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Abstract

This paper explores generalised probabilistic mod-
elling and uncertainty estimation in comparative
LLM-as-a-judge frameworks. We show that exist-
ing Product-of-Experts methods are specific cases
of a broader framework, enabling diverse model-
ling options. Furthermore, we propose improved
uncertainty estimates for individual comparisons,
enabling more efficient selection and achieving
strong performance with fewer evaluations. We
also introduce a method for estimating overall rank-
ing uncertainty. Finally, we demonstrate that com-
bining absolute and comparative scoring improves
performance. Experiments show that the specific
expert model has a limited impact on final rank-
ings but our proposed uncertainty estimates, espe-
cially the probability of reordering, significantly
improve the efficiency of systems reducing the
number of needed comparisons by ∼ 50%. Fur-
thermore, ranking-level uncertainty metrics can be
used to identify low-performing predictions, where
the nature of the probabilistic model has a notable
impact on the quality of the overall uncertainty.

1 INTRODUCTION

Instruction-tuned Large Language Models (LLMs) have
shown impressive zero-shot performance on a wide range of
natural language processing and generation tasks [Ouyang
et al., 2022, Zhou et al., 2023, Chung et al., 2024]. While
the number of downstream applications of aligned LLMs
increases [Brown et al., 2020, Achiam et al., 2023, Dubey
et al., 2024], so does the need to evaluate their perform-
ance on bespoke tasks, which could lack labelled data or
are costly for humans to judge at scale [Zheng et al., 2023,
Wang et al., 2022, Taori et al., 2023, Fathullah et al., 2024,
Lakomkin et al., 2024]. As an alternative, instruction-tuned

LLMs have increasingly been used as a replacement for hu-
mans to evaluate the quality of natural language generations
that demonstrate high correlations with human judgments
[Zheng et al., 2023, Liusie et al., 2024b, Bubeck et al., 2023,
Wang et al., 2023b, Chiang and Lee, 2023].

There are two standard approaches to using LLM in judging
responses. Absolute scoring: Prompt an LLM to evaluate a
certain response attribute on a defined scale (e.g., 1 to 10).
Comparative scoring: Prompt an LLM to choose which of
the two responses to a given query displays higher quality
for a given attribute. Absolute scoring is a straightforward
and effective method for evaluating a variety of responses
to a query and ranking them. However, the scores obtained
are unreliable and may vary significantly between different
LLM judges. Alternatively, the more expensive comparat-
ive scoring approach has consistently demonstrated higher
correlations with human judgements [Zheng et al., 2023,
Liusie et al., 2024b, Qin et al., 2023]. However, a drawback
of this approach is that it scales quadratically with the num-
ber of response candidates, which can become prohibitively
expensive due to the inference costs of LLMs.

To address the computational limitations of comparative as-
sessment, various approaches have been proposed. Notably,
it is possible to extract more information from the LLM-
as-a-judge than just a binary decision. Various works have,
as opposed to using simple win-ratio, resorted to using the
average probability output from the LLM [Qin et al., 2023,
Zheng et al., 2023, Liusie et al., 2024b, Park et al., 2024].
Building on this idea, Liusie et al. [2024c] introduced a
Product-of-Experts (PoE) [Hinton, 1999, Welling, 2007]
framework in modelling comparative scoring. In principle,
the joint distribution of candidate scores can be broken down
into arbitrarily chosen experts that model the score differ-
ences of two instances at a time, allowing for a partial set
of comparisons to model the full joint distribution. This dir-
ectly allows one to obtain a ranking of candidates without
having to perform all possible comparisons, showing that
only a fraction of the total number of comparisons is needed
to obtain highly competitive performance.
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Contributions: In this paper, we generalise the expert in
the comparative framework and derive how there is a wide
range of viable options. Starting from the Beta distribu-
tion in modelling LLM probabilities, we show that prior
works are specific instances of this choice. We also propose
improved estimates for the uncertainty in individual com-
parisons and show how these updated uncertainties allow
us to make even fewer comparisons without loss of per-
formance. In addition to the uncertainty of a comparison,
we also propose an uncertainty in the overall ranking of
a set of candidates. Finally, we show that the Product-of-
Experts framework easily lends itself to combinations of
various scoring approaches. Specifically, we show that abso-
lute scoring can complement comparative scoring efficiently
and cheaply and lead to improved overall performance.

2 BACKGROUND AND RELATED WORK

NLG Evaluation with LLMs: The extensive natural lan-
guage generation (NLG) capabilities of instruction-tuned
large language models [Achiam et al., 2023, Ouyang et al.,
2022, Chung et al., 2024, Dubey et al., 2024] have promp-
ted recent work on open-ended generation evaluation using
LLMs. Methods such as GPTScore [Fu et al., 2023] rank
responses based on the likelihood of generation and G-Eval
[Liu et al., 2023] which uses chain-of-thought and form-
filling to evaluate the quality of a response. Furthermore,
LLM-as-a-judge [Zheng et al., 2023] approaches score re-
sponses on an absolute scale [Wang et al., 2023a, Kocmi
and Federmann, 2023] or comparative manner by compar-
ing responses against each other [Qin et al., 2023, Liusie
et al., 2024b,c] and building an overall ranking through the
set of pairwise comparisons.

LLM-Based Comparative Assessment: The work by Li-
usie et al. [2024b] showed that comparative assessment
yields superior performance compared to absolute scoring
methods and various custom baselines. By making all pos-
sible N(N−1) pairwise comparisons of N candidate re-
sponses, and computing the win-ratio, an overall ranking
can be obtained. This style of approach has found its applic-
ations in many places. Qin et al. [2023] utilised pairwise
comparisons to retrieve relevant sources, using both the full
set of comparisons and sorting-based algorithms. Park et al.
[2024] employed comparative assessment for dialogue eval-
uation, calculating the average probability across a randomly
sampled set of comparisons to determine score quality. Fi-
nally, Liu et al. [2024b] demonstrated the limitations of
LLM scoring, and resorted to using pairwise comparisons.
They introduced PAirwise-preference Search, a variation of
the merge sort algorithm which utilises LLM probabilities.

Ranking from Pairwise Comparisons: The idea of gen-
erating a full ranking from pairwise comparisons has been
extensively studied. Arguably the most well-known example
of this is the ranking of tennis players based on the outcomes

of games and this kind of problem has applications in many
different areas. Anything from sports and gaming [Beau-
doin and Swartz, 2018, Csató, 2013], web search [Dwork
et al., 2001], social studies [Manski, 1977, Louviere et al.,
2000] to information retrieval [Cao et al., 2007, Liu et al.,
2009] requires modelling through pairwise events. The most
common approach to model pairwise comparisons is the
Bradley-Terry (BT) model [Bradley and Terry, 1952]. By
assigning each candidate a latent score, the probability that
one candidate wins over another is based on the underlying
score difference. The latent scores can then be obtained by
maximising the log-likelihood of the data [David, 1963, Cat-
telan, 2012]. Finally, the TrueSkill model [Herbrich et al.,
2006, Minka et al., 2018] generalises the Bradley-Terry
model by incorporating uncertainties in candidate scores
within a Bayesian framework in a sports context.

Product-of-Experts: Each comparison Ck = (i, j, pij) con-
tains the ids of the candidates being compared and the cor-
responding probability produced by the LLM that it think
i is better than j for a certain attribute. The comparison
Ck between a pair of candidates then provides information
about the distribution of scores s = s1:N of the candidates.

The Product-of-Experts (PoE) [Hinton, 1999] approach
presents a simple and effective way to combine the informa-
tion from multiple comparisons according to:

p(s|C1:K) ∝
∏
k

p(s|Ck) =
∏
k

p(si − sj |Ck)

The distribution can be simplified into a product of indi-
vidual experts, and be further simplified as it involves com-
parisons made exclusively between pairs of candidates. The
work of Liusie et al. [2024c] proposed the soft Bradley-Terry
expert as an extension to the standard BT model:

p(si − sj |Ck)∝σ(si − sj)
pij (1− σ(si − sj))

1−pij

where the probability pij is obtained from the LLM
when comparing candidate i against j. The more ex-
perts/comparisons are included, the better the resulting es-
timate of the scores should be. Scores can then be retrieved
by optimising p(s|C1:K) using iterative [Zermelo, 1929,
Newman, 2023] or standard gradient-based approaches.

3 GENERALISED EXPERT MODELLING

This section will focus on the nature of the expert for model-
ling both absolute and pairwise comparisons. We generally
have N candidates with associated scores s1:N . Given a
partial set of comparisons C1:K , the aim is to predict a set
of scores ŝ1:N which ranks the candidates as closely as pos-
sible to the true ranking. The following section will then
focus on how to find an optimal set of comparisons C1:K
through uncertainty estimation, aiming to achieve better
correlation with the true scores using fewer comparisons.



3.1 COMPARATIVE EXPERT MODELLING

The experts in prior work all modelled the score difference
of candidates p (si − sj |Ck). Through a simple change of
variables we propose a more generalised version of the
expert in comparative modelling:

p (si − sj |Ck) = f ′(si − sj)p̃
(
f(si − sj)

∣∣Ck)
where the f(·) is a generic monotonically increasing func-
tion. Any choice of f is viable as long as the distribution p̃

supports it. By letting f be the sigmoid function and using an
underlying Beta distribution p̃

(
f
∣∣Ck) = B

(
f ; pij , 1− pij

)
we regain the soft Bradley-Terry model from Liusie et al.
[2024c]. However, from this point, it is clear that there are
many more viable options for modelling a pairwise event.
In this work, we will investigate several other combinations
starting with a sigmoid and a general:

p̃
(
f
∣∣Ck) = B(f ; pij + α, 1− pij + β) (1)

model. We will also try an unconventional choice by combin-
ing the Gaussian distribution with a sigmoid-like function:

p (si − sj |Ck) =
N (si − sj ; 0, 1)N

(
Φ(si − sj); pij , 1

)
(2)

where Φ(·) is the cumulative density of the Gaussian. Ab-
lations will study the impact of the choice of f and the
underlying distribution p̃.

3.2 EXPERT COMBINATIONS

As has been mentioned several times, absolute scoring is
cheaper but worse than comparative scoring. However, it is
possible that absolute scoring can provide complementary
information so we propose combining the two approaches
into a single model:

p(s|C1:K ,A1:N )∝
∏
k

p(si − sj |Ck)
∏
n

p(sn|An)

where An contains the information from an absolute scor-
ing prompt. When prompting an LLM on a scale of 1 to 10
it contains the probabilities of those values. Unfortunately,
absolute scoring provides a discrete score and while it is
possible to obtain the associated logits for each value (of 1
to 10) from the LLM (and construct a categorical distribu-
tion) it remains difficult to combine the continuous pairwise
experts with the discrete absolute experts. Therefore, we
also propose using moment matching to transform the cat-
egorical expert into a Gaussian N (µ, σ2):

µ =
∑
c

cpc, σ2 =
∑
c

(c− µ)2pc

where c and pc represent the class and the associated prob-
ability that the LLM would output that class. In our running

example, we would have c ∈ {1, . . . , 10}. Finally, the abso-
lute expert can be written as:

p(sn|An) ≈ N (sn;µn, σ
2
n), ∀n = 1, . . . , N

and would allow us to operate with continuous values and
optimise the skill scores using gradient-based approaches.
In this work, we rely solely on simple absolute scoring
but there exist many more sophisticated pointwise scoring
approaches like G-Eval [Liu et al., 2023] which can provide
further improvements.

3.3 HOME ADVANTAGE

A big issue plaguing LLM-based approaches is bias in the
system. In our case, the probability outputs of an LLM are
inconsistent pij ̸= 1 − pji, meaning that the LLM-based
judge can assign conflicting probabilities when comparing i
to j as opposed to j to i. This stems from positional biases
in the system [Zheng et al., 2023, Chen et al., 2024a, Liusie
et al., 2024a, Wang et al., 2023c, Zhu et al., 2023, Chen
et al., 2024b, Liu et al., 2024a]. To resolve such an issue, we
rely on one of the two approaches. Permutation Debiasing:
For each comparison we make two LLM calls for both i vs j
and j vs i to obtain a final debiased probability p̃ij =

1
2 (pij+

(1−pji)) which would ensure consistency: p̃ij = (1− p̃ij).
Home Advantage: An alternative approach is to directly
incorporate the positional bias into the comparative expert
model. Since we already know that a certain position will be
preferred over another we can introduce a ’home advantage’
[Agresti, 1990, Caron and Doucet, 2012] parameter to model
the inconsistency through our function f :

f(si − sj ; ∆) = f(si − sj −∆)

While prior approaches have developed the theory for
home advantage in specific use-cases such as Bradley-Terry
[Caron and Doucet, 2012] and Gaussian experts [Liusie
et al., 2024c], our parameterisation through the generic
function f allows us to straightforwardly incorporate home
advantage into any type of expert. Furthermore, while the
work of Liusie et al. [2024c] estimated the advantage para-
meter ∆ through bespoke rules for each expert, we estimate
it by maximising the likelihood p(s|C1:K ,∆).

4 UNCERTAINTY ESTIMATION

This section will explore how to estimate uncertainty when
ranking examples. Two levels of uncertainty will be ex-
plored. Pairwise uncertainty: The uncertainty in the score
difference of a pair of candidates. By being able to identify
the most uncertain pairs, we can understand what comparis-
ons we should perform to improve the performance. Rank-
ing uncertainty: The uncertainty in the overall ranking of
a set of candidates, which can help us in understanding
whether the predicted ranking is trustworthy or not.



4.1 LAPLACE’S APPROXIMATION

Due to the complex nature of the Product-of-Experts (PoE)
distribution, p(s|C1:K), deriving analytical expressions for
uncertainties is generally intractable. Therefore, following
practice in Bayesian inference with complex models, we
rely on Laplace’s approximation to estimate the posterior
distribution and its associated uncertainties. The approach
approximates the distribution p(s|C1:K) with a Gaussian:

p(s|C1:K) ≈ N
(
s;µ(K),Σ(K)

)
where we set (and dropped the superscript for conciseness):

µ = argmax
s

ln p(s|C1:K)

Σ−1 = −∇∇ ln p(s|C1:K)
∣∣
µ

There are more advanced approaches to approximating an
intractable distribution but we will rely on this simple and
efficient scheme in this work.

4.2 PAIRWISE UNCERTAINTY ESTIMATION

Being able to estimate the uncertainty in a pair of candid-
ates, in their score difference, can allow us to decide which
comparisons are useful and which are not. The better the
quality of the uncertainty estimate, the fewer comparisons
are needed to achieve good performance. Following Liusie
et al. [2024c], the aim is to iteratively add additional com-
parisons to improve the product-of-experts model and the
overall ranking of scores. Starting with a unit Gaussian
expert/prior on every score we:

1. Estimate Uncertainty: Compute the covariance matrix
Σ based on the currently selected set of comparisons
C1:K using Laplace approximation.

2. Select Next Comparison: Use an uncertainty metric
and the current covariance matrix Σ to select the most
informative comparison pair (i, j). In large-scale tasks
one can select a batch of comparisons.

3. Perform Comparison: Obtain the LLM probability
for the selected pair (i, j) and add this new comparison
to the set C1:K+1.

4. Update Model: Update the Product-of-Experts model
to incorporate the new comparison, which implicitly
updates the mean µ and covariance matrix Σ for the
next iteration.

Prior work poised that the next comparison that should be
selected should induce the minimum overall uncertainty
in the resulting distribution, giving the following selection
criteria under a soft BT model:

argmax
i,j

σ(µi−µj)σ(µj−µi)
(
Σii − 2Σij +Σjj

)
(3)

We propose and evaluate two additional pairwise uncertainty
metrics which apply to any expert modelling choice. Vari-
ance in Score Difference: A straightforward measure of
uncertainty in a pair of candidates i and j is the variance
of their score difference under the approximated Gaussian
posterior. Given the covariance matrix Σ, the variance of
the score difference si − sj can be directly computed as
V[si − sj |C1:K ] = Σii − 2Σij + Σjj . To select the next
comparison, we aim to maximise this variance, choosing
the pair (i, j) for which the model is most uncertain about
their score difference:

argmax
i,j

Σii − 2Σij +Σjj (4)

Probability of Reordering: While variance captures the
general uncertainty in score difference, a potentially more
relevant metric for ranking is the probability that the ranking
between two candidates is reversed. Assuming that the cur-
rent model predicts candidate i to be better than candidate j
(i.e., µi > µj), the probability of reordering, i.e., the prob-
ability that candidate j is actually better than candidate i
given the current comparisons C1:K , can be calculated using
the Gaussian cumulative density:

P(si < sj |C1:K) = Φ

(
µj − µi√

Σii − 2Σij +Σjj

)
This metric directly quantifies the likelihood of a rank in-
version between the pair. As shown in the Appendix C, this
can be simplified to a similar selection form since we want
to pick examples with the highest reordering probability:

argmax
i,j

Σii − 2Σij +Σjj

(µi − µj)2
(5)

This probability of reordering metric is intuitively appealing
as it directly targets the goal of improving ranking accuracy
by focusing on comparisons that are most likely to correct
potential ranking errors. Furthermore, it naturally encour-
ages the exploration of comparisons between candidates
with similar skill levels (high-density regions of the score
distribution), as these are the pairs where rank inversions are
most probable. Furthermore, since all selection mechanisms
take the following form:

argmax
i,j

w(µi − µj) (Σii − 2Σij +Σjj)

we ablate the weight function w(·).

4.3 RANKING UNCERTAINTY ESTIMATION

In addition to pairwise uncertainties, it is also valuable
to assess the overall uncertainty in the predicted rank-
ing of all candidates. While a full probabilistic ranking
distribution is complex to compute, we can use the en-
tropy of the approximated Gaussian score distribution as a



proxy for ranking uncertainty. The entropy H[s|C1:K ] of a
multivariate Gaussian distribution N (s;µ,Σ) is given by:
N(1+ln(2π))/2+ln(det(Σ))/2. Lower entropy indicates
a more concentrated and certain score distribution, suggest-
ing a more reliable overall ranking. We will use this entropy
metric to assess the overall uncertainty of the rankings pro-
duced by various models.

5 EXPERIMENTAL SETUP

5.1 DATASETS

We mainly perform experiments on the summary evaluation
SummEval dataset Fabbri et al. [2021] which contains 100
articles, each with 16 machine-generated summaries eval-
uated on four different attributes: coherency (COH), con-
sistency (CON), fluency (FLU), and relevancy (REL). We
will also use the much larger HANNA dataset Chhun et al.
[2022] which has 1056 machine-generated stories annotated
by humans on six different attributes. These are averaged to
a single overall quality score.

5.2 METHODOLOGY

We will be relying on Flan-T5 Chung et al. [2024] and
Qwen2.5-Instruct Qwen Team [2024] systems to evaluate
performance on the SummEval and the larger HANNA data-
sets. Appendix A will detail our choices, how we structure
the prompts and how the probabilities are extracted from
each model.

Probabilistic Models: In almost all experiments we will
rely on the soft Bradley-Terry extension as our baseline
expert model. This will be compared against our proposed
extensions to this approach: (1) The generalised Beta distri-
bution in Eq. (1), (2) the extended Gaussian distribution in
Eq. (2) and (3) the combination of comparative and absolute
outputs in a single PoE model. We will not include simple
baselines such as average win-ratio and average probability
since these have been shown to be inferior on a wide range
of tasks [Liusie et al., 2024c, Raina et al., 2024].

Iterative Selection: We will also compare the probabilistic
models in an active learning framework where each model
needs to select the comparisons that will induce the best per-
formance. The baseline will be the minimum uncertainty
approach given in Eq. (3) using the soft BT model. We will
compare this against our proposed variance (Eq. (4)) and
probability of reordering (Eq. (5)) selection mechanisms.

Ranking Uncertainties: The entropy of Product-of-Experts
models will be investigated on how well they correlate
with the actual performance of the predicted rankings, and
whether they can identify high-performing predictions.

Evaluation Metrics: Since we are interested in predicting

the ranking of candidate responses given a context/query,
the main performance metric is Spearman rank correlation
between the predicted and the human labelled scores. In
SummEval (N = 16) we perform absolute and comparat-
ive scoring and evaluate the average Spearman across all
contexts. For HANNA (N = 1056) we rank all generated
stories. Furthermore, we assess the quality of the various
comparison-level uncertainties (iterative selection schemes)
by the number of comparisons needed to achieve good Spear-
man rank correlation. This will be defined as the number of
comparisons K required to reach within 90% performance
when using the full set of N(N − 1) comparisons. Finally,
the ranking-level uncertainties are evaluated using the area
under the receiver operating characteristic curve (AUROC)
to detect well-performing rankings.

6 RESULTS

6.1 FORM OF DISTRIBUTION

This section investigates a wide range of PoE models con-
ditioned on the full set of comparisons. For SummEval
with N = 16 summaries per context, there is a total of
N(N − 1) = 240 number of comparisons. Unless repor-
ted otherwise, all results are based on the direct biased
outputs of judges. In the first block of Table 1, under a
Flan-T5 judge, models showcase similar Spearman perform-
ance when evaluated on the full set of comparisons. The
only model that performs noticeably better is the combined
comparative-absolute model. Absolute scoring seems to
extract complementary information and give the overall sys-
tem a performance boost. Furthermore, improved and larger
Qwen LLMs clearly display improved performance.

However, improved performance does not necessarily imply
higher quality ranking-level uncertainty estimates. To bench-
mark, an uncertainty is predicted for each context, meaning
to represent how well the predicted ranks perform. The
Spearman rank performance of each context is thresholded
by the median score and mapped to a binary value so that
contexts are classed as ’0’ or ’1’. This allows us to use the
standard AUROC score to evaluate detection performance.
The second block of Table 1 shows the AUROC perform-
ance of a range of probabilistic models. Unlike previous
results, the nature of the probabilistic model seems to have a
significant impact on performance. While the performance
of various PoE models are similar, the predicted entropy, and
by equivalence, the hessian (curvature) of the log-likelihood
seems to differ between certain models. This seems to stem
mainly from the choice of f but further investigations are
needed to understand how to predict robust uncertainties.

The linear-Gaussian model performs significantly worse,
only marginally outperforming a random classifier. Fur-
thermore, all models that map skill differences through a
sigmoid-like function f perform notably better, with the



Table 1: Spearman rank correlations (%) and AUROC (%) for SummEval.

LLM
Function Distribution Spearman Rank (%) AUROC (%)

Flan-T5

f p̃ COH CON FLU REL Avg COH CON FLU REL Avg

(3B)

x Gaussian 49.1 45.2 32.5 42.2 42.3 53.4 51.8 54.9 58.4 54.6
σ Gaussian 49.2 45.3 32.5 42.2 42.3 65.5 67.3 60.8 65.8 64.9
Φ Gaussian 49.2 45.3 32.5 42.3 42.3 65.0 67.3 61.0 65.9 64.8

σ Beta 49.2 45.2 32.5 42.2 42.3 63.8 68.3 60.6 63.8 64.1
Φ Beta 49.2 45.3 32.6 42.3 42.4 64.8 67.4 60.9 65.7 64.7

Comparative (σ-Beta)
50.7 45.9 32.9 43.4 43.2 64.5 69.9 62.0 67.0 65.9

+ Absolute Experts

Qwen2.5 (3B) σ Beta 48.5 48.6 40.8 46.5 46.1 59.8 62.8 63.2 57.5 60.8
Qwen2.5 (7B) σ Beta 50.4 48.9 38.7 50.5 47.1 66.7 68.2 58.5 69.4 65.7
Qwen2.5 (14B) σ Beta 57.4 52.1 47.4 51.1 52.0 61.7 62.0 58.4 64.8 61.7

combined model being the best system similar to previous
results. Even the better-performing and larger Qwen sys-
tems are unable to outperform the combined model. Further-
more, while Qwen2.5 (3B) displays better Spearman rank
than the similarly sized Flan-T5, the uncertainties perform
worse. While this is only a preliminary investigation into
detecting well-performing examples, it is a good start into
understanding the problem and what models produce better
uncertainties. In Appendix B, we investigate the causes for
this and pinpoint some of the problems to an overconfidence
issue associated with modern language models.

6.2 ITERATIVE SELECTION

In this section, we explore the quality of various models and
uncertainty metrics when iteratively selecting comparisons.
Furthermore, this investigation is performed on both biased
and debiased probabilities extracted from Flan-T5 (3B). Ex-
tended results for Qwen can be found in Appendix D. Four
main points can be observed from the results in Figure 1:

(1) Model Convergence: As reported in the table above,
all models converge towards the same final performance
since the rankings are predicted from the same full set of

comparisons.

(2) Quality of Uncertainties: There is a significant gap in
performance between various uncertainty metrics. Probabil-
ity of reordering is shown to outperform the minimum uncer-
tainty metric in all attributes of SummEval for both biased
and debiased cases. We expect this performance difference
to originate from how each metric was derived. While min-
imum uncertainty is simply focused on choosing the next
comparison that would induce the least uncertainty, the
probability of reordering is directly linked to achieving the
correct ranking.

(3) Expert Model Invariance: Probability of reordering un-
der two different models, σ-Beta (soft BT) and Φ-Gaussian
(ngaussian), perform almost identically in all cases. This
again reinforces the idea that the nature of the expert model
does not matter as much as the uncertainty modelling used
in selecting the comparisons.

(4) Performing better with less: Performance is expected to
increase as one adds more and more comparisons to the PoE
model. However, in many of the cases above, performance
drops until the full set of comparisons is reached. This is
related to an overconfidence issue plaguing the uncertainty
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Figure 1: The Spearman Rank Correlation when iteratively selecting the next examples of lowest confidence/highest
uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also report the proposed
variance and probability of reordering under the soft BT model. Furthermore, the Φ-Gaussian model is referred to as
"ngaussian". Debiased refers to permutation debiased probabilities.



Table 2: Measure of efficiency: The number of comparisons needed to achieve 90% performance of the baseline soft
Bradley-Terry system for each corresponding judge. The baseline is evaluated using all N(N − 1) = 240 comparisons.

Uncertainties Debiased
Flan-T5 (3B) Qwen2.5 (3B)

COH CON FLU REL COH CON FLU REL

minimum ✗ 82.8 ± 9.8 39.4 ± 6.2 30.3 ± 9.6 61.4 ± 8.7 76.9 ± 8.4 39.9 ± 3.2 45.7 ± 6.3 71.2 ± 7.3

uncertainty ✓ 59.6 ± 8.7 27.1 ± 7.1 23.9 ± 6.1 46.8 ± 4.6 57.9 ± 8.3 35.9 ± 4.2 43.7 ± 6.8 63.1 ± 7.9

variance
✗ 29.7 ± 6.9 17.8 ± 2.7 13.8 ± 7.6 27.5 ± 6.7 44.3 ± 7.1 24.6 ± 3.6 27.2 ± 6.6 53.9 ± 8.0

✓ 20.3 ± 2.0 14.3 ± 2.5 16.7 ± 2.3 19.7 ± 1.7 24.4 ± 4.0 16.7 ± 2.8 21.8 ± 4.2 24.5 ± 3.1

probability ✗ 28.1 ± 3.4 17.7 ± 1.9 18.8 ± 8.1 22.2 ± 4.2 29.0 ± 4.5 23.3 ± 2.2 24.6 ± 2.4 34.8 ± 5.6

of reordering ✓ 20.4 ± 1.7 14.2 ± 2.3 16.1 ± 3.9 18.6 ± 2.1 20.7 ± 1.8 16.1 ± 2.6 18.9 ± 3.1 24.3 ± 4.9

estimates. We show in Appendix B how the LLM-as-a-
judge is miscalibrated, and how temperature annealing is
not enough to calibrate and solve the overconfidence issue.

Furthermore, in Table 2, we report the number of examples
required to reach 90% of the final performance when all
comparisons have been selected. The baseline ’minimum
uncertainty’ metric with both biased and debiased probab-
ilities extracted from the LLMs manages to reach the 90%
threshold with at worst 35% of the number of comparisons.
This already represents a significant gain in efficiency, cut-
ting the number of examples to a fraction of the full 240.
However, both proposed uncertainty metrics significantly
outperform the baseline, reducing the number of required
comparisons by an additional ∼60% for Flan-T5 and ∼50%
for Qwen. Overall, we observe that the reordering metric is
more efficient across datasets and models.

Finally, in Figure 2a, we compare the soft BT model with
the combined comparative-absolute model. Due to the initial
cost of obtaining N = 16 absolute experts, the combined
model initially performs worse. However, both biased and
debiased combined models outperform the final soft BT
model performance using a fraction of comparisons.

6.2.1 Ablation Studies

This section will explore various nuances in the modelling
choices. In Figure 2b, we vary the parameters of the under-
lying Beta distribution in a generalised soft BT model.

Evaluated on SummEval (COH), it is clear that the under-
lying Beta distribution has negligible impact on both the
selection process and the final performance. Furthermore,
we explore generalising the selection metrics with the fol-
lowing:

argmax
i,j

Σii − 2Σij +Σjj

|si − sj |ϵ
(6)

where we vary the exponent ϵ. Setting ϵ = 0 returns variance
while ϵ = 2 gives probability of reordering.

The exponent is swept on the same benchmark in Figure 2c.
It is evident that while ϵ = 0 suffers in performance, most
of the other values perform similarly. The best-performing
option is ϵ = 0.5 which slightly outperforms other options
including the probability of reordering.

50 100 150 200 250
number of comparisons

0.42

0.44

0.46

0.48

0.50

0.52

sp
ea

rm
an

 ra
nk

 c
or

re
la

tio
n

coherency

baseline
reordering
reordering (debiased)
reordering - combined
reordering - combined (debiased)
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(b) Varying the Beta distribution.
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Figure 2: Extended results on Flan-T5: (a) Comparing the soft BT model to the combined model which relies on additional
absolute experts. Both use the probability of reordering as the selection criteria. (b) Selection performance. Varying the
parameters α and β of the Beta distribution in Eq. (1). (c) Selection performance. Varying the parameter ϵ in Eq. (6).
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Figure 3: The Spearman Rank Correlation when iteratively selecting the next batch b of examples of lowest confidence/highest
uncertainty. The baselines are Qwen2.5-{3B-7B} models with all comparisons selected. Furthermore, the efficient baseline
is set to the soft BT model with the minimum uncertainty metric.

6.3 LARGE-SCALE SELECTION

All results have been focused on ranking a small set of can-
didates N = 16 which has K = 240 possible comparisons.
In this section we scale up to the HANNA dataset with
N = 1056 stories and K = 1114080 possible comparisons.
Furthermore, due to the cost of iteratively selecting a single
comparison, re-estimating Laplace’s approximation, and re-
peating this process, we opt to perform batch acquisitions
with b = {100, 400}. This will showcase in the extreme
case how well our best-proposed uncertainty metric, prob-
ability of reordering, performs compared to random and
minimum uncertainty selection. We will only evaluate the
iterative process up until 1% of all possible comparisons to
test the efficiency of approaches.

In Figure 3, various iterative schemes are reported. Further-
more, the performance of the soft BT model with all pos-
sible comparisons is reported under both backbone judges.
In these results, one can observe minimum uncertainty to
suffer significantly compared to the simplest baseline of
random selection when using both Qwen2.5-3B and 7B as
backbone judges. This is caused due to the lack of diversity
when selecting a batch of comparisons. While reducing the
batch size of acquisitions helps performance, it still lacks sig-
nificantly compared to the probability of reordering which
is far more robust to larger batch acquisitions.

7 CONCLUSIONS

This paper generalised probabilistic modelling for comparat-
ive LLM-as-a-judge, demonstrating that existing approaches

are specific instances of a broader framework. We intro-
duced improved uncertainty estimates for individual compar-
isons and overall rankings, leading to more efficient iterative
selection strategies. Notably, the probability of reordering
proved to be a superior metric for selecting informative com-
parisons. We also showed the benefits of combining absolute
and comparative scoring within a Product-of-Experts frame-
work, achieving enhanced performance. While the specific
expert model had limited impact on final rankings given
sufficient comparisons, the choice of uncertainty estima-
tion and the incorporation of absolute scoring significantly
improved efficiency and accuracy. Our findings highlight
the importance of robust uncertainty estimation in LLM-
based evaluation and provide a more flexible and efficient
framework for comparative assessment.

8 LIMITATIONS

The main concern lies in the quality of the estimated un-
certainties, which are crucial for the efficiency of the pro-
posed iterative selection methods. The reliance on Laplace’s
approximation to derive these uncertainties introduces po-
tential inaccuracies. This approximation assumes that the
posterior distribution over model parameters is approxim-
ately Gaussian, which may not hold true in all scenarios,
particularly when the true posterior is multimodal or exhibits
significant skewness. Consequently, the derived uncertainty
metrics, such as the variance and probability of reordering,
might not perfectly reflect the true uncertainty in the model’s
predictions.
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A PROMPTING

When prompting an LLM for the score of a candidate, or which of two candidates is better, the important information lies in
the logits of the tokens we are interested in. In this section we detail the design the of our prompts for both Flan-T5 and
Qwen2.5. Since the former is an encoder-decoder foundation model and the latter is a decoder-only foundation model the
prompts need to be designed slightly differently.

Absolute prompting: For the Flan-T5 system, we give the encoder the following prompt:

Article: <context>\n\nSummary: <A>

\n\nScore the response between 1

and 10 based on how coherent the

summary is.

where we are scoring the coherency of a summary. The <context> and <A> are replaced by the article and summary.
Following this we extract the logits corresponding to 1 to 10 from the decoder. The probability of each class is then:

pc =
exp(zc)∑10
i=1 exp(zi)

c = 1, . . . , 10

The choice of 1-10 is arbitrary and any other range could have been chosen.

Comparative prompting: For the Flan-T5 system, we give the encoder the following prompt:

Article: <context>\n\nSummary A: <A>

\n\nSummary B: <B>\n\nWhich Summary

is more coherent, Summary A or

Summary B?

The <context>, <A> and <B> are replaced by the article and two different summaries. Following this we give the
following prefix to the decoder:

Summary

and extract the logits corresponding to A and B from the decoder. The prefix ensures that the probability mass of the next
token is concentrated into the options "A" and "B". From these logits we extract the probability that A will win:

p =
exp(zA)

exp(zA) + exp(zB)
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Similarly, we prompt the Qwen2.5 system in the following matter when we want to rank various stories from HANNA:

{"role": "system", "content": "You

are an expert story assessor."},

{"role": "user", "content": "Story A:

<A>\n\nStory B: <B>\n\nWhich story

is better overall, Story A or B?

Answer only with Story A or Story B."}

{"role": "assistant", "content": "Story "}

These are then prepared by the Qwen2.5 tokenizer in the instruction following format and fed into the model. Following on,
the logits corresponding to A and B are then extracted for the next token and converted into a probability.

B CALIBRATION

This section reports the calibration error and reliability diagrams for the different metrics under a biased and debiased setup.
The main point is to address the overconfidence issue related to our results in Section 6.2 and why temperature annealing is
not enough to solve the problem.

The calibration is based on the confidence scores of individual comparisons max(p, 1− p). Therefore, when calibrating
using temperature annealing, the resulting (binary) predictions remain the same:

p̃ =
p1/T

p1/T + (1− p)1/T

To understand the impact of calibration, we find the optimal temperature on the SummEval dataset by minimising the
expected calibration error, see Table 3. Each attribute has its optimal temperature. We also report the corresponding reliability

Table 3: Flan-T5 (3B): Expected calibration error (%).

Method Debiased COH CON FLU REL

-
✗ 9.80 3.77 9.87 11.86
✓ 2.83 1.82 4.84 6.20

Calibrated
✗ 1.02 0.68 1.28 0.98
✓ 2.58 1.72 1.08 1.07

diagrams in Figure 4. From these results, it is evident that simple temperature annealing can almost entirely resolve the
miscalibration in the systems.

This next part will check how temperature annealing affects the solution of a soft Bradley-Terry model. Starting from the
gradient of the log-likelihood:

∇ ln p(s|C1:K) =
∑

i,j∈C1:K

pij − σ(si − sj) = 0



Looking at a single element of the sum, and under calibrated probabilities the new solution becomes:

p̃ij = σ(s̃i − s̃j) ⇐⇒
p1/T

p1/T + (1− p)1/T
= σ(s̃i − s̃j) ⇐⇒

1

1 +
(

1−p
p

)1/T = σ(s̃i − s̃j) ⇐⇒

1

1 + exp
(

1
T ln

(
1−p
p

)) = σ(s̃i − s̃j) ⇐⇒

σ

(
1

T
ln

(
p

1− p

))
= σ(s̃i − s̃j) ⇐⇒

1

T
ln

(
p

1− p

)
= s̃i − s̃j ⇐⇒

p

1− p
= exp(T (s̃i − s̃j)) ⇐⇒

p =
exp(T (s̃i − s̃j))

1 + exp(T (s̃i − s̃j))
⇐⇒

p =
1

1 + exp(−T (s̃i − s̃j))
⇐⇒

p = σ(T (s̃i − s̃j))

This shows that temperature annealing leads to a new solution of scores that are linearly scaled by the temperature T .
Therefore, even if temperature annealing is enough to calibrate a system, it has no impact at all on the predicted rankings.

Instead, we report a different result, the diagrams in Figure 5. We obtain either the confidence of each comparison or the
probability of reordering. Then the aim is to compute the accuracy of comparisons on a filtered dataset when removing the
examples of lowest confidence/highest uncertainty. What one expects from high quality uncertainties is for the accuracy of
the filtered dataset to improve as much as possible. While we observe that the accuracy improves as we reject samples, both
metrics display a significant overconfidence issue; accuracy reduces when rejecting samples with the highest confidence
and lowest uncertainty. This could partially explain why our results in Section 6.2 showcase a ’bump’, where adding more
comparisons decreases the system’s performance. This also justifies using more advanced methods for calibrating the outputs
of LLM-judges when using them to rank candidates.

Finally, we report the reliability diagram of all language models on SummEval (COH), see Figure 6. While the Qwen2.5
family performs better in predicting the correct ranking, these systems suffer more from overconfidence as evidenced by the
much higher calibration error. As discussed, temperature annealing can resolve the calibration issue without having any
impact on performance. Instead, viable approaches that could resolve this include:

1. Ensembling multiple comparative LLM-as-a-judge backbones. Averaging outputs is known to reduce calibration error
and the overconfidence issue Guo et al. [2017].

2. Ensembling multiple prompts using the same LLM backbone. Alternatively to above, one can design multiple prompts
which achieve the same task, and average the output from each one.

These ensembling and distillation-based strategies are well-established in the broader uncertainty estimation literature. They
have been successfully applied to improve calibration and provide robust uncertainty estimates for downstream tasks like
out-of-distribution detection, active learning, and grammatical error correction across various domains Hinton et al. [2015],
Fathullah and Gales [2022], Fathullah et al. [2023], Malinin et al. [2020] In addition to the above, one can aim to design
improved prompts which achieve the task and minimise biases in the system. We leave these approaches to future work
Yang et al. [2024].
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Figure 4: The reliability diagram of biased and debiased, standard and calibrated systems on the coherency metric.
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Figure 5: The accuracy at a comparison-level when the examples of lowest confidence/highest uncertainty are rejected.
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(a) Flan-T5 (3B): ECE = 9.80%

0.0 0.2 0.4 0.6 0.8 1.0
confidence

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(b) Qwen2.5-Instruct (3B): ECE = 25.73%
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(c) Qwen2.5-Instruct (7B): ECE = 28.17%
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(d) Qwen2.5-Instruct (14B): ECE = 24.64%

Figure 6: The reliability diagram of biased systems on the coherency metric. The expected calibration error (ECE) is
reported for each system.



C PROBABILITY OF REORDERING

In this section we showcase how the probability of reordering can be rephrased to a familiar form. Starting from the general
Laplace’s approximation:

p(s|C1:K) = N (s;µ,Σ)

the distribution of a pair of candidates becomes:

p(si, sj |C1:K) = N
([

si
sj

]
;

[
µi

µj

]
,

[
Σii Σij

Σji Σjj

])
We are only interested in the distribution of the difference si − sj :

p(si − sj |C1:K) = N (si − sj ;µi − µj ,Σii − 2Σij +Σjj)

Assuming that si > sj (µi > µj) the probability of reordering becomes:

P(si < sj |C1:K) = Φ

(
µj − µi√

Σii − 2Σij +Σjj

)

The selection is based on picking the examples with highest probability of reordering:

î, ĵ = argmax
i,j

Φ

(
µj − µi√

Σii − 2Σij +Σjj

)
= argmax

i,j

µj − µi√
Σii − 2Σij +Σjj

= argmin
i,j

−
√
Σii − 2Σij +Σjj

µi − µj

= argmax
i,j

Σii − 2Σij +Σjj

(µi − µj)2

Similarly, assuming sj > si returns the exact same expression.



D EXTENDED RESULTS FOR QWEN SYSTEMS

This section expands on the results in Section 6.2 for the Qwen family of models. Following the initial analysis, further
experiments were conducted to provide a more comprehensive evaluation of the proposed methods. We structure the analysis
into three parts: first, we examine the sensitivity of the final rankings to the choice of expert model; second, we assess the
sensitivity of the ranking-level uncertainty to the same choices; and third, we evaluate the efficiency of different iterative
selection metrics.

D.1 SENSITIVITY OF FINAL RANKINGS TO EXPERT MODEL CHOICE

Table 4 shows the final Spearman Rank correlation for various expert model configurations (f , p) across all Qwen models,
using the full set of comparisons. A key finding is the relative stability of the final rankings. For a given LLM judge, the
choice of the expert model has a very limited impact on the final Spearman correlation. This suggests that when a sufficient
number of comparisons are available, the specific probabilistic formulation is not a critical factor in determining the final
rank order of the candidates.

Table 4: Spearman Rank Correlation (%) on SummEval for various expert model configurations using Qwen judges.
Results are shown for the full set of comparisons.

LLM Function f Distribution p COH CON FLU REL Average

Qwen2.5 (3B)

x Gaussian 48.5 48.6 40.8 46.5 46.1
σ Gaussian 48.4 48.6 40.9 46.4 46.1
Φ Gaussian 48.5 48.6 40.9 46.6 46.1
σ Beta 48.5 48.6 40.8 46.5 46.1
Φ Beta 48.6 48.6 40.9 46.5 46.2

Qwen2.5 (7B)

x Gaussian 50.4 48.9 38.7 50.4 47.1
σ Gaussian 50.5 48.9 38.8 50.6 47.2
Φ Gaussian 50.4 48.9 38.8 50.6 47.2
σ Beta 50.4 48.9 38.7 50.5 47.1
Φ Beta 50.3 48.9 38.7 50.5 47.1

Qwen2.5 (14B)

x Gaussian 57.3 52.1 47.4 51.1 52.0
σ Gaussian 57.3 52.1 47.4 51.2 52.0
Φ Gaussian 57.4 52.1 47.4 51.2 52.0
σ Beta 57.4 52.1 47.4 51.1 52.0
Φ Beta 57.4 52.1 47.4 51.1 52.0



D.2 SENSITIVITY OF RANKING UNCERTAINTY TO EXPERT MODEL CHOICE

In contrast to the final rankings, the quality of the ranking-level uncertainty is more sensitive to the expert model configuration.
Table 5 shows the AUROC scores, which measure how well the model’s uncertainty can predict high-performing rankings.
Here, we observe greater variability. Models that use a sigmoidal mapping function (σ or Φ) tend to yield better AUROC
scores than the linear ‘Identity‘ function. This confirms that the nature of the probabilistic model has a notable impact on the
quality of the overall uncertainty estimates.

Table 5: AUROC (%) for Ranking Uncertainty on SummEval for various expert model configurations using Qwen judges.

LLM Function f Distribution p COH CON FLU REL Average

Qwen2.5 (3B)

x Gaussian 60.1 53.0 59.8 51.4 56.1
σ Gaussian 53.7 55.4 62.2 56.6 57.0
Φ Gaussian 50.6 54.3 65.1 58.6 57.2
σ Beta 59.8 62.8 63.2 57.5 60.8
Φ Beta 53.5 53.8 63.1 58.6 57.2

Qwen2.5 (7B)

x Gaussian 57.7 50.6 51.9 51.2 52.9
σ Gaussian 63.8 61.9 55.6 70.4 62.9
Φ Gaussian 64.0 63.4 55.6 70.3 63.3
σ Beta 66.7 68.2 58.5 69.4 65.7
Φ Beta 64.0 63.4 55.6 70.6 63.4

Qwen2.5 (14B)

x Gaussian 59.1 55.5 52.0 56.6 55.8
σ Gaussian 63.5 57.9 61.6 68.0 62.8
Φ Gaussian 64.6 56.9 62.2 67.3 62.8
σ Beta 61.7 62.0 58.4 64.8 61.7
Φ Beta 64.2 57.2 62.4 67.6 62.8

D.3 EFFICIENCY OF ITERATIVE SELECTION METRICS

This section evaluates the efficiency of different uncertainty metrics for iteratively selecting the most informative comparisons.
Table 6 compares the ϵ = 0.5 metric with the probability of reordering (ϵ = 2.0) from Eq. (6). The results show that ϵ = 0.5
is highly competitive and often more efficient, particularly for the largest Qwen2.5-14B model, where it consistently requires
fewer comparisons to reach 90% of the final performance.

Table 6: Efficiency comparison of uncertainty selection metrics for Qwen models. The values represent the number of
comparisons needed to achieve 90% of the final performance. Lower is better.

LLM Metric (ϵ) COH CON FLU REL Average

Qwen2.5 (3B)
0.5 28.2 23.1 23.6 33.5 27.1
2.0 27.9 22.7 24.0 34.0 27.1

Qwen2.5 (7B)
0.5 32.9 25.8 29.9 27.7 29.1
2.0 34.1 27.3 31.1 28.1 30.2

Qwen2.5 (14B)
0.5 25.7 23.5 26.0 25.6 25.2
2.0 29.6 26.6 33.9 27.9 29.5

The broader efficiency comparison in Table 7 and visualized in Figures 7, 8, and 9 corroborates these findings. While
variance only performs well under debiased outputs from an LLM, the probability of reordering is stable under both cases,
significantly outperforming the baseline minimum uncertainty in all cases.



Table 7: Measure of efficiency: The number of comparisons needed to achieve 90% performance of the baseline soft
Bradley-Terry system for each corresponding judge. The baseline is evaluated using all N(N − 1) = 240 comparisons.

Uncertainties Debiased
Qwen2.5 (7B) Qwen2.5 (14B)

COH CON FLU REL COH CON FLU REL

minimum ✗ 73.1 ± 9.0 46.9 ± 5.6 60.8 ± 13.3 71.8 ± 8.4 75.9 ± 7.7 50.2 ± 6.0 64.2 ± 12.7 67.6 ± 9.8

uncertainty ✓ 61.0 ± 9.3 46.8 ± 8.3 50.9 ± 9.3 60.3 ± 11.1 67.0 ± 5.0 48.8 ± 7.4 62.0 ± 9.1 61.6 ± 9.3

variance
✗ 56.1 ± 9.5 36.6 ± 9.6 52.0 ± 19.6 63.4 ± 10.7 59.7 ± 12.6 36.2 ± 8.0 61.0 ± 14.3 51.0 ± 9.6

✓ 24.3 ± 3.6 20.6 ± 4.2 23.2 ± 5.9 31.8 ± 5.9 27.6 ± 4.5 22.8 ± 2.4 31.6 ± 9.5 31.4 ± 6.0

probability ✗ 35.6 ± 5.7 27.4 ± 2.7 31.6 ± 5.0 29.4 ± 4.3 28.1 ± 2.6 25.6 ± 2.5 34.2 ± 4.9 26.1 ± 2.7

of reordering ✓ 21.5 ± 4.3 20.1 ± 2.5 20.5 ± 3.9 21.4 ± 2.4 20.6 ± 2.0 19.9 ± 2.1 23.1 ± 3.2 20.1 ± 1.6
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Figure 7: Qwen2.5-3B-Instruct: The Spearman Rank Correlation when iteratively selecting the next examples of lowest
confidence/highest uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also
report the proposed variance and probability of reordering under the soft BT model.
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Figure 8: Qwen2.5-7B-Instruct: The Spearman Rank Correlation when iteratively selecting the next examples of lowest
confidence/highest uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also
report the proposed variance and probability of reordering under the soft BT model.
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Figure 9: Qwen2.5-14B-Instruct: The Spearman Rank Correlation when iteratively selecting the next examples of lowest
confidence/highest uncertainty. The baseline is the soft Bradley-Terry model with the minimum uncertainty metric. We also
report the proposed variance and probability of reordering under the soft BT model.
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