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Abstract

Evidence that visual communication preceded written language and provided a
basis for it goes back to prehistory, in forms such as cave and rock paintings depict-
ing traces of our distant ancestors. Emergent communication research has sought
to explore how agents can learn to communicate in order to collaboratively solve
tasks. Existing research has focused on language, with a learned communication
channel transmitting sequences of discrete tokens between the agents. In this work,
we explore a visual communication channel between agents that are allowed to
draw with simple strokes. Our agents are parameterised by deep neural networks,
and the drawing procedure is differentiable, allowing for end-to-end training. In
the framework of a referential communication game, we demonstrate that agents
can not only successfully learn to communicate by drawing, but with appropriate
inductive biases, can do so in a fashion that humans can interpret. We hope to
encourage future research to consider visual communication as a more flexible and
directly interpretable alternative of training collaborative agents.

1 Introduction

Imagine you and a friend are playing a game where you have to get your friend to guess an object
in the room by you sketching the object. No other communication is allowed beyond the sketched
image. This is an example of a referential communication game. To play this game you need to have
learned how to draw in a way that your friend can understand. This paper explores how artificial
agents parameterised by neural networks can learn to play similar drawing games. More specifically,
we reformulate the traditional referential game such that one agent draws a sketch of a given photo
and the second agent guesses, based on the drawing, the corresponding photo from a set of images.

Spurred by innovations in artificial neural networks, deep and reinforcement learning techniques,
recent work in multi-agent emergent communication [4, 17, 19, 29, 37] pursues interactions in the
form of gameplay between agents to induce human-like communication. Artificial communicating
agents can collaborate to solve various tasks: image referential games with realistic visual input
[19, 28, 29], negotiation [2], navigation of virtual environments [7, 22], reconstruction of missing
input [4, 17] and, more recently, drawing games [11]. The key to achieving the shared goal in many
of these games is collaboration, and implicitly, communication. To date, studies on communication
emergence in multi-agent games have focused on exploring a language-based communication channel,
with messages represented by discrete tokens or token sequences [6, 17, 19, 25, 28, 29, 35]. However,
these communication protocols can be difficult for a human to interpret [3, 26, 33]. In this work we
propose a direct and potentially self-explainable means of transmitting knowledge: sketching.

Evidence suggests pre- and early-humans were able to communicate by drawing long before develop-
ing the various stages of written language [20, 38]. Drawings such as petrograms and petroglyphs
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exist from the oldest palaeolithic times and may have been used to record past experiences, events,
beliefs or simply the relation with other beings [13, 21]. These pictorial characters which are merely
impressions of real objects or beings stand at the basis of all writing [16]. This leads us to question if
drawing is a more natural way of starting to study emergent communication and if it could lead to
better written communication later on.

This idea has recently gained interest in several domains. In the cognitive science literature, neural
models of sketching have been developed to study the factors which enable contextual flexibility
in visual communication [8]. Likewise, works such as Fernando et al. [11] attempt to automate the
artistic process of drawing by training agents in a reinforcement learning framework, to play a variety
of drawing games. However, the focus of this paper is to open the doorway to exploring different
types of communication between artificial agents and humans. The novelty of our work is also evident
in the model framework which can be easily extended well beyond aspects previously studied.

Concretely, we propose a visual communication channel in the context of image-based referential
games. We leverage recent advances in differentiable sketching that enables us to construct an agent
that can learn to communicate intent through drawing. Through a range of experiments we show that:

• Agents can successfully communicate about real-world images through a sketching game.
However, training with a loss that tries to maximise gameplay alone does not lead to human
decipherable sketches, irrespective of any visual system preconditioning;

• Introducing a perceptual loss improves human interpretability of the communication protocol,
at little to no cost in the gameplay success;

• Changes to the game objective, such as playing an object-oriented game, can steer the emer-
gent communication protocol towards a more pictographic or symbolic form of expression;

• Inducing a shape-bias into the agents’ visual system leads to more explainable drawings;
• A drawing agent trained with a perceptual loss can successfully communicate and play the

game with a human.

2 Communication between agents

Communication emerges when two or more participants are involved, share a goal, task or incentive
which can be achieved only by transfer of information and so is beneficial for all parties involved.
Studies on language origins [36, 41] consider cooperation to be a key prerequisite to language
evolution as it implies multiple agents having to self-organise and adapt to the same convention.
Studies on the emergence of communication in cooperative multi-agent environments from recent
years have focused on (natural) language learning [28, 29] and its inherent properties such as
compositionality and expressivity [17, 18, 37].

A number of works specifically relate to the overarching ideas of gameplay and learning in this paper.
For example, Foerster et al. [12] proposed a framework for differentiable training of communicating
agents which was later used by Jorge et al. [23] to solve image search tasks with two interacting agents
communicating with atomic symbols. Lazaridou et al. [28] proposed an image-based referential
game in which the agents again communicated using atomic symbols, and were trained using policy
gradients. Havrylov and Titov [19] and Mordatch and Abbeel [35] both demonstrated that it was
possible to use differentiable relaxations to train agents that communicated with sequences of symbols.
In the former case, the agents played the referential game that we adopt for our experiments.

One of the long-term goals of this research in language emergence is to develop interactive machines
that can productively communicate with humans. As such we should ensure that whatever language
artificial agents develop, it is one that human agents can understand. In our work, we take inspiration
from the process and evolution of writing. Written language has undergone many transitions from
early times to reach the forms we now know: from pictures and drawings to word-syllabic, syllabic
and, finally, alphabetic systems. In the beginning, our early ancestors did not know how to communi-
cate in writing. Instead, they began drawing and painting pictures of their life, representing people
and things they knew about [16]. Studies on the communication systems developed in primitive
societies compare ancient drawings to the very early sketches drawn by children and talk about
their tendency of concretely identifying certain things or events in their surrounding world [16, 24].
Psychological and behavioural studies have shown that children try to communicate to the world
through the images they create even when they cannot associate them with words [9].
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3 A model for learning to communicate by drawing

We present a model consisting of two agents, the sender and the receiver in which the sender learns
to draw by playing a game with the receiver. The overall architecture of the agents in the context of
the game they are learning to play is shown in Figure 1. Full code for the model and all experiments
can be found at https://github.com/Ddaniela13/LearningToDraw.
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Figure 1: Overview of the agent architecture and game setup. The ‘sender’ agent is presented
with an image and sketches its content through a learnable drawing procedure. The ‘receiver’ agent
is presented with the sketch and a collection of photographs, and has to learn to correctly associate
the sketch with the corresponding photograph by predicting scores which are compared to a one-hot
target. Both agents are parameterised by neural networks trained end-to-end using gradient methods.

3.1 The Game Environment

Our experimental setup builds upon the image referential game previously explored in studies
of emergent communication [19, 28, 29] that derives from Lewis’s signalling game [30]. We
implemented several variants of Havrylov and Titov [19]’s image guessing game. The overall setting
of these games is formulated as follows:

1. Two target photographs, Ps and Pr, and set of K distractor photographs, {P(k)
d }Kk=1, are

selected.
2. There are two agents: a sender and a receiver.
3. After being presented the Ps target image, the sender has to formulate a message conveying

information about that image.

4. Given the message and the set of photographs, {P(k)
d }Kk=1 ∪ {Pr}, consisting of all the

distractors and the target Pr, the receiver has to identify the target correctly.

The specifics of how the photographs are selected (step 1 above) depend on the game variant as
described below. Success in these games is measured by the binary ability of the receiver to correctly
guess the correct image or not; as such, the measure of communication rate is used to assess averaged
performance over many games using independent images to those used during training. Unlike
Havrylov and Titov [19]’s game in which the sender helps the receiver identify the correct image
by sending a message constructed as a sequence of tokens drawn from a predefined vocabulary, we
propose using a directly interpretable means of communication: sketching the target photograph.

Original game variant. In Havrylov and Titov [19]’s variant of the game there is a pool of photos
from which the distractors and target Ps are drawn randomly without replacement. The target Pr is
set to be equal to Ps. In our original variant experiments the number of distractors, K, is set to 99.
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Object-oriented game variants. In addition to the original setup, we explored two slightly different
and potentially harder game configurations which were intended to induce the agents to draw sketches
that would be more representative to the object class they belong to rather than to the specific instance
of the class. These setups use labelled datasets where each image belongs to a class based on its
contents. In the first of these variants (we refer to this as OO-game same), the target Pr is set to be
equal to Ps, and the distractors and target are sampled such that their class labels are disjoint (that is
every photo provided to the receiver has a different class). The second setup (OO-game different) is
similar to the first, but the target Pr is chosen to be a different photograph with the same class label
as target Ps. The intention behind these games is to explore a universally interpretable depiction of
the different object classes, which does not focus on individual details but rather conveys the concept.
To some extent, this task is an example of multiple instance classification within a weakly supervised
setting [1], which has been previously explored in the emergent communication literature [28].

3.2 Agents’ Architectures

Both agents act on visual inputs. The agents are parameterised by deep neural networks and are
trained using standard gradient techniques (Section 3.3).

The agent’s early visual system. We choose to model the early visual systems of both agents
with the head part of the VGG16 CNN architecture [40] through to the ReLU activation at the
end of the last convolutional layer (commonly referred to as the ReLU5_3 layer) before the final
max-pooling and fully connected layers. In all experiments, we utilise pretrained weights and freeze
this part of the model during training. We justify this choice on the basis that it provides the agents
with an initial grounding in understanding the statistics of the visual world, and ensures that the
visual system cannot collapse and remains universal. The weights are the standard torchvision
ImageNet weights, except in the cases where we explore the effect of shape bias (see Section 4.5). As
these pretrained weights were learned with images that were normalised according to the ImageNet
statistics, all inputs to the VGG16 backbone (including sketches) are normalised accordingly. The
output feature maps of this convolutional backbone are flattened and are linearly projected to a fixed
dimensional vector encoding (64-dimensions unless otherwise specified). Because the datasets used
in gameplay have different resolutions, the number of weights in the learned projection varies.

Sender Agent. The goal of the sender is to produce a sketch from the input photograph. For
experiments in Section 4, we restrict the production of sketches to be a drawing composed of 20 black,
constant width, straight lines on a white canvas of the same size as the input images. Experiments
with fewer lines can be found in Appendix A. It is of course possible to have a much more flexible
definition of a sketch and incorporate many different modelling assumptions. We choose to leave
such exploration for future work and focus on the key question of whether we can actually achieve
successful (and potentially interpretable) communication with our simplified but not unrealistic setup.

Given an input image, the agent’s early visual system produces a vector encoding which is then
processed by a three-layer multilayer perceptron (MLP) that learns to decode the primitive parameters
used to draw the sketch. This MLP has ReLU activations on the first two layers and tanh activation
on the final layer. Unless otherwise specified, the first two layers have 64 and 256 neurons respectively.
The output layer produces four values for each line that will be drawn; the values are the start and
end coordinates of each line stroke in an image canvas with the origin at the centre and edges at ±1.

To produce a sketch image from the line parameters output by the MLP, we utilise the differentiable
rasterisation approach introduced by Mihai and Hare [34]. At a high level, this approach works
by computing the distance transform on a pixel grid for each primitive being rendered. A relaxed
approximation of a rasterisation function is applied to the distance transform to compute a raster image
of the specific primitive. Finally, a differentiable composition function is applied to compose the
individual rasters into a single image. More specifically, the squared Euclidean Distance Transform is
computed, D2

seg(s, e) over all pixels in the image, for each line segment starting at coordinate s and
ending at e. These squared distance transforms are simply images in which the value of each pixel is
replaced with the closest squared distance to the line (computed when the pixels are mapped to the
same coordinate system as the line — so the top left of the image is (−1,−1) and bottom-right is
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(1, 1)). Using the subscript i to refer to the i-th line in the sketch, each D2
seg(si, ei) is rasterised as

Ri = exp

Ç
−
D2

seg(si, ei))

σ2

å
, (1)

where σ2 is a hyperparameter that controls how far gradients flow in the image, as well as the
visible thickness of the line (σ2 = 5× 10−4 for all experiments in this paper). We adopt the soft-or
composition function [34] to compose the individual line rasters into a single image, but incorporate
an inversion so that a sketch image, S, with a white canvas and black lines is produced,

S =

n∏
i=1

(1−Ri) , (2)

where n is the number of lines. Finally, because the backbone CNNs work with three-band colour
images, we replicate the greyscale sketch image three times across the channel dimension.

Receiver Agent. The receiver agent is given a set of photographs and a sketch image, and is
responsible for predicting which photograph matches the sketch under the rules of the specific
game being played. The receiver’s visual system is coupled with a two-layer MLP with a ReLU
nonlinearity on the first layer (the latter layer has no activation function). Unless otherwise specified,
all experiments use 64 neurons in the first layer and 64 in the final layer. The sketch image and
each photograph are passed through the visual system and MLP independently to produce a feature
vector representation of the respective input. A score vector x is produced for the photographs by
computing the scalar product of the sketch feature with the feature of each respective photograph.
This score vector is un-normalised but could be viewed as a probability distribution by passing it
through a softmax. The photograph with the highest score is the one predicted.

3.3 Training details

By incorporating a loss between the predicted scores of the receiver agent and the known correct target
photograph, it is possible to propagate gradients back through both the receiver and sender agents.
As such, we can train the agents to play the different game settings. For the loss function, we follow
Havrylov and Titov [19] and choose to use Weston and Watkins [43]’s multi-class generalisation of
hinge loss (aka multi margin loss),

lgame(x, y) =
∑
j 6=y

max(0, 1− xy + xj) , (3)

where x is the score vector produced by the receiver, and y is the true index of the target, and the
subscripts indicate indexing into the vector. The rationale for this choice is that the (soft) margin
constraint should help force the distractor photographs’ features to be more dissimilar to the sketch
feature. Tests using cross-entropy also indicated that it could work well as an alternative, however.

Optimisation of the parameters of both agents is performed using the Adam optimiser with an initial
learning rate of 1× 10−4 for all experiments. For efficiency, we train the model with batches of
games where the sender is given multiple images which are converted to sketches and passed to the
receiver which reuses the same set of photographs for each sketch in the batch (with each sketch
targeting a different receiver photograph). The order of the targets with respect to the input image’s
sketches is shuffled every batch. Batch size is K + 1, where K is the number of distractors, for all
experiments. Unless otherwise stated, training was performed for 250 epochs. A mixture of Nvidia
GTX1080s, RTX2080s, Quadro RTX8000s, and an RTX-Titan was used for training the models.
Higher resolution images required more memory. Training time varied from around 488 games/second
(10 secs/epoch) for games using STL10 to around 175 games/second (around 5 mins/epoch) for
Caltech-101 experiments with 128px images.

3.4 Making the sender agent’s sketches more perceptually relevant

Perception of drawings has a long history of study in neuroscience [see e.g. 39, for an overview].
In order to induce the sender to produce sketches that are more interpretable, we explore the idea
of using an additional loss function between the differences in feature maps of the backbone CNN
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Figure 2: Computing a ‘perceptual’ loss with the early visual system. Features are extracted from
the sketch S and corresponding photograph P from different layers of the backbone. The features are
normalised over channels and subtracted. We take the sum of the squared differences over channels
and average spatially. Finally, we compute a weighted average across layers.

from the produced sketch and the input image. Such a loss has a direct grounding in biology, where
it has been observed through human brain imaging studies that sketches and photographs of the
same scene result in similar activations of neuron populations in area V4 of the visual cortex, as
well as other areas related to higher-order visual cognition [42]. At the same time, it has also been
demonstrated that differences in feature maps from pre-trained CNN architectures can be good
proxies for approximating human notions of perceptual similarity between pairs of images [45].

Inspired by Zhang et al. [45] we formulate a loss based on the normalised differences between feature
maps of the backbone network from the application of the network to both the input photograph and
the corresponding sketch. Unlike Zhang et al. we choose not to learn weightings for each feature map
channel individually, but rather we consider all feature maps produced by a layer of the backbone to
be weighted equally. Learning individual channel weighting would be an interesting direction for
future research, but is challenging because we would want to avoid the network learning zero weights
for each channel, where the perceptual loss is basically ignored.

Figure 2 illustrates our perceptual loss formulation; note also that unlike Zhang et al. [45] the final
averaging operation does incorporate a (per-layer) weighting, wl, which we explore the effect of
in Section 4.2. More formally, denoting the sketch as S and corresponding photo as P, we extract
L = 5 feature maps, Ŝ(l), P̂(l) ∈ RHl×Wl×Cl , for the l-th layer from the backbone VGG16 network
and unit normalise each across the channel dimension. The loss is thus defined as,

lperceptual(S,P,w) =
∑
l

wl

HlWl

∑
h,w

∥∥Ŝ(l)
hw − P̂

(l)
hw

∥∥2
2
. (4)

To extract the feature maps we choose to use the outputs of the VGG16 layers immediately before the
max-pooling layers (relu1_2, relu2_2, relu3_3, relu4_3 and relu5_3). During training, this
perceptual loss is added to the game loss (lgame). We note that the perceptual loss formulation is
basically equivalent to the content loss in neural style transfer [14]. Neural style transfer combines
this content loss with a style loss which encourages the texture statistics of a generated raster image
to match a target image (which could be a sketch). Our model is different because instead of a loss
encouraging a sketch-like style we directly impose production of sketches by drawing strokes.

4 Experiments

We next present a series of experiments where we explore if it is possible for the two agents to learn
to successfully communicate, and what factors affect human interpretation of the drawings. We report
numerical results averaged across 10 seeds for models evaluated on test sets isolated from training.
Sample sketches from one seed are shown, but an overlay of 10 seeds can be found in Appendix J.

4.1 Can agents communicate by learning to draw?

We explore the game setups described in Section 3.1 and train our agents to play the games using
96× 96 photographs from the STL-10 dataset [5]. For the original game we use 99 distractors. For
the object-oriented games, due to the dataset only having 10 classes, we are limited to 9 distractors.

In Table 1, we show quantitative and qualitative results of the visual communication game played
under the three different configurations. The results demonstrate that it is possible for agents to
successfully play this type of image referential game by learning to draw. One can observe that
although agents achieve a high communication success rate, using only the lgame loss leads to the
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Table 1: Communication success rate and example sketches produced by the agents in order
to achieve the game objective in various setups and with different losses. Sample input images
seen by the sender (the left column) are described as the sketches in the second and third column.
Although successful communication seems to be achieved in all setups, the addition of the perceptual
loss significantly improves human interpretability of the drawings. Examples are from STL-10.

lgame lgame + lperceptual

Original game 71.8% (±6.1) 69.57% (±2.6)

OO-game same 95.46% (±0.6) 96.04% (±0.5)

OO-game different 82.72% (±0.8) 81.09% (±0.6)

emergence of a communication protocol that is indecipherable to a human. However, the addition
of the perceptual loss, motivated in Section 3.4, significantly improves the interpretability of the
communication channel at almost no cost in the actual communication success rate.

One interesting observation is that although the sketches for some of the classes have greatly improved
when incorporating the perceptual loss, for photographs of animals or birds, the sketches are not
particularly representative of the class instance or distinguishable for the human eye. In the following
sections we explore the model to try to better understand what factors affect drawing production.

4.2 What effect does weighting the perceptual loss have on the sketches?

Next, we explore the effect of manually weighting the perceptual loss. More precisely, we look at
what happens when the perceptual loss is applied to the features maps from just one layer of the
backbone network. As previously mentioned in Section 3.2, the feature maps are extracted using a
VGG16 CNN up to ReLU5_3 layer. For example, we can discard all feature maps except those from
the first layer by weighting the perceptual loss by [1, 0, 0, 0, 0]. The effect of the different weights,
which allow only one block of feature maps to be used for drawing the sketch, is illustrated in Table 2.
We apply these constraints in two setups, the original and the OO-game different. In both cases, the
drawings are unrecognisable if the perceptual loss takes into account only the first or the second block
of feature maps. Blocks 3 through 5 seem to provide increasing structure under both game setups. It is
worth noticing that, similar to the results shown in Section 4.1, the communication success rate in the
original setup is always lower than that from the OO-game different setup. Overall, the information
provided by individual layers in the visual extractor network is enough for the agents to develop a
visual communication strategy that can be used to play the game. For humans, however, the later
layers contribute the most to the emergence of a communication protocol that we can understand.

4.3 Does the OO-game influence the sketches to be more recognisable as the type of object?

Comparing the qualitative results of different game formats from Table 1, we notice that agents
develop distinct strategies for representing the target photograph under different conditions. If there
is more variability in the sketches that correspond to photographs from the same class in the original
game setup, and a bit less in the OO-game same, the sketches become more like symbols representing
all the photographs from one class when playing OO-game different. In other words, the object-
oriented games influence the sketches to be more recognisable as the type of object, than the specific
instance of the class. Further examples are shown in Appendix F.

Finally, it is worth noting how our results connect to how humans communicate through sketching
when constrained under similar settings. The far/close contexts used in [8] are somewhat equivalent
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Table 2: The effect of weighting the perceptual loss such that only the feature maps from one
backbone layer are used. The features extracted in the last three layers of the visual system seem to
capture information that leads to sketches which resemble to an extent the corresponding photograph.

Loss weights [1, 0, 0, 0, 0] [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 0, 0, 1]

Orig. game 68.4% (±3.6) 69.6% (±2.2) 71.1% (±2.4) 76.4% (±2.1) 60.5% (±4.8)

OO-game diff 81.9% (±1.2) 81.5% (±0.9) 82.3% (±0.9) 82.5% (±0.5) 81.4% (±0.8)

Table 3: The effect of the model’s capacity on its sketches. The wide model’s sender encodes the
photo into a 1024-dimensional vector (baseline 64), and the receiver’s MLP linear layers have 1024
neurons each versus 64. Examples from training on Caltech-101 in the OO-game different setting.

Baseline Wide

50.46% (±1.5) 64.99% (±1.5)

to our original/object-oriented settings. As Fan et al. [8] observe when humans play a similar drawing
game, our agents achieve a higher recognition accuracy in settings that involve targets from different
classes and develop different communication behaviours based on the context of the receiver.

4.4 How does the model’s capacity influence the visual communication channel?

Regarding the model’s architecture, we look into how drawings are influenced by the width of the
model. In this experiment (results shown in Table 3), we compare the baseline model architecture
detailed in Section 3.2 with a wider variant that has the following changes: the sender encodes the
target photograph to a 1024-dimensional vector (baseline model encodes to 64-dimensional vector),
the receiver’s MLP capacity is also increased from 64 to 1024 in both layers. We present results
for the OO-game different setup played with 128 × 128 Caltech-101 images [10]. The increased
number of classes in Caltech-101 may explain the drop in the communication rate in this particular
game setting, which compared to the same model played under the original game setup (see the
ImageNet-pretrained model in Table 4), is with almost 30% lower. As one might expect, the wider
model allows for more details to be captured, and, hence, conveyed in the sketches. Unlike the
baseline model which, in this object-oriented setup, develops a communication system that is more
representative to the class than to the instance (as discussed in Section 4.3), the wider model starts
to draw distinctive representations for objects of the same type. More sketches can be found in
Appendix G where one can observe the difference between all images with chairs, for example.

4.5 How does the texture/shape bias of the visual system alter communication?

Next, we show that a texture or shape bias of the visual system influences visual communication.
This experiment was run under the original game setup with 128× 128 Caltech-101 images [10]. The
results shown in Table 4 suggest that inducing a “shape bias" into the model does not significantly
improve the agent’s performance in playing the game, but produces more meaningful drawings.
By using the VGG16 weights pretrained on Stylized-ImageNet [15], the communication protocol
also becomes more faithful to the actual shape of the objects. A shape-based sketch is much more
interpretable to humans, as it has been known for a long time that shape is the most important cue for
human object recognition [27]. Further results from this experiment can be found in Appendix H.
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Table 4: The effect on the communication protocol of using a VGG16 feature extractor network
pretrained on datasets that have texture (ImageNet) or shape (Stylized-ImageNet [15]) bias.
Examples are from agents trained using the original game with Caltech-101 data. The shape-biased
sketches are better at capturing the overall object form, particularly for things like faces.

ImageNet weights Stylized-ImageNet weights

78.46% (±2.0) 77.09% (±1.9)

ImageNet
weights
(98.9%)

Stylized
weights
(99.6%)

Figure 3: Sketches from original variant games using the CelebA dataset with perceptual loss
and different biases from backbone weights. Both the texture-biased (ImageNet) and shape-biased
(Stylized-ImageNet) settings exhibit near-perfect communication success, but the shape-biased
sketches are considerably more interpretable and show visual variations correlated with the photos.

4.6 Do the models learn to pick out salient features?

From the results we have presented so far, it is evident that, particularly with the perceptual loss, the
sender agent is able to broadly draw pictures of particular classes of object. The high communication
rates in the original game setting would also suggest that the drawings can capture something specific
about the target images that allow them to be identified amongst the distractors. To further analyse
what is being captured by the models we train the agents in the original game setting (using both
normal and stylized backbone weights) with images from the CelebA dataset [32], which we take
the maximal square centre-crop and resize to 112px. As this dataset contains only images of faces,
messages between the agents will have to capture much more subtle information to distinguish the
target from the distractors. Results are shown in Figure 3; the communication rate is near perfect
for both models, but the difference between the texture-biased and shape-biased models is striking.
There is subtle variation in the texture biased model’s sketches which broadly seems to capture head
pose, but the overall sketch structure is similar. In the shape-biased model head pose is evident, but
so are other salient features like hairstyle and (see Appendix I) head-wear and glasses.

4.7 Do agents learn to draw in a fashion that humans can interpret?

In order to assess the interpretability of sketches drawn by artificial agents, we set up a pilot study in
which a ‘sender’ agent, pretrained in five different game configurations on STL10, is paired up with
a human ‘receiver’ to play the visual communication game. For this pilot study, we collect results
from 6 human participants. Each participant played a total of 150 games, i.e. had to select the target
image for each of the 150 sketches drawn by a pretrained sender. Depending on the game setting, the
list of options differs, but it is composed of distractors and the true target image. The experimental
setup is detailed in Appendix K. Table 5 compares the averaged human gameplay success to that of a
trained ‘receiver’ agent. The results show that the addition of the perceptual loss leads to statistically
significant improvement of humans’ ability to recognise the identity of sketches. For the original
game setting, played in this study with K = 9 distractors which might be of the same category as
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Table 5: Human Evaluation results, no learning allowed. Trained agents communicate success-
fully between themselves in all settings. Addition of the perceptual loss allows humans to achieve
significantly better than random performance (images from STL-10, original games have 9 distrac-
tors/game for these experiments & random chance is 10%). In addition, humans are better at guessing
the correct image class when the models are trained with the additional perceptual loss.

Agent Human Human
Game Loss Lines comm. rate comm. rate class comm. rate

original l = lgame 20 100% 8.3% (±5.4) 15.0% (±2.5)
original l = lgame + lperceptual 20 93.3% 38.3% (±2.5) 55.6% (±7.1)
original l = lgame + lperceptual 50 100% 37.2% (±5.9) 47.8% (±7.4)
oo diff l = lgame + lperceptual 20 83.3% 23.9% (±6.2) 23.9% (±6.2)
oo diff l = lgame + lperceptual 50 90.0% 38.9% (±9.9) 38.9% (±9.9)

the target, we also assess the ability of participants to recognise the class of the sketch. The human
class communication rate shows that humans are better at determining the class of the sketch rather
than the specific instance, even in the case of sketches generated with the game loss only. In the
appendices, we extend the discussion of these results and look into whether communication with an
agent can be improved if the human participants are allowed to learn via feedback.

5 Conclusions and Future Work

We have demonstrated that it is possible to develop and study an emergent communication system
between agents where the communication channel is visual. Further, we have shown that a simple
addition to the loss function (that is motivated by biological observations) can be used to produce
messages between the agents that are directly interpretable by humans.

The immediate next steps in this line of work are quite clear. It is evident from our experiments
that the incorporation of the perceptual loss dramatically helps produce more interpretable images.
One big question to explore in the future is to what extent this is influenced by the original training
biases of the backbone network — are these drawings produced as a result of the original labels of
the ImageNet training data, or are they in some way more generic than that? We plan to address this
by exploring what happens if the weights of the backbone are replaced with ones learned through
a self-supervised learning approach like Barlow twins [44]. We would also like to explore what
happens if the agents’ visual systems had independent weights.

Going further, as previously mentioned, learning a perceptual loss would be a good direction to
explore, but perhaps this should also be coupled with a top-down attention mechanism based on the
latent representation of the input. An open question from doing this would be to ask if this allows for
a richer variation in drawing, and for features to be exaggerated as in the case of a caricature. Such an
extension could also be coupled with a much richer approach to drawing, with variable numbers of
strokes, which are not necessarily constrained to being straight lines. Coupling feedback or attention
into the drawing mechanism itself could also prove to be a worthy endeavour.

We hope that this work lays the groundwork for more study in this space. Fundamentally our desire
is that it provides the foundations for exploring how different types of drawing and communication —
from primitive drawings through to pictograms, to ideograms and ultimately to writing — emerges
between artificial agents under differing environmental and internal constraints and pressures. Unlike
other work that ‘generates’ images, we explicitly focus on learning to capture intent in our drawings.
We recognise however that our work may have broader implications beyond just understanding how
communication evolves. Could for example in the future we see a sketching agent replace a trained
illustrator? The creation of messages for communication inherently involves elements of individual
creative expression and adaption to the emotive environment of both the sender and receiver of the
message. Our current models are clearly incapable of this, but such innovations will happen in the
future. When they do we need to be prepared for the surrounding ethical debate and discussions about
what constitutes ‘art’. This has already been seen in the domain of robot art in which Pix18 [31] is a
trailblazer as it is not only a robot that paints oil on canvas but can also conceive its own art subject
with minimal human intervention.
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