
The Promise of RL for Autoregressive Image Editing

Saba Ahmadi1∗ Rabiul Awal1,2∗ Ankur Sikarwar1,2∗ Amirhossein Kazemnejad1∗

Ge Ya Luo 1,2 Juan A. Rodriguez1,4,6 Sai Rajeswar1,2,6
Siva Reddy1,3,6,7 Christopher Pal 1,5,6,7 Benno Krojer1,3 Aishwarya Agrawal1,2,7

1Mila – Quebec AI Institute 2Université de Montréal 3McGill University
4École de Technologie Supérieure (ETS) 5Polytechnique Montréal 6ServiceNow

7Canada CIFAR AI Chair

Abstract

While image generation techniques are now capable of producing high-quality
images that respect prompts which span multiple sentences, the task of text-guided
image editing remains a challenge. Even edit requests that consist of only a few
words often fail to be executed correctly. We explore three strategies to enhance
performance on a wide range of image editing tasks: supervised fine-tuning (SFT),
reinforcement learning (RL), and Chain-of-Thought (CoT) reasoning. In order to
study all these components in one consistent framework, we adopt an autoregressive
multimodal model that processes textual and visual tokens in a unified manner. We
find RL combined with a large multi-modal LLM verifier to be the most effective
of these strategies. As a result, we release EARL: Editing with Autoregression
and RL, a strong RL-based image editing model that performs competitively on
a diverse range of edits compared to strong baselines, despite using much less
training data. Thus, EARL pushes the frontier of autoregressive multimodal
models on image editing. We release our code, training data, and trained models at
https://github.com/mair-lab/EARL.

1 Introduction

With internet-scale image-text pairs [41] and diffusion models [40, 39, 23], we have seen impressive
progress on open-ended image generation in recent years. At this point, the latest text-to-image models
can often adhere to detailed prompts that span several sentences [5, 13]. However, synthesizing
images from a prompt alone is often not sufficient for end-users and broader ML applications. In
reality, a person might want to alter highly specific details in a given image instead of creating one
from scratch. Beyond direct user applications, e.g., in the domains of robotics and planning, one
might want to “imagine into the future” with an image editing model acting as a simulator [59, 26, 7],
e.g., “how does this scene look like if the robot pushes the mug?”. In both cases, the model must
faithfully preserve all details of the original image while modifying the elements intended for editing.

From a capability perspective, most current editing models [61, 8, 56] cover arguably simpler object
and attribute edits (replace, change color, add, ...), yet only few works [26, 44] tackle more complex
edits that require e.g., action understanding or reasoning (spatial, counting, physical dynamics).
From a modeling perspective, a standard recipe to improve editing is to apply supervised fine-tuning
(SFT) to a diffusion-based image generation model [8, 61, 56], rarely incorporating more recent post-
training methods such as reinforcement learning (RL). A parallel line of work introduces additional
bounding-box conditioning, either explicitly provided by the user [31] or implicitly predicted [16],
leaving these methods far from an end-to-end solution. Hence, in this paper we ask: What is the

∗denotes equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/mair-lab/EARL

most effective approach to address both simple and complex edits with a unified end-to-end
model? And specifically, what are the key learning paradigms that can move the field forward?

To this end, we conduct a series of experiments with three different learning paradigms (SFT, RL
and chain-of-thought reasoning) and mixes of data. However, diffusion-based models would not
directly allow a consistent setup where all training approaches could be plugged in out of the box.
For this reason we choose Emu3 [50] as our starting point, a fully autoregressive generative model
which was pre-trained on captioning and image generation. Since Emu3 is a unified image and
language generation model, we can easily use it to study CoT reasoning and online RL methods such
as GRPO [42], on top of SFT. We note that RL for visual generation with diffusion or flow-matching
is non-trivial [6, 32]. At the end of our exploration, we arrive at a simple recipe and propose EARL:
Editing with Autoregression and RL, a fully autoregressive generative model that trains on simple
and complex editing data during the SFT and RL post-training stages. Specifically, we find the
combination of GRPO with a strong MLLM-based verifier to be the most effective. While variants of
CLIP-Score are more commonly used verifiers [30, 32], they often require finetuning on preferences
and lack fine-grained understanding [60, 1]. Instead, we identify large MLLMs with fine-grained
understanding such as Qwen2.5-VL-72B as effective verifiers for a broad range of edits.

We empirically show that EARL performs well across many types of edits by evaluating on 6 diverse
benchmarks in both IID and OOD settings. We achieve better results than prior state-of-the-art
models on the OmniEdit [52], AURORA [26], and VisMin [2] benchmarks. Moreover, our method
outperforms the strongest prior work Omnigen [56], despite using five times less data, and also
surpasses baselines that use a comparable amount of data, such as AURORA [26]. See Fig. 1 for
samples from EARL before and after applying our RL recipe, showing improved performance even on
challenging tasks that require spatial understanding. Notably, modeling textual and visual generation
as one autoregressive stream has emerged as a new exciting paradigm [50, 45, 46, 55], and we push
the frontier of such models for the image editing task, outperforming prior related work EditAR [38].
Finally, we highlight a surprising finding from our in-depth analysis of different training paradigms:
teaching the model to explicitly reason about the intermediate steps (chain-of-thought style reasoning)
before generating the actual edit does not seem to improve performance, and sometimes it even hurts.
Our contributions are as follows:

1. We release EARL: A unified end-to-end editing model that performs well on the whole spectrum
of edit types.

2. EARL outperforms the strongest open-source diffusion baseline (Omnigen [56]), while also
outperforming a more comparable fully autoregressive editing model EditAR [38].

3. A simple yet effective online RL pipeline for training an autoregressive editing model.
4. A systematic analysis of how training objectives interplay and at what stages to bring in simple

vs. complex edits. The results interestingly reveal that various CoT reasoning settings do not
bring any clear improvements. Our findings also show that complex edits are not beneficial
during the SFT stage but are effective in the RL post-training stage.

EARL Recipe: Our results show that autoregressive models, while underexplored for image
editing, can be highly competitive. When paired with RL, they surpass strong diffusion-based base-
lines on both simple and complex edits. This demonstrates the power of combining autoregressive
generation with RL for controllable and high-fidelity image editing.

2 Related Work

Image Editing Models. Enabled by the development of diffusion models with open-ended text-
conditioning for image generation [40, 39], image editing models can now receive any text prompt
in a similar manner and typically depend on these diffusion models [8, 17]. Research [40, 35] has
demonstrated that models such as Stable Diffusion [40] can be zero-shot transformed into an editing
model by modifying the sampling procedure [35] or attention maps [22]. To achieve better results,
components such as additional input U-Net channels are added to pre-trained image generation
models followed by fine-tuning on curated editing data [61, 52, 3]. These training datasets consist
of triplets of input image, an edit instruction describing the change, and a ground-truth edited
image as output. These triplets rarely occur “naturally” (i.e. only in forums [3]) and therefore need

2

Turn the color of patient chart to be brown.Remove one vase.

Pour all the orange content from the bag into the big bowl. Remove the birds from the image.Replace the beaded curtain with window curtains.

Input SFT only EARL

Remove the orange from the image. Make this image into an anime style art.Transform the setting to a foggy day.

Input SFT only EARL Input SFT only EARL

Add a person to the left of the bananas.

Change the white couch to a brown couch.Add some lettering to the surfboard second from the left.Turn the color of robot to be white

Figure 1: Qualitative comparison between SFT-only and EARL across diverse editing instruc-
tions. EARL extends the SFT model by leveraging reinforcement learning to better align image
edits with natural language prompts. While both models handle simple edits reasonably well, EARL
exhibits clear improvements in precise editing on simple as well as complex edit instructions. Simple
edit instructions are shown in blue, and complex edit instructions are shown in pink.

to be sourced from synthetic image generation pipelines [22], human-in-the-loop annotation [61],
videos [26, 44], or simulation [26, 36]. Various works also adopt more structure into the editing
task by restricting the model to edit certain regions of the image [11] or conditioning on bounding
boxes or keypoints [37]. In a more recent line of work, image generation is learned jointly with text
generation in unified multimodal models that autoregressively predict arbitrary sequences of textual
and visual tokens [50, 45]. Concurrent with our work, BAGEL [12] trains a unified transformer model
that integrates LLMs and diffusion models, achieving strong editing performance (with and without
reasoning) through large-scale pretraining and a powerful base model. However, autoregressive
models are less explored for image editing as these models remain less powerful than their diffusion
counterparts. Recent work [38] explores using autoregressive models for image editing and achieves
competitive results with diffusion baselines. However, they only study the SFT training paradigm,
while we study SFT, RL post-training, and CoT Reasoning, cover a wide range of edit types, and
outperform their results.

Reasoning in Image Generation. LLM reasoning has been adapted to enhance image generation
models through additional conditioning or planning [54]. Models like GLIGEN [31] and Layout-
GPT [15] use LLMs to predict bounding boxes and scene layouts to direct object placement before
generation. In these works, the layout generation step is unimodal, relying solely on LLMs. However,
for image editing tasks, incorporating multimodal information from both the original image and the
edit instruction is essential to determine an effective layout. GoT (Generation Chain-of-Thought) [14]
applies CoT to visual generation and editing tasks. It first generates reasoning in text, analyzing
semantic and spatial relationships in the input image, before generating the edited images using
a diffusion model. Additionally, PARM++ [21] introduces a reflection mechanism to self-correct
generated images, further enhancing the model’s reasoning capabilities. Another approach focuses
on improving the prompts used for image editing by utilizing a large language model (LLM) or a
multimodal LLM (MLLM) [17], which is better equipped for both text and image understanding.
While previous work has applied reasoning to image editing tasks, our approach systematically
explores and evaluates chain-of-thought (CoT) reasoning in different settings involving both simple
and complex edits.

RL for Image Generation. Reinforcement learning has emerged as a powerful tool for finetuning
image generation models, particularly diffusion models, to better align with human preferences [6].

3

SFT RLSFT w/ Reasoning

Put the left

hand on the leg

while drinking

from the glass

r1 r2 r3
<thinking> 1. Identify [x,y]

coordinates... 2. Move glass up ... 3.

Adjust angle of head further up to drink

... 4. </thinking>

Next Token Predict ion Next Token Predict ion Next Token Predict ion

Put the left

hand on the leg

while drinking

from the glass

Put the left

hand on the leg

while drinking

from the glass

Figure 2: Autoregressive Image Editing Approaches. In supervised fine-tuning (SFT), we train
an autoregressive model based on the standard image editing setup: triplets of source image, edit
instruction, and target image. In SFT with reasoning, the model is supervised to generate chain-
of-thought (CoT) reasoning traces before generating the final edited image. Finally, we study
reinforcement learning (RL) training of the SFT checkpoint, using edit quality verifiers as reward
signals.

Preference-based methods such as Diffusion-DPO [48] and D3PO [57] bypass explicit reward models
by directly learning from pairwise human feedback. DDPO [6] further adapts diffusion models
to hard-to-specify objectives such as aesthetic quality and compressibility, using rewards based
on multimodal models (prompt-image alignment). Although RL for image generation is gaining
momentum through human preference and multimodal reward signals, its application to image
editing remains underexplored. HIVE [63] collects human feedback on edited images to learn
reward functions that capture user preferences, but such datasets are costly and difficult to scale.
InstructRL4Pix [30] addresses this challenge by using attention-based reward signals for localized,
instruction-driven editing. Meanwhile, GRPO has demonstrated stable and efficient training of
autoregressive large language models. Concurrent work such as Flow-GRPO [32] and SimpleAR [49]
apply GRPO to flow matching and autoregressive models, respectively. Building on this success,
we adopt GRPO for unified image editing with the autoregressive Emu3 model [50]. We leverage
a strong multimodal model [58] as a reward function, utilizing its robust image-text alignment and
zero-shot prompting to specify and evaluate editing preferences effectively.

3 Training Paradigms for Autoregressive Image Editing

To our knowledge, EARL is the first to introduce an RL post-training paradigm for autoregressive
image editing. While RL-based approaches have recently improved diffusion-based editors, their
potential in AR models has remained unexplored. Furthermore, we present the first systematic and
controlled comparison of three major training strategies: SFT, RL, and CoT reasoning, within a
unified AR framework for image editing. In this section, we formally describe the three training
paradigms we explore. All our experiments build upon the Emu3 base model [50] (see App. A.1 for
more details), a large autoregressive multimodal model that unifies image and text generation in a
single autoregressive stream and is trained from scratch.

In the image editing task, the input consists of an original image and a textual edit instruction, and
the output is the corresponding edited image. For training Emu3 on the image editing task, both the
original and edited images are tokenized into vision tokens using an image tokenizer, while the edit
instruction is tokenized into language tokens. These vision and language tokens are then modeled
jointly by a single causal transformer (i.e. a LLaMA-style architecture [47]). The task is framed as
sequence-to-sequence generation: the model takes as input a token sequence [x1, · · · , xM], formed
by concatenating the vision tokens of the input image with the language tokens of the instruction, and
generates an output sequence ŷ = [ŷ1, · · · , ŷT], where y = [y1, · · · , yT] represents the ground truth
vision tokens of the edited image which is used for teacher forcing. Below, we detail the learning
objective for each of the training paradigms we explore (Fig. 2):

4

Supervised Fine-Tuning (SFT) We employ the standard next-token prediction objective to process
interleaved image-text sequences. Training minimizes the cross-entropy loss:

L(θ) = −E(x,y)∼D

[∑
t

log πθ(yt | y<t, x)

]
,

where πθ denotes the model and D is the labeled training dataset consisting of edit instructions paired
with ground-truth edited images.

Reinforcement Learning (RL) Post-Training We use Group Relative Policy Optimization
(GRPO) [42] in our RL pipeline to post-train the model following the initial SFT stage. GRPO
initializes a trainable policy model πθ and a frozen reference model from the SFT checkpoint. For
a given input prompt x, the model generates a group of G responses y1, y2, . . . , yG based on the
current policy model πθold . The optimization goal is to maximize the following objective:

J (θ) = Ey1,...,yG∼πθold

[
1

G

G∑
i=1

1

|yi|
∑
t

min

(
πθ(yi,t | yi,<t)

πθold(yi,t | yi,<t)
Âi, clip

(
πθ(yi,t | yi,<t)

πθold(yi,t | yi,<t)
, 1− ϵ, 1 + ϵ

)
Âi

)
− βKL [πθ∥πref]

]
.

Here, Âi = (ri − µ)/σ denotes the advantage of response yi, where ri is the reward of the i-th
response. µ and σ are the mean and standard deviation of rewards across the response group {yi}.2
The hyperparameters ϵ and β control the clipping range and the Kullback–Leibler (KL) penalty,
respectively. To compute the reward ri, we first detokenize the vision tokens in yi back into an image.
The reward is then computed using the MLLM verifier, which evaluates the quality of the image
editing. This RL objective optimizes the model to generate higher-quality edits while maintaining
training stability via the KL divergence term. For a detailed overview of the GRPO method, see the
pseudocode in App. A.2.

RL Verifier: Any MLLM with strong image understanding capabilities can be used for verification.
In particular, we use Qwen2.5-VL-72B [4] as our verifier to evaluate the generated edits based on the
following criteria from VIEScore [27]: (1) Edit Success – whether the intended modification was
accurately applied; (2) Overedit – whether any unintended changes were introduced; (3) Natural Look
– how well the edit blends with the original image; and (4) Artifacts – whether the image contains
visual distortions or anomalies. For criteria 1 and 2, the inputs to the model are the edit instruction,
input image, and edited image. For criteria 3 and 4, only the edited image is provided. The individual
scores are then aggregated into a single reward signal, ranging from 0 to 10.

Chain-of-Thought (CoT) Reasoning Explicitly generating intermediate reasoning steps before
the final output is a widely adopted technique that improves performance on complex reasoning tasks
[20, 53]. This is known as the Chain-of-Thought (CoT) reasoning. We extend CoT reasoning to the
field of image editing. To teach CoT reasoning to Emu3, we finetune Emu3 with CoT supervision by
prepending the response y with a tokenized reasoning chain (see Sec. 4.1 for details of synthesizing
ground-truth reasoning traces).

4 Experimental Setup

4.1 Training Details

Implementation Our base model is Emu3-8B [50], a state-of-the-art autoregressive multi-
modal model with unified image-text generation capabilities. For SFT, we initialize from
BAAI/Emu3-Stage1 weights, set a learning rate of 1e − 4, an effective batch size of 128 with
4 GPUs, a per-device batch size of 4, and 8 gradient accumulation steps. We use validation loss to
stop training. For RL post-training, we use a KL divergence coefficient of 3e− 4 and a learning rate
of 3e− 6. The RL model is trained with 8 rollouts per edit instruction and a batch size of 128 and

2We omit the dependence on x for brevity.

5

Table 1: Datasets, covered edit types, and their share of the full training corpus.

Dataset Type Sub-type Size

OmniEdit [52] S Object (add, remove, replace), Attribute (modify), Scene, Style 750K
HumanEdit [3] C Object (add, remove, replace, relation, action counting) 4.6K
MagicBrush [61] C Object (add, replace, remove), Attribute (modify), OCR (modify), Action (modify) 8.7K
VisMin [2] C Object (add/remove), Attribute (replace), Count (add/remove), Spatial (swap) 50K
Aurora-Kubric [26] C Spatial, Counting, Attribute 50K
Aurora-ActionGenome [26] C Human Pose (action) 7.8K
SomethingSomething-v2 [19] C Action 50K

Edit Instruction: Change the ceramic mug to be
painted in a pink color
Target region: [[111, 112, 201, 210]]

Reasoning: The source image shows a
person holding a painted ceramic mug... The
object to be edited is the mug within
bounding box [[111, 112, 201, 210]]... Changes
include turning the mug color to pink... The
edited image will show a person holding a
pink painted ceramic mug.

Input Image Edited Image
Editing Data (Input) Step-by-Step Reasoning (Output)

Figure 3: Example of step-by-step reasoning generated by Qwen2.5-VL-72B using standard editing
data (input image, edit instruction, target image, and bounding box).

training continues until the reward plateaus. To enhance training stability, we adopt a fully online
policy gradient approach, performing a single gradient update at each RL step [25]. All images are
resized to 256× 256 by maintaining their original aspect ratio. Further details on the training setup
and compute efficiency are provided in App. F.

Training Datasets Our dataset is divided into two categories based on the complexity of the
edits: Simple Edits (S) and Complex Edits (C). Simple Edits (S): This category includes relatively
simple local edits such as single-object and attribute changes, as well as global edits such as style
and environment changes. These types of edits are common in large-scale synthetic datasets, such
as OmniEdit [52] with 750K samples. Existing models generally perform well on these tasks.
Complex Edits (C): These edits involve more advanced operations, including counting, spatial,
and action modifications, where current models often struggle. Datasets like Aurora-AG [26],
Aurora-Kubric [26], VisMin [2], and Something-Something v2 [19] contain such challenging edits.
Additionally, we use real-world edit requests curated with human-in-the-loop guidance, such as
Human-Edit [3] and MagicBrush [61], which include complex object/attribute changes. Data in the
complex edit category is significantly scarcer, e.g., MagicBrush has 8K samples.

We provide details for each dataset in Tab. 1. Our dataset S comprises 750K OmniEdit samples,
while C combines the above mentioned C datasets with 171K unique samples. For datasets in C
with fewer than 50K samples, we upsample them to 50K, resulting in a dataset of size 300K for
supervised fine-tuning. For RL post-training, we randomly sample from the respective data pool (S or
C) at each iteration, using 16 unique samples per step with 8 rollouts per sample. We first experiment
with a smaller setup using a pool of 1,600 samples for various ablations. To improve further, we
then train with a total of 32K samples over the course of training. This provides more diverse data,
allowing the model to benefit from a broader coverage across edit types.

For CoT reasoning supervision, we generate chain-of-thought data using a multimodal large language
model (MLLM), Qwen2.5-VL-72B [58], following a prompting strategy similar to [14]. The input
to the MLLM consists of standard editing data: an input image, an edited image, a textual edit
instruction describing the desired change, and bounding boxes specifying the edit region (if available).
For action edits, we also include person keypoints. The generated CoT data follows a step-by-step
structure, including a description of the input image, bounding box coordinates of objects to be edited
in the input image, bounding boxes of objects to be added in the target image, the edit action, and
a description of the final edited image. For complex edit datasets, we apply few-shot prompting to

6

synthesize CoTs, while for the simple edit dataset (S), we reuse CoTs from [14]. An example is
shown in Fig. 3, and our prompting templates and full examples are provided in the App. B.2.

4.2 Evaluation Setup

We evaluate on a diverse suite of image editing tasks, ranging from simple object, attribute, and style
modifications to complex editing tasks such as counting, actions, and spatial relations.

Evaluation Metric We adopt VIEScore [27] as our metric since it outperforms traditional metrics
like LPIPS [62] in terms of human correlation (0.3821 for GPT-4o versus 0.1142 for LPIPS [27]).
VIEScore scores edits from 0 to 10 across four criteria (as explained in Sec. 3). For evaluation, we
use GPT4o-mini due to its high quality and cost efficiency and confirm that GPT4o-mini variant
aligns with human judgment not only on edits from the original human study [27] but also on various
complex edits; details are provided in App. C. Note that while our metric and reward are both based on
VIEScore, we use separate MLLMs for evaluation (GPT4o-mini) and RL verifier (Qwen2.5-VL-72B),
to reduce the risk of metric hacking, i.e. overfitting to MLLM-specific biases.

Evaluation Benchmarks We benchmark on datasets covering both simple (OmniEdit [52],
EmuEdit [43]) and complex edits (MagicBrush [61], Aurora [26], and I2EBench [34]). EmuEdit and
I2EBench serve as out-of-distribution (OOD) evaluations, with I2EBench including unseen edit types
such as lowlight enhancement. We also repurpose VisMin [2], originally an image understanding
benchmark, into an editing benchmark by generating edit instructions from captions (App. B.2.2).
These datasets span a wide range of edit types and difficulty levels, enabling robust evaluation. To
manage VIEScore API costs, we use a 1000-sample subset for I2EBench and EmuEdit.

Baselines We compare our model to diffusion-based baselines, including MagicBrush [61], In-
structPix2Pix [8], Aurora [26], and Omnigen, which is the SOTA image editing model [56]. We also
compare with EditAR [38], which, to the best of our knowledge, is the only fully autoregressive
image editing model.

5 Results

5.1 Teaching Emu3 Image Editing with Supervised Fine-Tuning

Simple Editing The first row of the Supervised Fine-Tuning section in Tab. 2 presents the results of
SFT trained on simple data (SFT (S)). It achieves the highest score on OmniEdit (5.73) and an average
score of 3.88, outperforming MagicBrush (3.32) and InstructPix2Pix (3.26), but underperforming
Aurora (4.17), EditAR (4.20), and Omnigen (4.70). Notably, Omnigen benefits from a stronger base
model with superior image generation performance (GenEval [18] 0.70) and large-scale finetuning
(∼ 4M image editing samples). In contrast, our model finetunes from a weaker base model (Emu3,
GenEval 0.64) and uses significantly less data (750K image editing samples), resulting in lower
overall performance. Also, we see that all models, including Omnigen, perform significantly worse
on complex editing benchmarks compared to simple editing benchmarks, highlighting challenges in
spatial edits, changes in object count, and human actions. Our trained SFT (S) follows this trend.
We next explore how to improve SFT performance on both simple and complex edits.

Complex Editing To improve the ability to handle complex edits, we explore two SFT strategies:
joint training on the combined simple and complex edit data (SFT (S+C)) and a two-stage curriculum
that first finetunes on simple edits, then on complex edits (SFT (S+C) two-stage). As shown in Tab. 2,
joint training (SFT (S+C)) reduces average performance compared to simple-only finetuning (SFT
(S)) from 3.88 to 3.32 across both simple and complex editing tasks. In particular, the performance
drop is significant on simple edit benchmarks, dropping from 5.73 to 4.64 on OmniEdit and from
3.66 to 2.89 on EmuEdit. We hypothesize that this degradation is due to the large distributional shift
between simple and complex edits; mixing them early in training may hinder the model’s ability to
generalize across either. In contrast, the two-stage curriculum partially recovers average performance
(3.69) and improves results on some complex edit benchmarks (e.g., VisMin, MB). This suggests
that allowing the model to first acquire basic editing capabilities from simple data makes subsequent
finetuning on complex tasks more effective, especially given that Emu3 has not been exposed to any

7

Table 2: SFT and RL model variants for image editing fine-tuning and post-training respectively. S
stands for data used in simple editing types, and C stands for data from complex editing types. †
and ‡ denote Simple and Complex Edit benchmarks, respectively. ∗ denotes the best-performing
prior state-of-the-art method, a diffusion-based model trained from scratch using approximately ∼5x
data. Bold numbers indicate the best performances across all methods. Green numbers indicate the
performance gain of EARL compared to the SFT (S) baseline.

Model/Data Base Model OmniEdit† EmuEdit† AURORA‡ MB‡ VisMin‡ I2EBench‡ AVG
Magicbrush SD v1.5 3.43 3.28 3.01 3.64 3.48 3.06 3.32
InstructPix2Pix SD v1.5 3.97 3.24 3.05 3.12 2.94 3.23 3.26
Aurora SD v1.5 4.50 4.40 4.12 4.62 3.82 3.58 4.17
EditAR LlamaGen 5.29 3.88 3.79 3.84 4.54 3.84 4.20
Omnigen∗ - 5.68 5.00 4.10 4.68 4.09 4.68 4.70
Supervised Fine-tuning
SFT (S) Emu3 5.73 3.66 3.58 3.19 3.57 3.59 3.88
SFT (S+C) Emu3 4.64 2.89 2.81 2.89 3.91 2.77 3.32
SFT (S+C) two-stage Emu3 4.23 3.29 3.60 3.40 4.56 3.07 3.69
RL Post-training
SFT (S)→ RL (S) Emu3 6.07 4.13 3.47 3.53 3.34 3.80 4.06
SFT (S)→ RL (C) Emu3 5.94 4.12 3.84 3.92 4.09 3.90 4.30
SFT (S)→ RL (S+C) Emu3 6.33 4.28 3.99 4.26 4.48 4.08 4.57
SFT (S+C)→ RL (C) Emu3 4.89 3.80 3.21 3.86 4.71 3.26 3.95
SFT (S+C)→ RL (S+C) Emu3 5.70 4.09 3.97 4.35 4.97 3.84 4.49
SFT (S+C) two-stage→ RL (C) Emu3 4.21 3.16 3.05 3.33 4.16 2.99 3.48
SFT (S+C) two-stage→ RL (S+C) Emu3 5.29 3.89 3.85 4.20 4.70 3.56 4.25
RL Post-training Scaled
EARL SFT (S)→ RL (S+C) Emu3 6.39 4.47 4.27 4.52 4.93 4.19 4.80
∆ EARL SFT (S) → RL (S+C) − SFT (S) - +0.66 +0.81 +0.69 +1.33 +1.36 +0.60 +0.92

editing data during pretraining. Overall, the SFT results show that supervised finetuning is insufficient
to effectively learn complex editing tasks.

5.2 Pushing Image Editing with RL Post-training

In this section, we present results showing that RL post-training substantially improves image editing
performance. Starting from the SFT (S) model trained only on simple edits, we apply RL post-training
under three settings: RL (S), which uses only simple edit data; RL (C), which uses only complex
data; and RL (S+C), which uses both. Tab. 2 shows that all RL variants outperform the SFT
baseline. RL (C), trained on a disjoint set of complex edits, outperforms RL (S) across all complex
(C) benchmarks without a significant drop on simple (S) benchmarks. This contrasts with the SFT
setting, where adding complex data degraded simple-edit performance. These results indicate that
incorporating complex data during RL helps the model learn complex editing while preserving
performance on simple edits. The largest gain comes from balancing simple and complex data, i.e.,
RL (S+C). The best-performing setup, SFT(S) → RL(S+C), improves the average score from 3.88
to 4.57, surpassing MagicBrush, InstructPix2Pix, Aurora, and EditAR, and remaining competitive
with Omnigen. As shown in Tab. 11, even best-of-5 sampling from the SFT model cannot match
RL performance, confirming the gains stem from policy optimization. In addition to accuracy, we
analyze inference efficiency in App. F.2: at 256×256, EARL runs about 4× faster than the SOTA
Omnigen with similar quality, while remaining 2× slower than lightweight editors.

Applying RL to models pre-trained on both simple and complex data (SFT (S+C) and two-stage)
yields modest gains over SFT, with average scores up to 4.49, still below RL on the simple-only base
(SFT (S) → RL (S+C)) . Fig. 4 shows stable RL training of SFT(S) → RL(S+C) with consistent
reward improvements and rising VIEScore on OmniEdit, indicating healthy learning dynamics. The
two-stage SFT (S+C) → RL (C) variant reaches only 3.48, far below SFT (S) → RL (S). Because
SFT (S+C) variants underperform relative to SFT (S), their RL counterparts also remain weaker.
We hypothesize that supervised finetuning on complex edits may degrade the base model’s core
capabilities, limiting RL’s ability to recover or improve performance. This aligns with findings in
LLM research, where base model capability critically influences RL finetuning success [20]. Thus,
while complex data is essential, naively including it during SFT can constrain RL’s effectiveness.

Scaling RL Training with More Steps and Data To further improve performance, we scale the
best-performing setup: SFT(S) → RL(S+C), by increasing the duration of RL training to 2000 steps
and using a larger data pool of 300K (S+C) samples. At each step, 16 unique examples are sampled,

8

0 200 400 600 800 1000
Training Iteration

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

VI
ES

co
re

(a) Training Reward

200 300 400 500 600 700 800 900 1000
Training Iteration

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

VI
ES

co
re

(b) OmniEdit Benchmark

Reward Edit Success Artifacts Naturalness Overedit Perceptual Quality

Figure 4: (a) Training curves showing the reward progression, with different aspects of reward. and
(b) VIEScore on OmniEdit increases with RL training iterations

Replace the handlebar
mustache with beard.

3.467.48

Simple Edit: Replace

6.487.48Swap the bicycle
and the ambulance.

Complex edit: Positional change

Bring his right arm
back near his body.

6.92

Complex edit: Action

Remove the third car. 6.48 4.58

Complex edit: Counting

5.29

Figure 5: Example reward scores for various types of image edits using Qwen2.5-VL-72B. Higher
scores reflect better alignment with the intended edit prompt.

resulting in 32k total samples seen (20× more than the 1.6k samples from earlier runs). This scaled
configuration achieves the best overall results and is referred to as EARL in our evaluations. As
shown in the last section of Tab. 2, EARL surpasses all baselines (MagicBrush, InstructPix2Pix,
Aurora, EditAR, and the SOTA Omnigen), achieving an average score of 4.80 compared to 4.70 for
Omnigen. In particular, on OmniEdit, AURORA, and VisMin benchmarks, EARL achieves the best
results over prior models. We also achieve strong performance on the out-of-distribution benchmarks
like I2EBench and EmuEdit.

Qualitative Analysis of RL Post-training We observe that the SFT model sometimes produces
noisy artifacts or over-edits the surrounding regions. It also fails to achieve successful edits consis-
tently. However, when sampled multiple times, at least one output usually satisfies the correct edit
(see examples in Fig. 5). Our verifier captures key aspects of edit quality: edit success, over-editing,
presence of artifacts, and naturalness, to guide RL training toward more reliable outputs. Qualitative
inspection shows artifacts are nearly eliminated, edits are more precise, and success rates improve
after applying RL. Fig. 5 illustrates instances where the verifier successfully handles both simple
and complex edit tasks. Nevertheless, the reward model is limited by the multimodal image-text
understanding of Qwen2.5-VL-72B. For example, in complex edits, such as changing a higher counts
(e.g., six to four), the reward becomes less reliable (see App. D.1 for more details). This also explains
why the performance is higher on simple edits than complex edits in EARL. Importantly, a strong
reward model is crucial for effective RL. Our 72B verifier demonstrates significantly better alignment
with human judgment than the smaller 7B counterpart (see App. D.2 and App. D.3). To better
assess EARL’s robustness and remaining limitations, we report CLIP similarity and FID metrics
in App. E.2, provide fine-grained qualitative analyses in App. E.5, and include a detailed comparison
with the only autoregressive baseline EditAR [38] in App. E.3.

9

5.3 Studying Chain-of-thought Reasoning for Editing

Table 3: Performance of EARL variants with chain-of-thought supervision. † and ‡ represents Simple
and Complex Edit benchmarks, respectively.

Model/Data OmniEdit† EmuEdit† AURORA‡ MB‡ VisMin‡ I2EBench‡ AVG
SFT (S) 5.73 3.66 3.58 3.19 3.57 3.59 3.88
SFT think (S) 4.34 3.76 2.88 3.36 3.46 3.21 3.50
SFT think (S+C) two-stage 1.44 1.41 1.03 1.58 2.45 1.20 1.52

SFT think (S)→ RL (S) 4.99 3.73 3.33 3.48 3.11 3.46 3.68
SFT think (S)→ RL (C) 4.36 3.67 2.94 3.59 3.08 3.16 3.47
EARL SFT think (S)→ RL (S+C) 4.65 3.78 3.23 3.67 3.39 3.36 3.68

We evaluate the effect of incorporating chain-of-thought reasoning supervision on image editing
performance. Since Chain-of-Thought (CoT) reasoning involves alternating between generating text
and images, it requires interleaved image-text generation. However, our base model Emu3 was not
pretrained for this type of multimodal generation, which presents additional challenges.

We compare two SFT variants with CoT reasoning supervision: (1) SFT think (S), and (2) SFT think
(S+C) using a two-stage approach. Results in Tab. 3 show that, despite the success of chain-of-thought
reasoning in large language models [20], SFT think (S) (3.50 avg.) does not improve visual editing
performance compared to SFT (S) (3.88 avg.). We also see that adding complex reasoning data
(C) during SFT hurts performance, as shown by the drop in performance in the SFT think (S+C)
two-stage setup compared to SFT think (S). This is consistent with Section 5.1, where including
complex reasoning data (SFT (S+C)) and the two-stage (SFT (S+C) two-stage) led to performance
degradation compared to SFT (S). Next, we apply RL on top of SFT think (S), using the RL(S), RL
(C), and RL (S+C) variants. We leave out applying RL on top of SFT think (S+C) two stage as it is
too weak. We perform RL post-training for up to 2,000 steps, or until divergence, using 16 unique
samples per step. Applying RL on SFT think (S) yields a slight improvement across two settings: RL
(S) and RL (S+C). On average, RL (S) improves performance from 3.50 (SFT (S)) to 3.68, while
RL (S+C) also improves from 3.50 (SFT (S)) to 3.68. These observations align with findings in the
LLM literature. First, CoT reasoning tends to help only once a model surpasses a capability threshold
[10, 53]. Second, RL provides limited benefit when the base model is still sub-optimal [33].

Quality of Reasoning Chains The SFT think model generates plausible reasoning: correctly identifies
target regions, plans edits, and describes intended outcomes. However, its final outputs often show
lower edit accuracy, reduced naturalness, and more artifacts compared to the standard SFT model
(see App. E.6 for qualitative examples). These results suggest that although the model learns to
generate appropriate reasoning, it does not effectively apply it during generation of the edited image.
We hypothesize that this limitation is due to the model’s lack of pretraining on interleaved image-text-
image data. While the model can generate plausible reasoning chains, it struggles to integrate them
effectively for image enhancement, likely because it was not trained to integrate these modalities in a
cohesive manner. We leave further exploration of this issue to future work.

6 Conclusion

This work delivers the first systematic comparison of supervised finetuning, reinforcement learning,
and CoT reasoning for text-guided image editing within a unified autoregressive framework. Directly
motivated by this analysis, we introduce a novel autoregressive image editing model, EARL. EARL
performs on par with the strongest open-source baselines while using less data, and sets a new bar
for multimodal autoregressive models for editing. While SFT alone proves insufficient for handling
complex edits, we find that RL significantly improves performance, enhancing the model’s overall
edit success and ability to handle tasks involving spatial reasoning and dynamic interactions. We
also address the question of when to introduce complex edits during the various training stages: we
found that bringing in complex edits is not helpful during the SFT stage, but is beneficial during the
RL post-training stage. Lastly, the CoT reasoning supervision experiment did not lead to consistent
improvements, highlighting the need for further research and stronger autoregressive base models
with strong reasoning capabilities. We discuss limitations and broader impact of our work in App. G.

10

7 Acknowledgments

We acknowledge the valuable feedback provided by Qian Yang, Le Zhang, and Oscar Manas on
an early draft of the paper. The technical support extended by the Mila IDT and TamIA teams in
managing the computational infrastructure is greatly appreciated. During this project, Aishwarya
Agrawal was supported by the Canada CIFAR AI Chair award.

References
[1] Saba Ahmadi and Aishwarya Agrawal. An examination of the robustness of reference-free

image captioning evaluation metrics. In Yvette Graham and Matthew Purver, editors, Findings
of the Association for Computational Linguistics: EACL 2024, pages 196–208, St. Julian’s,
Malta, March 2024. Association for Computational Linguistics.

[2] Rabiul Awal, Saba Ahmadi, Le Zhang, and Aishwarya Agrawal. Vismin: Visual minimal-
change understanding. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,
and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
107795–107829. Curran Associates, Inc., 2024.

[3] Jinbin Bai, Wei Chow, Ling Yang, Xiangtai Li, Juncheng Li, Hanwang Zhang, and Shuicheng
Yan. Humanedit: A high-quality human-rewarded dataset for instruction-based image editing.
arXiv preprint arXiv:2412.04280, 2024.

[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[5] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

[6] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2024.

[7] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Rich Walke, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Zero-shot robotic manipulation with pre-trained image-editing
diffusion models. In The Twelfth International Conference on Learning Representations, 2024.

[8] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18392–18402, 2023.

[9] Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
multimodal models for interleaved image-text generation. arXiv preprint arXiv:2407.06135,
2024.

[10] Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav
Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models. ArXiv, abs/2210.11416, 2022.

[11] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance. In The Eleventh International Conference
on Learning Representations, 2023.

11

[12] Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong,
Weihao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in
unified multimodal pretraining, 2025.

[13] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
formers for high-resolution image synthesis. In Forty-first international conference on machine
learning, 2024.

[14] Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian,
Xingyu Zeng, Rui Zhao, Jifeng Dai, et al. Got: Unleashing reasoning capability of multimodal
large language model for visual generation and editing. arXiv preprint arXiv:2503.10639, 2025.

[15] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and
generation with large language models. Advances in Neural Information Processing Systems,
36:18225–18250, 2023.

[16] Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming
text-to-image diffusion for accurate instruction following. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4744–4753, 2024.

[17] Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding
instruction-based image editing via multimodal large language models. ArXiv, abs/2309.17102,
2023.

[18] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused
framework for evaluating text-to-image alignment. Advances in Neural Information Processing
Systems, 36:52132–52152, 2023.

[19] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
et al. The" something something" video database for learning and evaluating visual common
sense. In Proceedings of the IEEE international conference on computer vision, pages 5842–
5850, 2017.

[20] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[21] Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and
Pheng-Ann Heng. Can we generate images with cot? let’s verify and reinforce image generation
step by step. arXiv preprint arXiv:2501.13926, 2025.

[22] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. 2022.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[24] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Direct inversion: Boosting
diffusion-based editing with 3 lines of code. arXiv preprint arXiv:2310.01506, 2023.

[25] Amirhossein Kazemnejad, Milad Aghajohari, Alessandro Sordoni, Aaron Courville, and
Siva Reddy. Nano aha! moment: Single file "rl for llm" library. https://github.com/
McGill-NLP/nano-aha-moment, 2025. GitHub repository.

[26] Benno Krojer, Dheeraj Vattikonda, Luis Lara, Varun Jampani, Eva Portelance, Christopher
Pal, and Siva Reddy. Learning action and reasoning-centric image editing from videos and
simulation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
38035–38078. Curran Associates, Inc., 2024.

12

https://github.com/McGill-NLP/nano-aha-moment
https://github.com/McGill-NLP/nano-aha-moment

[27] Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhu Chen. Viescore: Towards explainable
metrics for conditional image synthesis evaluation. arXiv preprint arXiv:2312.14867, 2023.

[28] Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen Zhuang, and Wenhu Chen.
Imagenhub: Standardizing the evaluation of conditional image generation models. arXiv
preprint arXiv:2310.01596, 2023.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[30] Tiancheng Li, Jinxiu Liu, Huajun Chen, and Qi Liu. Instructrl4pix: Training diffusion for image
editing by reinforcement learning. arXiv preprint arXiv:2406.09973, 2024.

[31] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 22511–22521,
2023.

[32] Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv
preprint arXiv:2505.05470, 2025.

[33] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

[34] Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, zhibin wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
Sun, and Rongrong Ji. I2EBench: A comprehensive benchmark for instruction-based image
editing. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[35] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations, 2022.

[36] Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Krishna, Aniruddha Kembhavi, and
Tanmay Gupta. Object 3dit: Language-guided 3d-aware image editing. Advances in Neural
Information Processing Systems, 36:3497–3516, 2023.

[37] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pages
4296–4304, 2024.

[38] Jiteng Mu, Nuno Vasconcelos, and Xiaolong Wang. Editar: Unified conditional generation with
autoregressive models. arXiv preprint arXiv:2501.04699, 2025.

[39] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[41] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-
5b: An open large-scale dataset for training next generation image-text models. Advances in
neural information processing systems, 35:25278–25294, 2022.

13

[42] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[43] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi
Parikh, and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation
tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8871–8879, 2024.

[44] Tomáš Souček, Dima Damen, Michael Wray, Ivan Laptev, and Josef Sivic. Genhowto: Learn-
ing to generate actions and state transformations from instructional videos. arXiv preprint
arXiv:2312.07322, 2023.

[45] Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

[46] Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha,
Michael Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal under-
standing and generation via instruction tuning. arXiv preprint arXiv:2412.14164, 2024.

[47] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, et al. Llama 2: Open foundation and fine-tuned chat models, 2023.

[48] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8228–8238, 2024.

[49] Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang
Jiang. Simplear: Pushing the frontier of autoregressive visual generation through pretraining,
sft, and rl. arXiv preprint arXiv:2504.11455, 2025.

[50] Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you
need, 2024.

[51] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

[52] Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhu Chen. Omniedit:
Building image editing generalist models through specialist supervision. In The Thirteenth
International Conference on Learning Representations, 2025.

[53] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[54] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

[55] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
multimodal understanding and generation. arXiv preprint arXiv:2410.13848, 2024.

[56] Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Shut-
ing Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. CoRR,
abs/2409.11340, 2024.

14

[57] Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and
Xiu Li. Using human feedback to fine-tune diffusion models without any reward model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8941–8951, 2024.

[58] Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024.

[59] Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack
Kaelbling, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In
The Twelfth International Conference on Learning Representations, 2024.

[60] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When
and why vision-language models behave like bags-of-words, and what to do about it? In The
Eleventh International Conference on Learning Representations, 2023.

[61] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Advances in Neural Information Processing
Systems, 36, 2024.

[62] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[63] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen,
Haiquan Wang, Silvio Savarese, Stefano Ermon, Caiming Xiong, and Ran Xu. Hive: Harnessing
human feedback for instructional visual editing. ArXiv, abs/2303.09618, 2023.

15

Overview of Appendix
A Background
B Training Datasets
C VIEScore Alignment with Human Judgment
D Analysis of the Verifier Model
E Analysis of Model Outputs
F Experimental Setup and Compute Resources
G Limitations and Broader Impact
H Behind the Scenes
I Author Contributions

A Background

A.1 Emu3

Emu3 [50] (8B parameters) is an autoregressive multimodal model. It extends the LLaMA-2 [47]
architecture by integrating a vision tokenizer (SBER-MoVQGAN) for encoding images into discrete
tokens and a text tokenizer (QwenTokenizer) for processing textual inputs. Unlike diffusion-based
models [56], Emu3 generates text and visual tokens in a unified manner.

In this work, we use the base version of Emu3, which is pre-trained exclusively on text and image
data. During pre-training, Emu3 formats image-text multimodal inputs in a structured format (shown
below), incorporating special tokens to distinguish between the different modalities:

“[BOS] {caption text} [SOV] {resolution info} [SOT] {vision tokens} [EOV] [EOS]”

where [BOS] and [EOS] mark the beginning and end of the sequence, [SOV] and [EOV] define
the boundaries of image metadata such as resolution, image tokens, and [SOT] indicates the start of
vision tokens. Additionally, [EOL] and [EOF] are included within vision tokens to denote line and
frame breaks, respectively. The resolution info section contains relevant details to image resolution.

A.2 GRPO: Group Relative Policy Optimization

Algorithm 1: Group Relative Policy Optimization
Input: initial policy model πθinit ; reward models rϕ; task prompts D; hyperparameters ϵ, β, µ
Output: final policy model πθ

Function Group Relative Policy Optimization:
πθ ← πθinit ;
πref ← πθinit ;
for step = 1 to M do

Sample a batch Db from D ;
Update the old policy model πθold ← πθ ;
Sample G outputs {oi}Gi=1 ∼ πθold(·|q) for each question q ∈ Db ;
Compute rewards {ri}Gi=1 for each sampled output oi by running rϕ ;
Compute Âi,t for the t-th token of oi through group relative advantage estimation ;
for GRPO iteration = 1 to µ do

Update the policy model πθ by maximizing the GRPO objective ;

Algorithm 1 presents the GRPO algorithm, where we prepare the advantages using the current policy
to estimate the gradients. As noted in Sec. 4, we set the backward batch size equal to the rollout batch
size, which effectively reduces the second loop to a single iteration. This means policy gradients are
estimated in a fully online manner, with advantages always computed from the current policy. This
design choice contributes to improved stability during training.

16

B Training Datasets

B.1 Dataset Composition

Our goal of building a unified model requires exposure to a wide range of edit types – both simple
(e.g., object, attribute, or style changes) and complex (e.g., action changes, counting changes, or
spatial relations). No single dataset offers comprehensive coverage of all these edit types, and existing
models are typically developed in a fragmented manner, each targeting only a subset of edits.

To address this, we consolidate several existing datasets to form a unified training pool that spans the
full spectrum of edit types. OmniEdit [52] serves as our largest source of simple editing examples.
For complex edits involving actions, relations, counting, and other real-world applications which are
significantly less represented than simple edits – we incorporate data from VisMin [2], Aurora [26],
Human-Edit [3], and MagicBrush [61].

B.2 Creating Chain-of-Thought from Existing Editing Datasets

This section describes the chain-of-thought datasets for image editing and the associated prompt
designs. Image editing datasets typically lack reasoning chains. To address this, we synthesize
reasoning chains using a Multimodal Large Language Model (MLLM) through in-context learning
(prompting), based on existing resources such as the input image, edited image, and edit instruction.
We use Qwen2.5-VL-72B [58] as the MLLM.

In diffusion models, masking is a common form of conditioning. To mimic this, we collect bounding
boxes – either by using those provided in the dataset or by estimating them from available masks and
pixel differences. These bounding boxes serve as conditioning inputs in the reasoning chain. The
model analyzes the image, edit instruction, and target region (via the bounding box) to generate a
step-by-step reasoning process, referred to as the thinking field. The system prompt and annotated
few-shot examples are provided in App. B.2.1 and App. B.2.3 respectively.

For VisMin, we use image-text pairs from the VisMin [2] dataset, where the two images differ
minimally – making them well-suited for editing tasks. Since examples of complex edits, such
as those involving counting or spatial relations, are scarce, repurposing VisMin provides useful
coverage for these cases. The change can be inferred from the two image captions, which we use to
guide Qwen2.5VL-72B through prompting with few-shot demonstrations. Additional bounding box
metadata is used to generate both the edit instruction and the corresponding thinking field, as detailed
in App. B.2.2.

B.2.1 LLM system prompts for creating reasoning chains

õ Prompt for In-context Learning of Chain-of-thought Editing

Your task is to generate a step-by-step edit plan for the given edit task based on the input image and edit instruction.
Your reasoning should be thorough and logically structured. Follow these guidelines:

1. Analyze the source image in depth, describing its main elements, context, and any relevant visual details.
2. Identify the object to be edited, providing specific details about its appearance, role in the scene, and
distinguishing features.
3. Clearly specify the area to be edited, including bounding box coordinates if provided, and explain why this region
is chosen in relation to the object and the scene.
4. Detail the exact changes to be made to the object or area, referencing visual attributes, position, style, and how
the edit should be performed to maintain realism and coherence.
5. Describe the expected result after the edit, focusing on how the edited image should appear, how the new or changed
object integrates with the scene, and any requirements for preserving surrounding elements.

Format your response as a concise, numbered list of steps. Ensure each step logically follows from the previous one
and provides sufficient depth for a clear, actionable edit plan.
Input contains:
- Edit Instruction: The instruction specifying the exact edit to be made on the input image.
- Input Image: The source image to be edited.
- Edited Image: The edited image for reference (to understand how the edit instruction is applied).
- Region Coordinates: The region to be edited (specifies the area to be edited).

Your response must be in the following JSON format:

{
"thinking": "<Insert detailed procedural editing steps>"

}

17

B.2.2 LLM prompting for converting VisMin image-text pairs to editing task

õ Prompt for In-context Learning of Chain-of-thought Editing

Your task is to generate a step-by-step edit plan for the given edit task based on the input image and edit instruction.
Your reasoning should be thorough and logically structured. Follow these guidelines:

1. Analyze the source image in depth, describing its main elements, context, and any relevant visual details.
2. Identify the object to be edited, providing specific details about its appearance, role in the scene, and
distinguishing features.
3. Clearly specify the area to be edited, including bounding box coordinates if provided, and explain why this region
is chosen in relation to the object and the scene.
4. Detail the exact changes to be made to the object or area, referencing visual attributes, position, style, and how
the edit should be performed to maintain realism and coherence.
5. Describe the expected result after the edit, focusing on how the edited image should appear, how the new or changed
object integrates with the scene, and any requirements for preserving surrounding elements.

Format your response as a concise, numbered list of steps. Ensure each step logically follows from the previous one
and provides sufficient depth for a clear, actionable edit plan.
Input contains:
- Edit Instruction: The instruction specifying the exact edit to be made on the input image.
- Input Image: The source image to be edited.
- Edited Image: The edited image for reference (to understand how the edit instruction is applied).
- Region Coordinates: The region to be edited (specifies the area to be edited).

Your response must be in the following JSON format:

{
"edit_instruction": "<Insert edit request here>",
"thinking": "<Insert detailed procedural editing steps>"

}

B.2.3 Reasoning chain examples

In the case of the VisMin dataset [2], which contains two minimally changed image-text pairs,
we do not receive explicit edit instructions. Instead, we infer these instructions by prompting a
multi-modal large language model (MLLM) in a few-shot setting, using both the input and the
edited image captions as context. The VisMin dataset covers various categories, including object,
attribute, counting, and relationship. For object and attribute categories, where the task typically
involves editing a specific region in the image, the target edit region (bounding box) is sufficient
to generate the reasoning chain. The model infers the edit instruction by understanding the object
and its properties within the defined region. In contrast, the relationship category, which describes
spatial changes between objects, requires both the source image coordinates and the edited image
coordinates to derive the appropriate edit instruction. For counting tasks, the reasoning chain is
created by comparing the source image’s bounding boxes with the removed bounding boxes in the
edited image. This allows the model to infer the necessary edit to reflect the changes in object counts.
We provide several examples of this process in App. B.2.3.

For other image-editing datasets, where edit instructions are explicitly provided, we prompt the
MLLM with the input image, edited image, and edit instruction along with bounding box coordinates
or keypoints for the objects or persons involved. This structured input allows the model to generate
the reasoning chain by clearly understanding both the task and the necessary image modifications.
For instance, the reasoning chain might involve identifying objects, spatially manipulating them, or
removing them based on the given instructions and bounding boxes. The output reasoning chain
provides a step-by-step breakdown of how the image should be edited to achieve the specified
changes, ensuring that each instruction is logically followed. We also illustrate this process with
further examples in App. B.2.3.

õ Chain-of-thought Reasoning Examples (VisMin dataset)

{
"INPUT": {

"input_image": "See the input image",
"description": "remove the glasses from the face",
"source_image_caption": "A person wearing glasses in a photo.",
"edited_image_caption": "A person without glasses in a photo.",
"target_edit_region": [250, 100, 350, 150]

},
"OUTPUT": {

"thinking": "
1. The image shows a person wearing glasses.\n\n
2. The face is in region [250, 100, 350, 150], showing glasses.\n\n

18

õ 3. Remove the glasses while preserving natural skin texture.\n\n
4. The output image should show a person without glasses.",
}

}

{
"INPUT": {

"source_image_caption": "A bowl that is located to the left of a cat",
"edited_image_caption": "a cat that is located to the left of a bowl",
"source_image_coords": [

["a bowl", [200, 150, 300, 250]],
["a cat", [100, 225, 200, 275]]

],
"edited_image_coords": [

["a bowl", [100, 225, 200, 275]],
["a cat", [200, 150, 300, 250]]

]
},
"OUTPUT": {

"edit_instruction": "Move the bowl to where the cat is, and the cat to where the bowl is.",
"thinking": "1. The image shows a bowl and a cat.
2. To swap positions, we’ll move the bowl from [200, 150, 300, 250]
to [100, 225, 200, 275], and simultaneously relocate the cat from [100, 225, 200, 275] to [200, 150, 300, 250].
3. This exchange will maintain each object’s size and orientation while reversing their left-right relationship."

}
}

{
"INPUT": {

"source_image_caption": "Two bicycles and a motorcycle.",
"source_image_coords": [

["bicycle", [10, 171, 138, 256]],
["bicycle", [213, 171, 341, 256]],
["motorcycle", [331, 196, 502, 264]]

],
"edited_image_caption": "One bicycle and a motorcycle.",
"removed_bounding_boxes": [[213, 171, 341, 256]]

},
"OUTPUT": {

"edit_instruction": "Remove the second bicycle.",
"thinking": "1. The scene shows two bicycles and a motorcycle.
2. To reduce to one bicycle, we’ll remove
the second bicycle located at [213, 171, 341, 256], leaving the first bicycle at [10, 171, 138, 256]
and the motorcycle at [331, 196, 502, 264] untouched.
3. This maintains proper spacing between the remaining objects."
}

}

õ Chain-of-thought Reasoning Examples (VisMin dataset)

{
"INPUT": {

"edit_instruction": "Remove bicycles",
"target_edit_region": [140, 389, 275, 431]

},
"OUTPUT": {

"thinking_chain_of_thought": "Steps to remove the bicycles:
1. The goal is to remove the bicycles from the image.
2. Identify objects with defining bicycle
features like wheels, handlebars, and frames.
The bicycles are found within the bounding box [140, 389, 275, 431].
3. Use the bounding box to isolate and erase the
bicycles while preserving the surrounding elements.
4. The image should appear as if the bicycles were never there.",

}
}

C VIEScore Alignment with Human Judgment

We use the VIEScore [27] metric as our evaluation metric for the image editing task. VIEScore
is based on MLLM prompting to judge the quality of a given edited image w.r.t the given editing
prompt and the source image. Specifically, the MLLM is prompted twice, once to judge the semantic
quality (alignment with the prompt and overediting), and perceptual quality (such as realism and
artifacts). VIEScore was originally only shown to be effective on ImagenHub [28] which contains
primarily object- and attribute-centric edits. We verify in Tab. 4 that correlation with human judges
is also convincing on various other edit types, i.e. many of the complex edits in this paper such as
spatial edits (WhatsUp column), action edits (Something Something, Action-Genome, Epic Kitchen
columns) or counting (Kubric column). For this we correlate human judgements initially collected for
AURORA-Bench [26] and VIEScore with a GPT4o-mini as a backbone (which we use throughout the

19

paper as our main metric). We note that human judges in [26] were asked to only judge the semantic
alignment and not lower level visual properties such as aesthetics. Thus it is not surprising that the
correlation of the semantic component of VIEScore is higher. Overall we find correlations to be on
par or sometimes exceeding with those shown in the original paper [27]. For example in the original
paper, the overall VIEScore (with the best model GPT4 at the time) had a correlation of 0.382 with
human raters on MagicBrush. We find the lowest correlations, as expected, is on hard action-centric
prompts in the Epic Kitchen subset of AURORA-Bench.

Table 4: Correlation between VIEScore (GPT4o-mini) and human judges on the 8 subtasks of
AURORA-Bench [26]. Specifically, we correlate the overall VIEScore and the semantic sub-score
with humans. We note that human judges in [26] were asked to only judge the semantic alignment
and not lower level visual properties such as aesthetics.

Metric MagicBrush Something Something Action-Genome Epic Kitchen Whatsup Kubric CLEVR Emu-Edit AVG

Overall 0.5353 0.3676 0.3585 0.1764 0.5285 0.2649 0.5600 0.4000 0.4328
Semantic 0.6300 0.4305 0.3830 0.2462 0.6011 0.3529 0.6187 0.5612 0.5288

D Analysis of the Verifier Model

D.1 Qualitative Examples of Reward Model Limitations in Complex Edits

Input

7.0

Reduce the
number of birds

from ten to three.

Rewards: 0.0 4.54.50.0 0.0 4.5 4.5

5.9Rewards: 7.4 7.4 7.45.9 7.4 7.4 7.4

4.5Rewards: 3.00.0 4.53.83.0 3.4 3.4

4.2Rewards: 3.7 6.0 6.44.2 5.2 6.44.5

4.5Rewards: 6.96.93.0 6.34.8 6.96.3

Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8Instruction

Remove the
apples except the

last one.

Moving mouse
closer to remote.

Swap the
positions of the
white jeep and

bicycle.

Move towards the
right.

Figure 6: Examples of limitations of the verifier for the complex edits. The reward values correspond
to the VIEScore given by our verifier.

Our reward model shows strong performance on simple edits involving object and attribute changes
but exhibits limitations when verifying complex edits, as illustrated by several qualitative examples
in Fig. 6.

In Row 1, the task is to reduce the number of birds from 10 to 3. This large-count change is difficult
for the verifier to handle accurately, reflected in inconsistent scores across different outputs. For
instance, although output 2 and 6 are quite similar, the rewards they receive differ significantly (0.0
vs. 4.5). This indicates uncertainty in reliably evaluating edits that involve large numerical changes.
In contrast, Row 2 is an example of small count changes. It requires removing all apples except one.
The verifier assigns consistently high scores to the correct generations (outputs 3 to 8), suggesting
that smaller count changes are easier to verify, likely because the verifier is more exposed to such
data during training.

20

In Row 3, the task involves moving a mouse closer to a remote. Although the model generally assigns
higher scores to better samples, it struggles with inconsistencies: in output 8, the mouse’s appearance
changes noticeably, and in output 7, the hand shows some distortion. This underscores the difficulty
of verifying subtle positional changes compared to simpler edits, such as additions and removals.

For Row 4, the edit requires swapping the positions of a white jeep and a bicycle. The verifier
correctly favors outputs that accurately reflect this positional change and exhibit fewer artifacts and
distortions, demonstrating sensitivity to spatial relationships and artifacts. For example, outputs 2 and
3 still show traces of the car in its original position, indicating both leftover artifacts and a failure to
correctly reflect the position swap. However, obtaining fully reliable reward signals for fine-grained
spatial relationships still remains challenging.

Finally, Row 5 involves moving a person toward the right side. Although the verifier prefers outputs
where the person’s position is more towards the right, it does not take into account the changes in
person’s appearance.

It is important to note that while verifier scores vary, the model can still provide meaningful signals
for some complex edits such as detecting lower object counts or changes in position to a certain
extent, helping guide improvements in edit quality.

D.2 VIEScore Evaluation with Qwen2.5-VL-72B and Alignment with Human Judgment

We also report the correlation between Qwen2.5-VL-72B’s judgments (as captured by VIEScore)
and human judgments on AURORA-Bench (columns show results for individual subtasks, and
“AVERAGE” denotes the aggregate performance). While the absolute correlation values are moderate
(around 0.4), they are consistent with those reported in the original VIEScore paper (0.382) [27],
which established VIEScore as a reliable automatic evaluation metric. This consistency supports
the reliability of Qwen2.5-VL-72B as a verifier. Moreover, the results indicate that Qwen2.5-VL-
72B performs robustly not only on object- and attribute-centric edits but also on more complex edits
such as spatial (WhatsUp) and action (Something-Something, Action-Genome).

Table 5: Correlation results between Qwen judgments and human judgments across different datasets.
Although the absolute values are modest, they are comparable to the established VIEScore benchmark.

Metric MagicBrush Something Something Action-Genome Epic Kitchen Whatsup AVERAGE

Overall 0.5377 0.3084 0.4385 0.2393 0.4420 0.3971
Semantic 0.6104 0.3192 0.4392 0.2886 0.4556 0.4309

D.3 Impact of Verifier Choice on RL Performance

Our main experiments employ Qwen2.5-VL-72B as the reward model (verifier) for RL post-training.
We selected Qwen2.5-VL-72B because of its reliable reward feedback and strong performance on
fine-grained vision-language tasks, comparable to GPT-4o. We also explored alternative verifiers to
study their effect on reward signal quality and overall training performance. Notably, small-sized
multimodal LLMs often produced noisy outputs, particularly in tasks requiring instruction-following
and prompt adherence. We tested an instruction-tuned model, Qwen-7B. As shown in Tab. 6,
replacing Qwen2.5-VL-72B with Qwen-7B led to a significant drop in performance: from an average
score of 3.88 with SFT alone to 2.81 with RL post-training. This highlights that smaller models
cannot provide sufficiently accurate or stable feedback for AR-based RL training, underscoring the
importance of a strong verifier.

Table 6: Impact of verifier choice on model performance (higher is better).

Method AURORA MagicBrush OmniEdit I2EBench Vismin EmuEdit Average
SFT (S) 3.58 3.19 5.73 3.59 3.57 3.66 3.88
SFT (S)→ RL (S+C) [Qwen-7B] 2.55 2.66 4.05 2.60 2.32 2.69 2.81

21

E Analysis of Model Outputs

E.1 Breakdown of VIEScore

To better quantify model behavior, we show four components of VIEScore: Edit Success and
OverEdit, which reflect semantic alignment with editing instructions, and Looks Natural and No
Artifact, which capture perceptual quality. Tab. 7 reports these metrics for both the SFT(S) baseline
and our best-performing configuration, SFT(S) → RL(S+C). As shown in the AVERAGE column,
RL notably improves Edit Success, demonstrating stronger alignment with user instructions, while
maintaining comparable performance on OverEdit and preserving perceptual quality in terms of
Looks Natural and No Artifact.

Table 7: Breakdown of VIEScore into four components: Edit Success, OverEdit, Looks Natural, and
No Artifact comparing SFT(S) and SFT(S) → RL(S+C) across six benchmarks. Values are reported
as SFT(S) / SFT(S) → RL(S+C), with the higher score shown in bold.

Metric OmniEdit EmuEdit AURORA MagicBrush VisMin I2EBench AVERAGE
Edit Success 6.1 / 7.0 3.5 / 4.2 3.0 / 3.6 2.6 / 4.1 3.2 / 4.3 3.7 / 4.3 3.7 / 4.6
OverEdit 7.3 / 7.5 7.5 / 7.0 7.0 / 6.6 7.8 / 7.0 5.7 / 6.5 6.8 / 6.9 7.0 / 6.9
Looks Natural 6.7 / 6.9 6.3 / 6.0 5.8 / 5.7 6.3 / 5.8 6.6 / 6.8 5.0 / 5.1 6.1 / 6.0
No Artifact 7.5 / 7.7 6.9 / 6.7 6.8 / 6.7 6.9 / 6.4 7.3 / 7.6 5.8 / 5.9 6.9 / 6.8
VIEScore 5.7 / 6.3 3.7 / 4.3 3.6 / 4.0 3.2 / 4.3 3.6 / 4.5 3.6 / 4.1 3.9 / 4.6

E.2 CLIP Similarity and FID Evaluation

To provide a more comprehensive and fair evaluation beyond VIEScore, we further report two
widely used metrics: CLIP similarity and FID (Fréchet Inception Distance). These metrics capture
complementary aspects of model performance: CLIP similarity measures the semantic consistency
between generated and ground-truth edited images (↑ higher is better), while FID quantifies image
realism and distributional closeness (↓ lower is better). We observe that EARL achieves competitive
performance on both CLIP similarity and FID, remaining within the same range as strong baselines
such as Omnigen, Aurora, and EditAR. This demonstrates that EARL preserves semantic alignment
and image quality while providing comparable fidelity to existing methods. Results are averaged
across three benchmarks: MB, VisMin, and OmniEdit.

Table 8: CLIP Similarity (ViT-B/32) – Edited Image vs. Ground Truth. Higher scores indicate
stronger semantic alignment.

Method MB InstructPix2Pix Aurora Omnigen EditAR EARL SFT(S)→RL(S+C)

CLIP 0.91 0.85 0.89 0.90 0.88 0.88

Table 9: FID (InceptionV3) – Edited Images vs. Ground Truth. Lower scores indicate higher
image realism.

Method MB InstructPix2Pix Aurora Omnigen EditAR EARL SFT(S)→RL(S+C)

FID 40.59 53.20 47.22 45.22 49.47 49.64

E.3 Additional Comparison with EditAR

As EditAR [38] is the only existing autoregressive baseline for image editing, we conduct a more
comprehensive comparison with it. Our best-performing setup (SFT(S) → RL(S+C)) achieves an
average VIEScore of 4.57, surpassing EditAR’s 4.20 across all benchmarks. EditAR also reports
results on PIEBench [24] for image editing. As shown in Tab. 10, EARL outperforms EditAR on
five metrics, including Structure Distance score, PSNR, LPIPS [62], MSE, and SIM [51]. On CLIP
similarity scores computed using ViT-Large-14 on the whole image (CLIP-W) and on the edited
regions (CLIP-E), EARL slightly underperforms compared to EditAR. However, our scores remain
comparable to EditAR, demonstrating strong perceptual quality and better background preservation.

22

Table 10: PIEBench results comparing EARL with EditAR (most similar work to ours). SD refers to
Structure Distance and CLIP-W, CLIP-E refers to CLIP similarity scores on the whole image and
edited regions, respectively.

Method Base Model SD ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ CLIP-W ↑ CLIP-E ↑
EditAR LlamaGen 39.43 21.32 117.15 130.27 75.13 24.87 21.87
EARL Emu3 35.00 23.71 112.40 77.00 79.17 24.44 21.34

Table 11: Best-of-N evaluation results for SFT and RL-tuned models across six benchmarks

Model OmniEdit EmuEdit AURORA MB VisMin I2EBench AVG
SFT (S) 5.73 3.66 3.58 3.19 3.57 3.59 3.88
SFT (S) [Best of 5] 6.13 4.21 3.89 3.63 4.09 4.00 4.33
SFT (S) → RL (S+C) 6.33 4.28 3.99 4.26 4.48 4.08 4.57
SFT (S) → RL (S+C) [Best of 5] 6.54 4.66 4.08 4.66 4.69 4.36 4.83

E.4 Best-of-N Evaluation

We further evaluate model performance under a best-of-N sampling regime to separate the effects of
sampling diversity from policy optimization. As shown in Tab. 11, best-of-5 sampling substantially
improves SFT results (3.88 → 4.33), indicating significant headroom through better candidate
selection. However, the RL-tuned model still outperforms SFT even when both use best-of-5 (4.33
→ 4.83), demonstrating that policy optimization contributes improvements beyond what sampling
alone can achieve. Moreover, the small gap between RL single-sample and RL best-of-5 (4.57 →
4.83) suggests that the RL policy is already producing high-quality outputs with minimal reliance on
sampling, highlighting the effectiveness of our training approach.

E.5 Fine-Grained Evaluation of EARL

Qualitative Fig. 7 shows EARL SFT (S) → RL (S+C) performing four types of image edits:
counting, action, spatial, and simple; each illustrated by three side-by-side input/output examples.
In the counting row, EARL correctly removes one poodle and two toy cars but fails to remove one
egg from the third image. In the action row, it successfully takes the white cup out and opens the
orange bag in the first two examples, but cannot make the person stand up in the final example. For
spatial edits, the model effectively interprets spatial relationships by correctly removing the left fire
hydrant and adding a man to the left of the road sign, but it fails to add a picture to the left of the
woman in the third example. Finally, in the simple edits row, EARL recolors an alien spaceship
pink and successfully erases palm tree with clean backgrounds, but fails to edit the third image and
removes the bowling bowl instead of the truck. Overall, these examples highlight the model’s strong
potential in performing complex image edits, while also indicating some challenges that remain to be
addressed.

Quantative The quantitative results (Tab. 12 13 14 15 16 17) demonstrate that EARL SFT (S)→
RL (S+C) consistently outperforms the baseline SFT (S) across multiple fine-grained editing tasks
and datasets. For instance, in Tab. 13 on I2EBench, improvements are evident in counting, direction
perception, object manipulation, and style alteration metrics. Similarly, Tab. 14 shows gains in style,
attribute modification, environment changes, and object addition/removal on OmniEdit. Tab. 15
further confirms these trends on EmuEdit, with better performance in object addition, background
editing, and both global and local changes. Lastly, Tab. 16 highlights improved counting and spatial
relation accuracy on VisMin. On AURORA, as shown in Tab. 17, there is no improvement in action
edits for EARL SFT (S)→ RL (S+C) when compared to SFT (S), mainly because SFT (S) itself
was very poor on action edits. Overall, these results underscore the effectiveness of combining SFT
with RL for diverse kinds of edit types.

E.6 Qualitative Evaluation of Reasoning and Edits in the SFT-Think Model

Fig. 8 presents qualitative examples comparing two model variants: SFT(S), and SFT think(S).

23

Turn the color of alien spaceship to pink.

Remove two toy cars.

Remove the left fire hydrant.

Input

Take the white cup out of the cupboard.

EARL

Open the orange bag further with both hands.

Add a man to the left of the road sign.

Remove one egg.Remove one poodle.

Action Edits

Counting Edits
Input EARL Input EARL

Spatial Edits

Simple Edits

Make the person stand up fully upright.

Add a picture to the left of the woman.

Remove palm tree. Remove Truck.

Figure 7: Qualitative examples of EARL across diverse edit types—counting, action, spatial, and
simple.

Table 12: Fine-grained evaluation of SFT and RL model variants on I2EBench (Low-level Editing).

Model/Edit Task Category Deblurring Haze
Removal

Lowlight
Enhancement

Noise
Removal

Rain
Removal

Shadow
Removal

Snow
Removal

Watermark
Removal

SFT (S) 2.36 3.73 2.56 2.36 3.98 4.60 2.59 3.82
EARL SFT (S)→ RL (S+C) 2.33 3.51 3.03 3.04 4.74 4.98 3.16 4.28

Table 13: Fine-grained evaluation of SFT and RL model variants on I2EBench (High-level Editing).

Model/Edit Task Category Counting Direction
Perception

Object
Removal

Object
Replacement

Background
Replacement

Color
Alteration

Style
Alteration

Region
Accuracy

SFT (S) 2.74 1.82 4.52 2.49 3.47 5.74 5.34 4.36
EARL SFT (S)→ RL (S+C) 4.08 3.45 4.76 3.40 4.72 5.98 5.80 5.06

Table 14: Fine-grained evaluation of SFT and RL model variants on OmniEdit.

Model/Edit Task Category Style Attr. Mod. Env Swap Addition Removal
SFT (S) 5.52 6.30 6.12 5.69 4.86 5.91
EARL SFT (S)→ RL (S+C) 5.99 6.95 6.68 6.39 6.00 6.30

Table 15: Fine-grained evaluation of SFT and RL model variants on EmuEdit.

Model/Edit Task Category Add Remove Background Text Color Style Global Local
SFT (S) 2.36 4.91 2.47 2.15 4.91 4.89 4.14 3.78
EARL SFT (S)→ RL (S+C) 4.46 4.81 3.24 3.16 5.85 5.13 4.77 4.47

Example 1 This example involves changing the color of a wooden rabbit sculpture to brown, while
preserving its carved details and natural background.

24

Table 16: Fine-grained evaluation of SFT and RL model variants on VisMin.

Model/Edit Task Category Counting Spatial Relation
SFT (S) 4.22 2.91
EARL SFT (S)→ RL (S+C) 5.72 4.14

Table 17: Fine-grained evaluation of SFT and RL model variants on AURORA. ∗Action Genome
subset of the Aurora benchmark specifically contains complex action edits.

Edit Task SFT (S) EARL SFT (S)→ RL (S+C)
∗Action 3.09 2.96

• SFT (S): Performs a successful edit without reasoning, changing the color to brown while
preserving the background unchanged.

• SFT think (S): Uses Chain-of-Thought (CoT) reasoning, including scene description, object
identification, and bounding box localization. It understands the edit instructions and grounds
the plan well. However, the edited rabbit appears unnatural and loses some details.

• Observation: Although SFT think(S) demonstrates strong reasoning and grounding capabilities,
it introduces artifacts or unnatural features in the edited image compared to the simpler SFT(S)
variant.

Example 2 This example involves replacing an antique wooden radio with a typewriter, maintaining
the spatial layout and removing the original radio’s elements.

• SFT (S): Successfully replaces the radio with the typewriter, keeping the proportions and
orientation consistent.

• SFT think (S): Uses Chain-of-Thought (CoT) reasoning to carefully plan the replacement,
including brand details, but shows minor inconsistencies by mentioning two different brand
names (IBM and Makoka). The final edited image presents slight visual distortions around the
edges and keys.

• Observation: While the reasoning model provides detailed planning and grounding, it some-
times produces inconsistent details—such as mentioning two different brand names (IBM and
Makoka)—reflecting a pattern of hallucination in the reasoning process that can reduce visual
quality compared to the non-reasoning model.

Example 3 This example involves transforming a green forested area around a small building into
a garden with blooming flowers while keeping the building unchanged.

• SFT (S): Successfully changes the environment to a blooming garden without reasoning, pre-
serving the building and overall composition.

• SFT think (S): Uses Chain-of-Thought (CoT) reasoning to plan the seasonal transformation
carefully, resulting in a well-grounded and detailed edit.

• Observation: Both models perform the edit well, delivering accurate and natural-looking
results.

In summary, the reasoning model can ground and plan edits, but it may sometimes reduce visual
quality by introducing artifacts and unnatural details compared to the no-reasoning model.

F Experimental Setup and Compute Resources

F.1 Training Details

For SFT training, we used the AdamW optimizer with weight decay 0.1 and parameters β1 = 0.9,
β2 = 0.95, and ϵ = 1 × 10−6. The learning rate followed a cosine schedule with a minimum
value of 10−6, and gradient clipping was applied with a maximum norm of 5.0. Training employed

25

Input

CoT BBox SFT think (S)SFT think (S): CoT Reasoning

Make rabbit to be brown.

 "1. The source image features a wooden rabbit sculpture with a humanoid form, sitting on a grassy surface. The rabbit has a detailed, carved texture that gives it a
unique and artistic appearance, with exaggerated features such as large ears and expressive eyes. The background is a blurred natural setting, likely a forest or
park, which contrasts with the detailed texture of the rabbit.", "2. The object to be edited is the rabbit sculpture, specifically its texture and appearance.", "3. The
specific area to be edited is defined by the bounding box coordinates [[55, 0, 207, 250]], which encompasses the entire rabbit.", "4. Change the rabbit's texture to a
uniform brown color, ensuring that the shading and highlights mimic the existing carved texture but are now brown. Maintain the rabbit's detailed features such as
large ears and expressive eyes, but adjust them to fit the new brown color scheme.", "5. The edited image will feature a detailed wooden sculpture of a rabbit,
intricately carved to resemble a real rabbit, with a muscular build and a confident pose, sitting on a grassy surface. The rabbit will now have a uniform brown
texture, giving it a rustic and natural appearance, while still retaining its detailed and lifelike features. The background remains a blurred natural setting, contrasting
with the detailed texture of the rabbit."

Prompt SFT (S)

Input

CoT BBox SFT think (S)SFT think (S): CoT Reasoning

Replace the antique radio with typewriter.

"1. The source image features an antique wooden radio with a vintage design, complete with a wooden case and two bells on top. The radio has a dial for adjusting
the frequency and a speaker grille in the front, with a power switch visible on the right side.", "2. The object to be edited is the antique radio, specifically described
as an antique radio with a wooden exterior and a speaker, featuring a tuning dial and two bells on top.", "3. The specific area to be edited is defined by the bounding
box coordinates [[56, 3, 223, 254]], which encompasses the antique radio.", "4. Replace the antique radio with a black IBM electric typewriter, ensuring the
typewriter fits within the same spatial area and maintains the original proportions and orientation. The typewriter's mechanical keyboard should be prominently
displayed, with the brand name \"Makoka\" visible on the carriage.", "5. The edited image will show a black IBM electric typewriter on a white surface, with its
mechanical keyboard prominently displayed. The typewriter will occupy the same space as the original antique radio, and the surrounding elements such as the
wooden case and bells will be removed or blended out to create a seamless transition. The brand name \"Makoka\" will be clearly visible on the carriage, and the
overall composition will reflect the original setting's context."

Prompt SFT (S)

Input

CoT BBox SFT think (S)SFT think (S): CoT Reasoning

Transform the setting to spring with blooming flowers.

1. The source image depicts a small, rectangular building with a green exterior and a pink door, situated in a lush, green forested area. The
building appears to be a simple, modern structure, possibly a restroom or a small shelter, blending seamlessly with the surrounding natural
environment.", "2. The object to be edited is the environment around the building, specifically the green forested area.", "3. The specific area to
be edited is defined by the bounding box coordinates [[0, 0, 250, 250]], encompassing the entire forested area.", "4. Replace the green forest
with a vibrant spring garden filled with blooming flowers, ensuring the building remains unchanged. Add a pathway leading up to the entrance
and adjust the foliage to enhance the springtime feel.", "5. The edited image will depict a small, rectangular building with a green exterior and a
pink door, surrounded by a vibrant spring garden filled with blooming flowers. A pathway leads up to the entrance, and the scene exudes a
serene, natural ambiance typical of a springtime setting, with lush, blooming flowers and a sense of renewal and growth.

Prompt SFT (S)

Figure 8: This figure shows image editing examples from SFT(S) without reasoning, SFT think(S)
with Chain-of-Thought (CoT) reasoning. While the reasoning model can understand instructions,
plan, and ground edits, it may introduce artifacts and unnatural details compared to the non-reasoning
model.

DeepSpeed ZeRO stage 3 for memory efficiency, with mixed precision enabled using bfloat16 (bf16).
We train the model for a maximum of 5 epochs.

For RL training, rewards were computed using VIEScore through a vLLM API server running
Qwen2.5-VL-72Bon 4 NVIDIA H100 GPUs. The training was conducted separately on a different
server for 2000 steps, with early stopping based on reward plateaus, also using four NVIDIA H100
GPUs.

26

F.2 Training Efficiency Comparison

We compare the training data size, compute resources, and training duration of EARL with existing
baselines, as shown in Tab. 18. EARL achieves competitive performance with roughly 5× less
image-editing data (752k vs. 4M samples) and significantly fewer GPUs (8 vs. 104) compared to
Omnigen [56], demonstrating superior data and training efficiency. Note that the higher GPU demand
for Omnigen is expected, as its model is trained from scratch. In contrast, EARL builds on pretrained
models, reducing computational requirements. This highlights that EARL offers practical efficiency
gains while maintaining strong performance.

Table 18: Comparison of training data size, compute resources, and training duration for EARL and
prior methods. “–” indicates values not reported.

Model Training Data Compute Duration
EARL SFT(S) → RL(S+C) ∼752k samples (SFT: ∼750k,

RL: 32k)
8×A100L 108h (SFT: ∼60h,

RL: ∼48h)
InstructPix2Pix [8] 313k samples 8×A100 25.5h
MagicBrush [61] ∼10k samples (built on Instruct-

Pix2Pix)
2×A100 –

Aurora [26] 289k samples (built on Instruct-
Pix2Pix)

2×RTX A6000 16h

Omnigen [56] ∼0.1B samples (incl. ∼4M edit-
ing examples)

104×A800 –

EditAR [38] 1.5M samples 8×A100 –

F.3 Inference Speed Comparison

We integrated EARL with vLLM [29], which enables fast autoregressive decoding through Page-
dAttention and optimized parallel token generation, significantly reducing latency and improving
throughput compared to standard autoregressive decoding. We evaluated inference speed on 50
samples using a single A100L GPU, running all models at a resolution of 256 × 256 (except Ed-
itAR, which was trained and tested at 512 × 512). The total times to generate 50 samples were
as follows: EARL: 52.7 s, EditAR: 66.19 s, MagicBrush: 23.6 s, InstructPix2Pix: 23.7 s, Aurora:
23.7 s, and Omnigen: 200 s. Compared to Omnigen, EARL is roughly 4× faster while achieving
competitive editing performance (see Table 2), demonstrating the benefits of optimized autoregressive
generation. Although EARL is about 2× slower than diffusion-based baselines such as MagicBrush,
InstructPix2Pix, and Aurora, this trade-off is justified by its significant improvements in editing
quality.

G Limitations and Broader Impact

G.1 Limitations

First, the model’s performance heavily depends on the coverage of our training data. Although we
curated a diverse set of simple and complex edit triplets, long-tail concepts such as fine-grained
cultural artifacts, specialized scientific diagrams, and underrepresented geographic scenes remain
sparsely represented. This limited coverage can lead to brittle behavior when the model encounters
out-of-distribution inputs.

Second, our reinforcement learning approach relies on a single frozen vision-language verifier, which,
despite being a state-of-the-art MLLM, has inherent limitations. The verifier can be imperfect and it
inherits biases from its pretraining corpus. It struggles particularly with verifying complex edit types
involving spatial relationships and action changes. Although these edits are underrepresented in the
verifier’s training data, qualitative and quantitative analyses indicate that the verifier still provides
meaningful learning signals to guide the model.

Lastly, our training data depends on synthetic data generated via diffusion models, which include au-
tomatic filtering to reduce noise. However, some noisy examples remain, such as image deformations
or outputs that do not accurately reflect the edit instructions, due to imperfections in synthetic data
generation. These factors can introduce noise in training. However, some of these can be improved
during RL post-training, as RL post-training does not need the ground-truth labels for edited images.

27

G.2 Broader Impact

Positive Impacts Text-guided image editing systems such as our RL-enhanced approach has the
potential to amplify human creativity and promote accessibility. By accepting natural language
instructions, the model helps lower the barrier for designers, educators, and hobbyists who lack
advanced editing expertise, enabling rapid iteration on visual concepts. Beyond direct applications,
our RL pipeline offers a way to overcome the requirement of ground-truth edited images.

Potential Negative Impacts While high-fidelity image editing offers many benefits, it also poses
risks. Such technology can be misused to create convincing misinformation or deepfakes. Addition-
ally, if the base model or the vision-language verifier contains demographic biases, reinforcement
learning may inadvertently amplify these biases. Importantly, our model is developed strictly for
research purposes and is intended to advance scientific understanding rather than for deployment in
real-world applications. We encourage ongoing efforts to implement safeguards and promote ethical
use alongside further development in this area.

H Behind the Scenes

We started this project with a clear goal: to build a single, unified model that edits images guided
only by text instruction – no user-provided masks, bounding boxes, or conditions. The model itself
would reason and plan the edits, generating all necessary guidance on its own. The rationale behind
this is that diffusion models – a dominant approach to image editing are typically built with some
form of user conditioning to control for faithful editing, and they lack unification – a separate model
built for different edit types. We wanted to have a unified model that does all sorts of edits and treats
user conditioning as a learnable task via reasoning. To achieve this, we needed a model capable
of generating both images and text in one combined sequence, so we searched for an interleaved
image-text transformer model.

The first model we found is Meta’s Chameleon model [45], as it fits the criteria well. It had good
image generation capabilities, but the model was not open source. So, we pivoted to Anole [9],
an open-source variant inspired by Chameleon. We trained Anole to do image editing without any
reasoning input (the sanity check one can do). Unfortunately, the results were rough: images suffered
from distortion and artifacts, making it clear we needed something stronger.

Then came Emu3 [50]. When it was released, we quickly tested it, fine-tuning with small, complex
editing datasets. Results initially fell short – until we added large amounts of simpler, high-quality
edit data. This mix showed improvements: the model began handling simplistic edits well; also, some
hope for counting, spatial, and even some action edits successfully.

Our main goal is to integrate reasoning to eliminate the need for user-provided conditioning. To
this end, we introduced reasoning data – structured “chain of thought” prompts to guide the model’s
editing process, as detailed extensively in our paper. Surprisingly, models trained with reasoning
mostly underperformed compared to those without it. We tried many variants: changing the data pool,
simplifying edit tasks, shortening the chain-of-thought length, and varying training data size, but none
made a significant difference. We suspect this gap is due to the base model’s capacity or the quality
of the reasoning data. Even feeding ground-truth reasoning directly as input during fine-tuning failed
to boost results as much as expected.

One positive result we had with the no-reasoning variant is that we were able to get close to state-of-
the-art. Since RL has been gaining traction lately, we were eager to explore its potential by applying
it to our problem, but we needed to build a strong SFT model first. We tested SFT models with
generating multiple samples given a fixed prompt. One interesting observation was that at least one
of these samples did well on simple edit tasks (e.g. changing object, attribute), and sometimes even a
complex one (e.g. changing a count). That flicker of success motivated us to integrate RL on top of
SFT-ed models – to push the model towards consistently generating better edits. Compared to our
exploration of teaching an autoregressive model editing through reasoning, which was for most part
unsuccessful for a long while, RL experiments were more promising early on – clearly moving our
interest to go further with the RL route.

This journey has been a rollercoaster of setbacks and great excitement when RL was working
consistently. Yet, each experiment deepened our understanding of the delicate balance between

28

data quality, reasoning guidance and RL – bringing us closer to that elusive goal of truly unified,
instruction-guided image editing.

I Author Contributions

Saba Ahmadi, Rabiul Awal, and Benno Krojer initiated the project. Saba Ahmadi led the design and
implementation of the EARL for auto-regressive image editing. Saba and Rabiul initiated the idea
of incorporating reasoning into image editing. Rabiul and Ankur Sikarwar led the data generation
for the CoT reasoning experiments. Ankur also led the evaluation. Amirhossein Kazemnejad led
the design and the implementation of the reinforcement learning pipeline. Ge Ya Luo and Benno
Krojer helped with evaluation metric selection. Rabiul, Saba, Ankur, Amirhossein, and Juan A.
Rodriguez ran experiments for different stages of the project. Benno wrote the introduction and
provided guidance on individual sections. Saba, Rabiul, Ankur, and Amirhossein led the writing
of the remaining sections with feedback from the PIs. Aishwarya Agrawal, the lead PI, guided the
project from the start, with additional guidance from Siva Reddy, Christopher Pal, and Sai Rajeswar
at various stages.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction are the summary of the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in the supplementary material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

30

Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details about training and implementation in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]

Justification: We will release the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We evaluated our models across six benchmarks, each with around 1000
samples. This large sample size likely leads to low overall variability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss it in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we do.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impact of our work in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We finetune our models on top of pretrained models and our finetuning datasets
are all publicly available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We follow protocol.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

34

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will be releasing well-documented code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not relevant.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not relevant.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

35

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLMs at different stages of training and evaluation as described in
Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Training Paradigms for Autoregressive Image Editing
	Experimental Setup
	Training Details
	Evaluation Setup

	Results
	Teaching Emu3 Image Editing with Supervised Fine-Tuning
	Pushing Image Editing with RL Post-training
	Studying Chain-of-thought Reasoning for Editing

	Conclusion
	Acknowledgments
	Background
	Emu3
	GRPO: Group Relative Policy Optimization

	Training Datasets
	Dataset Composition
	Creating Chain-of-Thought from Existing Editing Datasets
	LLM system prompts for creating reasoning chains
	LLM prompting for converting VisMin image-text pairs to editing task
	Reasoning chain examples

	VIEScore Alignment with Human Judgment
	Analysis of the Verifier Model
	Qualitative Examples of Reward Model Limitations in Complex Edits
	VIEScore Evaluation with Qwen2.5-VL-72B and Alignment with Human Judgment
	Impact of Verifier Choice on RL Performance

	Analysis of Model Outputs
	Breakdown of VIEScore
	CLIP Similarity and FID Evaluation
	Additional Comparison with EditAR
	Best-of-N Evaluation
	Fine-Grained Evaluation of EARL
	Qualitative Evaluation of Reasoning and Edits in the SFT-Think Model

	Experimental Setup and Compute Resources
	Training Details
	Training Efficiency Comparison
	Inference Speed Comparison

	Limitations and Broader Impact
	Limitations
	Broader Impact

	Behind the Scenes
	Author Contributions

