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Abstract
Conditional diffusion and flow-based models
can super-resolve small-scale details in natu-
ral images, but weather and other physical do-
mains face three unique challenges: (i) spa-
tially misaligned inputs and outputs (different
PDE resolutions yield divergent trajectories), (ii)
mismatched and distinct input-output channels
(channel synthesis), and (iii) channel-dependent
stochasticity. To address these challenges, we
first encode the inputs into a latent base dis-
tribution that reconstructs the large-scale and
more deterministic parts of the target. Next,
we handle the remaining uncertainty by inject-
ing noise via an adaptive noise scaling mech-
anism, informed by maximum-likelihood esti-
mates of the encoder’s RMSE. Finally, we ap-
ply Flow Matching to refine the latent state and
add fine-scale physics. Experiments on real-
world weather data (e.g., 25 km to 2 km super-
resolution in Taiwan) and synthetic Kolmogorov
flow indicate that our Adaptive Flow Matching
(AFM) framework provides improvements over
prior baselines—particularly for more stochas-
tic channels—and consistently achieves better-
calibrated ensembles.

1. Introduction
Resolving small-scale physics is crucial in many scientific
applications (Wilby et al., 1998; Rampal et al., 2022; 2024).
For instance, in atmospheric sciences, accurately capturing
small-scale dynamics is essential for local planning and
disaster mitigation. The success of conditional diffusion
models in super-resolving natural images and videos (Song
et al., 2021; Batzolis et al., 2021; Hoogeboom et al., 2023)
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has recently been extended to super-resolving small-scale
physics (Aich et al., 2024; Ling et al., 2024). However, this
task faces significant challenges: (C1) Input and target data
are often spatially misaligned due to distinct PDE solu-
tions operating at various resolutions, leading to divergent
trajectories. For instance, the eye-of-typhoon is spatially
misaligned between low and high resolution in CWA data
due to different dynamical models used to simulate each
scale (see Figure 1). Additionally, the input and target vari-
ables (channels) often represent different physical quanti-
ties, causing further misalignment. (C2) the data exhibit
multiscale dynamics, where certain large-scale processes
are more deterministic (e.g. the propagation of midlatitude
storms), while small-scale physics, such as thunderstorms,
are highly stochastic; and (C3) the record of Earth observa-
tions is limited compared to natural image datasets.

Few efforts have been made to directly address these chal-
lenges in generative learning. Prior work typically relies
on residual learning approaches (Mardani et al., 2023). For
instance, the method proposed in (Mardani et al., 2023) in-
troduces a two-stage process where the deterministic com-
ponent is first learned through regression, followed by ap-
plying diffusion on the residuals to capture the small-scale
physics. While this approach offers a way to separate deter-
ministic and stochastic components, it poses a significant
risk of overfitting. The initial regression stage may over-
fit the training data, and thus fails to adequately represent
the variability of the small-scale dynamics when training
the diffusion model in the second stage (see Appendix A).
Additionally, this two-stage method lacks a principled way
to handle the uncertainty inherent in both the deterministic
and stochastic components.

To address these limitations, we propose an end-to-end ap-
proach based on Flow Matching. The key elements of our
method are as follows: First, an encoder maps the coarse-
resolution input data to a latent space that is closer to the
target fine-resolution distribution. Flow matching is then
applied starting from this encoded distribution to generate
the target distribution. The encoder captures the determin-
istic component, which is then augmented with noise to in-
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Figure 1: Overview of Adaptive Flow Matching (AFM). The encoder transforms (coarse-res.) inputs into a latent distribution more
aligned with the (fine-res.) target. It generates channels absent in the input and corrects both spatial and channel misalignments, such as
repositioning the typhoon’s eye to its more accurate location, and generating radar data. From the latent space, FM generates small-scale
physics by transporting samples from p(z) to p(x) via the velocity field ν(x, t).

troduce uncertainty. The deterministic prediction is based
on the idea that physical processes occur on different time
scales, with larger-scale physics having longer-term, more
deterministic effects. We refer to this method as Adap-
tive Flow Matching (AFM), where the stochasticity is con-
trolled by the noise injected at the encoder output. Proper
tuning of the noise scale is critical to balance determinis-
tic and stochastic dynamics. To achieve this, we propose a
maximum likelihood procedure that adjusts the noise scale
based on the encoder’s error, dynamically tuning it on the
fly according to the encoder mismatch.

AFM can be viewed through the lens of diffusion models,
efficiently implemented using a stable denoising objective.
We conduct extensive experiments on both synthetic and
real datasets. For the real data, we use the same data as
Mardani et al. (2023), the best estimates of the 25km and
2km observed atmospheric state available from meteoro-
logical agencies, centered around a region containing Tai-
wan. Additionally, we synthesize dynamics from a multi-
resolution variant of 2D fluid-flow, where we can control
the degree of misalignment. Our results show that AFM
consistently outperforms existing methods across various
skill metrics. Overall , our main contributions are summa-
rized as:

• Adaptive Flow Matching (AFM): A method for
matching spatially misaligned data (plus misaligned
channels) with multiscale physics.

• Adaptive Noise Scaling: Derived based on ML prin-
ciple, which optimally balances the learning of deter-
ministic and stochastic components between the en-
coder and Flow Matching.

• Experiments on Real and Synthetic Data: Our re-
sults show AFM outperforms existing alternatives. As

the degree of misalignment grows, conditional diffu-
sion/flow models become progressively worse, while
AFM with adaptive noise scaling still performs well.

2. Related Work
Conditional diffusion and flow models. Conditioning is
a powerful technique for paired image-to-image translation
in diffusion/flow models (Batzolis et al., 2021; Kawar et al.,
2022; Xingjian & Xie, 2023). It is commonly used in im-
age restoration tasks such as super-resolution and deblur-
ring, where the goal is to map a low-quality input to a
high-quality target, with corresponding pixel associations
between input and target. However, as our experiments
demonstrate (see Section 5), plain conditional models of-
ten fail when the data is severely misaligned.
Diffusion Bridges and Stochastic Interpolants. Diffu-
sion bridges (De Bortoli et al., 2024; Shi et al., 2023;
Liu et al., 2023; Pooladian et al., 2023) facilitate transi-
tions between distributions but rely on strong assumptions,
such as local alignment in I2SB (Liu et al., 2023), un-
suitable for misaligned data. Stochastic interpolants (Al-
bergo et al., 2023; Albergo & Vanden-Eijnden, 2023; Lip-
man et al., 2022; Liu et al., 2022) assume smooth trans-
port and are often trained with independent coupling be-
tween noise and data, even for conditional problems. In
particular, (Albergo et al., 2023) couples base and target
distributions. Chen et al. (2024) applies stochastic inter-
polants for fluid-flow forecast. But, our AFM suits sce-
narios with misaligned input-output variables, where the
encoder learns large-scale deterministic dynamics, while
adaptively balancing the contribution of deterministic and
stochastic components.
Co-training generative models with encoders. Co-
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Table 1: Comparison between AFM and alternatives for learning the generative map between misaligned data (y,x). Define ϵ ∼
N (0, 1), e := (E(y) − x)/σz , and r := x − E[x|y]. The noise scale σz is the ML noise estimate ensuring E[∥e∥2] = 1. CDM and
CFM represent conditional diffusion and flow models, respectively.

Scheme Perturbation Kernel Score Train Loss (Denoising)

CFM xt = (1− t)ϵ+ tx ∇xt log pt(xt|y) E
[
∥Dθ(xt; t)− x∥2

]
CDM xt = x+ σtϵ ∇xt log pt(xt|y) E

[
∥Dθ(xt;σt)− x∥2

]
CorrDiff rt = r+ σtϵ ∇rt log pt(rt|y) E

[
∥e∥2

]
→ E

[
∥Dθ(rt;σt)− r∥2

]
AFM (Ours) xt = x+ σt(e+ ϵ) ∇xtpt(xt) E

[
(σz/σt)

2∥Dθ(xt;σt)− x∥2 + λ∥e∥2
]

training encoders with diffusion models has been explored
in various domains. DiffCast (Yu et al., 2024) uses an en-
coder to predict the mean precipitation for nowcasting with
a diffusion model that handles the residuals. Similarly,
Grad-TTS (Popov et al., 2021) and Bridge-TTS (Chen
et al., 2022) integrate encoders with diffusion-based pro-
cesses for text-to-speech synthesis. These methods focus
on temporal generation and operate on single channel. In
contrast, our AFM framework tackles superresolution and
channel synthesis with spatial misalignment for mulitvari-
ate data with different stochastic charactristics.
Atmospheric super-resolution (downscaling). In atmo-
spheric sciences, recovery of the fine-resolution from the
coarse resolution is known as downscaling. Several works
have explored statistical downscaling; see, e.g., (Rampal
et al., 2024; Wilby et al., 1998; Rampal et al., 2022). For
instance,CorrDiff (Mardani et al., 2023) learns a diffusion
model on residuals left from a deterministic prediction. It a
two-stage approach where the overfitting of the regression
error propagates to the diffusion in second stage, leading to
reduced generation quality with severely under-calibrated
ensembles. In AFM this is mitigated using the balance be-
tween the deterministic and stochastic errors and the adap-
tive noise scaling per channel.

3. Background and Problem Statement
Consider the task of learning the conditional distribution
p(x|y) from a finite set of paired data {(yi,xi)}Ni=1, where
y ∈ Rc×h×w and x ∈ RC×H×W represent the input and
target, respectively. For example, in atmospheric sciences,
y is a coarse-resolution forecast from the Global Forecast
System (GFS) at 25 km resolution, while x is the fine-
resolution target from a high resolution regional weather
simulation system at 2 km.

This task is particularly challenging because the pairs
(y,x) are often misaligned. First, these pairs might rep-
resent solutions to partial differential equations (PDEs) at
significantly different spatial and temporal discretizations.
This can lead to completely different temporal or spatial
trajectories, including due to effects of internal chaotic dy-
namics. Second, the input and target may involve sev-
eral different channels, e.g., corresponding to distinct at-
mospheric variables with intrinsic correlations, that further

challenges learning the joint distribution.

Before delving into details, it is useful to review Flow
Matching as a critical component of our approach.

Flow Matching. It transports samples from a source dis-
tribution p0(x) to a target distribution p1(x) by learning a
velocity field. Flows are often trained using a linear inter-
polant between noise and data. The forward process simply
follows the ODE:

dxt

dt
= ν(xt, t), (1)

where ν(xt, t) represents the velocity field over time t ∈
[0, 1]. For the linear interpolant, the true velocity that gen-
erates a single data sample x1 is given by ν true(xt, t) =
x1 − x0. The goal is to minimize the discrepancy between
the learned velocity field νθ(xt, t) and the true velocity as:

min
θ

Et,xt

[∥∥νθ(xt, t)− (x1 − x0)
∥∥2] , (2)

where xt := (1 − t)x0 + tx1. Upon convergence, the
learned velocity is used to generate samples x0 ∼ p0(x)
by solving the ODE in Eq. 1.

It is also useful to recognize the connection between Flow
Matching and denoising diffusion models. This is useful
as one can utilize the effective and scalable (denoising)
training of diffusion models such as the celebrated eluci-
dated diffusion models (EDM) (Karras et al., 2022) to sta-
bly learn velocity fields. we deffer the discussion and con-
nections to the Appendix (see section C).

4. Adaptive Flow Matching
To learn the conditional distribution p(x|y), a natural
approach is to use conditional diffusion/flow models.
They have succeeded in image-to-image tasks e.g., image
restoration or super-resolution, where conditioning pro-
vides rich information about the target (Saharia et al.,
2022). However, traditional methods struggle when the in-
put y and target x are significantly misaligned (see Sec-
tion 5 for evidence). To address this, we propose a multi-
scale approach:

Deterministic Dynamics: The input y is encoded into a
latent variable z = E(y). This encoding serves two pur-
poses: (i) it first matches the large-scale, mainly determin-
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Algorithm 1 AFM training

1: Input: λ, {(yi,xi)}Ni=1, M
2: Initialize σz , θ, E
3: repeat
4: Sample σt ∼ U [0, σz] and ϵ ∼ N (0, I)
5: Compute error: e := (E(y)− x)/σz
6: Perturb input: xt = x+ σt(e+ ϵ)
7: Take a gradient step on:

8: ∇θ,E

[(
σz
σt

)2 ∥∥Dθ(xt, σt)− x
∥∥2 + λ ∥e∥2

]
9: Every M steps: σcur

z =
√
E[∥xval − E(yval)∥2]

10: σz ← (1− β)σz + βσcur
z

11: until convergence

istic dynamics of the input and output, aligning the spa-
tially misaligned large-structures due to diverging trajecto-
ries, and (ii) it aligns the channels by projecting the input
into the same space as the output (since y and x represent
different weather variables).

Generative Dynamics: Flow matching is then used to
transform the base distribution p(z) into the target distri-
bution p(x). To account for uncertainty in the encoding
phase, we perturb the latent variable with Gaussian noise:

z = E(y) + σzϵ, ϵ ∼ N (0, I). (3)

In the following sections, we detail the learning process for
both the encoder and Flow Matching.

4.1. Training
The objective is to jointly learn the encoder and the Flow
Matching model. To achieve this, we delve into Flow
Matching in the latent space. Specifically, it establishes
a linear interpolant defined as xt = (1 − t)z + tx, where
z is the encoded state and x is the target, for t ∈ [0, 1].
Consequently, based on Equation (2), the Flow Matching
objective is formulated as:

min
E,θ

Et,x,z∼N (E(y),σz)

[
∥νθ(xt, t)− (x− z)∥2

]
. (4)

Due to the stochasticity in z and the stability of the EDM
framework for training diffusion models—along with its
tuning-free characteristics—it is advantageous to incorpo-
rate denoising through EDM when training Flow Matching.
To this end, the first step is to recast the linear interpolant
as a Gaussian diffusion process (cf. Equation (3)):

xt = (1− t)E(y) + tx+ (1− t)σzϵ, t ∈ [0, 1] (5)

The following proposition simplifies the task of learning
the velocity field as a denoising process.

Proposition 1. For the perturbation model xt = x+σte+
σtϵ, where the noise standard deviation is given by σt :=

Algorithm 2 AFM sampling

1: Input: y, ∆t, σz , Dθ, E
2: Sample noise ϵ ∼ N (0, I)
3: Form latent z = E(y) + σzϵ
4: Initialize x0 = z
5: for t = 0 : ∆t : 1 do
6: σt = (1− t)σz
7: νθ(xt, t) = (Dθ(xt, σt)− xt)/(1− t)
8: xt+∆t = xt + νθ(xt, t) ·∆t
9: end for

10: return x1

(1 − t)σz , the residual error by e := (E(y) − x)/σz , and
the noise ϵ ∼ N (0, 1), the Flow Matching for joint training
of the encoder and flow reduces to the denoising objective:

min
E,θ

Ex,y,σt∼U [0,σz ]

[
(σz/σt)

2
∥∥Dθ(xt, σt)− x

∥∥2] (6)

Intuitively, this denoising objective addresses not only the
Gaussian noise typical of diffusion models but also residual
errors introduced during the deterministic encoding pro-
cess. Note that the residual error e conveys the essential in-
formation about the input conditioning y required for gen-
erating the target x. Therefore, it is crucial to carefully
balance the influence of this error by appropriately select-
ing σz and applying regularization to the encoding process.
These considerations will be discussed next.

4.2. Adaptive Noise Scaling
It is essential to tune the noise parameter σz based on the
data before applying diffusion denoising. Specifically, we
consider the latent variable:

z = E(y) + σzϵ, (7)

where we observe x and y, and aim to adjust σz in a maxi-
mum likelihood (ML) sense so that z aligns closely with x.
In this context, σz controls the scale of the noise added to
the encoder’s output E(y). By leveraging the ML estima-
tor for σz , we can derive it as the root-mean-square-error
(RMSE) of the unnormalized residual error, namely

σz =
√
E[∥x− E(y)∥2]. (8)

In practice, to prevent overfitting, σz is progressively
updated using the encoder’s RMSE on a validation
set.Intuitively, if the deterministic regression model over-
fits to a the training dataset, the validation RMSE will
grow, and thus our AFM scales up the noise in the base
distribution for the Flow Matching. During training we up-
date σz using an exponential moving average (EMA) ev-
ery M = 10k training steps to avoid sudden changes in
stochasticity:

σz ← (1− β)σz + βσcur
z . (9)
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An illustration of the evolving values of σz during training
is provided in Figure 5. Once training completes we fix the
final value of σz for inference.

Alternative Stochastic Encoders. One can alternatively
model uncertainty using a VAE. It essentially imposes KL
regularization on the encoder output to predict µ and σ,
where σ can drive the noise for FM. While valid, we opted
for a simpler ML method that offers a closed-form and in-
tuitive solution for σ (see (Rybkin et al., 2021)). Although
the VAE allows learning of σ from the data, it requires tun-
ing the KL regularization and suffers from the prior hole
problem.

Deterministic to Stochastic Regime. If the data is purely
deterministic, encoder perfectly matches the data and thus
σz = σt = 0. This means there is no work left for the
generative FM . Alternatively, if data is purely stochastic,
encoder returns large error (σz, σt ≫), which leads to base
noise distribution with large variance, that triggers FM.

4.3. Encoder Regularization
Another effective approach to control the residual error e is
through regularization. Specifically, one can impose a re-
construction regularization on the encoder, encouraging the
encoder output to approximate the target, i.e., x ≈ E(y),
thus minimizing the residual error e. In an ideal scenario,
this would lead to e ≈ 0. However, enforcing perfect
matching can adversely affect the generalization capability
of the model, leading to overfitting. To mitigate this, a soft
regularization is applied, controlled by a penalty weight λ.
This weight balances the trade-off between reducing the
residual error and maintaining the generalization ability of
the model. The resulting objective function becomes:

min
E,θ

Ex,y,σt∼U [0,σz ]

[(
σz
σt

)2 ∥∥Dθ(xt, σt)− x
∥∥2 + λ ∥e∥2

]
4.4. Sampling
Once the velocity field νθ(xt, t) = (Dθ(xt, σt)−xt)/(1−
t) is learned using Algorithm 1, sampling requires integrat-
ing the flow forward in time based on the ODE in Equa-
tion (1). The forward integration process from t = 0 to
t = 1 is expressed as:

x1 =

∫ t=1

t=0

νθ(xt, t) dt (10)

In practice, this integration can be approximated using Eu-
ler steps, which are detailed in Algorithm 2

5. Experiments
We evaluate performance of the proposed Adaptive Flow
Matching (AFM) model on two datasets: i) A regional
weather downscaling dataset with real-world meteorolog-
ical observations from Taiwan’s Central Weather Adminis-
tration (CWA) ii) a synthetic multiscale Kolmogorov flow

Table 2: AFM vs. baselines for CWA downscaling: Values
in bold show the best performance. AFM outperforms baselines
except for the deterministic temperature variable, where CorrDiff
excels. Temperature, being the most deterministic, benefits from
CorrDiff’s fully deterministic predictions. While AFM could
match CorrDiff using a UNet encoder and higher λ, this would
compromise stochastic predictions for other variables.

Variable Metric CorrDiff CFM CDM UNet AFM

Radar

RMSE ↓ 5.08 5.06 5.70 5.09 4.90
CRPS ↓ 1.89 1.88 2.39 - 1.78
MAE ↓ 2.50 2.46 2.78 2.50 2.42
SSR→ 1 0.38 0.33 0.46 - 0.44

Temp.

RMSE ↓ 0.83 0.93 0.95 0.86 1.00
CRPS ↓ 0.50 0.58 0.54 - 0.52
MAE ↓ 0.60 0.72 0.70 0.62 0.67
SSR→ 1 0.36 0.41 0.52 - 0.47

E. Wind

RMSE ↓ 1.47 1.45 1.62 1.49 1.44
CRPS ↓ 0.85 0.82 0.93 - 0.80
MAE ↓ 1.07 1.06 1.24 1.09 1.07
SSR→ 1 0.43 0.50 0.61 - 0.61

N. Wind

RMSE ↓ 1.66 1.61 1.84 1.66 1.61
CRPS ↓ 0.95 0.90 1.06 - 0.88
MAE ↓ 1.20 1.16 1.41 1.21 1.17
SSR→ 1 0.41 0.49 0.58 - 0.58

dataset, designed to capture variable degrees of misalign-
ment. Both datasets present significant downscaling chal-
lenges with local and large-scale misalignment, mixed-
scale dynamics, and channel-specific variability.

Baselines. AFM is compared against several baseline de-
terministic and stochastic methods:

• Regression: A standard UNet is trained to predict high-
res. output from low-res. input using MSE training. This
serves as a purely deterministic approach, representing a
baseline for direct super-resolution.

• Conditional Diffusion Model (CDM): CDM maps
Gaussian noise to the high-res. data while conditioned
on the low-res. input. CDM does not explicitly model the
deterministic component in the data.

• Conditional Flow Matching (CFM): A variant of Flow
Matching that interpolates between a Gaussian sample
and a data sample, building deterministic mappings.

• Corrective Diffusion Models (CorrDiff) (Mardani
et al., 2023): A supervised regression is first trained to
learn the mean E[x|y]. The residual e := x − E[x|y] is
then used to train the diffusion model. Early stopping is
used to mitigate the overfitting for the regression stage.

Evaluation Metrics. We report performance using stan-
dard metrics such as RMSE, Continuous Ranked Proba-
bility Score (CRPS), Mean Absolute Error (MAE), and
Spread Skill Ratio (SSR). These metrics provide a compre-
hensive assessment of both the accuracy and uncertainty
quantification of the model’s predictions. RMSE, CRPS,
and MAE measure the estimation error while SSR evalu-
ates the model calibration. To calculate CRPS and SSR we
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Figure 2: AFM vs. baselines for different weather variables. AFM generates more physically consistent outputs, while UNet
(regression) output appears blurred, and CDM struggles to accurately reconstruct radar reflectivity. Note that radar reflectivity is not
present in the input data and is entirely generated as a new channel.
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Figure 3: AFM power spectra vs. baselines for CWA downscaling. AFM exhibits superior spectral fidelity, closely aligning with the
ground truth across all variables, with a particularly strong fidelity for the purely generated radar reflectivity. It consistently outperforms
CorrDiff, especially in capturing high-frequency details across all variables.

produce 64 ensemble members using different seeds. These
metrics are discussed in Appendix F.

Network Architecture, Training, and Sampling. For dif-
fusion model training and sampling, we adopted EDM
(Karras et al., 2022), a continuous-time diffusion model
nspired by SDEs with effective auto-tuning (see Table 1
in (Karras et al., 2022)). We adopt most of the hyperpa-
rameters from EDM and make modifications as detailed in
Appendix E. Note that EDM is used for CDM/CFM as well
in a consistent manner.

5.1. Regional Downscaling for Taiwan
We focus on the task of super-resolving (downscaling) mul-
tiple weather variables for the Taiwan region, a challenging
meteorological regime. The input coarse-resolution data at
a 25 km scale comes from ERA5 (Hersbach et al., 2020),
while the target fine-resolution 2 km scale data is sourced
from the Central Weather Administration (CWA) (Central

Weather Administration (CWA), 2021). For evaluation, we
use a common set of 205 randomly selected out-of-sample
date and time combinations from 2021. Metrics and spec-
tra are computed to compare AFM with baseline models.
We utilize a 32-member ensemble; larger ensembles do not
significantly alter the key findings. A detailed data descrip-
tion is provided first, followed by our observations.

Dataset. The dataset is derived from ERA5 reanalysis data
(Hersbach et al., 2020), focusing on 12 variables includ-
ing temperature, wind components, and geopotential height
at two pressure levels, as well as surface-level variables
e.g., 2-meter temperature and total column water vapor.
The target output data (Central Weather Administration
(CWA), 2021) covers a 900×900km region around Taiwan
on a 448×448 grid. Hourly observations span four years
(2018-2021), split into training (2018-2020) and evalua-
tion (2021) sets. Input (ERA5) data is upsampled using
bi-linear interpolation to match the target domain dimen-
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Table 3: AFM vs. baselines for Kolmogorov Flow for var-
ious misalignment degrees τ . AFM consistently demonstrates
superior performance across varying levels of data misalignment,
showcasing its robustness. While CDM exhibits greater variabil-
ity, this comes at the expense of significantly reduced fidelity.
Note that for deterministic models, CRPS is equivalent to MAE.

τ Metric CFM CDM UNet AFM

3

RMSE ↓ 0.98 1.13 1.15 0.73
CRPS ↓ 0.52 0.58 – 0.37
MAE ↓ 0.69 0.80 0.82 0.51
SSR → 1 0.54 0.69 – 0.62

5

RMSE ↓ 0.96 0.94 1.14 0.76
CRPS ↓ 0.52 0.48 – 0.40
MAE ↓ 0.69 0.67 0.82 0.54
SSR → 1 0.58 0.70 – 0.58

10

RMSE ↓ 1.22 1.24 1.36 1.09
CRPS ↓ 0.67 0.65 – 0.65
MAE ↓ 0.89 0.89 1.00 0.77
SSR → 1 0.56 0.76 – 0.23

sions (CWA) (Hu et al., 2019; Zhang et al., 2018). See
Appendix G.1 for the detailed discussion of the datasets.

Observations. The performance of AFM is compared with
various alternatives, and both deterministic and probabilis-
tic skills are reported in Table 2. We examine three variants
of AFM: with (i) small versus large encoders; (ii) with
additional use of adaptive noise scaling; and (iii) condi-
tioning in the large encoder limit. Notably, temperature is
the most deterministic variable among the four listed, while
radar is the most stochastic one.

Our main finding is that AFM consistently outperforms
existing alternatives across different metrics for non-
deterministic channels (radar and winds). For temperature,
although AFM is not the top performer, one can tune λ
(larger value) in AFM to be as good as CorrDiff. This
however compromises the stochastic prediction for non-
deterministic channels; see the ablation in the Appendix
section Table 12. Ablations are deferred to Appendix I due
to space limitations.

Spectral analysis is crucial for assessing fidelity at differ-
ent scales in weather prediction. Fig. 3 shows that AFM’s
spectra closely match the ground truth across variables. In
contrast, the UNet-based regression scheme fails to gener-
ate high-frequency components. Interestingly, the condi-
tional diffusion model (CDM), commonly used for image
super-resolution, also lacks spectral fidelity. Regarding the
calibration of the generated ensemble i.e., SSR, AFM pro-
vides the best balance, being closest to 1.0. While AFM
does not acheive perfect calibration, it does improve the
balance between the spread and RMSE skill of the gener-
ated ensemble, especially for surface wind channels.

Table 4: Effect of adaptive σz. Experiments were conducted on
the CWA 112 × 112 dataset with adaptive σz and λ = 0.0. For
both encoders adaptive σz significantly enhances performance
across all variables and metrics.

Encoder 1× 1 Conv. UNet
Adapt. σz ✗ ✓ ✗ ✓

Radar
RMSE ↓ 5.01 4.82 5.06 4.95
CRPS ↓ 1.88 1.66 1.83 1.78
SSR → 1 0.45 0.72 0.38 0.44

Temp.
RMSE ↓ 1.13 0.99 1.01 0.94
CRPS ↓ 0.66 0.59 0.57 0.54
SSR → 1 0.39 0.47 0.36 0.40

E. Wind
RMSE ↓ 1.50 1.42 1.48 1.49
CRPS ↓ 0.86 0.78 0.85 0.85
SSR → 1 0.48 0.68 0.46 0.53

N. Wind
RMSE ↓ 1.64 1.58 1.64 1.58
CRPS ↓ 0.94 0.89 0.93 0.95
SSR → 1 0.47 0.66 0.46 0.50

5.2. Multiscale Kolmogorov-Flow
Our Multiscale Kolmogorov Flow dataset offers a sim-
plified simulation of atmospheric dynamics, focusing on
downscaling from a coarse to a fine grid while preserv-
ing physical structures. Kolmogorov flow (KF) is a well-
known scenario where 2D fluid flow in a doubly periodic
domain is forced by spatially varying source of momen-
tum. To mimic the structure of the down-scaling problem
we couple the KF flow ground truth to an otherwise un-
forced fluid system representing a coarse-resolution atmo-
spheric simulation. The strength of this coupling τ controls
how well the coarse simulation tracks the ground truth.

Dataset. The dataset is constructed by simulating dynam-
ics governed by a system of partial differential equations
involving vorticity fields ζl and ζh, coupled through pa-
rameters like τ and influenced by steady-state forcing. The
simulation uses a pseudo-spectral method on a 512 × 512
grid with a 3rd-order Adams-Bashforth time stepper. Dif-
ferent τ values (3, 5, 10) are used to generate training and
test sets where higher values of τ looser coupling which
translates to higher misalignment between low and high res
simulations. Detailed descriptions of the equations and pa-
rameters are provided in Appendix G.2.

Observations. AFM consistently outperforms other meth-
ods across various skill metrics for different degrees of mis-
alignment, denoted by τ (Table 3). Interestingly, while
CDM appears to be the most calibrated, AFM demonstrates
superior performance overall. In this case study, we use a
1× 1 convolutional architecture for the AFM encoder. The
ablations are deffered to Appendix K due to limited space.
This advantage is further supported by the spectral analysis
in Fig. 13, where AFM’s spectra most closely align with
the ground truth, highlighting its robustness in preserving
physical structures even under significant misalignment.
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Figure 4: AFM vs. baselines for Kolmogorov Flow and τ = 10: when the figures are zoomed in, it is apparent that AFM aligns
closer to the ground truth, and the presence of high-frequency artifacts in the baseline models becomes more noticeable.
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Figure 5: Adaptive σz values over training steps for differ-
ent channels. The plot corresponds to AFM with 1 × 1 Conv.
encoder and λ = 0.25. σz increases early training due to high en-
coder error and subsequently converges as the encoder improves.
Stochastic channels e.g., radar reflectivity exhibits the highest σ,
indicating its stochastic nature, while temperature shows the low-
est, reflecting its deterministic nature.

5.3. Ablations
Role of noise scaling (σz). To investigate the effect of
adaptive noise scaling, we tracked the per-channel noise
scale during training (Figure 5) for a 1 × 1 Conv. encoder
with λ = 0.25 on the CWA dataset. Initially set to 1, the
noise scales grow in the early stages due to high encoder er-
ror, then stabilize and converge as training progresses and
the encoder improves. Notably, radar reflectivity exhibits
the highest σz values throughout the training process, re-
flecting its stochastic nature. In contrast, the temperature
channel consistently shows the lowest noise values, align-
ing with its more deterministic nature. These variations in
noise across channels highlight the necessity of an adap-
tive noise scaling approach, particularly when compared to
datasets (e.g., natural images) that exhibit more uniform
noise statistics. To further validate this, we ablated the use
of adaptive σz . As shown in Table 4, incorporating adaptive
noise scaling significantly improves performance for both
the 1×1 Conv and UNet encoders. This adaptability is cru-
cial for handling misaligned data with varying degrees of
stochasticity, ultimately enhancing the AFM model’s over-
all performance and reliability in multiscale physics.

Role of regularization λ. We also investigated how the
AFM model’s performance depends on the λ parameter,
which balances encoder error and variability. For the sim-
pler 1 × 1 Conv. encoder (with only 60 parameters), the
model achieves its best accuracy when λ = 0, indicating
this encoder is lightweight enough and no regularization
is need for fitting the data. In contrast, the more com-
plex UNet encoder benefits from moderate regularization
(λ = 0.25), suggesting that overfitting is more likely with
larger-capacity models and can be alleviated by incorporat-
ing some regularization. Overall, the choice of λ should
be informed by the complexity of the encoder: simpler net-
works require weaker to no regularization, while more ex-
pressive architectures can benefit from a modest regulariza-
tion term. Further ablations and experiments can be found
in the Appendix; see Appendices I and K.

6. Conclusions
We introduced Adaptive Flow Matching (AFM) to address
misaligned data distributions in scientific super-resolution
tasks (e.g., downscaling). AFM combines deterministic en-
coding of large-scale dynamics with Flow Matching, ef-
fectively capturing both deterministic and stochastic com-
ponents of the data. Experiments on synthetic and real-
world datasets demonstrated that AFM outperforms exist-
ing methods, especially when input and target distributions
are significantly misaligned. Future avenues to explore in-
clude: (i) extending AFM to unpaired misaligned datasets
and to other domains (e.g. MRI subsampling in medical
imaging, natural images), (ii) theoretical analysis of its
convergence, especially due to adaptive noise scaling, and
(iii) leverage alternative stochastic encoders such as VAEs.

Impact Statement
This work advances machine learning for scientific data,
introducing a generative framework capable of resolving
fine-scale physical phenomena from coarse, misaligned in-
puts. A primary application is in atmospheric downscal-
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Table 5: Effect of encoder regularization λ. Experiments were
conducted on the CWA 112× 112 dataset with adaptive σz . Reg-
ularization with λ = 0.25 works best for UNet.

Variable Metric 1× 1 Conv. UNet
λ 0.00 0.25 1.00 0.00 0.25 1.00

Radar
RMSE ↓ 4.82 5.10 5.04 5.06 4.95 5.11
CRPS ↓ 1.66 1.83 1.83 1.83 1.78 1.89
SSR → 1 0.72 0.42 0.40 0.38 0.44 0.41

Temp.
RMSE ↓ 0.99 0.85 1.05 1.01 0.94 1.07
CRPS ↓ 0.59 0.50 0.60 0.57 0.54 0.62
SSR → 1 0.47 0.43 0.34 0.36 0.40 0.36

E. Wind
RMSE ↓ 1.42 1.46 1.50 1.48 1.49 1.53
CRPS ↓ 0.78 0.84 0.88 0.85 0.85 0.91
SSR → 1 0.68 0.46 0.44 0.46 0.53 0.41

N. Wind
RMSE ↓ 1.58 1.63 1.67 1.64 1.58 1.74
CRPS ↓ 0.89 0.92 0.95 0.93 0.95 1.03
SSR → 1 0.66 0.46 0.44 0.46 0.58 0.40

ing, where improved resolution and uncertainty quantifica-
tion can enhance early detection of extreme weather events,
contributing to disaster preparedness and public safety. We
are not aware of direct negative societal impacts of this re-
search.
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A. AFM versus CorrDiff
Here we illustrate experimentally how the two-stage workflow of CorrDiff relates to decreased diversity and under-
calibration. We focus on the training dynamics of the UNet regression model, by training one and keeping various check-
points (0.5M, 2M and 50M steps) along training. Then for each checkpoint we learn a diffusion model predict the residual.
However, this approach is prone to overfitting in the first stage, limiting the overall performance. As shown in Table 6
when the regression model is trained for too many steps (e.g., 50M), the variability is significantly reduced. This reduction
in SSR suggests that the regression component becomes overly confident, producing residuals that are narrowly concen-
trated around zero. Consequently the diffusion model only need to model limited variability, which diminishes its ability
to generate diverse corrections at test-time. By contrast, an undertrained (0.5M steps) UNet leaves more stochasticity to be
modeled, which leads to better-calibrated ensembles.

To further elucidate the issue we plot the training and validation losses of the encoder during training in Figure 6. As we
can observe, the UNet regressor show a generalization gap that widens after approximately 500k training steps. This is
evident from the divergence between the training and validation MSE losses across all channels. We also note that the
radar and temperature channels have a wider generalization gap.

These observations highlight a critical limitation of CorrDiff’s two-stage methodology: the initial regression stage is prone
to overfitting, which in turn constrains the diffusion model’s capacity to generalize effectively. To address this issue, the
authors of CorrDiff use early-stopping to chose a less overfit UNet.

Our proposed AFM method addresses this limitation by adopting an end-to-end training setup. AFM simultaneously bal-
ances deterministic and stochastic objectives, preserving sufficient variability in the signal, reducing the risk of overfitting
while at the same time produces more accurate results. An important part of our method is that it takes into account the
different stochasticity levels between channels (see Figure 9 using the adaptive noise scaling, and overall mitigates the
overfitting issue in a more principled and effective way.

To gather the above results for CorrDiff we use the same UNet from the CorrDiff paper which corresponds to the 89M-
parameter model (XL in Table 7). This makes the RMSE and CRPS slightly different to the rest of our experiments where
we used 12M-parameter UNet (L).

Table 6: Effect of two-stage training on ensemble diversity. This table shows how the number of training steps for
the UNet regressor in the first stage influences the final performance of the entire CorrDiff pipeline. In the second stage,
different diffusion models are trained using UNet checkpoints obtained after 0.5M, 2M, and 50M steps. Results indicate
that using less-trained UNet models yields better calibration and higher stochastic variability (SSR), while heavily-trained
UNet models reduce ensemble diversity. This suggests that once a UNet becomes too specialized or biased, the second-
stage diffusion model struggles to correct it and maintain variability in its outputs.

U-Net Training steps
Variable Metric 0.5M 2M 50M

Radar
RMSE ↓ 5.08 5.28 5.13
CRPS ↓ 1.81 1.89 2.10
SSR→ 1 0.52 0.35 0.14

Temp.
RMSE ↓ 0.96 0.93 0.91
CRPS ↓ 0.57 0.58 0.53
SSR→ 1 0.41 0.28 0.31

E. Wind
RMSE ↓ 1.51 1.53 1.48
CRPS ↓ 0.83 0.89 0.87
SSR→ 1 0.60 0.42 0.39

N. Wind
RMSE ↓ 1.72 1.70 1.65
CRPS ↓ 0.97 1.01 0.99
SSR→ 1 0.56 0.39 0.37
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Figure 6: UNet train and validation loss during training on CWA 448× 448 data. Evolution of training and validation
MSE for the UNet regressor across training steps. We observe that the UNet starts overfitting as early as 500k steps.
Furthermore, certain variables like radar reflectivity(blue) and temperature(yellow) show higher amounts of overfitting.
This behavior is the reason that two-stage approaches like CorrDiff utilize early stopping to avoid overfitting the training
data, because this is very difficult to correct on the second stage. AFM resolves this issue by leveraging end-to-end training
determinsticn loss weghting as well as adaptive noise scaling.

B. Proof of Proposition 1
Proposition 1. For the perturbation model xt = x + σte + σtϵ, where the noise standard deviation is given by σt :=
(1 − t)σz , the residual error by e := (E(y) − x)/σz , and the noise ϵ ∼ N (0, 1), the Flow Matching for joint training of
the encoder and flow reduces to the denoising objective:

min
E,θ

Ex,y,σt∼U [0,σz ]

[
(σz/σt)

2
∥∥Dθ(xt, σt)− x

∥∥2] . (11)

Proof. Consider the linear interpolant connecting z ∼ N (E(y), σzI) to the target distribution p(x). This process can be
expressed as:

xt = (1− t)(E(y) + σzϵ) + tx (12)
= (1− t)E(y) + tx+ (1− t)σzϵ (13)
= (1− t)(E(y)− x) + x+ (1− t)σzϵ (14)
= x+ (1− t)σz(e+ ϵ), (15)

where e = (E(y)− x)/σz .

Define σt = (1− t)σz and reinterpret time t in terms of the noise level σt, as is typical in continuous noise sampling (e.g.,
EDM). The perturbation kernel then becomes xt = x+ σt(e+ ϵ).

Now, consider the training objective in (4):

min
E,θ

Et,x,z∼N (E(y),σz)

[
∥νθ(xt, t)− (x− z)∥2

]
.

where the velocity field expressed as a denoiser (or equivalently score form (Vincent, 2011)):

νθ(xt, t) =
Dθ(xt, σt)− xt

1− t
, (16)

which is the reverse-time version of Equation (20), since in Flow Matching, time progresses from t = 0 to t = 1.
Substituting νθ(xt, t) into the Flow Matching objective (4) and simplifying using xt = (1− t)z+ tx and σt/σz = 1− t,
we obtain the denoising objective in (11), completing the proof.
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C. Flow Matching and Diffusion Models
C.1. Diffusion Models (DM)

Diffusion models generate data by transforming a base distribution, often Gaussian noise, into the target data distribution
p0(x). In the forward diffusion process, Gaussian noise with standard deviation σ is added to the data, producing a
sequence of distributions p0(x;σ). As σ increases, the data distribution approaches pure noise. The backward process then
denoises samples, starting from noise drawn from N (0, σ2

maxI) and progressively reducing the noise to recover the data
distribution.

Considering the variance-exploding elucidated diffusion model (EDM), both the forward and backward processes are
described by SDEs. The forward SDE is:

dxt =
√
2σ̇tσt dωt, (17)

while the backward SDE is:
dxt = −2σ̇tσt∇xt log p(xt;σt) dt+

√
2σ̇tσt dωt. (18)

In EDM, denoising score matching is used to learn the score function ∇x log p(x;σ), essential for the reverse diffusion
process. A denoising neural network Dθ(x;σ) is trained as:

min
θ

Ex∼p0,σt∼pσ,n∼N (0,σ2
t I)

[
∥Dθ(x+ n, σt)− x∥2

]
, (19)

and the score function is constructed via∇xt
log p(xt;σt) = (Dθ(xt, σt)− x)/σ2

t .

For completeness, we note that the ODE version of this backward process (used in the main text as Eq. 20) directly links
EDM to Flow Matching-based approaches.

C.2. Connections Between Flow Matching and EDM

While both EDM and Flow Matching methods aim to transform distributions, Flow Matching does so using ODEs for
deterministic evolution, whereas elucidated diffusion models (EDM) leverage SDEs for stochastic denoising. An ODE
formulation for diffusion models bridges the two methods, allowing Flow Matching to benefit from formulations and
network parameterizations introduced for diffusion models (Karras et al., 2022; Song et al., 2021). For the simple noise
schedule σt =

√
t, the ODE for continuous-time EDM is:

dxt

dt
=

xt −Dθ(xt, σt)

t
, (20)

where the right-hand side acts as the velocity field, linking diffusion dynamics to Flow Matching. Note that the diffusion
process runs backward in time from t = 1 to t = 0, whereas the Flow Matching process proceeds in the opposite direction.

D. Connection of AFM to Residual Learning
Consider the case where we have a pre-trained encoder E , which has been trained using a supervised regression loss, for
instance. In this scenario, starting from the forward diffusion process in Equation (5), if we subtract both sides by the
encoder output E(y) and define the residual error as et := xt−E(y), we arrive at a form that closely resembles a standard
Flow Matching forward process with Gaussian noise as the base distribution. This is expressed as:

et = te+ (1− t)ϵ, t ∈ [0, 1], (21)

where e represents the residual error between the target x and the encoder output E(y), and ϵ ∼ N (0, 1) is the noise.

This simple process facilitates the construction of a backward process, where one can learn the velocity field by minimizing
the Flow Matching loss in Equation (2). This approach closely mirrors the CorrDiff method proposed in (Mardani et al.,
2023), which leverages residual learning to train diffusion models. CorrDiff has demonstrated considerable success in
capturing small-scale details in generative tasks, particularly where precise reconstruction of fine structures is required.

However, as discussed in Section 2, the initial supervised training of the encoder often leads to near-perfect matching
between E(y) and x. While this may seem desirable, it can result in overfitting and reduced model calibaration, as also
evidenced by the results in Table 6 and discussed in Appendix A. Therefore, balancing this residual learning approach with
appropriate regularization is critical to maintaining the model’s ability to generalize effectively to unseen data.
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Table 7: Details of different encoder sizes used in the experiments. For the UNet the channel multipliers are applied to the
base channel size of 32 at each layer.

Encoder Channel Multipliers Number of Parameters

XL (only used in Appendix A) [1, 4, 4, 8, 8] 89M
L [1, 2, 2, 4, 4] 12M
M [1, 2, 2, 2, 2] 5M
S [1, 1, 2, 2, 2] 1M
XS [1, 1, 1, 2, 2] 0.2M
1× 1 Conv. - 60

E. Network Architecture and Training
For diffusion model training and sampling, we use EDM (Karras et al., 2022), a continuous-time diffusion model available
with a public codebase. EDM provides a physics-inspired design based on ODEs, auto-tuned for our scenario (see Table 1
in (Karras et al., 2022)). We adopt most of the hyperparameters from EDM and make modifications as listed below.

Architecture of Diffusion Model: To cover the large field-of-view 448 × 448, we adapt the UNet from (Song & Ermon,
2019) by expanding it to 5 encoder and 5 decoder layers. The base channel size is 32, multiplied by [1, 2, 2, 4, 4] across
layers. Please note this is a scaled down version of the model used in (Mardani et al., 2023) due to computational constrains.
Attention resolution is set to 28. Time representation is handled via positional embedding, though this is disabled in the
regression network, as no probability flow ODE is involved. No data augmentation is applied. The UNet has 12 million
parameters, and we add 4 channels for sinusoidal positional embedding to improve spatial consistency, following practices
in (Dosovitskiy, 2020; Carion et al., 2020).

Architecture of Encoder Model For the encoder E , we use two architectures: (1) a simple 1×1 convolution layer, and (2) a
UNet similar to the diffusion UNet but without time embedding. For the UNet encoder we ablate various parameter counts
from 0.2M to 12M, architectural details of these can be found in Table 7 and the results of the albations in Appendix I. For
the experiment where only the UNet was used for regression, the model has 12M parameters (L). For CorrDiff then same
12M model was used for the regression network and the diffusion model. For the results in CorrDiff under-calibration
(Appendix A) we used the same model as in (Mardani et al., 2023) with 89M parameters (XL).

Optimizer: We use the Adam optimizer with a learning rate of 10−4, β1 = 0.9, β2 = 0.99. Dropout is applied with a rate
of 0.13. Hyperparameters follow the guidelines in EDM (Karras et al., 2022).

Noise Schedule: For AFM and CFM, we use a continuous noise schedule sampled uniformly σ ∈ U [0, σz]. For CDM and
CorrDiff, we use EDM’s optimized log-normal noise schedule, σ ∼ lognormal(−1.2, 1.2).

Training: The regression network receives 12 input channels from the ERA5 data, while diffusion training concatenates
these 12 input channels with 4 noise channels. EDM randomly selects noise variance aiming to denoise samples per
mini-batch. CFM, CDM, CFM and CorrDiff are trained for 50 million steps, whereas the regression UNet is trained for 20
million steps. For AFM we evaluate the encoder’s RMSE every 10k steps and update σz using EMA with α = 0.9.Training
is distributed across 8 DGX nodes, each with 8 A100 GPUs, using data parallelism and a total batch size of 512.

Conditioning: AFM starts from the encoder output and learns the stochastic dynamics directly in the latent space. CDM
and CFM map Gaussian noise to the high-resolution output space while being conditioned on the low-resolution input.
Conditioning works by concatenating the low-resolution input with the noise, as described in Batzolis et al. (2021) and
Saharia et al. (2022). AFM can also be conditioned on the low-resolution input, the effect of which we explore in the
ablations in Appendix I.

Sampling: Our sampling process employs Euler integration with 50 steps across all methods. We begin with a maximum
noise variance σmax and decrease it to a minimum of σmin = 0.002. The value of σmax varies depending on the method:
for CDM and CorrDiff, we use σmax = 800, as per the original implementation in (Mardani et al., 2023); for CFM, we set
σmax = 1, as specified in (Lipman et al., 2022); and for AFM, we use the σz value learned during training.
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F. Evaluation Metrics
F.1. RMSE

The Root Mean Square Error (RMSE) is a standard evaluation metric used to measure the difference between the predicted
values and the true values (Chai & Draxler, 2014). In the context of our problem, let x be the true target and x̂ be the
predicted value. The RMSE is defined as:

RMSE =
√
E
[
∥x− x̂∥2

]
. (22)

This metric captures the average magnitude of the residuals, i.e., the difference between the predicted and true values. A
lower RMSE indicates better model performance, as it suggests the predicted values are closer to the true values on average.
RMSE is sensitive to large errors, making it an ideal choice for evaluating models where minimizing large deviations is
critical.

F.2. CRPS

The Continuous Ranked Probability Score (CRPS) is a measure used to evaluate probabilistic predictions (Wilks, 2011). It
compares the entire predicted distribution F (x̂) with the observed data point x. For a probabilistic forecast with cumulative
distribution function (CDF) F , and the true value x, the CRPS is given by:

CRPS(F,x) =
∫ ∞

−∞

(
F (y)− I(y ≥ x)

)2
dy, (23)

where I(·) is the indicator function. Unlike RMSE, CRPS provides a more comprehensive evaluation of both the location
and spread of the predicted distribution. A lower CRPS indicates a better match between the forecast distribution and the
observed data. It is especially useful for probabilistic models that output a distribution rather than a single point prediction.

When applying CRPS to a finite ensemble of size m approximating F with the empirical CDF incurs an O(1/m) bias
favoring models with less spread. For small m unbiased versions of the formulas should be used instead (Zamo & Naveau,
2018), but for the ensemble sizes here this is a small effect, so we used the more common biased formulas.

F.3. Spread Skill Ratio

The Spread-Skill Ratio (SSR) evaluates the reliability of the predicted uncertainty by comparing the spread (variance) of
the predicted distribution with the accuracy of the predictions (Gneiting & Raftery, 2004). Let σx̂ be the standard deviation
of the predicted distribution and RMSE as defined above. The SSR is defined as:

SSR =
σx̂

RMSE
. (24)

An SSR value close to 1 indicates that the predicted uncertainty (spread) is well-calibrated with the model’s predictive
skill. If the SSR is less than 1, the model underestimates uncertainty, while an SSR greater than 1 indicates that the model
overestimates uncertainty. This metric is particularly useful in evaluating the quality of probabilistic forecasts in terms of
their sharpness (spread) and accuracy (skill).

G. Details of the Datasets
Further details and visualizations of the ERA5-CWA and KF datasets, used throughout the paper, are presented here.

G.1. ERA5-CWA Dataset

Table Table 8 summarizes the input-output channels and the corresponding resolutions. It is evident that the input and
output channels generally differ, and even those that do overlap, such as (Temperature, East Wind, North Wind), are not
perfectly aligned. For instance, comparing the Eastward Wind (10m) in the contour plots reveals the eye of the typhoon
located northeast of the Taiwan region; see Fig. 7. Notably, the typhoon’s eye shifts in the output due to the datasets
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Table 8: ERA5-CWA Variables: Input and target variables for the ERA5 to CWA downscaling task include both single-
level and pressure-level variables, the latter at 850 and 500 hPa.

Description Input Output

Pixel Size 36 × 36 448 × 448

Single-Level Channels

Total Column Water Vapor Maximum Radar Reflectivity
Temperature at 2 Meters Temperature at 2 Meters
East Wind at 10 Meters East Wind at 10 Meters

North Wind at 10 Meters North Wind at 10 Meters

Pressure-Level Channels

Temperature -
Geopotential -

East Wind -
North Wind -

originating from two different simulations, which solve distinct sets of partial differential equations (PDEs) at significantly
different resolutions, resulting in divergent trajectories.

Input Data (ERA5). This data for this study are derived from the ERA5 reanalysis, which provides a comprehensive
set of atmospheric variables at various vertical levels (Hersbach et al., 2020). For our analysis, we selected a subset of
12 variables. These include four variables (temperature, East and North components of the horizontal wind vector, and
geopotential height) at two pressure levels (500 hPa and 850 hPa). Additionally, we incorporated single-level variables:
2-meter temperature, 10-meter wind vector components, and total column water vapor.

Target Data (CWA). The horizontal range of these data encompasses a 900 × 900-km region containing Taiwan, with
a horizontal resolution of approximately many output variables. We focus on four variables, three common to the input
data – surface temperature and ruface horizontal wind components – and one of which is distinctly related to precipitating
hydrometeors, the composite synthetic radar reflectivity at time of data assimilation. We represent the high-dimensional
target data as x ∈ RH×W×C , where H =W = 448 and C = 4. See table 8.

The dataset encompasses approximately four years (2018-2021) of observations, sampled at hourly intervals. For model
development and validation, the data were partitioned chronologically. The training set comprises observations from 2018
to 2020, totaling 24,601 data points. The remaining data from 2021, consisting of 6,501 data points, were reserved for
evaluation purposes. This temporal split allows for an assessment of the model’s performance on future, unseen data,
simulating real-world application scenarios.

Lastly, we upsample the input data to a 448×448 grid using bilinear interpolation to match the output resolution, a common
practice with residual networks for consistency (Hu et al., 2019; Zhang et al., 2018) (see Figure 7b for an example of input
vs. target misalignment).

G.2. Kolmogorov-Flow Dataset

A representative input-output sample of the KF dataset is shown in Fig. 8 for different misalignment degrees τ .

Dataset description. We construct a toy dataset by simulating the dynamics given by:

ζh + J(ψh, ζh) = F + νh∇7ζl − ζlτ−1
r

ζl + J(ψl, ζl) = −τ−1(ζl − ζh) + νl∇7ζl − ζlτ−1
r

∇2ψl = ζl

∇2ψh = ζh.

(25)

Here, J(f, g) = fxgy−fygx is the Jacobian operator. The stream function is related to the velocity field by∇ψ = (−u, v),
implying that ∇ψ · (u, v) = 0, so that velocity points along contours of the stream-function. ζl,h represents the vorticity.

The ζl field represents a coarse-resolution simulation nudged towards a high-resolution ζh. The parameter τ controls the
coupling strength between the ζl and ζh fields. A steady-state forcing F = 10 cos(10x) injects energy into the small-scale
field ζh but not the low-resolution ζl, mimicking the injection of energy by sub-grid processes like convection or flow over
topography. Stronger dissipation νl ≫ νh is used to limit the effective resolution of the large-scale field. A small amount
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of Rayleigh damping τr = 100 is added to limit the pile-up of energy at large-scales.

These equations are solved using a standard pseudo-spectral method on the GPU. The 3rd-order Adams-Bashforth time
stepper is used for all but the hyper-viscosity terms; for these stiff terms, we use an backward Euler time stepper. The
resolution is 512 × 512 and the timestep dt = 0.001. A 2/3 de-aliasing filter is applied in spectral space every timestep
(Orszag, 1971). Outputs are saved every δ = 0.2 time units.

We create datasets for different τ values: 3, 5, 10, 20. Higher τ corresponds to greater misalignment between the coarse
and high-resolution simulations. This variation allows us to assess the robustness of our method across different levels of
coupling and identify potential thresholds in τ beyond which certain downscaling approaches may become unreliable. For
each τ value, we generate a dataset comprising 100, 000 training points and 500 test points.

G.3. Misalignment

A key challenge in both datasets is the misalignment between input and output fields, arising from differences in the PDEs
used at each scale. These discrepancies lead to both large-scale and fine-scale shifts.
In the ERA5-CWA dataset (Figure 7b), for example, storm centers in the eastward and northward wind fields are misaligned
by several grid points— etween the input and target. An additional difficulty in this dataset is that the radar reflectivity
channel is only present in the target and must be entirely reconstructed from the other input variables.
The Kolmogorov-Flow dataset was specifically designed to study varying degrees of misalignment. Here, the degree of
mismatch is controlled by the coupling parameter τ . For smaller values (e.g., τ = 3), the input and target fields remain
largely aligned, with only minor local discrepancies and some loss of fine-scale detail. As τ increases (e.g., τ = 10), the
misalignment becomes more pronounced, introducing clear positional shifts between corresponding features, as shown in
Figure 8. This setup provides a controlled way to assess how different levels of misalignment affect model performance.

H. Analysis of Adaptive σz during Training
To evaluate the behavior of the adaptive noise scaling mechanism in our Adaptive Flow Matching (AFM) model, we
monitored the sigma values across different channels during the training process. Results depicted in Figure 9 correspond
to the model with a 1x1 conv. encoder and λ = 0.25 trained on the CWA dataset. The sigma values are initially set to
1 for all channels. During the early stages of training, sigma increases across the channels, due to the high encoder error.
As training progresses and the encoder’s performance improves, the sigma values begin to stabilize and converge towards
their final values.

Notably, the radar reflectivity channel exhibits the highest sigma values throughout the training process, reflecting its in-
herently stochastic nature. This is consistent with our understanding that radar data contains significant variability and
uncertainty. In contrast, the temperature channel consistently shows the lowest sigma values, aligning with its more de-
terministic characteristics. These variations in sigma across channels underscore the effectiveness of our adaptive noise
scaling approach, as it allows the model to appropriately adjust noise levels based on the inherent uncertainty of each chan-
nel. This adaptability is crucial for managing misaligned data with differing degrees of stochasticity, thereby enhancing
the overall performance and reliability of the AFM model in multiscale physics applications.

I. CWA Ablation Studies
To evaluate the effectiveness of the AFM model and understand the impact of its components, we conducted ablation
studies on the CWA weather downscaling task at 112 × 112 resolution. We focused on varying the λ parameter, different
encoder types, the use of adaptive σz, and y conditioning. The results are summarized in Tables 9, 10, and 11.

I.1. Effect of λ Parameter and Encoder Type

Table 9 presents the performance of the AFM model with different λ values and encoder types. The λ parameter controls
the trade-off between data fitting and uncertainty regularization in the AFM model.

1 × 1 Conv. Encoder: For the 1 × 1 Conv. encoder, setting λ = 0 achieves the best performance across most variables,
particularly for radar reflectivity, eastward wind, and northward wind. This indicates that the model benefits from minimal
regularization when using a simpler encoder, allowing it to focus on fitting the data closely. The low parameter count (only
60 parameters) of the 1× 1 Conv. encoder might limit its ability to capture all the information in the low-resolution input,
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making less regularization advantageous.

UNet Encoder: In contrast, the UNet encoder shows improved performance with a small regularization parameter of
λ = 0.25. This suggests that the more complex architecture of the UNet benefits from some regularization that prevents
overfitting and leads to better accuracy and uncertainty estimates across multiple variables.

I.2. Impact of adaptive σz

Table 10 examines the effect of enabling or disabling adaptive σz for both encoder types.

Findings: Enabling adaptive σz consistently enhances the model’s performance across all variables and both encoder
types. The improvements in RMSE, CRPS, and SSR metrics suggest that adaptive σz allows the model to better capture
the underlying uncertainty in the data. This adaptive approach provides the flexibility to model variable levels of uncertainty
across different regions and variables, leading to more accurate and reliable predictions.

I.3. Effect of y Conditioning

Table 11 assesses the impact of enabling or disabling y conditioning in the AFM model for both encoders.

1 × 1 Conv. Encoder: Disabling y conditioning provides better results across most metrics for this encoder. Given
the simplicity of the 1 × 1 Conv. encoder and its limited parameter count, it may not effectively utilize the additional
information provided by y conditioning. The model performs better when focusing on directly mapping the input to the
output without the added complexity.

UNet Encoder: Enabling y conditioning yields the best results for the UNet encoder. The more complex architecture
of the UNet can leverage the additional context from y conditioning to improve its predictions. This demonstrates the
capacity of the UNet encoder to capture and utilize supplementary information, enhancing both accuracy and uncertainty
estimation.

I.4. Summary

These ablation studies highlight the strengths of the AFM model and its components in weather downscaling tasks:

• Effectiveness of Adaptive σz: Enabling adaptive σz consistently improves model performance across both encoder
types and all variables. This underscores the importance of modeling spatially varying uncertainty in complex weather
data.

• Encoder Choice and Regularization: The 1 × 1 Conv. encoder performs best without regularization (λ = 0),
indicating that minimal regularization benefits simpler models. For the UNet encoder, a small regularization parameter
(λ = 0.25) yields better results, suggesting that regularization helps prevent overfitting in more complex models.

• Impact of y Conditioning: y conditioning enhances performance for the UNet encoder but not for the 1 × 1 Conv.
encoder. This suggests that the effectiveness of incorporating additional context depends on the model’s capacity to
utilize that information.

Overall, the AFM model demonstrates strong performance and flexibility in weather downscaling tasks. By carefully
selecting model components such as encoder type, adaptive σz, and regularization parameter λ, the AFM can be tailored
to balance predictive accuracy and uncertainty estimation effectively. These findings highlight the potential of the AFM
model as a powerful tool for probabilistic weather downscaling.

J. CWA Ensemble Analysis
For a few representative samples, several ensemble members and the ensemble mean are shown in ?? 11a–J. The generated
samples using different random seeds exhibit notable diversity, particularly for channels like Radar Reflectivity. This
diversity confirms the model’s ability to produce a well-dispersed ensemble, which is crucial for achieving a calibrated
and reliable probabilistic forecast. Additionally, the ensemble mean closely aligns with the true target, indicating that the
model successfully captures the underlying physical processes while preserving uncertainty across channels.

Animated PNGs of ensemble members for different models and τ are provided at https://t.ly/ZCq9Z.

18

https://t.ly/ZCq9Z


Adaptive Flow Matching for Resolving Small-Scale Physics

Table 9: Encoder and λ Ablations on CWA 112× 112 Dataset. For this table we keep the best configurations for each λ
value based on radar reflectivity. We separate per 1× 1 Conv. and UNet encoder to elucidate differences. Best results for
each encoder are highlighted in bold. No regularization (λ = 0) works best for the 1 × 1 Conv. encoder, while for UNet,
a small λ = 0.25 value yields the best results across multiple variables. Overall the 1 × 1 Conv. without regularization is
the best configuration.

Encoder λ
Radar Temperature Eastward Wind Northward Wind

RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1

1× 1 Conv.
0.00 4.82 1.66 0.72 0.99 0.59 0.47 1.42 0.78 0.68 1.58 0.89 0.66
0.25 5.10 1.83 0.42 0.85 0.50 0.43 1.46 0.84 0.46 1.63 0.92 0.46
1.00 5.04 1.83 0.40 1.05 0.60 0.34 1.50 0.88 0.44 1.67 0.95 0.44

UNet
0.00 5.06 1.83 0.38 1.01 0.57 0.36 1.48 0.85 0.46 1.64 0.93 0.46
0.25 4.95 1.78 0.44 0.94 0.54 0.40 1.49 0.85 0.53 1.58 0.95 0.50
1.00 5.11 1.89 0.41 1.07 0.62 0.36 1.53 0.91 0.41 1.74 1.03 0.40

Table 10: Adaptive σz Ablation on CWA 112× 112 Dataset for 1× 1 Conv. and UNet Encoders. This table examines
the effect of enabling (✓) or disabling (✗) Adaptive σz across both 1 × 1 Conv. and UNet encoders. Best results for each
encoder and metric are highlighted in bold. Results indicate that the proposed adaptive σz consistently improve results.

Encoder Adapt σz Radar Temperature Eastward Wind Northward Wind

RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1

1× 1 Conv. ✗ 5.01 1.88 0.45 1.13 0.66 0.39 1.50 0.86 0.48 1.64 0.94 0.47
✓ 4.82 1.66 0.72 0.99 0.59 0.47 1.42 0.78 0.68 1.58 0.89 0.66

UNet ✗ 5.06 1.83 0.38 1.01 0.57 0.36 1.48 0.85 0.46 1.64 0.93 0.46
✓ 4.95 1.78 0.44 0.94 0.54 0.40 1.49 0.85 0.53 1.58 0.95 0.50

Table 11: y conditioning ablation on CWA 112× 112 Dataset for 1× 1 Conv. and UNet Encoders. This table assesses
the impact of enabling (✓) or disabling (✗) y conditioning across both 1 × 1 Conv. and UNet encoders. Best results for
each encoder and metric are highlighted in bold. Results indicate that for the 1 × 1 encoder the conditioning is beneficial
while for UNet the opposite stands. This makes sense since the 1× 1 Conv. encoder has only 60 parameters and might not
capture all the information in the low-resolution input.

Encoder y cond. Radar Temperature Eastward Wind Northward Wind

RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1 RMSE ↓ CRPS ↓ SSR→ 1

1× 1 Conv. ✗ 4.82 1.66 0.72 0.99 0.59 0.47 1.42 0.78 0.68 1.63 0.89 0.66
✓ 5.06 1.82 0.34 0.89 0.54 0.40 1.46 0.82 0.45 1.59 0.92 0.46

UNet ✗ 5.06 1.83 0.38 1.01 0.57 0.36 1.48 0.85 0.46 1.64 0.93 0.46
✓ 4.95 1.78 0.44 0.94 0.54 0.40 1.49 0.85 0.53 1.67 0.95 0.50
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(a) Input variables

(b) Target variables
Figure 7: Visualization of ERA5-CWA Dataset Variables. The top row shows input variables such as temperature and
wind at coarse-resolution, while the bottom row presents the corresponding fine-resolution target variables. The maximum
radar reflectivity is absent from the input variables and must be constructed by the model. This key misalignment between
the low- and high-resolution data increases the complexity of the problem beyond standard super-resolution tasks.
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Figure 8: Kolmogorov Flow Dataset. Visualization of input and target Kolmogorov Flow dataset for varying levels of
misalignment (τ = 3, 5, 10). As τ increases, the discrepancy between the coarse and fine-resolution fields grows, offering
a controlled environment to test downscaling performance.
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(b) UNet
Figure 9: Adaptive σz values over training steps for different channels. The plot corresponds to the AFM model using
1 × 1 Conv. (a) and UNet (b) encoders with λ = 0.25. With 1 × 1 convolution, σz increases during early training due to
high encoder error and subsequently converges as the encoder improves. With UNet, σz starts decreasing with training. In
both cases, radar reflectivity exhibits the highest σ, indicating its stochastic nature, while temperature shows the lowest,
reflecting its deterministic characteristics. The varying sigma values across channels demonstrate why adaptive noise
scaling is effective in managing misaligned data with differing levels of stochasticity.
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Table 12: Complete ablation results for the CWA 112× 112 dataset. Best two models in each variable/metric in bold.

Model λ
Adapt.
σmax

Use
xlow

Radar Temperature Eastward Wind Northward Wind

RMSE ↓ CRPS ↓ SSR→ 1 RMSE CRPS SSR RMSE CRPS SSR RMSE CRPS SSR

AFM
1× 1 Conv.

0.00
✗ ✗ 5.16 1.88 0.44 1.12 0.65 0.36 1.53 0.88 0.47 1.72 0.98 0.46

✓
✗ 4.82 1.66 0.72 0.99 0.59 0.47 1.42 0.78 0.68 1.63 0.89 0.66
✓ 5.06 1.82 0.34 0.87 0.52 0.44 1.44 0.81 0.49 1.60 0.89 0.49

0.25
✗ ✗ 5.10 1.83 0.42 0.85 0.50 0.43 1.46 0.84 0.46 1.63 0.92 0.46

✓
✗ 5.11 1.85 0.37 0.89 0.56 0.28 1.53 0.92 0.36 1.71 1.02 0.34
✓ 5.12 1.87 0.29 0.89 0.54 0.40 1.46 0.84 0.45 1.59 0.90 0.46

1.00
✗ ✗ 5.04 1.83 0.40 1.05 0.60 0.34 1.50 0.88 0.44 1.67 0.95 0.44

✓
✗ 5.11 1.85 0.36 0.92 0.58 0.30 1.52 0.92 0.35 1.71 1.01 0.34
✓ 5.12 1.88 0.30 0.86 0.50 0.41 1.43 0.82 0.46 1.58 0.90 0.45

AFM
UNet

0.00
✗ ✗ 5.06 1.83 0.38 1.01 0.57 0.36 1.48 0.85 0.46 1.64 0.93 0.46

✓
✗ 5.13 1.84 0.43 0.85 0.52 0.37 1.43 0.81 0.50 1.60 0.89 0.48
✓ 5.07 1.84 0.36 0.85 0.52 0.34 1.44 0.83 0.43 1.60 0.91 0.43

0.25
✗ ✗ 5.01 1.88 0.45 1.13 0.66 0.39 1.50 0.86 0.48 1.64 0.94 0.47

✓
✗ 5.01 1.82 0.32 0.85 0.52 0.31 1.43 0.85 0.40 1.58 0.93 0.39
✓ 4.95 1.78 0.44 0.94 0.54 0.40 1.49 0.85 0.53 1.67 0.95 0.50

1.00
✗ ✗ 5.11 1.89 0.41 1.07 0.62 0.36 1.53 0.91 0.41 1.74 1.03 0.40

✓
✗ 5.04 1.85 0.29 0.84 0.53 0.26 1.45 0.87 0.35 1.62 0.97 0.34
✓ 5.07 1.85 0.31 0.88 0.54 0.29 1.46 0.88 0.38 1.65 0.98 0.37

Table 13: Performance Comparison of Models on CWA 112×112 Dataset. The AFM model has a 1×1 Conv. encoder,
λ = 0, adaptive σz and no y conditioning. Overall, the AFM model exhibits strong performance across different metrics
and variables, particularly excelling in its calibration (variability). Best results for each metric are highlighted in bold.
Note that for deterministic models, CRPS equals MAE.

Model CFM CDM UNet AFM

Radar

RMSE↓ 5.06 4.95 4.94 4.82
CRPS↓ 1.84 1.74 - 1.66
MAE↓ 2.41 2.49 2.45 2.63
SSR→ 1 0.36 0.52 - 0.72

Temperature

RMSE 0.86 0.87 0.87 0.99
CRPS 0.50 0.52 - 0.59
MAE 0.64 0.64 0.64 0.74
SSR 0.45 0.38 - 0.47

East. Wind

RMSE 1.42 1.44 1.42 1.42
CRPS 0.81 0.81 - 0.78
MAE 1.04 1.05 1.05 1.05
SSR 0.48 0.49 - 0.68

North. Wind

RMSE 1.59 1.59 1.60 1.63
CRPS 0.89 0.89 - 0.89
MAE 1.14 1.14 1.16 1.19
SSR 0.47 0.48 - 0.66
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Table 14: AFM ablations for λ on the CWA weather downscaling task at full resolution 448× 448. For this ablation,
a 1 × 1 Conv. encoder was used, σz was set to 1, and no y conditioning was employed. Overall, λ = 0 seems to produce
better estimates except for temperature, whose deterministic nature benefits from the added regularization.

Variable Metric λ

0.0 0.01 0.1 0.25 0.5 1.0 2.5

Radar

RMSE ↓ 4.90 5.11 5.03 4.97 5.00 5.25 5.27
CRPS ↓ 1.78 1.92 1.88 1.85 1.87 1.97 1.96
MAE ↓ 2.42 2.66 2.47 2.47 2.47 2.59 2.75
SSR→ 1 0.44 0.49 0.39 0.42 0.41 0.39 0.52

Temperature

RMSE ↓ 1.00 1.00 0.87 0.86 0.82 1.00 0.85
CRPS ↓ 0.52 0.62 0.54 0.52 0.48 0.56 0.48
MAE ↓ 0.67 0.78 0.66 0.64 0.60 0.68 0.62
SSR→ 1 0.47 0.48 0.38 0.40 0.41 0.32 0.45

East. Wind

RMSE ↓ 1.44 1.52 1.49 1.48 1.49 1.55 1.48
CRPS ↓ 0.80 0.86 0.87 0.87 0.88 0.92 0.86
MAE ↓ 1.07 1.13 1.09 1.09 1.09 1.14 1.08
SSR→ 1 0.61 0.55 0.42 0.40 0.41 0.38 0.43

North. Wind

RMSE ↓ 1.61 1.61 1.66 1.67 1.67 1.72 1.65
CRPS ↓ 0.88 0.88 0.95 0.96 0.96 1.00 0.95
MAE ↓ 1.17 1.17 1.19 1.20 1.19 1.24 1.18
SSR→ 1 0.58 0.61 0.41 0.41 0.40 0.38 0.43

Table 15: AFM ablations for encoder size on the CWA weather downscaling task at full resolution 448 × 448. For
this ablation, we use λ = 0, σz = 1, and no y conditioning. Larger encoders improve performance for complex spatial
data like radar, while for temperature and wind data, smaller encoders are adequate and sometimes even slightly better.
The optimal encoder size depends on the specific variable being predicted but overall the difference are not significant.

Variable Metric Encoder

L M S XS

Radar

RMSE ↓ 4.93 4.96 4.98 4.98
CRPS ↓ 1.82 1.84 1.85 1.85
MAE ↓ 2.44 2.52 2.52 2.46
SSR→ 1 0.40 0.43 0.42 0.39

Temperature

RMSE ↓ 1.01 1.00 0.99 1.02
CRPS ↓ 0.55 0.54 0.54 0.56
MAE ↓ 0.68 0.68 0.68 0.70
SSR→ 1 0.34 0.38 0.40 0.38

East. Wind

RMSE ↓ 1.48 1.48 1.47 1.50
CRPS ↓ 0.85 0.83 0.83 0.86
MAE ↓ 1.10 1.08 1.08 1.11
SSR→ 1 0.49 0.53 0.53 0.51

North. Wind

RMSE ↓ 1.64 1.64 1.63 1.66
CRPS ↓ 0.92 0.92 0.91 0.93
MAE ↓ 1.19 1.20 1.19 1.21
SSR→ 1 0.48 0.51 0.52 0.50
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Table 16: AFM ablations for y conditioning for the CWA weather downscaling task at full resolution 448 × 448.
For this ablation, we use adaptive σz , λ = 0.25 and a UNet encoder guided by the ablations in the 112 × 112 resolution.
Including y conditioning consistently improves performance across all metrics. RMSE, CRPS, and MAE are lower when
y conditioning is used, and SSR values are closer to 1.

Variable Metric y conditioning

✗ ✓

Radar

RMSE ↓ 5.09 4.90
CRPS ↓ 1.88 1.80
MAE ↓ 2.33 2.24
SSR→ 1 0.24 0.25

Temperature

RMSE ↓ 0.92 0.89
CRPS ↓ 0.55 0.50
MAE ↓ 0.67 0.64
SSR→ 1 0.33 0.43

East. Wind

RMSE ↓ 1.49 1.45
CRPS ↓ 0.91 0.86
MAE ↓ 1.10 1.07
SSR→ 1 0.34 0.41

North. Wind

RMSE ↓ 1.66 1.61
CRPS ↓ 1.00 0.94
MAE ↓ 1.20 1.18
SSR→ 1 0.33 0.41
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(a)

(b)
Figure 10: (Cont.)
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(c)

(d)
Figure 10: (Cont.)
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(e)

(f) (f)

Figure 10: (a-e) Visual Comparison of All Models for CWA Weather Data. The AFM model demonstrates superior
reconstruction quality, particularly in capturing fine-scale details, while other baselines show blurring or misalignment in
key areas. (a-e) show the results for different models.
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(a)

(b)
Figure 11: (Cont.)
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(c)

(d)
Figure 11: (Cont.)

29



Adaptive Flow Matching for Resolving Small-Scale Physics

(e)

(f)
Figure 11: Ensemble predictions for CWA Weather Data. Results demonstrate AFM’s ability to capture variable dy-
namics. (a-e) show the results for different points in time.
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K. Kolmogorov Flow Ablations
Different hyperparameters of both the dataset and the model are ablated, with the resulting metrics reported in Table 17.
The results show that, in this scenario, where the data is relatively misaligned, a smaller encoder tends to achieve better
generalization performance, possibly due to its capacity to focus on the most relevant features while avoiding overfitting.
Additionally, the experiments demonstrate that conditioning the AFM with the coarse-resolution input enhances the predic-
tive skill, highlighting the importance of incorporating multiscale information for improved downscaling accuracy. These
findings provide valuable insights into the optimal model configurations for handling misaligned data.

Table 17: Kolmogorov Flow Ablation Study for AFM: This table examines the effect of different hyperparameters on
performance across misalignment levels (τ ). A smaller encoder with conditioning consistently performs better for highly
misaligned data. Additionally, adaptive noise scaling (σz) enhances performance when conditioning AFM on coarse-
resolution input data (y).

Encoder 1× 1conv UNet
Adapt. σz ✗ ✓ ✗ ✓

τ y cond. ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

3

RMSE ↓ 1.22 0.91 1.22 0.73 1.15 1.11 1.17 1.17
CRPS ↓ 0.63 0.48 0.62 0.37 0.65 0.63 0.69 0.70
MAE ↓ 0.83 0.65 0.83 0.51 0.81 0.78 0.83 0.84
SSR→ 1 0.56 0.58 0.58 0.62 0.37 0.34 0.31 0.30

5

RMSE ↓ 1.17 0.78 1.17 0.76 1.16 1.01 1.09 1.07
CRPS ↓ 0.62 0.42 0.61 0.40 0.67 0.58 0.66 0.64
MAE ↓ 0.82 0.56 0.82 0.54 0.83 0.72 0.80 0.78
SSR→ 1 0.58 0.58 0.60 0.58 0.35 0.36 0.33 0.33

10

RMSE ↓ 1.36 1.06 1.39 1.09 1.35 1.36 1.36 1.28
CRPS ↓ 0.71 0.57 0.78 0.65 0.79 0.79 0.80 0.74
MAE ↓ 0.96 0.78 0.98 0.77 0.98 0.99 1.00 0.95
SSR→ 1 0.69 0.63 0.43 0.23 0.36 0.37 0.38 0.45

L. Kolmogorov Flow Ensemble Analysis
Representative KF samples along with the generated ensemble members are depicted in Figs. 14a, 14b, and 14c. These
figures illustrate the variability captured by the ensemble across different forecast lead times. The diversity in the ensemble
members indicates the model’s ability to represent the inherent uncertainty in the system. Furthermore, the alignment of
the ensemble mean with the observed samples suggests that the model not only captures the central tendency but also
effectively characterizes the stochastic nature of the dynamics.
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Figure 12: AFM vs. Baselines for Different Misalignment Levels in Kolmogorov Flow Downscaling: Each row
corresponds to a different misalignment level τ (left side). From top to bottom, the rows represent τ = 10, τ = 5, and
τ = 3. As misalignment increases, the AFM significantly outperforms baseline models by generating samples that better
align with the target distribution. Additionally, note the presence of high-frequency artifacts in the baseline models, which
are more noticeable when the figures are zoomed in.
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(b) τ = 5.
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(c) τ = 10.
Figure 13: AFM spectra vs. baselines for the Kolmogorov Flow. AFM maintains superior fidelity to the ground truth
across different τ values, highlighting its robustness in preserving both small and large-scale structures under various
misalignment conditions. The small bump around the middle is caused by the energy that is added in the system (see
Appendix G.2).
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Figure 14: Ensemble Predictions of AFM for Kolmogorov Flow at Different τ Values. AFM ensemble predictions are
shown for different τ values (τ = 3, 5, 10), illustrating the model’s ability to capture the variability and dynamics of the
Kolmogorov flow across increasing levels of misalignment.
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