
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Train, Mutate, or Reward?
A UNIFIED VIEW OF SUPERVISED ENSEMBLING

FOR TIME SERIES ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series anomaly detection (TSAD) is a long-standing and extensively stud-
ied problem with applications across a large panel of domains. Despite the ma-
turity of the field, recent benchmark studies have revealed that no single detec-
tion method consistently outperforms others across diverse datasets. While model
selection approaches (i.e., choosing the best detector for a given scenario) have
shown promising results, their effectiveness remains inherently limited by the
performance ceiling of existing individual detectors. To address this limitation,
supervised ensembling offers a promising path to surpass individual detectors by
learning to combine their strengths. In this work, we unify and formalize the
problem of supervised ensemble-based anomaly detection in time series, and in-
troduce three principled strategies for learning such ensembles: (1) classical Ma-
chine Learning, (2) Reinforcement Learning, and (3) Genetic Programming. We
perform a rigorous comparative evaluation across these strategies using identical
model components, inputs, and experimental conditions to ensure fairness. Our
findings not only highlight the strengths and trade-offs of each approach, but also
illuminate promising directions, paving the road for future research on this topic.

1 INTRODUCTION

NormA

1.0

0

Ac
cu

ra
cy

 (V
U

S-
PR

)

0.2

0.4

0.6

0.8

Best Individual
Detector

Strategy 1:
 Machine
Learning

RawFeatures

Strategy 2:
Reinforcement

Learning

RawFeatures

Best Model Selector
from (Sylligardos et al. 2023)

Strategy 3:
Genetic

Programming

RawFeatures

+9.1%-29%-23%

Unsupervised
Ensemble (Avg Ens)

Figure 1: Comparison of the three strategies
on the TSB-UAD benchmark (Paparrizos et al.,
2022b).

Anomaly detection in time series data is a long-
standing and critical task with broad applicabil-
ity across various domains, including finance,
industrial monitoring, healthcare, environmen-
tal science, and cybersecurity. Over the years,
a wide range of methods have been developed,
including statistical techniques (Li et al., 2020),
unsupervised learning, and more recently, deep
learning-based approaches (Chauhan & Vig,
2015; Kim et al., 2018). In particular, unsuper-
vised anomaly detection (Goldstein & Dengel,
2012; Audibert et al., 2020) remains the dom-
inant paradigm due to the scarcity of labeled
anomalies in real-world datasets.

However, recent benchmark studies (most no-
tably the TimeEval (Schmidl et al., 2022), TSB-
UAD (Paparrizos et al., 2022b), and TSB-
AD (Liu & Paparrizos, 2025) benchmarks)
have revealed a key insight: no single detector
consistently achieves top performance across
diverse datasets and anomaly types. This het-
erogeneity challenges the generalizability of individual methods and has motivated research into
model selection approaches, where the best-performing detector is chosen based on time series char-
acteristics. Although promising, such methods are intrinsically limited by the performance ceiling
of the best available individual detector.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To overcome this ceiling, supervised ensemble learning offers an appealing alternative: rather than
selecting a single detector, ensembles aim to combine the strengths of multiple detectors to achieve
performance that exceeds any individual detector (Sylligardos et al., 2023). While ensemble tech-
niques are widely studied in classification and regression, their application in the domain of time
series anomaly detection, particularly under a supervised setting, remains under-explored and lacks
a unified formalization and evaluation.

In this paper, we conduct a comprehensive study of supervised ensembling strategies for time
series anomaly detection. We formalize the task as a supervised problem, where the objective is
to learn a function that produces weights to combine individual detectors and improve detection
performance. We explore this problem through three principled and diverse learning paradigms:

• Classical Machine Learning (ML): A given model trained on either raw time series se-
quences or pre-computed features (Lubba et al., 2019).

• Reinforcement Learning (RL): An agent (i.e., a model) that learns to combine detector
scores over time by maximizing a reward given by the anomaly detection accuracy.

• Genetic Programming (GP): An approach where individuals (i.e., models) are evolved via
mutation and selection, optimizing the anomaly detection accuracy as a fitness function.

We compare feature-based and raw-based input representations within each strategy to assess their
impact on ensemble quality. All methods are evaluated on the TSB-UAD benchmark, using con-
sistent test splits, detectors, and experimental conditions to ensure fairness and comparability. To
establish the value of supervised ensembling, we benchmark our strategies against: (i) the best in-
dividual detector on TSB-UAD, (ii) a naive unsupervised average ensemble, and (iii) the strongest
model selection baselines from a recent experimental evaluation (Sylligardos et al., 2023).

Our findings, summarized in Figure 1, demonstrate that supervised ensembles can reliably outper-
form individual detectors and unsupervised ensembling, and in some cases, even surpass the best
model selection methods (Sylligardos et al., 2023). These results highlight the potential of super-
vised learning in this context and open up promising directions for future work.

2 BACKGROUND AND RELATED WORK

In this section, we review time series anomaly detection literature and discuss recent automated
solutions while detailing their limitations. First, a time series T = [T1, T2, ..., TL] ∈ RL is a
sequence of real-valued numbers Ti ∈ R, where L = |T | is the length of T , and Ti is the ith

point of T . Local regions of the time series, known as subsequences Ti,ℓ ∈ Rℓ of a time series T ,
is a subset of successive values of T of length ℓ starting at position i, formally defined as Ti,ℓ =
[Ti, Ti+1, ..., Ti+ℓ−1]. For a time series T ∈ RL, an anomaly detection method (or detector) D
returns an anomaly score sequence ST ∈ RL.We note N the number of detectors.

2.1 TIME SERIES ANOMALY DETECTION

Anomaly detection in time series is a crucial task for many relevant applications. Therefore, several
methods (or detectors) have been proposed (Boniol et al., 2024). One type of anomaly detection
method is distance-based methods, which analyze subsequences by utilizing distances to a given
model to detect anomalies (Yeh et al., 2016; Breunig et al., 2000; Boniol et al., 2021a).

While methods in the previous category compute their anomaly score based on distances using raw
time series elements (such as subsequences), density-based methods focus on detecting recurring
or isolated behaviors by evaluating the density of points or subsequences within a specific repre-
sentation space. This category can be divided into four sub-categories, namely distribution-based,
graph-based (Boniol & Palpanas, 2020), tree-based (Liu et al., 2008), and encoding-based.

Finally, prediction-based approaches aim to detect anomalies by predicting the expected normal
behaviors based on a training set of time series or sub-sequences (containing anomalies or not).
Methods in this category detect anomalies using prediction errors. More specifically, such category
can be divided into forecasting-based methods (Malhotra et al., 2015), and reconstruction-based
methods (Sakurada & Yairi, 2014). A more detailed review is in the Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 2500 5000

0 2500 5000

Time Series ! ∈ ℝ!

!! !" !# …

ℳ!
ℝ" → {0…'}

Anomaly Score S" ∈ ℝ!

0 2500 5000

0 2500 5000

Time Series ! ∈ ℝ!

!! !" !# …

ℳ!
ℝ" → ℝ#

)$)%)#…

Anomaly Score S" ∈ ℝ!

0 2500 5000

0 2500 5000

Time Series ! ∈ ℝ!

!! !" !# …

Anomaly Score S" ∈ ℝ!

0 2500 5000

0 2500 5000

Time Series ! ∈ ℝ!

!! !" !# …

Anomaly Score S" ∈ ℝ!

(a) Unique Detector (b) Unsupervised Ensemble (Avg) (c) Supervised Model Selection (d) Supervised Ensemble

Figure 2: Time series anomaly detection: from unique detector (a) to supervised ensembling (d).

2.2 ONE UNIQUE DETECTOR IS HOPELESS

Recently, several experimental evaluations for anomaly detection in time series have been pro-
posed (Schmidl et al., 2022; Paparrizos et al., 2022b). Such benchmarks provide a large collec-
tion of time series from various domains and evaluate multiple methods spanning all the categories
mentioned above. However, these experimental evaluations led to the same conclusion: no single
method is universally best across all domains. This is explained by the following two reasons:

Heterogeneity in anomaly types: Time series anomalies are either point, contextual, or collective.
Such heterogeneity in anomaly types makes the anomaly detection task challenging. Moreover,
even for time series with the same anomaly types, we observe that the most accurate models are all
different (Sylligardos et al., 2023).

Heterogeneity in time series structures: On top of heterogeneity in anomaly types, we need to dif-
ferentiate time series containing single or multiple anomalies (with different or similar anomalies).
For instance, methods based on neighbor distance computation, such as LOF, are very accurate in
detecting single or multiple different anomalies, but less accurate for multiple similar.

2.3 TOWARDS AUTOMATED SOLUTIONS

A solution to the limitations mentioned above is to apply model selection (depicted in Figure 2(c))
based on time series characteristics (Sylligardos et al., 2023). The goal is to train a model to auto-
matically select the best detectors for a given time series. However, model selection methods are
inherently constrained by the detectors they select from. Since these approaches operate by choos-
ing an existing detector, their performance is fundamentally bounded by the best detector within the
candidate pool. As such, model selection cannot produce results that exceed the capabilities of its
individual components (in this paper, we refer to the Oracle as the best theoretical model selector).
This limitation arises when no single detector performs well across all datasets or anomaly types.

A solution to this limitation is to apply an unsupervised ensemble to the anomaly scores produced
by all the detectors (Figure 2(b)). While several unsupervised ensembling techniques have been
proposed (Aggarwal & Sathe, 2015), the Averaging strategy is the most robust and low-risk strat-
egy (Aggarwal & Sathe, 2015). While unsupervised ensembling offers simplicity and robustness, it
remains fundamentally agnostic to the time series and the contextual reliability of each detector (i.e.,
all treated equally). As a result, they are unable to emphasize the strengths of high-performing detec-
tors or mitigate the weaknesses of less reliable ones. In contrast, a supervised ensemble (illustrated
in Figure 2(d)) can learn to combine detector outputs based on actual anomaly patterns, potentially
surpassing the performances of individual detectors, naive ensembles, and model selection.

2.4 SUPERVISED ENSEMBLING: Problem Definition

For a time series of length L, the supervised ensemble learning paradigm is defined as follows: the
input data X is either a feature vector in RF , where F is the number of features, or a raw time
series in RL. Given X , the weights W applied to each individual detector are sampled from a
trained model Mθ∗ : X → pX ∈ P(RN) which outputs a probability distribution over the set of
weighting coefficients for the N detectors. The anomaly scores from the detectors are denoted by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 2500 5000

𝑤!
𝑤"
⋮
𝑤#

ℳ!
𝒳 → ℝ"

𝑤 ∈ ℝ"

Back-propagation

…

𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑎𝑙𝑦	𝑆𝑐𝑜𝑟𝑒
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆

𝑆#,%" , 𝑆#,%$, … , 𝑆#,%# …

0 2500 5000

(Input)
Dataset	D ∈ ℝ ! ×#

𝒩 𝜇$, 𝜎$% 	

𝒩 𝜇%, 𝜎%%

⋮

𝒩 𝜇&, 𝜎&%

ℳ!
𝒳 → ℝ"

𝑤 ∈ ℝ"

Reward

…

(Labels) Time series labels 𝒴 and
Detector Scores S' ∈ ℝ ! ×&×#

𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆

𝑆#,%" , 𝑆#,%$, … , 𝑆#,%# …

(Input)
Dataset	D ∈ ℝ ! ×#

(Labels) Time series labels 𝒴 and
Detector Scores S' ∈ ℝ ! ×&×#

0 2500 5000

(Input)
Dataset	D ∈ ℝ ! ×#

𝑤$
𝑤!
⋮
𝑤#

…

(Labels) Time series labels 𝒴 and
Detector Scores S' ∈ ℝ ! ×&×#

𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#
𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆
𝑆#,%! , 𝑆#,%" , … , 𝑆#,%#𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟	𝑆𝑐𝑜𝑟𝑒𝑠	𝑆

𝑆#,%" , 𝑆#,%$, … , 𝑆#,%# …

𝑆×ℳ! 𝑇

𝐴𝑐𝑐 𝑆×ℳ! 𝑇 ,𝒴
Random mutations from the best 𝜃&

𝐴𝑐𝑐 𝑆×ℳ!% 𝑇 ,𝒴

ℳ!
ℝ' → ℝ"ℳ!$
ℝ' → ℝ"ℳ!"

𝒳 → ℝ" …

𝑤!
𝑤"
⋮
𝑤#

𝑤!
𝑤"
⋮
𝑤# …

𝑆×ℳ! 𝑇𝑆×ℳ! 𝑇
𝑆×ℳ!" 𝑇 …

(a) Strategy 1: Classical Machine Learning (b) Strategy 2: Reinforcement Learning (c) Strategy 3: Genetic Programming

Population of
models ℳ!%

𝑆×ℳ! 𝑇

𝑃𝑟𝑜𝑥𝑦 𝑆×ℳ! 𝑇 ,𝒴
(e.g. 𝑀𝑆𝐸)

𝑤!
𝑤"
⋮
𝑤#

𝜇 ∈ ℝ"

Sampling

Figure 3: Overview of the different strategies considered for supervised ensembling.

S ∈ RL×N , and the corresponding ground truth label is represented by Y ∈ {0, 1}L. Finally, we
note Acc, the anomaly detection metric (such as VUS-PR). The optimal model parameters, defined
by θ∗ ∈ Θ := RdM where dM is the number of parameters, are obtained as follows:

θ∗ = argmax
θ∈Θ

E(X,S,Y), W∼Mθ(X)

[
Acc

(
S ×W,Y

)]
. (1)

Since θ∗ is unknown, we aim at maximizing the expected accuracy metric Acc through appropriate
learning strategies. The term S × W̃ ∈ RL represents the output of the supervised ensemble model,
i.e., the weighted anomaly scores, in which W̃ is the weights vector W normalized by its norm.
Therefore, the goal is to identify the most effective strategy for optimizing Mθ as defined in Equa-
tion 1. The most effective strategy can be Deterministic (such as ML or GP) or Stochastic (such as
RL). We provide a reformulated version of Equation 1 for the deterministic case in Appendix A.3.

3 TSAD SUPERVISED ENSEMBLING: Three Strong Baselines

In this section, we present three strong baselines for supervised ensembling for time series anomaly
detection. For fair comparison, we introduce a generic pipeline as a foundation for all strategies.

3.1 A GENERIC PIPELINE

To consistently evaluate the three supervised ensembling strategies, we define a generic training and
evaluation pipeline. Each time series in the dataset is either (i) converted into a set of F statistical
features, resulting in one feature vector per time series, or (ii) reduced to the first window of fixed
length ℓ if using the raw time series data directly. The model (as defined by the chosen strategy)
outputs a weight vector W ∈ RN , where N is the number of detectors. We compute the final
ensemble anomaly score for a given time series T as a weighted average of the detector scores using
the predicted weight w. The pipeline is summarized in Algorithm 1 in the Appendix A.4.

3.2 STRATEGY 1: Classical Machine Learning

We first consider the most straightforward path to solve the optimization problem: a gradient method
minimizing an objective defined as closely as possible to the anomaly detection accuracy (illustrated
in Figure 3(a)). The non-differentiability of the time series anomaly detection accuracy measure
AUC-PR or VUS-PR (Paparrizos et al., 2022a) imposes us to choose a differentiable proxy, such
as the Mean Squared Error (MSE). However, selecting a differentiable proxy introduces inherent
limitations, as we are no longer optimizing the true objective (i.e., the anomaly detection accuracy).
Instead, we rely on a surrogate that may not faithfully reflect the nuances of the actual target. For-
mally, the problem initially formulated in Equation 1 is the following:

θ∗ = argmax
θ∈Θ

E(X,S,Y)

[
Proxy

(
S ×Mθ(X), Y

)]
. (2)

In practice, we consider the MSE as the Proxy. It is also important to highlight that the pipeline used
in Strategy 1 closely resembles the model selection approach proposed in Sylligardos et al. (2023).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The key difference lies in the fact that we are performing regression (i.e., predicting continuous
weights for each detector) rather than classification. While framing the problem as a classification
task may be more natural (considering the labels we are generating), adopting a regression-based
approach ensures consistency with Strategies 2 and 3. This alignment allows for a fairer comparison
between the strategies, focusing solely on the learning paradigm employed.

3.3 STRATEGY 2: Reinforcement Learning

In order to directly optimize a non-differentiable evaluation metric (such as VUS-PR) without the
need to handcraft a surrogate loss, we consider a reinforcement learning (RL) strategy (illustrated in
Figure 3(b)). The RL paradigm offers the flexibility to treat the evaluation metric as a reward, using it
to guide the learning process via policy gradient methods (Sutton et al., 1998). In such a framework,
the agent is designed to (i) observe a state (i.e., each time series or its feature representation), (ii)
take an action (predicting the set of weights used to aggregate the anomaly scores of the detectors)
and then (iii) collect the associated reward (i.e., the anomaly detection accuracy) .

The objective is to learn a policy πθ that guides the actions of the agent according to the state: it
associates to any state X (the input of a given model, such as features or raw subsequences) the
probability distribution of the action W (the weights) such that the reward (the anomaly detection
accuracy) is maximum. The policy could be written Mθ for coherence with Equation 1 but we
choose the following RL notation: This policy is defined by πθ : X 7→ {N (Wi;µ

i
θ, (σ

i
θ)

2)}1≤i≤N

where µi
θ is the mean and σi

θ the standard deviation of the normal distribution. The policy can be
written with respect to the model Mθ as πθ : X 7→ {N (Wi;Mθ(X)i, (σ

i
θ)

2)}1≤i≤N where Mθ(X)i
and Wi are respectively the ith output of the model and component of the weight vector. The reward
is defined by R(X,W) := Acc

(
S×W,Y

)
with the notations of equation 1. We note here that there

is no spatial dependency between the states; each state-action-reward tuple is treated independently.

In practice, we use the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017).
In such an algorithm, a shared critic network is used to estimate the value function Vπθ

(X) =
EW∼πθ(X)[R(X,W)], which is then used to compute the advantage function Aπθ

= R(X,W) −
Vπθ

(X) emphasizing how good (in terms of reward) was the action W compared to the average
reward of the action given by the current policy πθ. The objective function is defined as follows:

LCLIP(θ) = Eπθ

[
min (r(θ)Aπθ

, clip(r(θ), 1− ϵ, 1 + ϵ)Aπθ
)
]

(3)

where ϵ > 0, and r(θ) := πθ(X)(W)/πθold(X)(W) relates the evolution of the likelihood of the
action W at the state X . clip in Schulman et al. (2017) bounds the value r(θ) ∈ [1− ϵ, 1 + ϵ].

3.4 STRATEGY 3: Genetic Programming

In contrast to Strategies 1 and 2 that learn via gradient descent, genetic programming offers a
population-based, gradient-free optimization paradigm (illustrated in Figure 3(c)). Like reinforce-
ment learning, it does not require the objective function to be differentiable. However, genetic
algorithms do not rely on policy optimization or estimating gradients. Instead, it directly explores
the solution space through an evolutionary process (Mitchell, 1998). Thus, it complements the other
strategies by offering an almost model-free baseline.

The goal is to evolve a population of candidate solutions, where each individual represents a model
Mθ (i.e, a vector of parameters θ for different models with the same architecture) used to predict
our targeted weights. The quality of each individual is evaluated using the anomaly detection metric
Acc (such as AUC-PR or VUS-PR), guiding the evolutionary search toward weight configurations
that produce better ensemble performances for our anomaly detection task. More formally, P k =
{θk1 , θk2 , . . . , θkN} is the population at generation k, composed of N candidate solutions. Each θki ∈
Rd is called an individual and is an approximation of θ∗ in equation 4.

In our case, each θki corresponds to a flattened version of the weights of a neural network. Thus,
genetic algorithms explore the space of network parameters without relying on gradient information.
Instead, it keeps the fittest individuals to generate a new population. The fitness function f : Rd → R
of each model is evaluated based on a given accuracy measure Acc and is defined as follows:

f(θ) := E(X,S,Y)

[
Acc

(
S ×Mθ(X), Y

)]
; θ∗ = argmax

θ∈Θ
f(θ) (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Experimental setup for the evaluation of Ensemble Strategies

Strategy 1 (ML) Strategy 2 (RL) Strategy 3 (GP)
Datasets and Detectors TSB-UAD (Paparrizos et al., 2022b) (16 datasets, 12 detectors)
Train/Test Split 60% Train, 40% Test, 80% Train, 20% Validation (from train)

Input Representations Raw windows of length 128 or catch22 features (Lubba et al., 2019)

Core Model (Features) Multi-Layer Perceptron (MLP)
Core Model (Raw) Convolutional Neural Network (CNN) with 2 blocks, kernel size 3, GAP layer

Optimization Strategy Backpropagation PPO (Schulman et al., 2017) Genetic Algorithm
Loss / Objective MSE AUC-PR or VUS-PR as reward AUC-PR or VUS-PR as fitness
Optimization Details ADAM Optimizer PPO with clipped surrogate loss pygad.GA (Gad, 2023)

The selection phase chooses the best individuals (based on fitness) to serve as parents. Among
several strategies, we use the steady-state approach, where only the least fit individuals are replaced
each generation while the best are retained. Formally, let M ≤ N and define {θk1 , . . . , θkM} ⊂ P k

as the M best individuals at generation k. These parents produce offspring for the next generation
through crossover (each child inherits half of its parameters from each parent) and mutation (10%
of a child’s parameters are perturbed by adding a random value between [−1, 1]).

4 EXPERIMENTAL EVALUATION

We now evaluate the three strategies described above by answering the following questions:

(Q1) How do supervised ensembles compare to traditional baselines? We benchmark our strate-
gies against individual detectors, unsupervised ensemble, and model selection.

(Q2) Do supervised ensembles really ensemble? We assess whether the supervised ensemble
mimics model selection methods (selecting only one detector) or combines meaningful detectors
(leading to higher performances than the best detector on each time series).

(Q3) How do the strategies scale? We measure training and detection time for all strategies.

4.1 EXPERIMENTAL SETUP

Our experimental setup for evaluating the three proposed ensemble strategies is summarized in
Table 1. Overall, strategy 1 relies on simple backpropagation using the ADAM optimizer with
mean squared error (MSE) loss. Strategy 2 employs the Proximal Policy Optimization (PPO) al-
gorithm (Schulman et al., 2017), where the core model acts as the policy network. Strategy 3 uses
genetic programming via the pygad.GA library (Gad, 2023) to evolve model weights directly.

Additionally we benchmark their performance against four baselines: (i) 12 individual detectors
provided in the TSB-UAD benchmark (Paparrizos et al., 2022b), (ii) an unsupervised ensemble
baseline computed as the average of all detectors’ outputs (called Avg Ens in this paper), and (iii)
the best model selection method identified in (Sylligardos et al., 2023) (called Best MS in the paper)
(iv) the best theoretical model selector, i.e., selecting the best detector for each time series (called
Oracle in the paper). These comparisons enable a comprehensive assessment of the benefits and
limitations of our proposed strategies relative to established methods. We provide more technical
details in our repository 1 for reproducibility purposes.

4.2 HOW DO SUPERVISED ENSEMBLES COMPARE TO BASELINES?

In this section, we first compare the different strategies against the baselines (Individual detectors,
Avg Ens, Best MS, and Oracle) and we identify which strategy is the most promising. To achieve this
comparison, we conduct two experiments: In the first (Figure 4(a)), we evaluate the anomaly detec-
tion accuracy (VUS-PR) of all strategies over the entire TSB-UAD benchmark (i.e., in-distribution
setting). In such a setting, both the training and the test sets contain time series from all 16 datasets of
TSB-UAD. In the second experiment (Figure 4(b)), we evaluate the performance of the models in an

1Our repository: link

6

https://drive.google.com/drive/folders/1jgvSFvmxWAoEmc5OjqNGseE-4ypebYw1?usp=sharing

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

AE LOF MPIForest (point)

NormA

1.0

0

Ac
cu

ra
cy

 (V
U
S-
PR

)

0.2

0.4

0.6

0.8

Top 5 Detectors
from TSB-UAD

Unsup.
Ensemble

Avg Ens

Strategy 1:
ML

RawFeatures

Strategy 2:
RL

RawFeatures

Strategy 3:
GP

RawFeatures

Better than
O

racle
Better than

Best M
S

W
orse than
Best M

S

Best MS
Oracle

Model
Selection

1.0

0

0.2

0.4

0.6

0.8

Strategy 2:
RL

Strategy 3:
GP

RawFeatures

RawFeatures
Avg Ens

Best MS
Oracle

Unsup.
Ensemble

Model
Selection

Better than
O

racle
Better than

Best M
S

W
orse than
Best M

S

(a) In-distribution Evalutation (b) Out-of-distribution Evalutation

Figure 4: Accuracy comparison (for (a) in-distribution and (b) out-of-distribution) of Strategy 1, 2
and 3 versus individual detectors, unsupervised ensemble, and the best model selector.

out-of-distribution setting (i.e., evaluated on a dataset not used in the training set). In this scenario,
we leave one entire dataset out for the test and use the 15 remaining datasets for training. Based on
the performance in the first experiment, we exclude Strategy 1 from the second experiment.

We first observe in Figure 4(a) that, for in-distribution, all supervised ensembling strategies are
significantly outperforming individual detectors and Avg Ens. Moreover, for in-distribution, Strategy
2 (RL) on features outperforms Best MS). In particular, Strategy 2 on features outperforms the
median of the best model selector, and the distribution of accuracy performances reaches higher
values than the Oracle. Although lower in terms of median, the latter underlines that the model
selection barrier can be surpassed by some supervised ensembling strategies in specific datasets
(more details in Section 4.3). In addition, Figure 4(a) demonstrates that, for in-distribution, the
choice of the strategy (choosing RL versus GP or ML) appears more relevant than the type of input
(feature versus raw) as the gap between supervised ensemble strategy performances is bigger than
the differences between feature and raw-subsequences for a given strategy.

Finally, Figure 4(b) leverages multiple interesting observations. As already observed in Sylligardos
et al. (2023), ensembling techniques (Avg Ens) are outperforming model selection approaches in the
out-of-distribution setting. This observation is confirmed in Figure 4(b) as the supervised ensemble
strategies (RL and GP) outperform both the average ensemble and the Best MS. Surprisingly, unlike
the in-distribution case, the out-of-distribution scenario favors the choice of the data type over the
strategies. Indeed, whether we consider strategy 2 or 3, the accuracies are globally similar; however,
when applying the strategies on raw data, the performances are significantly higher than those of
feature-based methods. The latter can be explained by the following two reasons: (i) In out-of-
distribution scenario, ensembling more detectors (such as the Avg Ens that ensembles all detectors
equally) is safer than selecting a few (such as the Best MS that picks only one). We observe in
practice that supervised ensembling strategies applied to features tend to select (i.e., with non-zero
weights) fewer detectors than the same strategies applied to raw subsequences. (ii) The feature space
is sparser than the raw subsequences, which might lead to lower generalisability capabilities.

Answer to Q1: In the in-distribution case, supervised ensemble strategies outperform in-
dividual detectors and the unsupervised ensemble. Strategy 2 (RL) on features is the only
supervised ensembling pipeline that outperforms the best model selection methods in Syl-
ligardos et al. (2023). However, in the out-of-distribution case, Strategies 2 and 3 (RL and
GP) are outperforming both the unsupervised ensemble and the best model selection method.
Finally, the choice of strategy prevails over the choice of data type in the in-distribution case,
and the choice of data type has priority over the strategy in the out-of-distribution case.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(b
) S

tr
at

eg
y

2:
R

L
w

ith
 fe

at
ur

es

(a
) B

es
t M

S
ap

pr
ao

ch

(c
) U

ns
up

er
vi

se
d

En
se

m
bl

e
(A

vg
 E

ns
)

Oralce (Theoretical best MS) Oralce (Theoretical best MS) Oralce (Theoretical best MS)

Figure 5: (a) Best MS, (b) Avg Ens, (c) Strategy 2 (with features) against the Oracle. % of time
series per datasets on which RL (with features) is outperforming the Oracle.

4.3 DO SUPERVISED ENSEMBLES REALLY ENSEMBLE?

In the previous section, we observed that a supervised ensemble (Strategy 2 on features) can achieve
higher performance than the Oracle. Therefore, we conduct a per-time series comparison in this
section between Strategy 2 and the Oracle. Thus, we gather the performances of Best MS, Oracle,
Avg Ens, and the best supervised ensemble method (RL with features). Figure 5 depicts a pairwise
comparison between them (i.e., each point in these figures is a time series).

First, Figure 5(a) shows that model selection has a glass ceiling imposed by the performances of each
individual detector: the best MS can not outperform the Oracle, by definition. Moreover, the average
ensemble (in Figure 5(b)) fails to convincingly overcome this observation: even though a small set
of time series are above the diagonal (i.e., Avg Ens outperform the Oracle), we observe no flagrant
progress and note that, unlike Best MS, many time series (e.g., from the OPPORTUNITY dataset)
suffer from poor anomaly detection performances (VUS-PR≤ 0.1) where the Oracle stays efficient
(VUS-PR≥ 0.4). Contrary to the unsupervised average ensembling, the supervised RL ensembling
approach on features (in Figure 5(c)) demonstrates promising results. For instance, the RL on feature
strategy outperforms the Oracle for 42% of the OPPORTUNITY time series. Furthermore, this is
also evident in the YAHOO dataset (containing time series with point anomalies only), where an
important fraction (86%) of the time series shows that the RL on features outperforms the Oracle.
Finally, we also observe from Figure 5(c) that the supervised ensemble is not accurate for time
series with a very highly inaccurate individual detector (i.e., not points in the top-left corner of
Figure 5(c)). In particular, as soon as the Oracle is performing poorly, RL on features fails to beat
the Oracle. However, we emphasize that breaking the model selection barrier (i.e., being above the
diagonal) becomes more frequent as the Oracle performs better.

Answer to Q2: Supervised ensembling (Strategy 2 on feature) embodied the expectations
associated with ensembling methods: it managed to break the model selection barrier by
outperforming the Oracle (i.e., more accurate for at least 50% of the time series) on the
MGAB (100%), YAHOO (86%) and ECG (75%) datasets, and being challenging (i.e., more
accurate for at least 40% of the time series) on SVDB (47%) and OPPORTUNITY (42%).

4.4 HOW DO THE DIFFERENT STRATEGIES SCALE?

We now analyze the training and detection time of all three supervised ensembling strategies. The
training times (depicted in Figure 6(a)) relate to the time needed to train and test the models entirely.
The detection time (depicted in Figure 6(b)) depicts the time required to compute the weights and
run the activated detectors (i.e., detectors associated with non-zero weights).

Figure 6(a) shows that methods handling raw subsequences are slower than methods handling fea-
tures for Strategies 1 and 2 (ML and RL) and equivalently slow on Strategy 3 (GP). The latter is
explained by the following two reasons: (i) the time required to compute the weights and (ii) the
experimental setup. Indeed, inferring the weights on raw subsequences is slower as the CNN model

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Number of activated Detector
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
(a

) T
ra

in
in

g
tim

e
(h

ou
rs

)

(b
) D

et
ec

tio
n

tim
e

(s
ec

on
ds

)

RL
(features)

RL
(raw)

GP
(features)

GP
(raw)

ML
(features)

ML
(raw)

RL
(features)

RL
(raw)

GP
(features)

GP
(raw)

ML
(features)

ML
(raw)

(c.1) Strategy 1: ML

(c.2) Strategy 2: RL

(c.3) Strategy 3: GP

Figure 6: (a) Training time, (b) Detection time (i.e., both computing the weights and running the
activated detectors), and (c) Number of activated detectors per strategy.

shared amongst all three strategies has ∼ 100 times more parameters than the MLP used for methods
handling features. However, the experimental setup compensates for this by limiting the number of
evaluations (more details in Appendix A.5).

On the contrary, Figure 6(b) shows that the detection time is not directly affected by the input type.
As observed jointly in Figure 6(b) and (c), The Detection time is inversely proportional to the number
of activated detectors. Thus, the sparsity of the strategies on the detector weights (i.e., producing
few non-zero weights) is key to significantly reducing detection time (in Figure 6(c), distribution
shifted to the left means sparser weights prediction). More precisely, as illustrated in Figure 6(c),
RL and GP strategies activate fewer detectors when considering features as input and thus minimize
the detection time. Moreover, RL on features is not only the best supervised ensemble technique in
the in-distribution case but the fastest strategy as well.

The sparsity of the activated detector is also strongly correlated to the performance in the out-of-
distribution setting. In fact, we previously noticed on Figure 4(b) that model selection (the sparsest
supervised approach) showed very weak performances. Conversely, we emphasized how supervised
ensembling approaches that consider raw data were more effective than those relying on features.
The latter can be explained by the low sparsity of raw-based strategies (2 and 3 mainly).

Answer to Q3: Supervised ensembling produce very different activated detector distribu-
tions, which have a significant impact on detection time and scalability (the sparser, the
faster), as well as on the out-of-distribution scenario results (the denser, the better).

5 CONCLUSION AND KEY TAKEAWAYS

We conduct a comprehensive study of supervised ensembling strategies for time series anomaly de-
tection. We explore this problem through three principled and diverse learning paradigms (ML, RL,
and GP) and evaluate these three strategies in terms of anomaly detection accuracy and execution
time. Overall, our key takeaways are as follows:

(T1) supervised ensembling systematically outperforms model selection in the out-of-
distribution setting and manages to do it in the in-distribution setting with Strategy 2 (RL)
with features as input.

(T2) strategy 2 (RL) with features as input, successes in breaking the model selection barrier on
several datasets.

(T3) the sparser the supervised ensembling methods are, the faster. However, sparser outputs
imply poor out-of-distribution performances.

These results highlight the potential of supervised learning in this context and open up promising di-
rections for future work, particularly in the context of Reinforcement learning, as a strong supervised
ensembling baseline for time series anomaly detection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

For the sake of reproducibility, we provide a link to our anonymous source code for the experiments,
allowing it to be analyzed and reproduced in detail. In addition to that, we specify all the key
parameters for every strategy in Section 4.1 and in the Appendix A.5.

REFERENCES

Charu C. Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensem-
bles. SIGKDD Explor. Newsl., 17(1):24–47, sep 2015. ISSN 1931-0145. doi: 10.1145/2830544.
2830549. URL https://doi.org/10.1145/2830544.2830549.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad:
Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 3395–3404, 2020.

Paul Boniol and Themis Palpanas. Series2graph: Graph-based subsequence anomaly detection for
time series. Proc. VLDB Endow., 13(12):1821–1834, July 2020. ISSN 2150-8097. doi: 10.14778/
3407790.3407792. URL https://doi.org/10.14778/3407790.3407792.

Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Em-
manuel Remy. Unsupervised and scalable subsequence anomaly detection in large data series.
The VLDB Journal, March 2021a. ISSN 0949-877X. doi: 10.1007/s00778-021-00655-8. URL
https://doi.org/10.1007/s00778-021-00655-8.

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. Sand: streaming subse-
quence anomaly detection. Proceedings of the VLDB Endowment, 14(10):1717–1729, 2021b.

Paul Boniol, Qinghua Liu, Mingyi Huang, Themis Palpanas, and John Paparrizos. Dive into time-
series anomaly detection: A decade review, 2024. URL https://arxiv.org/abs/2412.
20512.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’00, pp. 93–104, New York, NY, USA, 2000. ACM. ISBN 1-58113-
217-4. doi: 10.1145/342009.335388. URL http://doi.acm.org/10.1145/342009.
335388.

Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long short-
term memory networks. In 2015 IEEE international conference on data science and advanced
analytics (DSAA), pp. 1–7. IEEE, 2015.

Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library. Multimedia Tools and
Applications, pp. 1–14, 2023.

Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsupervised
anomaly detection algorithm. KI-2012: poster and demo track, 1:59–63, 2012.

Chunggyeom Kim, Jinhyuk Lee, Raehyun Kim, Youngbin Park, and Jaewoo Kang. Deepnap: Deep
neural anomaly pre-detection in a semiconductor fab. Information Sciences, 457:1–11, 2018.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. In 2020 IEEE international conference on data mining (ICDM), pp. 1118–1123. IEEE,
2020.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422, December 2008. doi: 10.1109/ICDM.2008.17.
ISSN: 2374-8486.

Qinghua Liu and John Paparrizos. The elephant in the room: towards a reliable time-series anomaly
detection benchmark. In Proceedings of the 38th International Conference on Neural Informa-
tion Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
9798331314385.

10

https://drive.google.com/drive/folders/1jgvSFvmxWAoEmc5OjqNGseE-4ypebYw1?usp=sharing
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.14778/3407790.3407792
https://doi.org/10.1007/s00778-021-00655-8
https://arxiv.org/abs/2412.20512
https://arxiv.org/abs/2412.20512
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carl H. Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D. Fulcher, and Nick S. Jones.
catch22: CAnonical Time-series CHaracteristics. Data Mining and Knowledge Discovery, 33
(6):1821–1852, November 2019. ISSN 1573-756X. doi: 10.1007/s10618-019-00647-x. URL
https://doi.org/10.1007/s10618-019-00647-x.

Pankaj Malhotra, L. Vig, Gautam M. Shroff, and Puneet Agarwal. Long Short Term Memory Net-
works for Anomaly Detection in Time Series. In ESANN, 2015.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. Deepant: A deep learning approach for
unsupervised anomaly detection in time series. IEEE Access, 7:1991–2005, 2019. doi: 10.1109/
ACCESS.2018.2886457.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
detection. Proceedings of the VLDB Endowment, 15(11):2774–2787, 2022a.

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin.
Tsb-uad: an end-to-end benchmark suite for univariate time-series anomaly detection. Proc.
VLDB Endow., 15(8):1697–1711, April 2022b. ISSN 2150-8097. doi: 10.14778/3529337.
3529354. URL https://doi.org/10.14778/3529337.3529354.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learn-
ing for Sensory Data Analysis, MLSDA’14, pp. 4–11, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450331593. doi: 10.1145/2689746.2689747. URL
https://doi.org/10.1145/2689746.2689747.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series:
a comprehensive evaluation. Proc. VLDB Endow., 15(9):1779–1797, May 2022. ISSN 2150-
8097. doi: 10.14778/3538598.3538602. URL https://doi.org/10.14778/3538598.
3538602.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas.
Choose wisely: An extensive evaluation of model selection for anomaly detection in time series.
Proc. VLDB Endow., 16(11):3418–3432, July 2023. ISSN 2150-8097. doi: 10.14778/3611479.
3611536. URL https://doi.org/10.14778/3611479.3611536.

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh
Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. Matrix profile i: All pairs
similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In
2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317–1322, 2016. doi:
10.1109/ICDM.2016.0179.

11

https://doi.org/10.1007/s10618-019-00647-x
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.14778/3611479.3611536

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

This sections contains additional resources on the literature review (Section A.1 and Section A.2),
the problem formulation (Section A.3), the generic pipeline considered in our experimental evalua-
tion (Section A.4), the experimental setup (Section A.5), and additional experimental analysis (from
Section A.6).

A.1 TIME SERIES ANOMALY DETECTION LITERATURE REVIEW

Anomaly detection in time series is a crucial task for many relevant applications. Therefore, several
methods have been proposed in the literature (Boniol et al., 2024). One type of anomaly detection
method is distance-based methods, which analyze subsequences by utilizing distances to a given
model to detect anomalies. In this category, we can identify three sub-categories. The first is discord-
based. These methods focus on analyzing subsequences for the purpose of detecting anomalies
in time series, primarily by utilizing nearest neighbor distances among subsequences (Yeh et al.,
2016). The second sub-category is proximity-based. These methods focus on estimating the density
of specific types of subsequences to either extract normal behavior or isolate anomalies. Since a
subsequence can be seen as a multidimensional point (with the number of dimensions corresponding
to the subsequence length), general outlier detection methods can be applied for time series anomaly
detection (Breunig et al., 2000). The last category is clustering-based, which comprises methods that
utilize the distance to a given clustering partition to detect anomalies. In this sub-category, NormA,
which first clusters data to obtain the normal behavior (Boniol et al., 2021a;b), has demonstrated
strong performance.

While the previously mentioned methods compute their anomaly score based on distances using raw
time series elements (such as subsequences), density-based methods focus on detecting recurring or
isolated behaviors by evaluating the density of points or subsequences in a specific representation
space. This category can be divided into four sub-categories, namely distribution-based, graph-
based, tree-based, and encoding-based. Among them, Isolation Forest (Liu et al., 2008), a tree-
based method grouping points or subsequences into different trees, and Series2Graph, a graph-based
method that converts the time series into a graph to facilitate the detection of anomalies (Boniol &
Palpanas, 2020), have been shown to work particularly well for the time series anomaly detection
task (Boniol & Palpanas, 2020).

Furthermore, forecasting-based methods, such as recurrent neural network-based (Malhotra et al.,
2015) or convolutional network-based (Munir et al., 2019), have been proposed for this task. These
methods use the past values as input, predict the following one, and use the forecasting error as an
anomaly score. Such methods are usually trained on time series without anomalies, or make the
assumption that the anomalies are significantly less frequent than normal behaviors.

Finally, reconstruction-based methods, such as autoencoder approaches (Sakurada & Yairi, 2014),
are trained to reconstruct the time series and use the reconstruction error as an anomaly score. As
both forecasting and reconstruction-based categories detect anomalies using prediction errors (either
forecasting or reconstruction error), we can group them into prediction-based methods.

A.2 ANOMALY TYPES

Point anomalies refer to data points that deviate remarkably from the rest of the data. Similarly,
contextual anomalies refer to data points within the expected range of the distribution (in contrast
to point anomalies) but deviate from the expected data distribution, given a specific context (e.g., a
window). Collective anomalies refer to sequences of points that do not repeat a typical (previously
observed) pattern. The first two categories, namely, point and contextual anomalies, are referred to
as point-based anomalies, whereas collective anomalies are referred to as subsequence anomalies.

A.3 DETERMINISTIC VERSUS STOCHASTIC LEARNING STRATEGIES

Deterministic models: ML and GP approaches The deterministic case appears when a function
embodies the model, we will note Mθ : X 7→ Mθ(X) ∈ RN . In practice, Mθ is given by a network,
either an MLP or a CNN, depending on whether the data are features or a raw time series window.
More formally, the model generating the weights can be defined with Mθ(X) := δMθ(X) where

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

δMθ(X) is the Dirac distribution at the network output Mθ(X). The optimization problem can thus
be reformulated with

θ∗ = argmax
θ∈Θ

E(X,S,Y)

[
Acc

(
S ×Mθ(X), Y

)]
. (5)

To solve this optimization task, we want to use gradient methods because they are simple to imple-
ment and effective in most cases. However, Acc (AUC-PR or VUS-PR) is not differentiable, and
facing this issue, we consider two approaches: Machine Learning and Genetic Algorithms. The for-
mer chooses to change the metric to a differentiable proxy, such as the Mean Squared Error (MSE).
The latter rather decides to keep the metric of interest and forget about gradient methods for keeping
the best random mutation of θ over generations to target θ∗.

Stochastic models: RL approach The main problem described by equation 2.4 is exactly the
stochastic case (the deterministic one is simply a particular case). More specifically, the RL strategy
outputs a normal distribution specific to each individual detector, from which the weights are later
sampled. We will see in the section dedicated to RL how we can, surprisingly, take the gradient of
the main objective and how RL introduces not only a stochastic approach, but an entire paradigm.

A.4 GENERIC PIPELINE

This section contains additional resources on the generic pipeline considered in our experimental
evaluation.

Algorithm 1 Generic Pipeline for Supervised Ensembling

Require: Dataset of time series D, window size ℓ, number of detectors N , model Mθ, training
strategy

Ensure: Trained model parameters θ∗, anomaly scores for test time series
1: Split D into Dtrain, Dval, Dtest
2: for each time series T in Dtrain ∪ Dval do
3: if using raw time series then
4: collect the first window of size ℓ of T
5: else if using features then
6: Extract F features from T as input vector
7: end if
8: end for
9: Train model Mθ on Dtrain and early stop on Dval

10: Obtain final parameters θ∗
11: for each test time series T in Dtest do
12: if using raw time series then
13: Select the first window of size ℓ of T and predict the weight vector W
14: else if using features then
15: Extract features and predict the weight vector W
16: end if
17: Retrieve detector scores matrix S ∈ RL×N

18: Compute ensemble score: Ŝ = S ×W
19: end for

A.5 EXPERIMENTAL SETUP

Technical setup. All experiments were conducted on a server with Cascade Lake Intel Xeon 5217
8 cores, 3-3.7GHz CPU and Nvidia V100 32GB GPU.
Global Parameter settings We use the same 70/30 split of the TSB-UAD benchmark as in Sylligar-
dos et al. (2023) for comparison fairness. All methods were early-stopped if there was no evaluation
improvement for half the total evaluation number.
ML parameter settings. On the features, the MLP was trained with a learning rate of 10−2 and a
batch size of 32. As for the raw data, the CNN was trained with a learning rate of 10−4 and a batch
size of 64. Both models were trained for 50 epochs.
RL parameter settings. Considering the parameters naming of Stable Baseline3, for both features

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

and raw data, we fix the learning rate to 3.10−3, run the methods with 720000 total time steps (total
amount of states visited, windows/features in our formulation), 20 epochs every 1024 steps, and a
batch size of 128. The experiments on the raw data are evaluated 10 times on the way, and this
number is raised to 100 for the features (as it was less time-expensive). On the contrary to strategy
1 and 3 that have weights ranging between -1 and 1, the weights W for the RL strategy are clipped
between 0 and 1. This decision is motivated empirically to favor convergence stability.
GP parameter settings. Both MLP and CNN were trained for 20 generations, 20 solutions, 5 par-
ents mating, and a random sample of 256 time series to evaluate the fitness of each individual (for
time efficiency purposes).
Evaluation metrics. For anomaly detection accuracy, we consider the measure VUS-PR (Paparri-
zos et al., 2022a). As for execution time evaluation, we mean by ”execution time” the time required
to perform all the training/testing phases (i.e., the entire training pipeline). Finally, we will look
at the inference time of each strategy, i.e, the time needed for a model (MLP or CNN) to output a
vector for a given input and a given paradigm (ML, RL, GP).

A.6 DO SUPERVISED ENSEMBLES REALLY ENSEMBLE? (PART 2)

0.0 0.2 0.4 0.6 0.8 1.0
Oracle (Theoretical best MS)

0.0

0.2

0.4

0.6

0.8

1.0

(a
) B

es
t M

S
ap

pr
oa

ch

Median difference
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0
Oracle (Theoretical best MS)

0.0

0.2

0.4

0.6

0.8

1.0

(b
) U

ns
up

er
vi

se
d

En
se

m
bl

e
(A

vg
 E

ns
)

0.0 0.2 0.4 0.6 0.8 1.0
Oracle (Theoretical best MS)

0.0

0.2

0.4

0.6

0.8

1.0

(c
) S

tra
te

gy
 2

: R
L

wi
th

 Fe
at

ur
es

Figure 7: (left) Best model selection (Sylligardos et al., 2023), (middle) Unsupervised Ensemble,
(right) Strategy 2 (with features) against the Oracle. For every time series, we represent the differ-
ence between the first and the median of all other detectors with the disk size and color.

In Figure 7, we focus specifically on time series that outperform the Oracle. First, when considering
the three plots of Figure 7, we observe that small, clear disks are more often on the left. Big, dark
disks are almost always on the right, as it is rare to have the first two detectors perform very well
(small disk on the right), and impossible to have very well-performing detectors alone with a low
value of Oracle.

Overall, Figure 7 shows that time series with no single best detector are leading to poor ensemble
performance (both unsupervised and supervised). Most of the time series for which the supervised
ensembling approach outperforms the Oracle are associated with a strong single best detector.

A.7 CRITICAL DIFFERENCE ANALYSIS

Figure 8 presents the results of the critical difference (CD) diagram, computed using pairwise
Wilcoxon signed-rank tests. This analysis was conducted in the in-distribution setting to determine
whether the performance differences between models are statistically significant.

From the diagram, it is evident that among the proposed models, only the RL-based strategies exhibit
a statistically significant improvement compared to the other approaches. In contrast, the ML- and
GP-based models do not show a significant difference relative to each other under this evaluation,
indicating that their performance is comparable on the considered datasets.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

123456

RL Features2.5775

RL Raw3.2163

ML Features3.7394GP Raw 3.7575
GP Features 3.7998

ML Raw 3.9095

Figure 8: Critical difference diagram using the Wilcoxon signed rank test between strategies. Mod-
els connected by a horizontal line are not significantly different according to pairwise Wilcoxon
signed-rank tests. RL-based strategies exhibit a significant performance difference compared to the
other models.

Best MS
(-29.1%)

Avg Ens GP Features
(+6.7%)

RL Features
(+12.8%)

GP Raw
(+24.4%)

RL Raw
(+39.6%)

Oracle
(+119.3%)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(V

US
-P

R)

Figure 9: Overall accuracy of all strategies, Best MS, Avg Ens, and Oracle in the out-of-distribution
case

A.8 OUT-OF-DISTRIBUTION ACCURACY EVALUATION

Figure 9 displays in an alternative form the results illustrated in 4. In addition to the median and dis-
tribution of the performances, this plot also shows the percentage by which the supervised ensemble
outperforms the Avg Ens method.

Figure 10 depicts the detailed results of the experiment on the out-of-distribution case, whose ag-
gregated results are displayed in Figure 4. For a given dataset, the number of points per box plot is
the number of series in the dataset. We observe that the Oracle is almost always more accurate than
the ensembling and selecting methods, except for ECG and Occupancy, where the RL on features
supervised ensembling is better. This is also the case for the YAHOO dataset, where the GP strategy
on both features and raw data manages to reach a higher accuracy.

A.9 POINT ANOMALIES VERSUS SEQUENCE ANOMALIES

Figure 11 depicts a per-time series comparison between (left) Best model selection (Sylligardos
et al., 2023), (middle) Unsupervised Ensemble, (right) Strategy 2 (with features) against the Oracle.
Figure 11 focuses explicitly on the impact of anomaly types on the performance of the supervised
ensembling approach (Strategy 2).

A.10 WEIGHT DISTRIBUTION PER MODEL

Figure 12 shows the distribution of detector weights assigned by each model in the in-distribution
setting. The ML- and GP-based strategies assign both positive and negative weights, whereas the
RL-based models exclusively produce positive weights.

We also observe that some strategies consistently exclude specific detectors. For example, in the
ML Features model, the LSTM and POLY detectors consistently receive zero weight, while the RL
Raw model excludes four detectors entirely.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Av
g

En
s

RL
 R

aw
 (+

31
.5

%
)

GP
 R

aw
 (+

33
.7

%
)

GP
 Fe

at
ur

es
 (+

36
.8

%
)

RL
 Fe

at
ur

es
 (+

46
.1

%
)

Be
st

 M
S

(+
48

.1
%

)

Or
ac

le
 (+

60
.0

%
)

0.0

0.5

1.0

Ac
cu

ra
cy

(V

US
-P

R)

SVDB

GP
 Fe

at
ur

es
 (-

13
.3

%
)

RL
 R

aw
 (-

10
.6

%
)

Av
g

En
s

Be
st

 M
S

(+
1.

4%
)

Or
ac

le
 (+

3.
8%

)

GP
 R

aw
 (+

6.
0%

)

RL
 Fe

at
ur

es
 (+

7.
4%

)

ECG

Be
st

 M
S

(-5
6.

8%
)

RL
 R

aw
 (-

1.
9%

)

GP
 R

aw
 (-

0.
7%

)

GP
 Fe

at
ur

es
 (-

0.
6%

)

Av
g

En
s

Or
ac

le
 (+

2.
3%

)

RL
 Fe

at
ur

es
 (+

2.
5%

)

Occupancy

Be
st

 M
S

(-8
.0

%
)

GP
 Fe

at
ur

es
 (-

5.
6%

)

RL
 R

aw
 (-

4.
7%

)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

0.
4%

)

GP
 R

aw
 (+

3.
6%

)

Or
ac

le
 (+

23
.1

%
)

SensorScope

Be
st

 M
S

(-8
3.

4%
)

RL
 R

aw
 (-

57
.5

%
)

GP
 Fe

at
ur

es
 (-

51
.1

%
)

RL
 Fe

at
ur

es
 (-

47
.4

%
)

Av
g

En
s

GP
 R

aw
 (+

5.
0%

)

Or
ac

le
 (+

90
.9

%
)

0.0

0.5

1.0

Ac
cu

ra
cy

(V

US
-P

R)

IOPS
Be

st
 M

S
(-9

5.
7%

)

GP
 R

aw
 (-

67
.6

%
)

GP
 Fe

at
ur

es
 (-

56
.7

%
)

RL
 R

aw
 (-

48
.9

%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

23
6.

9%
)

Or
ac

le
 (+

36
2.

3%
)

Genesis

Av
g

En
s

GP
 R

aw
 (+

25
.2

%
)

RL
 R

aw
 (+

38
.1

%
)

RL
 Fe

at
ur

es
 (+

53
.1

%
)

Be
st

 M
S

(+
74

.3
%

)

GP
 Fe

at
ur

es
 (+

10
3.

4%
)

Or
ac

le
 (+

11
9.

3%
)

MITDB

Be
st

 M
S

(-3
4.

5%
)

Av
g

En
s

GP
 Fe

at
ur

es
 (+

11
9.

8%
)

RL
 Fe

at
ur

es
 (+

12
6.

8%
)

RL
 R

aw
 (+

25
9.

1%
)

GP
 R

aw
 (+

26
0.

1%
)

Or
ac

le
 (+

63
4.

6%
)

KDD21

Av
g

En
s

GP
 Fe

at
ur

es
 (+

12
1.

9%
)

RL
 Fe

at
ur

es
 (+

16
7.

0%
)

GP
 R

aw
 (+

20
2.

6%
)

Be
st

 M
S

(+
20

8.
5%

)

RL
 R

aw
 (+

32
5.

6%
)

Or
ac

le
 (+

52
9.

7%
)

0.0

0.5

1.0

Ac
cu

ra
cy

(V

US
-P

R)

OPPORTUNITY

Be
st

 M
S

(-6
0.

0%
)

GP
 R

aw
 (-

47
.5

%
)

GP
 Fe

at
ur

es
 (-

38
.9

%
)

RL
 Fe

at
ur

es
 (-

30
.0

%
)

RL
 R

aw
 (-

21
.1

%
)

Av
g

En
s

Or
ac

le
 (+

38
.3

%
)

SMD

Be
st

 M
S

(-5
1.

8%
)

GP
 R

aw
 (-

19
.2

%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

1.
5%

)

GP
 Fe

at
ur

es
 (+

5.
2%

)

RL
 R

aw
 (+

15
.1

%
)

Or
ac

le
 (+

41
.9

%
)

NAB

Be
st

 M
S

(-2
5.

6%
)

RL
 Fe

at
ur

es
 (-

14
.4

%
)

RL
 R

aw
 (-

13
.0

%
)

GP
 Fe

at
ur

es
 (-

10
.1

%
)

Av
g

En
s

GP
 R

aw
 (+

3.
9%

)

Or
ac

le
 (+

43
.6

%
)

Dodgers

Be
st

 M
S

(-8
1.

7%
)

GP
 Fe

at
ur

es
 (-

70
.3

%
)

GP
 R

aw
 (-

37
.4

%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

92
5.

4%
)

RL
 R

aw
 (+

13
44

.9
%

)

Or
ac

le
 (+

40
97

.1
%

)

0.0

0.5

1.0

Ac
cu

ra
cy

(V

US
-P

R)

MGAB

Be
st

 M
S

(-7
0.

7%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

6.
2%

)

RL
 R

aw
 (+

19
.0

%
)

Or
ac

le
 (+

29
.7

%
)

GP
 Fe

at
ur

es
 (+

42
.7

%
)

GP
 R

aw
 (+

56
.8

%
)

YAHOO

Be
st

 M
S

(-4
5.

4%
)

GP
 R

aw
 (-

17
.1

%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

4.
3%

)

GP
 Fe

at
ur

es
 (+

28
.4

%
)

RL
 R

aw
 (+

35
.9

%
)

Or
ac

le
 (+

63
.2

%
)

Daphnet

Be
st

 M
S

(-4
3.

4%
)

GP
 Fe

at
ur

es
 (-

10
.9

%
)

Av
g

En
s

RL
 Fe

at
ur

es
 (+

25
.9

%
)

RL
 R

aw
 (+

56
.1

%
)

GP
 R

aw
 (+

16
5.

7%
)

Or
ac

le
 (+

33
38

.6
%

)

GHL

Figure 10: Per-dataset accuracy of all strategies, Best MS, Avg Ens, and Oracle in the out-of-
distribution case

Finally, the spread of the weight distributions differs across strategies. The GP Raw model exhibits
very compact distributions, indicating more stable weight assignments, while the ML Raw model
shows the widest variability, suggesting greater sensitivity to different time series.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Oracle

0.0

0.2

0.4

0.6

0.8

1.0

(a
) B

es
t M

S
ap

pr
oa

ch

sequence
point
mixed

0.0 0.2 0.4 0.6 0.8 1.0
Oracle

0.0

0.2

0.4

0.6

0.8

1.0

(b
) U

ns
up

er
vi

se
d

En
se

m
bl

e
(A

vg
 E

ns
)

Anomaly Type

0.0 0.2 0.4 0.6 0.8 1.0
Oracle

0.0

0.2

0.4

0.6

0.8

1.0

(c
) S

tra
te

gy
 2

: R
L

wi
th

 Fe
at

ur
es

Figure 11: (left) Best model selection (Sylligardos et al., 2023), (middle) Unsupervised Ensemble,
(right) Strategy 2 (with features) against the Oracle. For every time series, we represent the type of
anomalies it contains with a specific color.

0.5

0.0

0.5

1.0
ML Features ML Raw

0.5

0.0

0.5

1.0
GP Features GP Raw

AE
CNN

HBO
S

IFO
RES

T

IFO
RES

T1 LO
F

LST
M MP

NORMA
OCSV

M PC
A

PO
LY

0.5

0.0

0.5

1.0
RL Features

AE
CNN

HBO
S

IFO
RES

T

IFO
RES

T1 LO
F

LST
M MP

NORMA
OCSV

M PC
A

PO
LY

RL Raw

Figure 12: Weight distribution of detectors across different models. Each boxplot represents the
variability of weights assigned to detectors by a given model in the in-distribution setting.

17

	Introduction
	Background and Related Work
	Time Series Anomaly Detection
	One Unique Detector is Hopeless
	Towards Automated Solutions
	Supervised Ensembling: Problem Definition

	TSAD Supervised Ensembling: Three Strong Baselines
	A Generic Pipeline
	Strategy 1: Classical Machine Learning
	Strategy 2: Reinforcement Learning
	Strategy 3: Genetic Programming

	Experimental Evaluation
	Experimental Setup
	How do supervised ensembles compare to baselines?
	Do supervised ensembles really ensemble?
	How do the different strategies scale?

	Conclusion and Key Takeaways
	Reproducibility Statement
	Appendix
	Time Series Anomaly Detection Literature Review
	Anomaly Types
	Deterministic versus Stochastic Learning Strategies
	Generic Pipeline
	Experimental Setup
	Do Supervised Ensembles Really Ensemble? (Part 2)
	Critical Difference Analysis
	Out-of-Distribution Accuracy Evaluation
	Point Anomalies versus Sequence Anomalies
	Weight Distribution per Model

