Under review as a conference paper at ICLR 2026

Train, Mutate, or Reward?
A UNIFIED VIEW OF SUPERVISED ENSEMBLING
FOR TIME SERIES ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series anomaly detection (TSAD) is a long-standing and extensively stud-
ied problem with applications across a large panel of domains. Despite the ma-
turity of the field, recent benchmark studies have revealed that no single detec-
tion method consistently outperforms others across diverse datasets. While model
selection approaches (i.e., choosing the best detector for a given scenario) have
shown promising results, their effectiveness remains inherently limited by the
performance ceiling of existing individual detectors. To address this limitation,
supervised ensembling offers a promising path to surpass individual detectors by
learning to combine their strengths. In this work, we unify and formalize the
problem of supervised ensemble-based anomaly detection in time series, and in-
troduce three principled strategies for learning such ensembles: (1) classical Ma-
chine Learning, (2) Reinforcement Learning, and (3) Genetic Programming. We
perform a rigorous comparative evaluation across these strategies using identical
model components, inputs, and experimental conditions to ensure fairness. Our
findings not only highlight the strengths and trade-offs of each approach, but also
illuminate promising directions, paving the road for future research on this topic.

1 INTRODUCTION

Anomaly detection in time series data is a long-
standing and critical task with broad applicabil-
ity across various domains, including finance,
industrial monitoring, healthcare, environmen-
tal science, and cybersecurity. Over the years,
a wide range of methods have been developed,
including statistical techniques (Li et al.,[2020),
unsupervised learning, and more recently, deep
learning-based approaches (Chauhan & Vig|
2015; |[Kim et al., |2018)). In particular, unsuper-
vised anomaly detection (Goldstein & Dengel,
2012; |Audibert et al., 2020) remains the dom-
inant paradigm due to the scarcity of labeled
anomalies in real-world datasets.

However, recent benchmark studies (most no-
tably the TimeEval (Schmidl et al.| [2022)), TSB-
UAD (Paparrizos et all [2022b), and TSB-
AD (Liu & Paparrizos, 2025) benchmarks)
have revealed a key insight: no single detector
consistently achieves top performance across
diverse datasets and anomaly types. This het-

X Strategy 1: X Strategy 3: V Strategy 2:

Best Individual Machine Genetic Reinforcement
Detector Learning Programming Learning
1.0
Best Model Selector
from (Sylligardos et al. 2023)
0.8 Unsupervised -|—
= Ensemble (Avg Ens)
&
[%2]
206 T T
s 1T
3 0.4 -23% -29% +9.1%
3 b - Y =
¢ L Iy
) v ! !
N L 1 |
No, Fo. Rs Fo. Rs Fo Rs
z Car, 81,20 e, W
M4 fz/f@S fz/fsS f(/"@s

Figure 1: Comparison of the three strategies
on the TSB-UAD benchmark (Paparrizos et al.,
2022D).

erogeneity challenges the generalizability of individual methods and has motivated research into
model selection approaches, where the best-performing detector is chosen based on time series char-
acteristics. Although promising, such methods are intrinsically limited by the performance ceiling

of the best available individual detector.

Under review as a conference paper at ICLR 2026

To overcome this ceiling, supervised ensemble learning offers an appealing alternative: rather than
selecting a single detector, ensembles aim to combine the strengths of multiple detectors to achieve
performance that exceeds any individual detector (Sylligardos et al.,[2023). While ensemble tech-
niques are widely studied in classification and regression, their application in the domain of time
series anomaly detection, particularly under a supervised setting, remains under-explored and lacks
a unified formalization and evaluation.

In this paper, we conduct a comprehensive study of supervised ensembling strategies for time
series anomaly detection. We formalize the task as a supervised problem, where the objective is
to learn a function that produces weights to combine individual detectors and improve detection
performance. We explore this problem through three principled and diverse learning paradigms:

* Classical Machine Learning (ML): A given model trained on either raw time series se-
quences or pre-computed features (Lubba et al.|[2019).

* Reinforcement Learning (RL): An agent (i.e., a model) that learns to combine detector
scores over time by maximizing a reward given by the anomaly detection accuracy.

* Genetic Programming (GP): An approach where individuals (i.e., models) are evolved via
mutation and selection, optimizing the anomaly detection accuracy as a fitness function.

We compare feature-based and raw-based input representations within each strategy to assess their
impact on ensemble quality. All methods are evaluated on the TSB-UAD benchmark, using con-
sistent test splits, detectors, and experimental conditions to ensure fairness and comparability. To
establish the value of supervised ensembling, we benchmark our strategies against: (i) the best in-
dividual detector on TSB-UAD, (ii) a naive unsupervised average ensemble, and (iii) the strongest
model selection baselines from a recent experimental evaluation (Sylligardos et al.| 2023).

Our findings, summarized in Figure |1} demonstrate that supervised ensembles can reliably outper-
form individual detectors and unsupervised ensembling, and in some cases, even surpass the best
model selection methods (Sylligardos et al.|, 2023). These results highlight the potential of super-
vised learning in this context and open up promising directions for future work.

2 BACKGROUND AND RELATED WORK

In this section, we review time series anomaly detection literature and discuss recent automated
solutions while detailing their limitations. First, a time series T = [T}, 75, ...,1.] € RE is a
sequence of real-valued numbers T; € R, where L = |T| is the length of T, and T; is the ith
point of 7. Local regions of the time series, known as subsequences T; , € R* of a time series T,
is a subset of successive values of T' of length / starting at position ¢, formally defined as T , =
(T3, Tix1,y ...y Tige—1]. For a time series T € RE, an anomaly detection method (or detector) D
returns an anomaly score sequence S € RZ . We note N the number of detectors.

2.1 TIME SERIES ANOMALY DETECTION

Anomaly detection in time series is a crucial task for many relevant applications. Therefore, several
methods (or detectors) have been proposed (Boniol et al., 2024). One type of anomaly detection
method is distance-based methods, which analyze subsequences by utilizing distances to a given
model to detect anomalies (Yeh et al.| 2016} [Breunig et al., 2000; Boniol et al.| [2021a).

While methods in the previous category compute their anomaly score based on distances using raw
time series elements (such as subsequences), density-based methods focus on detecting recurring
or isolated behaviors by evaluating the density of points or subsequences within a specific repre-
sentation space. This category can be divided into four sub-categories, namely distribution-based,
graph-based (Boniol & Palpanas|, 2020), tree-based (Liu et al., 2008), and encoding-based.

Finally, prediction-based approaches aim to detect anomalies by predicting the expected normal
behaviors based on a training set of time series or sub-sequences (containing anomalies or not).
Methods in this category detect anomalies using prediction errors. More specifically, such category
can be divided into forecasting-based methods (Malhotra et al., |2015), and reconstruction-based
methods (Sakurada & Yairi, [2014). A more detailed review is in the Appendix

Under review as a conference paper at ICLR 2026

— (a) Unique Detector — (b) Unsupervised Ensemble (Avg) (c) Supervised Model Selection N (d) Supervised Ensemble —

Time Series T € R* Time Series T € RE Time Series T € R* Time Series T € R*

M L AL (T "(“J‘M}-\W}J.J\,'M [T A‘Jffs&,hslJ«'.,',Uj\,"*,Wﬁ,h;‘,(\\‘,h,\‘,’diM\J

fl

0 2500 5000 0 2500 5000 0 2500 5000 0 \ 2500 5000
: i ! ' ! ' ,
: R > RV
H
b H wy wy Wy
] I ' {] | i] i |
o | Lo) Lo Jlo | - Lo J) (L e) o]

1 Anomaly Score S; € RE I Anomaly Score Sy € RV l Anomaly Score S € RY /jpﬂ I Anomaly Score S; € RE

0 2500 5000 0 2500 5000 0 2500 5000 0 2500 5000
(S J " X J

Figure 2: Time series anomaly detection: from unique detector (a) to supervised ensembling (d).

2.2 ONE UNIQUE DETECTOR IS HOPELESS

Recently, several experimental evaluations for anomaly detection in time series have been pro-
posed (Schmidl et al 2022} |Paparrizos et al., [2022b). Such benchmarks provide a large collec-
tion of time series from various domains and evaluate multiple methods spanning all the categories
mentioned above. However, these experimental evaluations led to the same conclusion: no single
method is universally best across all domains. This is explained by the following two reasons:

Heterogeneity in anomaly types: Time series anomalies are either point, contextual, or collective.
Such heterogeneity in anomaly types makes the anomaly detection task challenging. Moreover,
even for time series with the same anomaly types, we observe that the most accurate models are all
different (Sylligardos et al., 2023)).

Heterogeneity in time series structures: On top of heterogeneity in anomaly types, we need to dif-
ferentiate time series containing single or multiple anomalies (with different or similar anomalies).
For instance, methods based on neighbor distance computation, such as LOF, are very accurate in
detecting single or multiple different anomalies, but less accurate for multiple similar.

2.3 TOWARDS AUTOMATED SOLUTIONS

A solution to the limitations mentioned above is to apply model selection (depicted in Figure [2[c))
based on time series characteristics (Sylligardos et al., [2023)). The goal is to train a model to auto-
matically select the best detectors for a given time series. However, model selection methods are
inherently constrained by the detectors they select from. Since these approaches operate by choos-
ing an existing detector, their performance is fundamentally bounded by the best detector within the
candidate pool. As such, model selection cannot produce results that exceed the capabilities of its
individual components (in this paper, we refer to the Oracle as the best theoretical model selector).
This limitation arises when no single detector performs well across all datasets or anomaly types.

A solution to this limitation is to apply an unsupervised ensemble to the anomaly scores produced
by all the detectors (Figure [2[b)). While several unsupervised ensembling techniques have been
proposed (Aggarwal & Sathe, |2015), the Averaging strategy is the most robust and low-risk strat-
egy (Aggarwal & Sathel, 2015)). While unsupervised ensembling offers simplicity and robustness, it
remains fundamentally agnostic to the time series and the contextual reliability of each detector (i.e.,
all treated equally). As aresult, they are unable to emphasize the strengths of high-performing detec-
tors or mitigate the weaknesses of less reliable ones. In contrast, a supervised ensemble (illustrated
in Figure 2{d)) can learn to combine detector outputs based on actual anomaly patterns, potentially
surpassing the performances of individual detectors, naive ensembles, and model selection.

2.4 SUPERVISED ENSEMBLING: Problem Definition

For a time series of length L, the supervised ensemble learning paradigm is defined as follows: the
input data X is either a feature vector in R¥, where F is the number of features, or a raw time
series in R, Given X, the weights W applied to each individual detector are sampled from a
trained model My, : X — px € P(RY) which outputs a probability distribution over the set of
weighting coefficients for the N detectors. The anomaly scores from the detectors are denoted by

Under review as a conference paper at ICLR 2026

r— (a) Strategy 1: Classical Machine Learning ~N/ (b) Strategy 2: Reinforcement Learning N — (c) Strategy 3: Genetic Programming

(Input) (Labels) Time series labels Y and (Input) (Labels) Time series labels Y and (Input) (Labels) Time series labels Y and

Dataset D € RIPIXE Detector Scores Sp € RIPXNXL Dataset D € RIPIXE Detector Scores Sp, € RIPIXNxL Dataset D € RIPIXL Detector Scores Sp € RIPIXNXL
PRI ‘O Y o T i b ST m 4]
3,:““‘“”‘ “ T i‘“‘\”m‘ [T

i TN
AT
m»‘\\H R

{ Detector Score: ctor Scores

etector Scores S Detector Scores S etector Scores S

g““w“\‘\“ TR
HiN A LUV
157,00 57,0,) STy | | MRV Vet

o > e

| 10,510, Sty | ‘
. W——
0 2500 5000 0 2500 5000 0 2500 5000

weRN u € RN weRN Population of
ERO) models Mg,
2 cacne o
M, M, Nz, 03) w, s)
XoRY SxM(T) } { xomy [T SxM(T) | 555, (M =
Ny, o) w,) —n |
Proxy(SxMy(T), Y) Acc(SxMp(T),)] Wy [Acc(SxMp,(T),Y)

(e.g. MSE)

Back-propagation Reward i i Random mutations from the best 0; H
S AN AN ! /

Figure 3: Overview of the different strategies considered for supervised ensembling.

S € REXN "and the corresponding ground truth label is represented by Y € {0, 1}%. Finally, we
note Ace, the anomaly detection metric (such as VUS-PR). The optimal model parameters, defined
by f. € © := RIM where d M 18 the number of parameters, are obtained as follows:

0. = arggleagE(X,S,y), W Mg (X) [ACC(S X I/V7 Y):| . (])

Since 6, is unknown, we aim at maximizing the expected accuracy metric Acc through appropriate
learning strategies. The term S x W € R” represents the output of the supervised ensemble model,

i.e., the weighted anomaly scores, in which W is the weights vector W normalized by its norm.
Therefore, the goal is to identify the most effective strategy for optimizing My as defined in Equa-
tion[I] The most effective strategy can be Deterministic (such as ML or GP) or Stochastic (such as
RL). We provide a reformulated version of Equation I]for the deterministic case in Appendix [A.3]

3 TSAD SUPERVISED ENSEMBLING: Three Strong Baselines

In this section, we present three strong baselines for supervised ensembling for time series anomaly
detection. For fair comparison, we introduce a generic pipeline as a foundation for all strategies.

3.1 A GENERIC PIPELINE

To consistently evaluate the three supervised ensembling strategies, we define a generic training and
evaluation pipeline. Each time series in the dataset is either (i) converted into a set of F’ statistical
features, resulting in one feature vector per time series, or (ii) reduced to the first window of fixed
length ¢ if using the raw time series data directly. The model (as defined by the chosen strategy)
outputs a weight vector W € RY, where N is the number of detectors. We compute the final
ensemble anomaly score for a given time series 1" as a weighted average of the detector scores using
the predicted weight w. The pipeline is summarized in Algorithm[I]in the Appendix

3.2 STRATEGY 1: Classical Machine Learning

We first consider the most straightforward path to solve the optimization problem: a gradient method
minimizing an objective defined as closely as possible to the anomaly detection accuracy (illustrated
in Figure [3[(a)). The non-differentiability of the time series anomaly detection accuracy measure
AUC-PR or VUS-PR (Paparrizos et al., [2022a)) imposes us to choose a differentiable proxy, such
as the Mean Squared Error (MSE). However, selecting a differentiable proxy introduces inherent
limitations, as we are no longer optimizing the true objective (i.e., the anomaly detection accuracy).
Instead, we rely on a surrogate that may not faithfully reflect the nuances of the actual target. For-
mally, the problem initially formulated in Equation|[I]is the following:

0. = arglgleaé(E(X’Sﬁy) Proxy (S x My(X),Y)|. ?2)

In practice, we consider the MSE as the Proxy. It is also important to highlight that the pipeline used
in Strategy 1 closely resembles the model selection approach proposed in |Sylligardos et al.| (2023)).

Under review as a conference paper at ICLR 2026

The key difference lies in the fact that we are performing regression (i.e., predicting continuous
weights for each detector) rather than classification. While framing the problem as a classification
task may be more natural (considering the labels we are generating), adopting a regression-based
approach ensures consistency with Strategies 2 and 3. This alignment allows for a fairer comparison
between the strategies, focusing solely on the learning paradigm employed.

3.3 STRATEGY 2: Reinforcement Learning

In order to directly optimize a non-differentiable evaluation metric (such as VUS-PR) without the
need to handcraft a surrogate loss, we consider a reinforcement learning (RL) strategy (illustrated in
Figure[3[b)). The RL paradigm offers the flexibility to treat the evaluation metric as a reward, using it
to guide the learning process via policy gradient methods (Sutton et al.l{1998). In such a framework,
the agent is designed to (i) observe a state (i.e., each time series or its feature representation), (ii)
take an action (predicting the set of weights used to aggregate the anomaly scores of the detectors)
and then (iii) collect the associated reward (i.e., the anomaly detection accuracy) .

The objective is to learn a policy g that guides the actions of the agent according to the state: it
associates to any state X (the input of a given model, such as features or raw subsequences) the
probability distribution of the action W (the weights) such that the reward (the anomaly detection
accuracy) is maximum. The policy could be written My for coherence with Equation [I] but we
choose the following RL notation: This policy is defined by mg : X — {N(W; uby, (05)%) hi<i<n
where 1, is the mean and o}, the standard deviation of the normal distribution. The policy can be
written with respect to the model My as mp : X — {N'(W;; Mp(X)s, (0§)?) h1<i<n where Mp(X);
and W; are respectively the i*" output of the model and component of the weight vector. The reward
is defined by R(X, W) := Acc(S x W, Y) with the notations of equation I} We note here that there
is no spatial dependency between the states; each state-action-reward tuple is treated independently.

In practice, we use the Proximal Policy Optimization (PPO) algorithm (Schulman et al., [2017).
In such an algorithm, a shared critic network is used to estimate the value function V., (X) =
Ey wre (x)[R(X, W)], which is then used to compute the advantage function A, = R(X, W) —
Vo (X) emphasizing how good (in terms of reward) was the action W compared to the average
reward of the action given by the current policy mg. The objective function is defined as follows:

LCLIP(G) =E,, [min (r(0)Ax,,clip(r(0),1 —€,1+ e)A,rg)] 3)

where € > 0, and 7(0) := 7e(X)(W) /7y, (X)(W) relates the evolution of the likelihood of the
action W at the state X. clip in|Schulman et al.|(2017) bounds the value r(0) € [1 — €, 1 + €].

3.4 STRATEGY 3: Genetic Programming

In contrast to Strategies 1 and 2 that learn via gradient descent, genetic programming offers a
population-based, gradient-free optimization paradigm (illustrated in Figure [3[c)). Like reinforce-
ment learning, it does not require the objective function to be differentiable. However, genetic
algorithms do not rely on policy optimization or estimating gradients. Instead, it directly explores
the solution space through an evolutionary process (Mitchell,[1998)). Thus, it complements the other
strategies by offering an almost model-free baseline.

The goal is to evolve a population of candidate solutions, where each individual represents a model
My (i.e, a vector of parameters @ for different models with the same architecture) used to predict
our targeted weights. The quality of each individual is evaluated using the anomaly detection metric
Acc (such as AUC-PR or VUS-PR), guiding the evolutionary search toward weight configurations
that produce better ensemble performances for our anomaly detection task. More formally, P* =
{07,605, ...,0%} is the population at generation k, composed of N candidate solutions. Each % €
R is called an individual and is an approximation of 6, in equation

In our case, each Gf corresponds to a flattened version of the weights of a neural network. Thus,
genetic algorithms explore the space of network parameters without relying on gradient information.

Instead, it keeps the fittest individuals to generate a new population. The fitness function f : R — R
of each model is evaluated based on a given accuracy measure Acc and is defined as follows:

f(0) :==Ex,sy)[Acc(S x Mo(X),Y)] ; 6.= arg max £(9) 4)

Under review as a conference paper at ICLR 2026

Table 1: Experimental setup for the evaluation of Ensemble Strategies

| Strategy 1 (ML) | Strategy 2 (RL) | Strategy 3 (GP)
Datasets and Detectors TSB-UAD (Paparrizos et al.||2022b) (16 datasets, 12 detectors)
Train/Test Split 60% Train, 40% Test, 80% Train, 20% Validation (from train)
Input Representations \ Raw windows of length 128 or catch22 features (Lubba et al.{[2019)
Core Model (Features) Multi-Layer Perceptron (MLP)
Core Model (Raw) Convolutional Neural Network (CNN) with 2 blocks, kernel size 3, GAP layer
Optimization Strategy Backpropagation PPO (Schulman et al.|[2017) Genetic Algorithm
Loss / Objective MSE AUC-PR or VUS-PR as reward | AUC-PR or VUS-PR as fitness
Optimization Details ADAM Optimizer | PPO with clipped surrogate loss pygad.GA (Gad|2023)

The selection phase chooses the best individuals (based on fitness) to serve as parents. Among
several strategies, we use the steady-state approach, where only the least fit individuals are replaced
each generation while the best are retained. Formally, let M < N and define {¢F,...,0%} c P*
as the M best individuals at generation k. These parents produce offspring for the next generation
through crossover (each child inherits half of its parameters from each parent) and mutation (10%
of a child’s parameters are perturbed by adding a random value between [—1, 1]).

4 EXPERIMENTAL EVALUATION

We now evaluate the three strategies described above by answering the following questions:

(Q1) How do supervised ensembles compare to traditional baselines? We benchmark our strate-
gies against individual detectors, unsupervised ensemble, and model selection.

(Q2) Do supervised ensembles really ensemble? We assess whether the supervised ensemble
mimics model selection methods (selecting only one detector) or combines meaningful detectors
(leading to higher performances than the best detector on each time series).

(Q3) How do the strategies scale? We measure training and detection time for all strategies.

4.1 EXPERIMENTAL SETUP

Our experimental setup for evaluating the three proposed ensemble strategies is summarized in
Table [T} Overall, strategy 1 relies on simple backpropagation using the ADAM optimizer with
mean squared error (MSE) loss. Strategy 2 employs the Proximal Policy Optimization (PPO) al-
gorithm (Schulman et al., [2017)), where the core model acts as the policy network. Strategy 3 uses
genetic programming via the pygad . GA library (Gad, 2023) to evolve model weights directly.

Additionally we benchmark their performance against four baselines: (i) 12 individual detectors
provided in the TSB-UAD benchmark (Paparrizos et al., 2022b)), (ii) an unsupervised ensemble
baseline computed as the average of all detectors’ outputs (called Avg Ens in this paper), and (iii)
the best model selection method identified in (Sylligardos et al.,|2023)) (called Best MS in the paper)
(iv) the best theoretical model selector, i.e., selecting the best detector for each time series (called
Oracle in the paper). These comparisons enable a comprehensive assessment of the benefits and
limitations of our proposed strategies relative to established methods. We provide more technical
details in our repository E] for reproducibility purposes.

4.2 HOW DO SUPERVISED ENSEMBLES COMPARE TO BASELINES?

In this section, we first compare the different strategies against the baselines (Individual detectors,
Avg Ens, Best MS, and Oracle) and we identify which strategy is the most promising. To achieve this
comparison, we conduct two experiments: In the first (Figure (), we evaluate the anomaly detec-
tion accuracy (VUS-PR) of all strategies over the entire TSB-UAD benchmark (i.e., in-distribution
setting). In such a setting, both the training and the test sets contain time series from all 16 datasets of
TSB-UAD. In the second experiment (Figure b)), we evaluate the performance of the models in an

' Our repository: link

https://drive.google.com/drive/folders/1jgvSFvmxWAoEmc5OjqNGseE-4ypebYw1?usp=sharing

Under review as a conference paper at ICLR 2026

(a) In-distribution Evalutation (b) Out-of-distribution Evalutation

/ Top 5 Detectors Unsup. Model Strategy1 Strategy 2: Strategy 3: \ (Unsup. Model Strategy 2: Strategy 3: \

A& Lop R, "7»

from TSB-UAD Ensemble Selectlon RL GP Ensemble Selection RL GP
1.0 1.0
0.8 0.8
= L
a [
©0.6 b 0.6
s T i w8 @&
> T P 8F R
80.4 . 22 04 =2
5 [3 23
g8 T P] o3
< T T T '- °
0.2 s 0.2 S
! 83 28
ol o o L 4 1 25 23
” o ” o
S =1 =1
Ss

4/0,/774 @ es[/‘, & 7,420@ 67 ﬁ% ‘-’o, 41%

o//}(/

Figure 4: Accuracy comparison (for (a) in-distribution and (b) out-of-distribution) of Strategy 1, 2
and 3 versus individual detectors, unsupervised ensemble, and the best model selector.

out-of-distribution setting (i.e., evaluated on a dataset not used in the training set). In this scenario,
we leave one entire dataset out for the test and use the 15 remaining datasets for training. Based on
the performance in the first experiment, we exclude Strategy 1 from the second experiment.

We first observe in Figure [d(a) that, for in-distribution, all supervised ensembling strategies are
significantly outperforming individual detectors and Avg Ens. Moreover, for in-distribution, Strategy
2 (RL) on features outperforms Best MS). In particular, Strategy 2 on features outperforms the
median of the best model selector, and the distribution of accuracy performances reaches higher
values than the Oracle. Although lower in terms of median, the latter underlines that the model
selection barrier can be surpassed by some supervised ensembling strategies in specific datasets
(more details in Section @) In addition, Figure Eka) demonstrates that, for in-distribution, the
choice of the strategy (choosing RL versus GP or ML) appears more relevant than the type of input
(feature versus raw) as the gap between supervised ensemble strategy performances is bigger than
the differences between feature and raw-subsequences for a given strategy.

Finally, Figure f{b) leverages multiple interesting observations. As already observed in Sylligardos
et al.|(2023)), ensembling techniques (Avg Ens) are outperforming model selection approaches in the
out-of-distribution setting. This observation is confirmed in Figure [b) as the supervised ensemble
strategies (RL and GP) outperform both the average ensemble and the Best MS. Surprisingly, unlike
the in-distribution case, the out-of-distribution scenario favors the choice of the data type over the
strategies. Indeed, whether we consider strategy 2 or 3, the accuracies are globally similar; however,
when applying the strategies on raw data, the performances are significantly higher than those of
feature-based methods. The latter can be explained by the following two reasons: (i) In out-of-
distribution scenario, ensembling more detectors (such as the Avg Ens that ensembles all detectors
equally) is safer than selecting a few (such as the Best MS that picks only one). We observe in
practice that supervised ensembling strategies applied to features tend to select (i.e., with non-zero
weights) fewer detectors than the same strategies applied to raw subsequences. (ii) The feature space
is sparser than the raw subsequences, which might lead to lower generalisability capabilities.

Answer to Q1: In the in-distribution case, supervised ensemble strategies outperform in-
dividual detectors and the unsupervised ensemble. Strategy 2 (RL) on features is the only
supervised ensembling pipeline that outperforms the best model selection methods in |Syl-
ligardos et al.| (2023|). However; in the out-of-distribution case, Strategies 2 and 3 (RL and
GP) are outperforming both the unsupervised ensemble and the best model selection method.
Finally, the choice of strategy prevails over the choice of data type in the in-distribution case,
and the choice of data type has priority over the strategy in the out-of-distribution case.

Under review as a conference paper at ICLR 2026

Daphnet (+38%) GHL (+19%) + IOPS (+24%) A MGAB (+100%) ¥ NAB (+0%) SMD (+18%) SensorScope (+0%)
ECG (+75%) Genesis (+0%) ~ + KDD21 (+36%) * MITDB (+11%) * OPPORTUNITY (+42%) SVDB (+47%) YAHOO (+86%)
~
1.0 ¢ 2 1.0 ‘o, 1.0
- (',/ S5 * Py 2 2]
Points above the diagonal i 50 % =
perform better than the Oracle o Ny i =
5 084 2 T 0.8 Fhor o & 081
: i et
= rl *) ;A =
a2, ¥, + = % |+ | &
20061 D 3 0.6 1 WS Yy 0.6
wn / o ,/» e é
2 : [s5) e * e
= 04 o v Vex 3 0.4 : N 04
@n e » * ISERe o * >, O
Q Ao xS 17} 54 vet + Y]
/M 23 *4y E S Xt e
o~ / v » + & e »* <
S 02 : - &, 024 = = 0.24
i g ok o | &
At SRS * *y My *x # +,
g a Yo X X —
Po %, xx e S Gt %y
0.0 {2874 #ifan 29—" W . = 0.0 145 "!‘;!"'A.::"':A_"g :;.»*"' ++ < 0.0 §
T T T T T T ~~ T T T T T T - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 \U/ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Oralce (Theoretical best MS) Oralce (Theoretical best MS) v " Oralce (Theoretical best MS)

Figure 5: (a) Best MS, (b) Avg Ens, (c) Strategy 2 (with features) against the Oracle. % of time
series per datasets on which RL (with features) is outperforming the Oracle.

4.3 DO SUPERVISED ENSEMBLES REALLY ENSEMBLE?

In the previous section, we observed that a supervised ensemble (Strategy 2 on features) can achieve
higher performance than the Oracle. Therefore, we conduct a per-time series comparison in this
section between Strategy 2 and the Oracle. Thus, we gather the performances of Best MS, Oracle,
Avg Ens, and the best supervised ensemble method (RL with features). Figure 5] depicts a pairwise
comparison between them (i.e., each point in these figures is a time series).

First, Figure[5[a) shows that model selection has a glass ceiling imposed by the performances of each
individual detector: the best MS can not outperform the Oracle, by definition. Moreover, the average
ensemble (in Figure [5(b)) fails to convincingly overcome this observation: even though a small set
of time series are above the diagonal (i.e., Avg Ens outperform the Oracle), we observe no flagrant
progress and note that, unlike Best MS, many time series (e.g., from the OPPORTUNITY dataset)
suffer from poor anomaly detection performances (VUS-PR< 0.1) where the Oracle stays efficient
(VUS-PR> 0.4). Contrary to the unsupervised average ensembling, the supervised RL ensembling
approach on features (in Figure[5(c)) demonstrates promising results. For instance, the RL on feature
strategy outperforms the Oracle for 42% of the OPPORTUNITY time series. Furthermore, this is
also evident in the YAHOO dataset (containing time series with point anomalies only), where an
important fraction (86%) of the time series shows that the RL on features outperforms the Oracle.
Finally, we also observe from Figure [5c) that the supervised ensemble is not accurate for time
series with a very highly inaccurate individual detector (i.e., not points in the top-left corner of
Figure [5c)). In particular, as soon as the Oracle is performing poorly, RL on features fails to beat
the Oracle. However, we emphasize that breaking the model selection barrier (i.e., being above the
diagonal) becomes more frequent as the Oracle performs better.

Answer to Q2: Supervised ensembling (Strategy 2 on feature) embodied the expectations
associated with ensembling methods: it managed to break the model selection barrier by
outperforming the Oracle (i.e., more accurate for at least 50% of the time series) on the
MGAB (100%), YAHOO (86%) and ECG (75%) datasets, and being challenging (i.e., more
accurate for at least 40% of the time series) on SVDB (47%) and OPPORTUNITY (42%).

4.4 HOW DO THE DIFFERENT STRATEGIES SCALE?

We now analyze the training and detection time of all three supervised ensembling strategies. The
training times (depicted in Figure[6]a)) relate to the time needed to train and test the models entirely.
The detection time (depicted in Figure [§(b)) depicts the time required to compute the weights and
run the activated detectors (i.e., detectors associated with non-zero weights).

Figure [6[a) shows that methods handling raw subsequences are slower than methods handling fea-
tures for Strategies 1 and 2 (ML and RL) and equivalently slow on Strategy 3 (GP). The latter is
explained by the following two reasons: (i) the time required to compute the weights and (ii) the
experimental setup. Indeed, inferring the weights on raw subsequences is slower as the CNN model

Under review as a conference paper at ICLR 2026

(c.1) Strategy 1: ML

104 -
10% 12345678910 1112
(c.2) Strategy 2: RL
1 E 123456789 101112

RL ML RL GP GP ML GP GP ML ML RL RL

(raw) (raw) (features)(features) (raw) (features) (raw) (features) (features) (raw) (raw) (features)

=

<0

%
-
<

(c.3) Strategy 3: GP

) Training time (hours)
<

Detection time (seconds)
=
5

s
b)
5

4

1234567891011 12
Number of activated Detector

Figure 6: (a) Training time, (b) Detection time (i.e., both computing the weights and running the
activated detectors), and (c) Number of activated detectors per strategy.

shared amongst all three strategies has ~ 100 times more parameters than the MLP used for methods
handling features. However, the experimental setup compensates for this by limiting the number of
evaluations (more details in Appendix [A.5).

On the contrary, Figure[6(b) shows that the detection time is not directly affected by the input type.
As observed jointly in Figure[6{b) and (c), The Detection time is inversely proportional to the number
of activated detectors. Thus, the sparsity of the strategies on the detector weights (i.e., producing
few non-zero weights) is key to significantly reducing detection time (in Figure [6c), distribution
shifted to the left means sparser weights prediction). More precisely, as illustrated in Figure [6{c),
RL and GP strategies activate fewer detectors when considering features as input and thus minimize
the detection time. Moreover, RL on features is not only the best supervised ensemble technique in
the in-distribution case but the fastest strategy as well.

The sparsity of the activated detector is also strongly correlated to the performance in the out-of-
distribution setting. In fact, we previously noticed on Figure d[b) that model selection (the sparsest
supervised approach) showed very weak performances. Conversely, we emphasized how supervised
ensembling approaches that consider raw data were more effective than those relying on features.
The latter can be explained by the low sparsity of raw-based strategies (2 and 3 mainly).

Answer to Q3: Supervised ensembling produce very different activated detector distribu-
tions, which have a significant impact on detection time and scalability (the sparser, the
faster), as well as on the out-of-distribution scenario results (the denser, the better).

5 CONCLUSION AND KEY TAKEAWAYS

We conduct a comprehensive study of supervised ensembling strategies for time series anomaly de-
tection. We explore this problem through three principled and diverse learning paradigms (ML, RL,
and GP) and evaluate these three strategies in terms of anomaly detection accuracy and execution
time. Overall, our key takeaways are as follows:

(T1) supervised ensembling systematically outperforms model selection in the out-of-
distribution setting and manages to do it in the in-distribution setting with Strategy 2 (RL)
with features as input.

(T2) strategy 2 (RL) with features as input, successes in breaking the model selection barrier on
several datasets.

(T3) the sparser the supervised ensembling methods are, the faster. However, sparser outputs
imply poor out-of-distribution performances.

These results highlight the potential of supervised learning in this context and open up promising di-
rections for future work, particularly in the context of Reinforcement learning, as a strong supervised
ensembling baseline for time series anomaly detection.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

For the sake of reproducibility, we provide a|link to our anonymous source code for the experiments,
allowing it to be analyzed and reproduced in detail. In addition to that, we specify all the key
parameters for every strategy in Section[d.T]and in the Appendix[A.3]

REFERENCES

Charu C. Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensem-
bles. SIGKDD Explor. Newsl., 17(1):24-47, sep 2015. ISSN 1931-0145. doi: 10.1145/2830544.
2830549. URL https://doi.orqg/10.1145/2830544.28305409.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga. Usad:
Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 3395-3404, 2020.

Paul Boniol and Themis Palpanas. Series2graph: Graph-based subsequence anomaly detection for
time series. Proc. VLDB Endow., 13(12):1821-1834, July 2020. ISSN 2150-8097. doi: 10.14778/
3407790.3407792. URL https://doi.org/10.14778/3407790.3407792.

Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Em-
manuel Remy. Unsupervised and scalable subsequence anomaly detection in large data series.
The VLDB Journal, March 2021a. ISSN 0949-877X. doi: 10.1007/s00778-021-00655-8. URL
https://doi.org/10.1007/s00778-021-00655-8.

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. Sand: streaming subse-
quence anomaly detection. Proceedings of the VLDB Endowment, 14(10):1717-1729, 2021b.

Paul Boniol, Qinghua Liu, Mingyi Huang, Themis Palpanas, and John Paparrizos. Dive into time-
series anomaly detection: A decade review, 2024. URL |https://arxiv.org/abs/2412.
20512

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof: Identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’00, pp. 93—-104, New York, NY, USA, 2000. ACM. ISBN 1-58113-
217-4. doi: 10.1145/342009.335388. URL http://doi.acm.org/10.1145/342009.
335388.

Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long short-
term memory networks. In 2015 IEEE international conference on data science and advanced

analytics (DSAA), pp. 1-7. IEEE, 2015.

Ahmed Fawzy Gad. Pygad: An intuitive genetic algorithm python library. Multimedia Tools and
Applications, pp. 1-14, 2023.

Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsupervised
anomaly detection algorithm. KI-2012: poster and demo track, 1:59-63, 2012.

Chunggyeom Kim, Jinhyuk Lee, Raechyun Kim, Youngbin Park, and Jaewoo Kang. Deepnap: Deep
neural anomaly pre-detection in a semiconductor fab. Information Sciences, 457:1-11, 2018.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. In 2020 IEEE international conference on data mining (ICDM), pp. 1118-1123. IEEE,
2020.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413-422, December 2008. doi: 10.1109/ICDM.2008.17.
ISSN: 2374-8486.

Qinghua Liu and John Paparrizos. The elephant in the room: towards a reliable time-series anomaly
detection benchmark. In Proceedings of the 38th International Conference on Neural Informa-
tion Processing Systems, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
9798331314385.

10

https://drive.google.com/drive/folders/1jgvSFvmxWAoEmc5OjqNGseE-4ypebYw1?usp=sharing
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.14778/3407790.3407792
https://doi.org/10.1007/s00778-021-00655-8
https://arxiv.org/abs/2412.20512
https://arxiv.org/abs/2412.20512
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388

Under review as a conference paper at ICLR 2026

Carl H. Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D. Fulcher, and Nick S. Jones.
catch22: CAnonical Time-series CHaracteristics. Data Mining and Knowledge Discovery, 33
(6):1821-1852, November 2019. ISSN 1573-756X. doi: 10.1007/s10618-019-00647-x. URL
https://doi.org/10.1007/s10618-019-00647—-x.

Pankaj Malhotra, L. Vig, Gautam M. Shroff, and Puneet Agarwal. Long Short Term Memory Net-
works for Anomaly Detection in Time Series. In ESANN, 2015.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. Deepant: A deep learning approach for
unsupervised anomaly detection in time series. IEEE Access, 7:1991-2005, 2019. doi: 10.1109/
ACCESS.2018.2886457.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
detection. Proceedings of the VLDB Endowment, 15(11):2774-2787, 2022a.

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin.
Tsb-uad: an end-to-end benchmark suite for univariate time-series anomaly detection. Proc.
VLDB Endow., 15(8):1697-1711, April 2022b. ISSN 2150-8097. doi: 10.14778/3529337.
3529354. URL https://doi.org/10.14778/3529337.3529354.

Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learn-
ing for Sensory Data Analysis, MLSDA’14, pp. 4-11, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450331593. doi: 10.1145/2689746.2689747. URL
https://doi.org/10.1145/2689746.2689747.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series:
a comprehensive evaluation. Proc. VLDB Endow., 15(9):1779-1797, May 2022. ISSN 2150-
8097. doi: 10.14778/3538598.3538602. URL https://doi.org/10.14778/3538598.
3538602.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas.
Choose wisely: An extensive evaluation of model selection for anomaly detection in time series.
Proc. VLDB Endow., 16(11):3418-3432, July 2023. ISSN 2150-8097. doi: 10.14778/3611479.
3611536. URL https://doi.org/10.14778/3611479.3611536.

Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh
Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. Matrix profile i: All pairs
similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In
2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1317-1322, 2016. doi:
10.1109/ICDM.2016.0179.

11

https://doi.org/10.1007/s10618-019-00647-x
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.14778/3611479.3611536

Under review as a conference paper at ICLR 2026

A APPENDIX

This sections contains additional resources on the literature review (Section[A.T] and Section [A.2),
the problem formulation (Section[A.3), the generic pipeline considered in our experimental evalua-
tion (Section[A.4), the experimental setup (Section|[A.5)), and additional experimental analysis (from

Section[A.6).

A.1 TIME SERIES ANOMALY DETECTION LITERATURE REVIEW

Anomaly detection in time series is a crucial task for many relevant applications. Therefore, several
methods have been proposed in the literature (Boniol et al.| [2024). One type of anomaly detection
method is distance-based methods, which analyze subsequences by utilizing distances to a given
model to detect anomalies. In this category, we can identify three sub-categories. The first is discord-
based. These methods focus on analyzing subsequences for the purpose of detecting anomalies
in time series, primarily by utilizing nearest neighbor distances among subsequences (Yeh et al.,
2016). The second sub-category is proximity-based. These methods focus on estimating the density
of specific types of subsequences to either extract normal behavior or isolate anomalies. Since a
subsequence can be seen as a multidimensional point (with the number of dimensions corresponding
to the subsequence length), general outlier detection methods can be applied for time series anomaly
detection (Breunig et al.,2000). The last category is clustering-based, which comprises methods that
utilize the distance to a given clustering partition to detect anomalies. In this sub-category, NormA,
which first clusters data to obtain the normal behavior (Boniol et al., 2021azb), has demonstrated
strong performance.

While the previously mentioned methods compute their anomaly score based on distances using raw
time series elements (such as subsequences), density-based methods focus on detecting recurring or
isolated behaviors by evaluating the density of points or subsequences in a specific representation
space. This category can be divided into four sub-categories, namely distribution-based, graph-
based, tree-based, and encoding-based. Among them, Isolation Forest (Liu et al.l 2008)), a tree-
based method grouping points or subsequences into different trees, and Series2Graph, a graph-based
method that converts the time series into a graph to facilitate the detection of anomalies (Boniol &
Palpanas| 2020), have been shown to work particularly well for the time series anomaly detection
task (Boniol & Palpanas), 2020).

Furthermore, forecasting-based methods, such as recurrent neural network-based (Malhotra et al.,
2015)) or convolutional network-based (Munir et al.,[2019), have been proposed for this task. These
methods use the past values as input, predict the following one, and use the forecasting error as an
anomaly score. Such methods are usually trained on time series without anomalies, or make the
assumption that the anomalies are significantly less frequent than normal behaviors.

Finally, reconstruction-based methods, such as autoencoder approaches (Sakurada & Yairi, [2014),
are trained to reconstruct the time series and use the reconstruction error as an anomaly score. As
both forecasting and reconstruction-based categories detect anomalies using prediction errors (either
forecasting or reconstruction error), we can group them into prediction-based methods.

A.2 ANOMALY TYPES

Point anomalies refer to data points that deviate remarkably from the rest of the data. Similarly,
contextual anomalies refer to data points within the expected range of the distribution (in contrast
to point anomalies) but deviate from the expected data distribution, given a specific context (e.g., a
window). Collective anomalies refer to sequences of points that do not repeat a typical (previously
observed) pattern. The first two categories, namely, point and contextual anomalies, are referred to
as point-based anomalies, whereas collective anomalies are referred to as subsequence anomalies.

A.3 DETERMINISTIC VERSUS STOCHASTIC LEARNING STRATEGIES

Deterministic models: ML and GP approaches The deterministic case appears when a function
embodies the model, we will note My : X — My(X) € RN. In practice, My is given by a network,
either an MLP or a CNN, depending on whether the data are features or a raw time series window.
More formally, the model generating the weights can be defined with My(X) := 65, (x) where

12

Under review as a conference paper at ICLR 2026

d 1, (x) is the Dirac distribution at the network output My(X). The optimization problem can thus
be reformulated with

0, = argT&aéiE(x,s,Y) Acc(S X M@(X),Y) . (5)

To solve this optimization task, we want to use gradient methods because they are simple to imple-
ment and effective in most cases. However, Acc (AUC-PR or VUS-PR) is not differentiable, and
facing this issue, we consider two approaches: Machine Learning and Genetic Algorithms. The for-
mer chooses to change the metric to a differentiable proxy, such as the Mean Squared Error (MSE).
The latter rather decides to keep the metric of interest and forget about gradient methods for keeping
the best random mutation of 6 over generations to target 6,.

Stochastic models: RL approach The main problem described by equation [2.4] is exactly the
stochastic case (the deterministic one is simply a particular case). More specifically, the RL strategy
outputs a normal distribution specific to each individual detector, from which the weights are later
sampled. We will see in the section dedicated to RL how we can, surprisingly, take the gradient of
the main objective and how RL introduces not only a stochastic approach, but an entire paradigm.

A.4 GENERIC PIPELINE

This section contains additional resources on the generic pipeline considered in our experimental
evaluation.

Algorithm 1 Generic Pipeline for Supervised Ensembling

Require: Dataset of time series D, window size ¢, number of detectors N, model My, training
strategy
Ensure: Trained model parameters 6., anomaly scores for test time series
1: Split D into Dyyin, Dvals Diest
2: for each time series 1" in Dy,in U Dyq do
3: if using raw time series then

4: collect the first window of size ¢ of T'

5: else if using features then

6: Extract F' features from 7" as input vector
7: end if

8: end for

9: Train model My on Dy, and early stop on Dy,
10: Obtain final parameters 6.,
11: for each test time series 1" in Dies; do

12: if using raw time series then

13: Select the first window of size ¢ of T" and predict the weight vector W
14: else if using features then

15: Extract features and predict the weight vector W

16: end if

17: Retrieve detector scores matrix S € RE*N

18: Compute ensemble score: S =S x W

19: end for

A.5 EXPERIMENTAL SETUP

Technical setup. All experiments were conducted on a server with Cascade Lake Intel Xeon 5217
8 cores, 3-3.7GHz CPU and Nvidia V100 32GB GPU.

Global Parameter settings We use the same 70/30 split of the TSB-UAD benchmark as in|Sylligar-
dos et al.[(2023) for comparison fairness. All methods were early-stopped if there was no evaluation
improvement for half the total evaluation number.

ML parameter settings. On the features, the MLP was trained with a learning rate of 10~2 and a
batch size of 32. As for the raw data, the CNN was trained with a learning rate of 10~% and a batch
size of 64. Both models were trained for 50 epochs.

RL parameter settings. Considering the parameters naming of Stable Baseline3, for both features

13

Under review as a conference paper at ICLR 2026

and raw data, we fix the learning rate to 3.10~2, run the methods with 720000 total time steps (total
amount of states visited, windows/features in our formulation), 20 epochs every 1024 steps, and a
batch size of 128. The experiments on the raw data are evaluated 10 times on the way, and this
number is raised to 100 for the features (as it was less time-expensive). On the contrary to strategy
1 and 3 that have weights ranging between -1 and 1, the weights W for the RL strategy are clipped
between 0 and 1. This decision is motivated empirically to favor convergence stability.

GP parameter settings. Both MLP and CNN were trained for 20 generations, 20 solutions, 5 par-
ents mating, and a random sample of 256 time series to evaluate the fitness of each individual (for
time efficiency purposes).

Evaluation metrics. For anomaly detection accuracy, we consider the measure VUS-PR (Paparri-
70s et al.,[2022a). As for execution time evaluation, we mean by “execution time” the time required
to perform all the training/testing phases (i.e., the entire training pipeline). Finally, we will look
at the inference time of each strategy, i.e, the time needed for a model (MLP or CNN) to output a
vector for a given input and a given paradigm (ML, RL, GP).

A.6 DO SUPERVISED ENSEMBLES REALLY ENSEMBLE? (PART 2)

1.01 1.04
Median difference
0.2 jg J
0.8 e 04 y

® 038) 8O o
/f,‘..
L]
°

0.8

0.6 1

0.44

(a) Best MS approach

0.2 P

(b) Unsupervised Ensemble (Avg Ens)

T T T T T T T T T T T T
0.2 0.4 R . 0.0 0.2 R . . 0.2 0.4 0.6 0.8 1.0
Oracle (Theoretical best MS) Oracle (Theoretical best MS) Oracle (Theoretical best MS)

Figure 7: (left) Best model selection (Sylligardos et al., [2023)), (middle) Unsupervised Ensemble,
(right) Strategy 2 (with features) against the Oracle. For every time series, we represent the differ-
ence between the first and the median of all other detectors with the disk size and color.

In Figure[7} we focus specifically on time series that outperform the Oracle. First, when considering
the three plots of Figure[7] we observe that small, clear disks are more often on the left. Big, dark
disks are almost always on the right, as it is rare to have the first two detectors perform very well
(small disk on the right), and impossible to have very well-performing detectors alone with a low
value of Oracle.

Overall, Figure [7] shows that time series with no single best detector are leading to poor ensemble
performance (both unsupervised and supervised). Most of the time series for which the supervised
ensembling approach outperforms the Oracle are associated with a strong single best detector.

A.7 CRITICAL DIFFERENCE ANALYSIS

Figure [§] presents the results of the critical difference (CD) diagram, computed using pairwise
Wilcoxon signed-rank tests. This analysis was conducted in the in-distribution setting to determine
whether the performance differences between models are statistically significant.

From the diagram, it is evident that among the proposed models, only the RL-based strategies exhibit
a statistically significant improvement compared to the other approaches. In contrast, the ML- and
GP-based models do not show a significant difference relative to each other under this evaluation,
indicating that their performance is comparable on the considered datasets.

14

Under review as a conference paper at ICLR 2026

6 5 4 3 2 1
et 1 4 1 + 1 + 1
ML Raw —32095 | L 25715 R| Features
GP Features —279%8 32163 Rl Raw
GP Raw 327575 37394 ML Features

Figure 8: Critical difference diagram using the Wilcoxon signed rank test between strategies. Mod-
els connected by a horizontal line are not significantly different according to pairwise Wilcoxon
signed-rank tests. RL-based strategies exhibit a significant performance difference compared to the
other models.

0.8 _l_
i M

Accuracy
(VUS-PR)

2 8 3
| |
T T T T T T T
Best MS Avg Ens GP Features RL Features GP Raw RL Raw Oracle
(-29.1%) (+6.7%) (+12.8%) (+24.4%) (+39.6%) (+119.3%)

Figure 9: Overall accuracy of all strategies, Best MS, Avg Ens, and Oracle in the out-of-distribution
case

A.8 OUT-OF-DISTRIBUTION ACCURACY EVALUATION

Figure[9]displays in an alternative form the results illustrated in[4] In addition to the median and dis-
tribution of the performances, this plot also shows the percentage by which the supervised ensemble
outperforms the Avg Ens method.

Figure [T0] depicts the detailed results of the experiment on the out-of-distribution case, whose ag-
gregated results are displayed in Figure[d] For a given dataset, the number of points per box plot is
the number of series in the dataset. We observe that the Oracle is almost always more accurate than
the ensembling and selecting methods, except for ECG and Occupancy, where the RL on features
supervised ensembling is better. This is also the case for the YAHOO dataset, where the GP strategy
on both features and raw data manages to reach a higher accuracy.

A.9 POINT ANOMALIES VERSUS SEQUENCE ANOMALIES

Figure [TT] depicts a per-time series comparison between (left) Best model selection (Sylligardos
et al.,2023), (middle) Unsupervised Ensemble, (right) Strategy 2 (with features) against the Oracle.
Figure [11| focuses explicitly on the impact of anomaly types on the performance of the supervised
ensembling approach (Strategy 2).

A.10 WEIGHT DISTRIBUTION PER MODEL

Figure [12] shows the distribution of detector weights assigned by each model in the in-distribution
setting. The ML- and GP-based strategies assign both positive and negative weights, whereas the
RL-based models exclusively produce positive weights.

We also observe that some strategies consistently exclude specific detectors. For example, in the
ML Features model, the LSTM and POLY detectors consistently receive zero weight, while the RL
Raw model excludes four detectors entirely.

15

Under review as a conference paper at ICLR 2026

SensorScope

i

]
1

i

Ei

r (%T'€2+) 32elo

r (%9'€+) mey dO

r (%¥'0+) sainjead 1y
t suj bay

F (%L v-) med 1Y

r (%9'G-) saimea4 do

r (%0°8-) S 1s°g

Occupancy
T
.

F (%G Z+) seJnjead Ty
r (%€'z+) 8elo

F suj bay

r (%9°0-) saimea4 4o
(%L 0-) mey d9

F (%6°1-) med 14

r (%8'95-) SW 1seg

ECG

(%Y L+) sainjead Ty
r (%0°9+) mey d9

r (%8'€+) 32elo
(%Y’ T+) SW 1seg

t suj bay

r (%9°0T-) mey Td

SvDB

HooA
HolH

HEIH
HEIH

HoH

1.01

T
n
o
(4d-SNA)
Adeandoy

T
e
S

r (%0°09+) 31210
F(%1'8v+) SW 199

F (%L €E+) mey dO
F (%S TE+) med 1Y
t suj bay

r (%€ €1-) sainjead 49

r (%T'9v+) seimea4 Ty
r (%8'9€+) saimea4 do

KDD21

MITDB

Genesis

IOPS

<
-

T

n

<]
(4d-SNA)
Adeunddy

<
IS}

H - su3 bay
_.

r (%9'v€9+) 3J2el0
[(%1'09Z+) mey do
r(%T'652+) med Ty

Fsu3 bay

r (%S v€-) S 1s°9

F (%€°6TT+) 92eJ0

r (%€ vL+) S 1529

F(%1'8€+) med 1Y
r (%Z'ST+) mey dO
F suj bay

r (%€79€+) 912I0

F su3g bay

r (%6°8v-) mey 1y

r (%9°'£9-) mey d9
r (%L'S6-) SW 1s°9

r (%6°06+) 21210
r (%0°S+) mey d9

r (%t Lp-) seanjead Ty

r (%v'€8-) SW 1s°9

|_
q

HR | o057 25) mew
]

r (%8'9ZT+) saimead 1y

r (%8'6TT+) saimead d9

r (%P €0T+) saimead 49

F (%T€S+) sainjead 1y

r (%6°9€Z+) saimead 1y

r (%L'9G-) sainjeaq do

F (%T'1G-) saumead 4o

Dodgers

[aa]
<
=z

SMD

OPPORTUNITY

F (%9 €v+) 31210

r (%6'€+) mey dO

t su3g bay

F(%T1'0T-) sainjead do
F (%0°€T-) mey 1Y

F (%P v1-) seanjead Ty

r (%9°SZ-) S 1seg

F (%6 1¥+) a12eJ0
F(%T'ST+) mey 1y
 (%Z'S+) sainjeay do
(%G T+) sainjead 1y
t su3g bay

r (%Z'61-) mey dO
r(%8'1S-) SW 1se9

F (%€'8E+) d2RI0

F su3g bay

HIlIIH F 112 mey 1y

F A} (%0°0€-) saimead 1y
H [H[(%6°8€-) seumead do

F (%S’ Lt-) mey dD

ik
HIlI | (%0°09-) sw1se8

T_ _I_ F (%L'62G+) 3210
HIIH | (s0 sze+) mew 1y
HIlIIH + (%< 20z+) swasea
HIIH | %9'z0z+) mey a0
H |} (%0°29T+) saumead Ty
— (%6°TZT+) S24meaq do
F sug bay

1.0
5
0.01=—

o
(4d-SNA)
Adeundoy

GHL

Daphnet

YAHOO

MGAB

[(%9'8E€€E+) 32RO

il ersot+) mey a0

__ F (%T'9G+) meyd Ty

It (%6°Gz+) sainjeaq 1y
|l sua bay

|IF (%6°0T-) sainjeaq do

i v ev-) swasea

F (%C'€9+) apeIO
r (%6'SE+) mey Ty

B H [(%p'8z+) seunead do
|_

F (%€ v+) sainjead 1y
t suj bay

F(%T°LT-) meY d9

r (%t'Sb-) SW 1seg

r (%8'95+) mey d9
(%L Zp+) sainjeaq 4o
r (%L'6Z+) 32el0

F (%0'6T+) mey 14

r (%Z°'9+) sainjead 1y
t sug bay

HIE - 062029 swasea

F(%T°L60v+) 92RJ0

F (%6 PYET+) med Ty

F (%¥°SZ6+) Sainiead 1o
|l sua bay

r (%v'LE-) mey dO
F (%€°0L-) saimead 49
r (%L'18-) SW 1se9

T
n
<]
(4d-SNA)
Adeandoy

1.01

T
<
S

Per-dataset accuracy of all strategies, Best MS, Avg Ens, and Oracle in the out-of-

Figure 10

distribution case

Finally, the spread of the weight distributions differs across strategies. The GP Raw model exhibits

very compact distributions, indicating more stable weight assignments, while the ML Raw model

ime series.

shows the widest variability, suggesting greater sensitivity to different t

16

Under review as a conference paper at ICLR 2026

Anomaly Type

1.0 & 1.04
® sequence ﬁ. —

® point 00 g E 0
0.84 © mixed 20.8 £
z 2
< < ©
8 @ g
= < =
2 0.6 £ 0.6 b
© E -
%) o 4
= - ..
o &
7 0.4 & 0.4+ % >
S o
e g " 2
< g ©
= N So e et, &
57 L seamt e 3, i =

8 | afmdrds Sombite oty

< @ R Y OXS e %

0.0 d‘g“.ég» mmﬂﬁ"&%ﬁ» S%e% oo 3
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Oracle Oracle Oracle

Figure 11: (left) Best model selection (Sylligardos et al., [2023), (middle) Unsupervised Ensemble,
(right) Strategy 2 (with features) against the Oracle. For every time series, we represent the type of
anomalies it contains with a specific color.

ML Features ML Raw
1.0 9
- |
o F— T - ey | =
-0.5 4
GP Features GP Raw
1.0 9
°'5l+ + il —— =
e - =
Fat it PR T -
-0.5 1
RL Features RL Raw
1.0 9
o hEfdd BT L. @ am < aTEs
0.0 4—— - _ = | - - _ —x
~0.51
N N R N N N TR N
e I (o] o‘g) Q‘yé\ KS v/\ A N C,_)A & QOV v S (o] oé) Q‘.é’/\ KS V/\ A QS‘ (5)4 & QO\'
NS © € @ o

Figure 12: Weight distribution of detectors across different models. Each boxplot represents the
variability of weights assigned to detectors by a given model in the in-distribution setting.

17

	Introduction
	Background and Related Work
	Time Series Anomaly Detection
	One Unique Detector is Hopeless
	Towards Automated Solutions
	Supervised Ensembling: Problem Definition

	TSAD Supervised Ensembling: Three Strong Baselines
	A Generic Pipeline
	Strategy 1: Classical Machine Learning
	Strategy 2: Reinforcement Learning
	Strategy 3: Genetic Programming

	Experimental Evaluation
	Experimental Setup
	How do supervised ensembles compare to baselines?
	Do supervised ensembles really ensemble?
	How do the different strategies scale?

	Conclusion and Key Takeaways
	Reproducibility Statement
	Appendix
	Time Series Anomaly Detection Literature Review
	Anomaly Types
	Deterministic versus Stochastic Learning Strategies
	Generic Pipeline
	Experimental Setup
	Do Supervised Ensembles Really Ensemble? (Part 2)
	Critical Difference Analysis
	Out-of-Distribution Accuracy Evaluation
	Point Anomalies versus Sequence Anomalies
	Weight Distribution per Model

