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Abstract

Neural Persistence is a prominent measure for
quantifying neural network complexity, proposed
in the emerging field of topological data analysis
in deep learning. In this work, however, we find
both theoretically and empirically that the vari-
ance of network weights and spatial concentration
of large weights are the main factors that impact
neural persistence. First, we prove tighter bounds
on neural persistence that motivate this claim theo-
retically. Then, we confirm that our interpretation
holds in practise by calculating neural persistence
for synthetic weight matrices and for trained deep
neural networks. This raises the question if the
benefits of neural persistence can be achieved by
simpler means, since already calculating 0-order
persistent homology for large matrices is costly.

1. Introduction
Analysing deep neural networks to gain a better understand-
ing of their inner workings is crucial, given their now ubiq-
uitous use and practical success for a wide variety of ap-
plications. However, this is a notoriously difficult problem.
Topological Data Analysis (TDA) has gained popularity for
analysing machine learning models, and in particular deep
learning models. TDA investigates data in terms of its scale-
invariant topological properties, which are robust to pertur-
bations (Cohen-Steiner et al., 2007).

Recent works consider neural networks as weighted graphs,
which allows for analysis with tools from TDA developed
for such data structures (Rieck, 2023). This is possible
by considering the intermediate feature activations as ver-
tices, and parameters as edges. The corresponding network
weights are then interpreted as edge weights. Using this
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perspective, Rieck et al. (2019) define neural persistence,
a popular measure1of neural network complexity which is
calculated on the weights of trained neural networks, i.e.
the edges of the computational graph. Neural persistence
does not take the data and intermediate or output activations
into account. Nevertheless, Rieck et al. (2019) show that
neural persistence can be used as an early-stopping criterion
in place of a validation set.

2. Understanding neural persistence
In this section, we aim at providing a deeper understanding
of neural persistence. In particular, we identify the variance
of weights and spatial concentration of large weights as
important factors that impact neural persistence. We for-
malise these insights by deriving tighter bounds on neural
persistence in terms of max-over-row and max-over-column
values of weight matrices.

Before stating the definition of neural persistence, we recall
the definition of complete bipartite graphs.

Definition 2.1 (Bipartite graph). A graph G = (V,E) is
called bipartite if vertices V can be separated into two dis-
joint subsets A,B with V = A ∪ B and A ∩ B = ∅, and
all edges e ∈ E are of the form e = (a, b) with a ∈ A and
b ∈ B, i.e. every edge connects a vertex in A to one in B.

Definition 2.2 (Complete bipartite). G is complete bipartite
if edges between all vertices in A and all vertices in B exist.

Remark 2.3. Any matrix W ∈ Rn×m can be interpreted as
the adjacency matrix of an undirected weighted complete
bipartite graph. In this case, rows and columns correspond
to vertices in A and B, respectively. The matrix entries then
resemble edge weights between all vertices in A and B.

Rieck et al. assert that neural persistence can be defined in
terms of the maximum spanning tree (MST) of a complete
bipartite graph instead of persistent homology.

Definition 2.4 (Neural persistence). Let W ∈ [0; 1]n×m be
a matrix with n rows, m columns, and entries bounded be-
low by 0 and above by 1. Throughout this paper, we denote
entries in W with row index i and column index j as Wi,j .
As in Remark 2.3, W can be interpreted as the adjacency

1The here considered measures of network complexity do not
comply with the measure-theoretic definition of a measure.
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matrix of an undirected weighted complete bipartite graph
GW = (VW , EW ). Let MST(GW ) = (VW , EMST(GW ))
with EMST(GW ) ⊂ EW be the unique MST of GW . In
general, uniqueness is not guaranteed, but can be achieved
by infinitesimal perturbations. Then, let MSTw(GW ) be
the set of weights of edges contained in the MST, i.e.

MSTw(GW ) := {Wv,v′ | (v, v′) ∈ EMST(GW )}. (1)

The neural persistence NPp(W ) is defined as

NPp(W ) :=

1 +
∑

w∈MSTw(GW )

(1− w)p

 1
p

, (2)

and subsequently neural persistence for an entire neural net-
work is defined as the average neural persistence of all layers.
Weights, which can have arbitrary values, are mapped to the
range [0, 1] by taking the absolute value and then dividing
by the largest value in the neural network. For the remainder
of this paper, we assume that all weights are in [0, 1].

Normalised neural persistence. To make neural persis-
tence values of matrices with different sizes comparable,
Rieck et al. propose to divide neural persistence by the theo-
retical upper bound (n+m− 1)

1
p (see Theorem 1 in (Rieck

et al., 2019)). This normalisation maps neural persistence
values to the range [0, 1]. We follow Rieck et al. and use the
proposed normalisation and p = 2 in all experiments.

Variance and spatial concentration of large weights im-
pact neural persistence. Defining neural persistence in
terms of the MST of a complete bipartite graph provides the
interesting insight that the neural persistence value is closely
related to max-over-rows and max-over-columns values in
the matrix. This characterisation provides intuitions about
properties of weight matrices that influence the neural per-
sistence. These intuitions are formalised in Theorem 2.5
as bounds on neural persistence which are tighter than the
bounds given in Theorem 2 in (Rieck et al., 2019).
Theorem 2.5. Let GW = (VW , EW ) be a weighted com-
plete bipartite graph as in Definition 2.4 with edge weights
given by W and VW = A ∪ B, A ∩ B = ∅. To simplify
notation, we define

Φb := (1−max
a∈A

Wa,b)
p for b ∈ B, (3)

Ψa := (1−max
b∈B

Wa,b)
p for a ∈ A. (4)

Using these shortcuts, we define

L :=

(∑
b∈B

Φb +
∑
a∈A

Ψa

) 1
p

, (5)

U :=

|B \B ̸∼A|+
∑

b∈B ̸∼A

Φb +
∑
a∈A

Ψa

 1
p

, (6)

where

B ̸∼A := {b ∈ B | ∀a ∈ A : b ̸= argmax
b′∈B

Wa,b′}. (7)

B ̸∼A ⊂ B can be thought of as the set of columns whose
maximal element does not coincide with the maximal ele-
ment in any row of W .

Then, the following inequalities hold:

0 ≤ L ≤ NPp(W ) ≤ U ≤ (n+m)
1
p . (8)

Proof (sketch). For the lower bound, using properties of
spanning trees, we construct a bijection between vertices
V (with one vertex excluded) and edges in MST(GW ).
Each vertex v is mapped to an edge that is connected to
v. Using this bijection, we can bound the weight of each
edge in the MST by the maximum weight of any edge con-
nected to the respective vertex. Since maximum weights of
edges connected to vertices correspond to max-over-rows
and max-over-columns values, we obtain the formulation
of L. For the upper bound, we observe that all max-over-
rows and max-over columns values are necessarily included
in MSTw(GW ). However, in some cases max-over-rows
values and max-over-columns values coincide. Therefore,
this observation leaves some values in MSTw(GW ) unde-
termined. For these, we choose the value that maximises
neural persistence, i.e. 0, to obtain an upper bound.

Interpretation of bounds on neural persistence. As al-
ready mentioned, the bounds on neural persistence derived
in Theorem 2.5 mostly depend on max-over-columns and
max-over-rows values in W and thus identify additional fac-
tors that impact neural persistence, in particular the variance
and spatial concentration of weights.

The lower bound L is tighter when the variance of weights
is smaller. It then is more likely that the actual weight in
the MST chosen for any vertex v is close to the maximum
weight connected to v. If mean weight values and variances
of weights are highly correlated, which is the case in prac-
tise, neural persistence increases with lower variance. The
reason is that the lower variance causes the expected max-
imum value of a sample to be closer to the mean weight
value, i.e. the max-over-rows and max-over-columns values
will also decrease together with lower mean and variance.

The upper bound U is tighter when B ̸∼A is smaller. This
is the case when large weights are concentrated on edges
connected to few or even a single vertex, i.e. when there
is relevant spatial concentration of large weights on cer-
tain rows or columns. In the extreme case, all edges with
maximum weight for any vertex in A are connected to the
same vertex b ∈ B. Then, we know that edges with maxi-
mum weight, i.e. max-over-column values, for all vertices
in B \ {b} will be part of the MST. In this case, we have
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Figure 1: Correspondence of neural persistence with log-
transformed variance and spatial concentration of entries in
(individual) synthetic matrices with entries in [0, 1].

equality of NPp(W ) = U . Also, when large weights are
concentrated on fewer rows or columns, max-over-rows and
max-over-columns values will be generally lower, which
leads to higher neural persistence values.

In Figure 1, we demonstrate that this interpretation is in
agreement with empirical results on synthetic weight ma-
trices. Here, we sample matrices of shape 100× 100 with
entries in [0, 1] from truncated Pareto distributions and trun-
cated normal distributions with varying skew. Empirically,
these families of distributions approximate the (normalised)
weights in trained neural networks (see Section 3) well. Spa-
tial concentration is controlled by treating the matrix as a
vector and approximately sorting entries by magnitude in
increasing order. Approximate sorting is achieved by adding
Gaussian noise with suitable variance (to achieve the desired
spatial concentration of large entries) before sorting and sub-
sequently again removing the noise. We measure the effect
by the (normalised) number of inversions (Estivill-Castro,
2004), which yields a score between -1 and 1, where 0 indi-
cates random dispersion and 1 indicates perfect sorting in
increasing order. As predicted by our theoretical analysis,
neural persistence increases monotonically both with lower
variance and also with higher spatial concentration of large
weights. The correspondence appears roughly linear as the
R2 score of a linear regression fit is ≈ 89%, but flattens for
neural persistence values close to one.

3. Experimental analysis
Motivated by our theoretical analysis, we investigate the
impact of the variance of weights and the spatial concen-
tration of large weights in deep neural networks on neural
persistence. In particular, we find that no relevant spatial
structures is present in later layers of deep neural networks,
and therefore neural persistence corresponds roughly lin-
early to the variance of weights, as effects of spatial structure
become irrelevant.

Setup. To study neural persistence of deep neural networks
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Figure 2: Impact of random permutations in weight matrices
of trained deep neural networks on neural persistence.

in a controlled setting, we train DNNs with exhaustive com-
binations of the following hyperparameters: Number of hid-
den layers ∈ {1, 2, 3}, hidden size ∈ {50, 100, 250, 650},
and activation function ∈ {tanh, relu}. We use the Adam
optimizer (Kingma & Ba, 2015) with the same hyperpa-
rameters as (Rieck et al., 2019), i.e. with a learning rate
of 0.003, no weight decay, β1 = 0.9, β2 = 0.999, and
ϵ = 10−8. Models are trained for 40 epochs with batch size
32 on three datasets, namely MNIST (LeCun et al., 1998),
EMNIST (Cohen et al., 2017), and Fashion-MNIST (Xiao
et al., 2017). For EMNIST, we use the balanced setting.
EMNIST has more classes, namely 49 instead of 10 for
MNIST and Fashion-MNIST. For each combination of hy-
perparameters and dataset, we train 20 copies with different
initialisation and minibatch trajectories. Here, we analyse
the models after training for 40 epochs.

Additionally, we train 20 linear classifiers (perceptrons) for
each dataset using the same hyperparameters (optimiser,
batch size, number of epochs) as for deep models.

Linear classifiers. Linear classifiers are similar to the syn-
thetic weight matrices evaluated in Figure 1, as they also
only contain one linear transformation. In Table 1, we show
that linear classifiers trained on different datasets indeed
exhibit relevant spatial structure. We find this by randomly
permuting entries in weight matrices, which destroys any
spatial structure that may have been present. In many cases,
this causes large changes in neural persistence. Further-
more, linear regression fits with log-transformed variance
of entries in weight matrices of trained linear classifiers as
independent variable and neural persistence as dependent
variable yield R2 scores close to 1, which indicates a strong
correspondence of the log-variance of trained weight matri-
ces and the neural persistence. Taken together, these results
show that the factors we identified to impact neural persis-
tence are actually relevant in practise for linear classifiers,
in the sense that they vary, in this case across datasets.

Spatial structure in deep networks. To analyse the spatial
structure in trained deep neural networks, we again shuffle
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MNIST Fashion-MNIST EMNIST

∆ NP (Avg.) 0.07 0.17 0.18
R2 0.994 0.993 0.996

Table 1: ∆ NP (Avg.): Average difference in neural persis-
tence when shuffling entries of weight matrices of linear
classifiers trained on different datasets. R2: R2 scores of lin-
ear regression fits with log-transformed variance of entries
in weight matrices of trained linear classifiers as indepen-
dent variable and neural persistence as dependent variable.
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Figure 3: Roughly linear correspondence of log-variance of
weights and neural persistence for deep neural networks.

entries in weight matrices and compare the resulting neural
persistence values to those for the original weight matrices.
Results for (absolute) changes in neural persistence are pro-
vided in Figure 2 and show that, irrespective of the dataset,
the neural persistence of later layers in the network is in-
sensitive to random permutation of entries. The difference
between neural persistence of permuted matrices and the
true neural persistence is mostly less than 0.02, which is a
good bound for the variation of neural persistence values
resulting from different initialisation and minibatch trajec-
tories. These findings indicate the absence of any spatial
structure in the large weights in later layers of trained neural
networks that would be relevant for neural persistence.

Variance of weights of deep networks. Unlike spatial
structure, differences in the variance of trained weights also
exist in the case of DNNs. Therefore, our theoretical results
suggest that, in the absence of relevant spatial structure,
the variance of weights becomes the main factor that corre-
sponds to changes in neural persistence. Indeed, we observe
a roughly linear correspondence of neural persistence with
the log-transformed global variance of all weights in the
trained network, which is shown in Figure 3.

Due to effects of matrix size on neural persistence which are
still present in normalised neural persistence, for better read-
ability we only include neural networks with two or three
hidden layers and hidden size ∈ {250, 650} in Figure 3, but
similar results can be observed for all models.

As further consequence, variance and neural persistence are
in most cases highly correlated throughout training: The
median Pearson correlation (among all models) is ≈ −0.98
(mean is ≈ −0.83). This implies that variance is similarly
useful for the applications proposed by Rieck et al., espe-
cially using neural persistence as early stopping criterion.

4. Conclusion
In this work, we presented an analysis of the neural persis-
tence measure. We showed both theoretically and empiri-
cally that the variance of weights and spatial concentration
of large weights are the main factors impacting neural per-
sistence. First, we derived new bounds on neural persistence
which motivated the above mentioned factors. In practise,
we found that later layers in trained deep feed-forward neu-
ral networks do not exhibit relevant spatial structure. There-
fore, neural persistence is highly related to the variance of
network weights, which is significantly cheaper to compute.
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