple yet effective strategy to generalize to images not in the training set: learning
noise invariant representations. We propose Cryo-No-Overfit (CryoNOO), which
extends CryoDRGN via self-distillation by leveraging the reconstruction method
itself as a denoiser to generate augmented views of training images. We then learn
noise-invariant representations via self-supervised learning, enabling reconstruc-
tion methods to amortize inference to unseen images. Extensive empirical eval-
uations on both synthetic and experimental datasets demonstrate that our method
dramatically improves reconstruction quality on unseen test data, marking a key
step towards robust, generalizable cryo-EM reconstruction.

1 INTRODUCTION

Single-particle cryo-electron microscopy (cryo-EM) has revolutionized structural biology by en-
abling the determination of macromolecular complex structures at near-atomic resolution (Nakane
et al., 2018; Yip et al., 2020). Unlike structure prediction tools such as AlphaFold (Jumper et al.,
2021; Abramson et al., 2024), which predict a static model from amino acid sequences, cryo-EM
has the distinct advantage of capturing dynamic conformational ensembles of molecules under ex-
perimental conditions. Understanding the conformational ensemble of molecules is essential for
understanding biological processes such as allosteric regulation, enzyme catalysis, and ligand bind-
ing.

However, heterogeneous reconstruction from cryo-EM data presents a challenging inverse problem,
as each 2D image is a noisy projection of a single 3D conformation in an unknown orientation;
the task is further complicated by conformational heterogeneity and the extremely noisy images
produced by low-dose acquisition required to minimize radiation damage. These characteristics lead
to a fundamentally ill-posed inverse problem with incomplete and noisy observations. A series of
deep-learning based methods tackle the problem of cryo-EM heterogeneous reconstruction (Donnat
et al., 2022). These methods generally follow the structure of an autoencoder, where an MLP- or
CNN-based encoder maps a 2D cryo-EM image to a latent vector that is then decoded into a 3D
volume and rendered to obtain supervision.

One potential advantage of autoencoding is amortized inference, or the ability to quickly perform
reconstruction of a new, unseen cryo-EM image with a single forward pass by feeding it to the (pre-
)trained encoder. However, it is common knowledge that the encoder of these approaches overfits
to the training images and fails to generalize, and we refer to Edelberg & Lederman (2023) for a
detailed study. Even small amounts of noise can cause an encoder to overfit, and while it can recon-
struct high resolution structures from training images, it fails to learn meaningful representations on
unseen images of the same structure. This observation highlights a key gap in the field: There are
no existing methods that explicitly target generalizability under realistic, noisy conditions.
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Figure 1: Method Overview. A training image X is first fed through the CryoDRGN VAE, produc-
ing a latent z as well as a reconstruction of the input image Xproj rendered from the reconstructed
3D structure. Our method augments this reconstruction with additive Gaussian noise, generating a
set of augmentations X ′. We then pass these through the same encoder to produce latents z′, and
ask that these latents match the latent produced by the original training image z. To prevent latent
collapse, we leverage the VICReg framework, which expands z and z′ via an expander MLP h be-
fore penalizing their least-squares differences. The model is trained end-to-end with the original
CryoDRGN VAE loss and an additional VICReg loss.

In this paper, we introduce Cryo-NO-Overfit (CryoNOO), a training paradigm for autoencoder-based
cryo-EM heterogeneous reconstruction methods that enables the model to generalize to unseen cryo-
EM images at inference time for the first time. Our key insight is to use the autoencoder architecture
itself as both a denoising mechanism and a generator of novel views of protein structures in the
training set, enabling a form of self-distillation. Specifically, we reconstruct a 3D structure from a
noisy training image and reproject it into 2D to synthesize clean views. These views can then be
augmented with controllable noise levels to generate diverse inputs for self-supervised training.

We then enforce consistency in the latent space by requiring the encoder to map both the original
and augmented views to the same latent code. To prevent trivial solutions, we leverage Variance-
Invariance-Covariance Regularization (VICReg) Bardes et al. (2021) which stabilizes training by
preserving variance and decorrelation while reducing the norm of the difference of latent encodings.

In summary, our work makes the following key contributions:

• We propose learning noise-invariant representations as way to generalize under noisy real
world conditions.

• We introduce a self-distillation technique that leverages the encoder-based reconstruction
method itself to generate augmented views of training samples and use self-supervised
learning to enforce invariance.

• We empirically validate our method across synthetic and real cryo-EM datasets and, for
the first time, demonstrate amortized heterogeneous 3D reconstruction of novel particles
unseen during training.

2 RELATED WORK

Cryo-EM Reconstruction Methods. Neural network-based cryo-EM reconstruction methods com-
monly employ VAE architectures to model continuous structural heterogeneity via amortized infer-
ence. CryoDRGN (Zhong et al., 2021), for example, learns a function V̂ : R3+n → R that maps a
low-dimensional latent space to a 3D electron scattering potential in the Fourier domain. One line of
research in this area is concerned with amortizing inference in order to speed up reconstruction (Levy
et al., 2022a;b; 2024). In the ab initio setting, CryoAI (Levy et al., 2022a) and CryoFire (Levy et al.,
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2022b) proposed amortized inference of poses by jointly predicting the pose. Other works investi-
gate the amortized inference of the latent conformation. As observed by previous works (Edelberg
& Lederman, 2023; Levy et al., 2024), cryoDRGN fails to generalize to unseen views and tends to
memorize the training images.

CryoDRGN-AI (Levy et al., 2024) circumvents possible memorization by dispensing with the en-
coder altogether, instead using an autodecoder architecture. Unlike autoencoders, where an encoder
maps 2D views to latent codes, autodecoders do not have an encoder and instead give each view a
unique learnable latent code, stored in a lookup table. To perform inference on views unseen during
training, a new latent code is created and optimized during test time, making inference more expen-
sive than autoencoding, which amortized inference, only requires a forward pass of its encoder. In
contrast, we propose to perform amortized inference in the variational autoencoder framework by
learning a noise-invariant encoder with self-distillation.

Self-Supervised Learning and Self-Distillation. In self-supervised learning from images, we are
interested in learning an encoder that produces latent representations useful for downstream tasks
using only unlabeled images. This is usually accomplished by encoding augmentations of the same
image and enforcing them to be similar in latent space. The core challenge is to avoid trivial solu-
tions, such as predicting a constant representation independent of the encoded image. This can be
accomplished in different ways. In this paper, we rely on VICReg (Bardes et al., 2021) which avoids
representational collapse by enforcing three principles: encouraging consistency across views, main-
taining diversity across samples, and reducing redundancy across feature dimensions. Also related to
our method are methods of self-distillation, where a “student” encoder is distilled from a “teacher”
whose weights are however an exponential moving average of the student’s weights (Grill et al.,
2020; Chen & He, 2021; Caron et al., 2021). Our method can be seen as a form of self-distillation,
where we are distilling knowledge already inherent in the CryoDRGN model into a more powerful
encoder, though we rely on VICReg to prevent representational collapse. VICReg has no notion of
generating pseudo-groundtruth with a 3D reconstruction model, and to the best of our knowledge,
VICReg has never been used in combination with a differentiable forward model or differentiable
renderer.

3 AMORTIZED HETEROGENEOUS CRYO-EM RECONSTRUCTION

3.1 PRELIMINARIES

Cryo-EM Image Formation Model. Cryo-electron microscopy (cryo-EM) aims to reconstruct a 3D
molecular structure V : R3 → R from noisy 2D projection images X1, . . . , XN , each corresponding
to a particle in an unknown pose defined by a rotation R ∈ SO(3) and an in-plane translation t ∈ R2.
The image formation model can be written as

Xi = Ci PϕiV + ηi, (1)

where Ci models the contrast transfer function (CTF), Pϕi denotes the projection operator for pose
ϕi = (Ri, ti), and ηi ∼ N (0, σ2) is additive noise. In practice, reconstruction is typically performed
in Fourier space using the Fourier Slice Theorem (FST) Bracewell (1956), which shows that each
2D image corresponds to a central slice of the 3D Fourier transform of V .

CryoDRGN as an implicit teacher. CryoDRGN models structural heterogeneity with a VAE where
the encoder qξ(z|X) with parameters ξ maps each particle image to a latent vector z representing
structural variability. This latent representation is passed to a conditional implicit neural representa-
tion (INR) decoder to reconstruct a 3D structure, which is then projected into the 2D image domain
via the cryo-EM image formation model (Sec. 3.1) and compared to the input image using a standard
VAE loss. Although trained with a variational objective, CryoDRGN effectively denoises: it recon-
structs a clean 3D structure from noisy 2D inputs. This observation enables us to view the model
itself as a teacher that can supervise later iterations of its own encoder – a form of self-distillation.

VICReg. To prevent representation collapse in self-supervised learning, VICReg (Bardes et al.,
2021) introduced a loss composed of three terms: invariance, variance and covariance regularization.
These operate on the representation space produced by an extra expander network h to enforce non-
triviality and disentanglement across embedding dimensions.
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The variance term encourages each embedding dimension to exhibit sufficient variation across the
batch using a hinge function, while the covariance term penalizes correlations between dimensions:

v(z) =
1

d

d∑
j=1

max

(
0, γ −

√
Varbatch(h(zj)) + ϵ

)
, c(z) =

1

d

∑
i ̸= j

[
1

n− 1
h(Z)⊤h(Z)

]2
i,j

,

(2)
where γ = 1 is the target standard deviation, ϵ is a small constant for numerical stability, and
Z ∈ Rn×d is the batch of centered embeddings. The invariance loss enforces the consistency
between embeddings h(z) and h(z′) of different augmentations of the same input:

s(z, z′) =
1

n

n∑
i=1

∥h(zi)− h(z′i)∥22. (3)

The total VICReg loss combines these terms:

LVICReg(z, z
′) = λrecons(z, z

′) + λvar(v(z) + v(z′)) + λcov(c(z) + c(z′)) (4)

where λrecon = λvar = λcov = 1 by default. VICReg has primarily been used for image classi-
fication, object detection, and retrieval. To the best of our knowledge, this is the first instance of
self-supervised learning techniques applied to cryo-EM reconstruction to enable generalization to
new data

3.2 CRYONOO

In Cryo-No-Overfit (CryoNOO), we propose a new self-supervised learning objective that enables
heterogeneous cryo-EM reconstruction methods to reconstruct images not in the training set. While
our method can in principle work with any autoencoder-based model, we use the variational au-
toencoder (VAE) architecture of CryoDRGN. Our method can be viewed as a simple extension that
enables the encoder to separate signal from noise.

Definitions. We define a CryoDRGN model as an encoder qξ(z|X) that takes an image X and
produces a latent z along with a decoder pθ(z, k) that takes a latent z and coordinate k = (kx, ky, kz)
in Fourier space and produces the Fourier transform of the electron scattering at k. ξ and θ are the
weights of the encoder and decoder, respectively. In cryo-EM reconstruction, we are given a noisy
input image I = T (X), T ∼ T , the set of transformations that apply additive Gaussian noise
N (0, σ) in real space, where T and X are unknown (Eqn. 6).

Denoising and Self-Distillation. Our key insight is that CryoDRGN inherently acts as a denoiser,
as it produces clean 3D reconstructions from noisy input images. We leverage this denoising prop-
erty to use CryoDRGN as its own teacher, performing self-distillation in the form of generating
noise-augmented views for self-supervised learning. In order to ensure that CryoDRGN is a strong
denoiser, we first pre-train the model for N epochs with the usual VAE objective. Then, in subse-
quent epochs, we perform denoising as follows: given a noisy input image I = T0(X), T0 ∼ T , we
compute its latent representation z0 = qξ(T0(X)), reconstruct a denoised 3D volume using decoder
pθ, and render a 2D image X̂ using the cryo-EM image model (see Eqn. 6 and Fig. 1). Since X̂
is in Fourier space, we first apply the inverse Hartley transform to convert x̂ to a real-space image,
add Gaussian noise ϵ ∼ N(0, fjσ), where noise factors fj , j = {1, . . . , J} are hyperparameters,
and apply the forward Hartley transform to obtain augmented views T1(X), . . . , TJ(X). The noise
level σ is estimated from X using a heuristic. Unless stated otherwise, J = 3, but even with a single
augmented view (J = 1) we get competitive performance, as shown in Table 4.

Self-supervised learning for noise-invariant representations. With multiple augmented views
T (X) = T0(X), . . . , TJ(X), we perform self-supervised learning to encourage robust and noise-
invariant representations. Each augmented image is passed through the encoder qξ to obtain latent
vectors z1, . . . , zJ . To enforce invariance across these noise-augmented views while preserving
meaningful structural variation, we apply the VICReg (Bardes et al., 2021) loss, chosen for both its
empirical effectiveness and architectural simplicity. Unlike contrastive approaches, VICReg does
not require negative samples or separate encoders for different views. In addition to enforcing
invariance, VICReg promotes decorrelation across embedding dimensions and enforces sufficient
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Table 1: Quantitative Performance on synthetic datasets. Comparison between CryoDRGN and
CryoNOO on train and test splits across three datasets. CryoNOO maintains performance on the
train set while performing better on test views.

Method Split IgG-1D IgG-1D (SNR 0.01) IgG-RL

Mean (std) Median Mean (std) Median Mean (std) Median

CryoDRGN Train 0.383 (0.015) 0.387 0.352 (0.011) 0.354 0.367 (0.020) 0.369
CryoNOO 0.383 (0.002) 0.383 0.359 (0.005) 0.359 0.361 (0.020) 0.363

CryoDRGN Test 0.330 (0.012) 0.326 0.300 (0.021) 0.297 0.316 (0.012) 0.316
CryoNOO 0.367 (0.015) 0.372 0.334 (0.019) 0.338 0.339 (0.014) 0.340
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Figure 2: Qualitative results for IgG-1D. We find that CryoNOO can recover the 1D circular
motion of the dataset in the test views, whereas CryoDRGN cannot recover this structure on the test
dataset. This is also reflected in the latent spaces, where CryoNOO recovers the circular motion.

per-dimension variance, which helps prevent representation collapse and supports disentanglement
of conformational variability. We note that conventional data augmentation in real space performs
poorly (Table 7).

To use VICReg, we simply add a projection head h (expander), implemented as a multi-layer per-
ceptron (MLP), which maps each latent vector zj to a higher-dimensional embedding space. The
VICReg objective (see Section 3.1) is jointly optimized with the original VAE loss during training.
The overall training objective is:

L(X, z0, . . . , zJ) = LVAE(X, z0) + λVICReg

 J∑
j=1

LVICReg(z0, zj)

 (5)

where λVICReg is a hyperparameter that controls the strength of the VICReg loss. We use 0.3 for this
λVICReg. As in VICReg, the expander h is only used for training and is thrown away after training,
so after training we are left with a CryoDRGN model and inference proceeds identically to that of
CryoDRGN. An overview of the full procedure is shown in Figure 1.

Qualitative evaluation. We evaluate latent spaces visually by mapping Ztrain, Ztest into a shared
low dimensional space using a dimensionality reduction technique such as PCA or UMAP (McInnes
et al., 2018). Unless otherwise stated, we visualize train and test distributions for the same model
with a shared dimensionality reduction transformation.

4 RESULTS

We conduct extensive evaluation of CryoNOO on both synthetic and real datasets, presenting both
qualitative and quantitative results for heterogeneous reconstruction and latent space consistency
between training and test data distributions.
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SARS-CoV-2 Spike Protein

Figure 3: SARS-CoV-2 Spike Protein. Sampled density maps and latent embeddings visualized
using UMAP, colored by K-means cluster labels (k = 5). Cluster centroids are indicated, and
corresponding density maps illustrate centroid structures. CryoNOO is able to recover the structure
of the protein on the test views, whereas CryoDRGN completely fails.

4.1 HETEROGENEOUS RECONSTRUCTION OF SYNTHETIC DATASETS

Datasets. We evaluate CryoNOO on the IgG-1D and IgG-RL datasets from CryoBench (Jeon
et al., 2024), which both simulate the conformational heterogeneity of the human IgG antibody.
IgG-1D introduces simple conformational variability by simulating a one-dimensional motion,
achieved by rotating a single Fab domain of the antibody along a circular arc. In contrast, IgG-RL
features a more complex ensemble generated by randomly sampling the dihedral angles of the back-
bone of the flexible linker, resulting in diverse conformations. To generate a dataset of novel views,
we simulate the image formation model following the CryoBench (Jeon et al., 2024) pipeline. We
sample random poses, CTF defocus values, and additive Gaussian noise to generate a dataset of
100k images. We use a default noise level of SNR 0.1, and additionally evaluate performance un-
der higher noise conditions (SNR 0.01) for the IgG-1D dataset. More details can be found in the
Appendix.

Evaluation Metrics. To evaluate reconstruction quality, we use the per-image Fourier Shell Corre-
lation (FSC), which quantifies similarity between reconstructed volumes and ground truth structures
for a heterogeneous dataset. Since ground truth is unavailable for real cryo-EM datasets, this eval-
uation is limited to synthetic datasets (IgG-1D, IgG-RL). Following the protocol in Jeon et al.
(2024), we randomly sample one image per ground truth structure (100 images total) and reconstruct
individual volumes using latent coordinates inferred from the trained encoder. The area under the
FSC curve (FSCAUC) is computed by comparing each reconstruction to its corresponding ground
truth volume.

Results. Quantitative results are presented in Table 1. We find that CryoNOO improves generaliza-
tion without compromising training performance, as training set performance is overall comparable
between CryoNOO and CryoDRGN, but CryoNOO significantly improves test performance. The
better amortization of CryoNOO is also reflected in the latent space. In Figure 2, we present rep-
resentative reconstructions of 10 structures each from the training and test sets for IgG-1D. These
samples are drawn uniformly from the full set of 100 conformations and are not cherry-picked. For
IgG-1D, CryoNOO successfully captures the 1D circular motion of the Fab region in the latent
for both the train and the test set, whereas CryoDRGN only succeeds on the train set. Similarly,
CryoNOO successfully reconstructs volumes in both the train and test cases, while CryoDRGN fails
on the test set. In the more difficult IgG-RL dataset, CryoNOO does a much better job of capturing
the orientation of the flexible Fab region in test set reconstructions, while providing better organiza-
tion in the latent space. However, there still remains a gap between the train and test latent spaces

6
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EMPIAR-10180

Figure 4: EMPIAR-10180. Sampled density maps and latent embeddings visualized using UMAP,
colored by K-means cluster labels (k = 5). Cluster centroids are indicated, and corresponding den-
sity maps illustrate centroid structures. CryoNOO produces much higher resolution reconstruction
on the test views than CryoDRGN.

on the IgG-RL dataset (Table 1), which we attribute in part to the fact that existing reconstruction
methods, such as CryoDRGN, already struggle to reconstruct IgG-RL in the overfitting case.

4.2 HETEROGENEOUS RECONSTRUCTION OF EXPERIMENTAL DATASETS

Datasets. We evaluate our method on two publicly available cryo-EM datasets that exhibit structural
heterogeneity. The first is the SARS-CoV-2 Spike glycoprotein ectodomain, which displays
conformational variability between open and closed receptor-binding domain (RBD) states Walls
et al. (2020). We adopt the pre-processing procedure from Levy et al. (2024). The second dataset,
EMPIAR-10180, contains images of the pre-catalytic spliceosome Plaschka et al. (2017), a highly
flexible macromolecular complex. For EMPIAR-10180, we follow the preprocessing pipeline de-
scribed in Zhong et al. (2021). Both datasets are split into training and test sets using an 80/20 ratio.
More details are provided in the Appendix.

Results on SARS-CoV-2 Spike Protein (Walls et al., 2020). The original study resolved two dis-
tinct conformations of the spike protein in closed and open states at high resolution. We apply
K-means clustering (k = 5) in the latent space and reconstruct density maps from the cluster cen-
troids (Fig. 3). Our method successfully recovers the distinct conformations from the unseen test
set, clearly resolving both open and closed RBD states (e.g., yellow and skyblue structures). In con-
trast, CryoDRGN only reconstructs accurate structures for images in the training set and produces
volumes resembling pure noise. Qualitative results on the train data are in Appendix (10).

Results on EMPIAR-10180 (Plaschka et al., 2017). The inherent flexibility of this complex presents
a challenging test case, requiring models to recover a continuous conformational landscape rather
than discrete states. In Figure 4, we visualize density maps reconstructed from the centroids of
K-means clusters of the test set embeddings. Compared to CryoDRGN, which produces noisy and
poorly resolved reconstructions, CryoNOO recovers sharper density maps that better preserve detail.
Qualitative results on train data are in Appendix (11).

4.3 EVALUATING AMORTIZATION

Comparison with autodecoding.

To demonstrate the effectiveness of our approach, we compare against CryoDRGN-AI, an autode-
coder method (Levy et al., 2025). Since autodecoding methods have no encoder and do not amortize,

7
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Table 2: Comparison with autodecoding. Total Time, Inference Time, Per-image FSCAUC, Mean
(std), Latent Metrics

Method Inference Time Total Time FSCAUC (↑) KLD (↓) TV (↓) WD (↓)

CryoNOO 6.04 min 2:03:42 0.367 (0.015) 2.319 0.2995 1.376
CryoDRGN-AI (+ 1ep) 2.15 min 3:38:04 0.342 (0.002) 12.471 0.762 1.609
CryoDRGN-AI (+ 25ep) 53.75 min 4:29:40 0.365 (0.013) 12.379 0.767 1.607

Table 3: Latent Distribution Shift. We report KLD, TV, JSD, Hellinger (Hell), and Wasserstein
distance (WD). Best results per dataset are bolded.

Dataset Method KLD (↓) TV (↓) JSD (↓) Hell (↓) WD (↓)

IgG-1D (SNR 0.1) Jeon et al. (2024)
CryoDRGN 65.8445 0.9554 0.6319 0.9302 1.5880
CryoNOO 2.3190 0.2995 0.0725 0.2755 1.3762

IgG-1D (SNR 0.01) Jeon et al. (2024)
CryoDRGN 4.1191 0.5974 0.2657 0.5505 1.1627
CryoNOO 1.3627 0.2169 0.0372 0.1949 1.1612

IgG-RL Jeon et al. (2024)
CryoDRGN 64.2357 0.9977 0.6875 0.9835 2.1037
CryoNOO 5.9402 0.7331 0.3791 0.6743 1.4984

EMPIAR-10180 Plaschka et al. (2017)
CryoDRGN 9.1861 0.7669 0.4247 0.7234 1.9709
CryoNOO 1.6079 0.5093 0.1935 0.4614 1.0669

Sars-Cov-2-Spike Walls et al. (2020)
CryoDRGN 9.1861 0.7669 0.4247 0.7234 1.9709
CryoNOO 2.3950 0.6085 0.2696 0.5529 1.1414

test-time optimization is required for novel views in order to optimize their latent codes. In contrast,
CryoNOO requires no training at inference time and only needs a single forward pass of the network.

Specifically, starting with the latent codes from a CryoDRGN pre-trained for 50 epochs, we first
train CryoDRGN-AI on the training data. At inference time, we continue training on the test data
until reaching a comparable per-image FSC score. As shown in Table 2, our method generalizes
to novel views without any additional training (via amortization), whereas CryoDRGN-AI requires
about 25 extra epochs. Since CryoNOO only requires one forward pass for inference, CryoNOO
achieves a nearly 95% efficiency gain over the autodecoder baseline. Moreover, in terms of the
latent distribution comparison, our approach outperforms CryoDRGN-AI. Importantly, CryoDRGN-
AI also requires initialization from the latent codes of a CryoDRGN pre-trained for 50 epochs and
50 epochs of additional training in addition to the 25 updates during the autodecoding inference
process, so the complete pipeline requires more than twice the total time of CryoNOO. Total time is
presented in Table 2.

Train-Test Overlap in Latent Space. Table 3 presents the KL divergence, Total Variation, JSD,
Hellinger distance, and Wasserstein distance between training and test latent distributions for Cry-
oDRGN and our method across five datasets, including both synthetic (IgG-1D, IgG-RL) and real
(EMPIAR-10180, SARS-CoV-2 Spike) cases. Across all datasets, our method consistently achieves
significantly lower latent distance compared to CryoDRGN.

Figure 2 shows a PCA visualization of the learned latent space for both our method (top) and Cryo-
DRGN (bottom) on the IgG-1D dataset. We project the training and test latent embeddings onto the
first two principal components computed from the training set. Our method yields a well-aligned and
continuous latent manifold across both training and test samples. The test embeddings (top middle)
are overlapped with the same principal subspace structure as the training embeddings (top right),
and their overlay (top left) shows a high level of overlap, indicating that CryoNOO has successfully
amortized.

In contrast, CryoDRGN exhibits poor alignment between training and test embeddings. While the
training set displays clear continuous variation (bottom right), the test set (bottom middle) collapses
into a highly concentrated region, and the overlay (bottom left) shows a severe mismatch in latent
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coverage. These observations suggest that CryoDRGN overfits to seen views and fails to extend its
latent representation meaningfully to novel inputs.

4.4 ABLATION STUDY

We conducted an ablation study on the IgG-1D (SNR 0.1) dataset to evaluate the contribution
of each component in our framework. Unless otherwise stated, we follow CryoDRGN defaults,
training for 50 epochs with a batch size of 64 and an expander dimension of 1024. Our method is
activated after N = 10 epochs of standard CryoDRGN training, with noise factors of 1, 2, and 3,
and a VICReg loss weight of λ = 0.3.

Table 4: Ablation Study on IgG-1D (SNR 0.1).
Per-image FSCAUC. Mean (std).

Variant FSCAUC

Ours 0.367 (0.015)

w/o CryoDRGN warmup 0.259 (0.035)
+ warmup (N = 5) 0.363 (0.015)
+ warmup (N = 40) 0.34 (0.019)

Single noise 0.364 (0.013)

λ = 1.0 0.349 (0.022)
λ = 0.1 0.345 (0.02)

Expander dim = 2048 0.367 (0.014)
Expander dim = 32 0.310 (0.034)
Expander dim = 128 0.361 (0.018)
Expander dim = 4096 0.366 (0.015)
No Expander 0.345 (0.024)

Only Invariance 0.331 (0.012)
SimSiam Chen & He (2021) 0.344 (0.016)

We found that skipping the CryoDRGN warm-up
phase led to degraded performance, while acti-
vating our method after 5–10 epochs yielded the
best results, highlighting the importance of early-
stage reconstructions for generating meaningful
denoised views. A single noise-augmented view
proved sufficient for strong generalization, and
we observed that both over-regularization (λ =
1) and under-regularization (λ = 0.1) impaired
performance. Although VICReg typically uses
high-dimensional expanders (e.g., 8192), our
method performs well with significantly lower di-
mensional expanders. Using no expander per-
forms similarly to using an expander with poor
dimension. Finally, we tested SimSiam (Chen &
He, 2021) as an alternative self-supervised frame-
work, but found that the performance of SimSiam
is worse than that of VICReg, showing that im-
provements in self-supervised learning methods
can directly translate to our setting. Using only an
invariance loss is even worse, showing the need to
use self-supervised learning to produce noise-invariant representations. Additional details are pro-
vided in the Appendix.

5 DISCUSSION

We introduce the first fully amortized inference framework for generalizable cryo-EM reconstruc-
tion under novel views. Leveraging the inherent denoising capability of CryoDRGN, we develop
a self-distillation approach using noise-augmented views to learn noise-invariant representations.
Where existing methods fail to reconstruct 3D structures from novel test distributions, our approach
succeeds, preserving stable and consistent latent-space distributions across all evaluated datasets.
Thanks to its fully amortized inference design, the framework scales effectively to large datasets
with minimal computational overhead. Our method is promising technique for reducing the com-
putational cost of cryo-EM reconstruction, allowing the user to potentially train on only a small
subset of a large cryo-EM imaging dataset but perform inference on the whole dataset. Additionally,
improving the generalizability of cryo-EM reconstruction models could enable high-quality initial
models to be trained from much smaller subsets of particles, which could then bootstrap traditional
refinement workflows, drastically reducing computational costs.

CryoNOO represents a step toward cryo-EM models that do not overfit to the training set. While
our method focuses on generalizing to unseen views of the same protein, generalizing to new pro-
tein structures is an exciting frontier challenge for cryo-EM reconstruction. We envision a future
where accurate structures can be reconstructed from relatively few observations, without requiring
millions of identical particles. Achieving this vision will require models that learn strong priors over
protein images and 3D structures from cryo-EM data and generalize robustly beyond the training
distribution. CryoNOO takes a first step in this direction by providing a simple yet effective strategy
for improving generalization under the high-noise conditions intrinsic to cryo-EM.

9
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Ethics statement. Our method for generalizable cryo-EM reconstruction under novel views helps
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writing of the paper.
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A BENCHMARK DATASETS

A.1 SYNTHETIC DATASETS

IgG-1D. IgG-1D is a simulated, diagnostic conformational heterogeneity dataset from Cry-
oBench Jeon et al. (2024) derived from the atomic model of human IgG antibody. Heterogeneity
was introduced by rotating a single Fab domain about its hinge in a circular arc. The dataset consists
of 100,000 synthetic images (128×128 pixels) at a pixel size of 3 Å/pix.

IgG-RL. IgG-RL is a more challenging simulated conformational ensemble dataset from Cry-
oBench Jeon et al. (2024) based on the same IgG antibody, but with a flexible linker region sampling
a rich set of configurations. Instead of a single rotation, the heterogeneity here is generated by ran-
domizing the backbone dihedral angles of the antibody’s hinge according to statistical distributions
of disordered peptides, which produces a broad range of IgG conformations not confined to a 1D
trajectory, including bends and twists of the Fab arms. Like IgG-1D, 100,000 projections were
simulated at 128² pixels (3 Å/pix).

Novel View Datasets. For the novel view datasets, we follow the dataset generation protocol
described in Jeon et al. (2024). Starting from 256 × 256 × 256 density maps provided by Cry-
oBench Jeon et al. (2024), we generate 2D projections by uniformly sampling poses R ∈ SO(3)
and in-plane translations t ∈ [20, 20]2 pixels. The contrast transfer function (CTF) is modeled with
an accelerating voltage of 300 kV, a spherical aberration at 2.7 mm, and an amplitude contrast of
0.1. Defocus values are randomly sampled without replacement from EMPIAR-11247 Feathers
et al. (2022). Gaussian noise is added to achieve a signal-to-noise (SNR) ratio of 0.1 and 0.01. We
simulate 1,000 images per conformation, resulting in a total of 100,000 images. Finally, the images
are downsampled to D = 128 using Fourier cropping.

A.2 EXPERIMENTAL DATASETS

EMPIAR-10180. This is an experimental cryo-EM dataset of the pre-catalytic spliceosome (yeast
B complex) featuring large-scale continuous structural rearrangements Zhong et al. (2021). The
dataset contains roughly 327,490 images of the spliceosomal complex with 320×320 pixels and
pixel size 1.7 Å/pix. Our experiments use a filtered subset of these particles focusing on intact
spliceosome images. The high flexibility of this complex provides a challenging test on experimental
data as methods must recover a continuous bending/twisting landscape rather than a few discrete
states. The dataset is split into training and test sets with an 80/20 ratio, resulting in 124,197 training
samples and 31,050 test samples.

SARS-CoV-2 Spike. This is a single-particle experimental dataset of the SARS-CoV-2 spike gly-
coprotein ectodomain exhibiting primarily conformational heterogeneity between open and closed
receptor-binding domain configuration Walls et al. (2020). This dataset comprises roughly 370,000
particle images of the spike ectodomain, which was downsampled to 128×128 pixels at 3.3 Å/pix
for efficiency. The dataset is split into training and test sets with an 80/20 ratio, resulting in 165,008
training samples and 41,252 test samples.

B IMPLEMENTATION DETAILS

Optimization. We train all models in Pytorch using 1 NVIDIA A100 GPU. For the synthetic
datasets (IgG-1D and IgG-RL), we follow CryoDRGN Zhong et al. (2019; 2021) using the same
training schedule and optimization parameters. We use Adam Kingma (2014) optimizer with learn-
ing rate set to 0.0001 without weight decay. Moreover, we applied learning rate scheduling us-
ing torch.optim.lr scheduler.ReduceLROnPlateau, which reduces the learning rate
when the total loss stops decreasing. Specifically, we used the scheduler in min mode with a reduc-
tion factor of 0.5 and a patience of 3 epochs. This scheduling strategy was only applied to CryoNOO,
as no improvement was observed when applied to CryoDRGN Zhong et al. (2019) (0.331 vs 0.330
FSC AUC).

Noise estimation for experimental datasets. Following the cryo-EM image formation model (Eqn.
6), we assume that the noise in cryo-EM images is additive mean zero Gaussian noise ϵ ∼ N (0, σ)
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in real space. Thus, to create noise-augmented images that resemble the data distribution from
denoised images, it suffices to estimate σ of the Gaussian additive noise.

Our strategy for estimating σ consists of masking the signal and estimating σ as the standard devia-
tion of the background pixels. We derive our noise estimation as follows: first, we note that almost
all of the power of a cryo-EM image is concentrated at the low frequencies in the power spectrum.
Thus, the high frequencies of the power spectrum are dominated by the power spectrum of Gaussian
noise, which has a constant power spectrum σ2. To compute σ, we calculate the power spectrum of
the image and average the power at all frequencies k bigger than some threshold kthresh. We can

then calculate σ using the Plancherel theorem for the 2D discrete Fourier transform as σ =
√

P
D2 .

The complete algorithm is given in Algorithm 1. The radial average function takes a 2D array
and averages the values of the ray over concentric rings around the center of the 2D array.

Algorithm 1 Noise estimation from cryo-EM images

Require: Cryo-EM image In ∈ RD×D, n = 1, . . . , N , frequency threshold kthresh
1: σs← []
2: for j ← 1, . . . , N do
3: Îj ← FFT(Ij)

4: PS ← |Îj |2
5: rad← radial average(PS)

6: P ← 1
D−kthresh

∑D
k=kthresh

r[k]

7: σs← σs ∪ {
√
P/D2}

8: end for
9: return σ = 1

N

∑N
i=1 σs[i]

Noise factors (fj). We multiply each noise factor fj with the base standard deviation σ to generate
Gaussian noise, i.e., ϵ ∼ N(0, fjσ). For synthetic datasets, we can reproduce the exact noise level
by simulating images using the image formation model described in Jeon et al. (2024), starting
from the before noise images. Since the original noise level (σ) was estimated from 256× 256
images and we downsampled them to 128× 128, the effective noise level increases by a factor of 2.
Therefore, applying a noise factor of 2 restores the original noise level. For experimental datasets,
we use Algorithm 1 to estimate the noise level σ, and perform a grid search to determine appropriate
noise factors. The detailed noise factors (fj) and noise levels (σ)—including the original σ for
synthetic datasets and the estimated σ for experimental datasets—are shown in Table 5.

Table 5: Noise standard deviation (sigma) for each dataset.

Dataset Original / Estimated σ Noise factors fj

IgG-1D (SNR 0.1) 1.6979 1, 2, 3
IgG-1D (SNR 0.01) 5.3662 1.5, 2, 2.5
IgG-RL (SNR 0.1) 1.6833 1.5, 2, 2.5
EMPIAR-10180 1.5396 9, 10, 11
SARS-CoV-2 Spike 3.2813 9, 10, 11

Architecture. We adopt the standard CryoDRGN Zhong et al. (2019) architecture, consisting of a
VAE with fully connected encoder and decoder networks. Both the encoder and decoder are 3-layer
residual MLPs with 1024 hidden dimensions, and the latent variable z is 8-dimensional. For the
expander h, we use a 3-layer MLP with 1024 hidden dimensions per layer for the IgG-1D (SNR
0.1) and IgG-RL datasets, and 2048 hidden dimensions for the remaining datasets. BatchNorm and
ReLU activations are applied after each layer, except the last layer.

Masking. In the original CryoDRGN setting, a circular spatial mask is applied during both decoding
and loss computation for computational efficiency and improved performance, while the encoder
processes the full image. In contrast, in our setting, the mask is applied only during loss computation,
as we retain the full image size in order to add noise after the inverse Fourier transform.

2



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Computational costs We report reconstruction quality (per-image FSC on novel views),
total model memory, and training time for IgG-1D (SNR 0.1).

Model FSC AUC (Novel Views) Memory (MB) Time (hh:mm:ss)

CryoDRGN 0.330 (0.012) 75.84 1:42:17 (2:02/epoch)
CryoNOO (1 noise) 0.364 (0.013) 83.97 1:49:27 (2:44/epoch)
CryoNOO (3 noises) 0.367 (0.015) 83.97 1:57:38 (2:56/epoch)

Table 7: Additional experiments. IgG-1D (SNR 0.1).

Model FSC AUC (Novel Views)

CryoDRGN 0.330 (0.012)
CryoDRGN + Crop / Flip / Rotations 0.334 (0.008)
CryoDRGN + Noise Aug 0.333 (0.011)

CryoDRGN 0.330 (0.012)
CryoNOO 0.367 (0.015)

Decoder freeze 0.359 (0.009)

Noise factors (×2) 0.361 (0.019)
Noise factors (÷2) 0.358 (0.018)

C COMPUTATIONAL COSTS

Table 6 compares CryoDRGN Zhong et al. (2019) and our proposed CryoNOO in terms of recon-
struction accuracy, memory usage, and training time. Specifically, we report FSC AUC on novel
views for the IgG-1D (SNR 0.1) dataset, along with the total model memory, and total training time
over 50 epochs with a batch size of 64. Although a direct comparison is not entirely fair—since Cry-
oDRGN is not fully amortized—we compare computational cost and generalization performance.
The performance gap between using a single noise factor and three noise factors in CryoNOO is
relatively small, so we include results for both settings.

D ADDITIONAL EXPERIMENTS

Conventional data augmentations. Conventional augmentations may partially mitigate overfit-
ting, but does not necessarily enforce invariance to different noise realizations in the latent space.
Our approach explicitly trains for this invariance via denoising. We tested traditional real-space
augmentations (cropping, rotations, and flips) and found that they did not improve novel-view gen-
eralization—the AUC-FSC on the IgG-1D (SNR 0.1) test set was 0.334±0.008, comparable to
the cryoDRGN baseline. Similarly, adding noise yielded no improvement, with an AUC-FSC of
0.333±0.011 (Table 7).

Decoder freeze. Instead of using the self-distillation setup, we freeze the decoder in CryoNOO.
After a warm-up phase with standard CryoDRGN training, the decoder weights are fixed. This
results in lower performance compared to our default self-distillation setting (Table 7).

Different noise factors. To evaluate the sensitivity of our method to the choice of noise factors
(fj), we experiment with different settings. Our default uses noise factors of 1, 2, and 3. We
additionally test with scaled variants: 2, 4, 6 (×2) and 0.5, 1, 1.5 (÷2). As shown in Table 7, although
performance decreases with these alternative noise settings, the FSC AUC remains substantially
higher than that of CryoDRGN Zhong et al. (2019).

Kernel width in Kde. In Table 3, we present the alignment between the train and test latent distri-
butions using K-Fold cross-validation, where the bandwidth search space ranges from 0.1 to 10 in
intervals of 0.2. The log-likelihood of the data is optimized during cross-validation. The selected
bandwidths are reported in Table 8.
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Table 8: Bandwidths used in distribution shift experiments.

Dataset Method Bandwidth

IgG-1D (SNR 0.1)
CryoDRGN 0.3
CryoNOO 0.7

IgG-1D (SNR 0.01)
CryoDRGN 0.7
CryoNOO 0.7

IgG-RL
CryoDRGN 0.7
CryoNOO 0.9

EMPIAR-10180
CryoDRGN 0.9
CryoNOO 0.7

Sars-Cov-2-Spike
CryoDRGN 0.9
CryoNOO 0.7

Table 9: Distribution metrics Comparison of CryoDRGN and CryoNOO across different band-
widths on IgG-1D (SNR 0.1). Best results per row are bolded.

Method Bandwidth KLD TV JSD Hellinger WD

CryoDRGN 0.1 613.8291 0.9996 0.6923 0.9964 1.5880
CryoNOO 0.1 76.1661 0.9994 0.6921 0.9956 1.3762

CryoDRGN 0.5 28.8464 0.8739 0.5382 0.8422 1.5880
CryoNOO 0.5 4.3269 0.4828 1.7720 0.4425 1.3762

CryoDRGN 1.0 11.5941 0.8045 0.4492 0.7477 1.5880
CryoNOO 1.0 1.4308 0.2030 0.0342 0.1868 1.3762

CryoDRGN 3.0 0.7760 0.3591 0.0927 0.3103 1.5880
CryoNOO 3.0 0.3320 0.0583 0.0025 0.0503 1.3762

To provide an additional comparison for Table 3, we present results comparing CryoNOO and Cry-
oDRGN trained on IgG-1D (SNR 0.1) on distribution matching metrics at various settings of the
kernel width. We find that CryoNOO shows better performance over the different bandwidths. we
compute the latent metrics with bandwidth 0.1, 0.5, 1, and 3.

E CRYO-EM IMAGE FORMATION MODEL

The goal of cryo-electron microscopy (cryo-EM) reconstruction is to recover a 3D molecular struc-
ture V : R3 → R from a collection of noisy 2D projection images X1, . . . , XN . Each projection
corresponds to an individual particle captured in an unknown pose, parameterized by a rotation
R ∈ SO(3) and an in-plane translation t ∈ R2. The image formation process for each observation
Xi can be modeled in real space as:

X(rx, ry) = g ∗
(∫

R
V (R⊤r) drz + t

)
+ ϵ, (6)

where r = (rx, ry, rz)
⊤, t = (tx, ty) is the translation vector, and ϵ denotes additive noise intro-

duced during imaging. The function g : R2 → R represents the microscope’s point spread function
(PSF), which is convolved with the 2D projection of the 3D volume. In practice, reconstruction
is generally performed in Fourier space by leveraging the Fourier Slice Theorem (FST) Bracewell
(1956), which simplifies the computation of the image formation model by replacing the projection
integral with taking a slice through the 3D Fourier transform of the volume.
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Figure 5: Per-Image FSC. Each curve shows the average FSC curve across all conformations with
error bars indicating the stan- dard deviation. Colors correspond to methods shown in the legend.

F PER-IMAGE FSC FOR HETEROGENEOUS RECONSTRUCTION

Following Jeon et al. (2024), we use per-image FSC to jointly evaluate reconstruction quality and
structural heterogeneity. In cryo-EM, the Fourier Shell Correlation (FSC) curve is a standard tool
for comparing two volumes by measuring their correlation across concentric shells in the Fourier
domain. Since cryo-EM methods often reconstruct a 3D volume from a single 2D image, per-
image FSC quantifies how well each individual reconstruction matches the ground truth conforma-
tion. Specifically, we compute the FSC between the reconstructed volume from a single image and
its corresponding ground truth, then summarize performance using the area under the FSC curve
(FSC AUC). To capture the distribution of reconstruction quality across conformations, we sample
one image per conformation as in Jeon et al. (2024). The maximum value of FSC AUC is 0.5.

The average per-image FSC curves for CryoNOO and CryoDRGN on the IgG-1D (SNR 0.1 and SNR
0.01) and IgG-RL datasets are shown in Figure 5, with corresponding FSC AUC values summarized
in Table 1.

G QUALITATIVE RESULTS

In this section, we present additional examples of reconstructed volumes from both CryoNOO
and CryoDRGN across the test view datasets. Figures 6, 7, and 8 compare CryoNOO and Cry-
oDRGN Zhong et al. (2019) in 10 representative structures of the IgG-1D (SNR 0.1 and SNR 0.01)
and IgG-RL datasets, respectively. For the IgG-1D (SNR 0.1) dataset, we also include results from
SimSiam Chen & He (2021). These examples correspond to the structures shown in Figure 2, and
are uniformly sampled from the full set of 100 conformations without cherry-picking.

Figure 6 shows reconstructions of 10 representative IgG-1D (SNR 0.1) structures by CryoNOO,
CryoDRGN Zhong et al. (2019), and SimSiam Chen & He (2021), compared to the ground truth
(G.T). CryoNOO consistently reconstructs the correct rotation of the right Fab domain. In contrast,
CryoDRGN often fails to recover meaningful density in the flexible Fab region, resulting in missing
structures. SimSiam performs better than CryoDRGN in recovering the flexible region, but still fails
to capture the correct rotation, as highlighted in the boxed regions. Other unboxed examples also
exhibit incorrect conformations.

Figure 7 demonstrates that under more challenging noise conditions, CryoDRGN fails to recover
the correct rotation direction entirely. None of the structures are accurately reconstructed, and the
per-image FSC scores primarily reflect fixed regions rather than the flexible parts.

For the more challenging IgG-RL dataset, CryoDRGN fails to reconstruct even a plausible “Fab-
like” shape (Fig. 8 and Fig. 9). As in the IgG-1D (SNR 0.01) dataset, it does not capture meaningful
density in the flexible regions. In contrast, CryoNOO successfully recovers these regions and recon-
structs them with the correct orientation.

Finally, we include qualitative results on the SARS-CoV-2 and EMPIAR-10180 training data in
Figure 10, 11.
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Figure 6: IgG-1D (SNR 0.1).

Figure 7: IgG-1D (SNR 0.01).

Figure 8: IgG-RL.
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Figure 9: IgG-RL. CryoNOO can generally recover the orientation of the protein’s arm and appears
to have a better organization in latent space, with different conformations beginning to cluster to-
gether, whereas we do not see any evidence of clustering in the latent space for CryoDRGN.
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Figure 10: SARS-CoV-2 Spike Protein (Train).
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Figure 11: EMPIAR-10180 (Train).
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