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Abstract

This paper presents the Rail-5k dataset for benchmarking the performance of visual1

algorithms in a real world application scenario, namely the rail surface defects2

detection task. We collected over 5k high quality images from railways across3

China, and annotated 1100 images with the help from railway experts to identify4

the most common 13 types of rail defects. The dataset can be used for two settings5

both with unique challenges, the first is the fully-supervised setting using the 1k+6

labeled images for training, fine-grained nature and long-tailed distribution of7

defect classes makes it hard for visual algorithms to tackle. The second is the8

semi-supervised learning setting facilitated by the 4k unlabeled images, these 4k9

images are uncurated containing possible image corruptions and domain shift with10

the labeled images, which can not be easily tackle by previous semi-supervised11

learning methods. We believe our dataset could be a valuable benchmark for12

evaluating robustness and reliability of visual algorithms.13
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Table 1: Dataset compare

Domain Dataset Task # class # image # box per image Resolution Annotation Quality

Rail Defects

Delft [4] cls 6 3240 1 104 gray-scale image-level
RSDDs [6] seg 2 195 5 104 gray-scale image-level
CRRC [5] det 3 >1000 1 104 gray-scale band-level

Rail-5k(labeled) det 13 1100 22.9 107 RGB instance-level

Natural Image

VOC-2007 det 20 12974 3.1 - instance-level
VOC-2012 [3] det 20 34071 2.7 469 x 387 RGB instance-level

ILSVRC-2014 [2] det 200 516840 1.1 482 x 415 RGB instance-level
MS COCO 2018 [16] det 80 163957 7.3 - instance-level

OID V6 [14] det 600 1910098 8.4 - instance-level

1 Introduction14

The introduction of large scale annotated datasets such as ImageNet [2] greatly speeds up the15

development of deep-learning based vision algorithms [9]. Deep learning algorithms pre-trained on16

ImageNet [2] has also been shown to effectively transfer between domain and tasks such as object17

detection [21] or medical image analysis [12].18

As an important basic infrastructure of human life, the maintenance and status analysis of railways19

has a real world economy and safety-focused value. However, current datasets in the railways domain20

are either limited in size [6], quality of images [4, 5, 6], or the annotation types [5, 6] The limited size21

and quality of currently available dataset are not yet ready for support the training of deep learning22

methods.23

Our dataset has enough high quality images captured from real-world railway to enable the training24

of deep learning models. Besides the labeled set with 1.1k images, we also provide a unlabeled set25

of 4k images to enable a semi-supervised setting. Several unique characteristics of our dataset also26

poses new challenges to vision algorithm. The first challenge is the long-tailed distribution of classes27

presented in out dataset, the imbalance ratio of the most majority class to the most minority class is28

up to 40.98, it has been shown that the long-tailed distribution would greatly hurt the performance29

of the learned model [17, 8]. Besides the long-tailed class distribution in the labeled set of the30

dataset, the unlabeled set of images also poses a difficult scenario of semi-supervised defect detection,31

semi-supervised object detection is a relatively new task with few recent works [7, 22], the previous32

method often assumes that the unlabeled set is also curated. However, in our case, the unlabeled set is33

uncurated with multiple unknown image corruptions and unseen object in the labeled set. Given these34

unique properties, we believe that our proposed dataset could not only facilitate the development of35

algorithms for rail surface defects detection, but also the development for a more robust vision model36

to handle the long-tailed distribution and possible corruptions in the unlabeled set.37

2 Related work38

Traditional inspection methods like subjective manual observation, sampling checking, are all quali-39

tative or compensating methods, can not provide a digital and automatic decision-making basis for40

intelligent maintenance of the whole line. Our dataset mainly focus on the task of defects detection,41

we summarize relevant literatures in the section.42

2.1 Natural Image Dataset43

The surface defect detection tasks are most related to the tasks of object detection in visual algorithms.44

Common benchmarks for visual object detection are constructed using natural images such as Pascal45

VOC [3] and MS-COCO [16]. These dataset are mostly balanced in terms of class distributions. The46

LVIS [8] dataset proposed a larger collection of images with a long-tailed distribution of classes. Our47

proposed dataset also has a long-tailed distribution with respect to classes. Unlike the general natural48

image datasets, our dataset also presents fine-grained class definition due to the nature of railway49

images.50
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Table 2: Categories statistics.

Class Running surface Contact band Dark Contact Band Spalling Crack Corrugation Grinding
# Boxes 1082 1093 773 12582 3785 3349 337
#Images 1080 1087 769 1005 375 445 179
# Large 1082 1092 773 1277 2965 3329 336
#Medium 0 0 0 5147 784 17 1
# Small 0 1 0 6148 36 3 0

Class Fastening Spike Screw Set Screw Indentation Burning Welded Joint
# Boxes 757 502 414 307 41 14
# Images 582 424 360 216 10 8
# Large 750 475 400 4 41 14
# Medium 7 27 14 237 0 0
# Small 0 0 0 66 0 0

2.2 Synthetic Corruption Dataset51

There are also many datasets focusing on testing the robustness of deep-learning models under domain52

shift and image corruptions like ImageNet-C [10], CityScapes-C [18], and COCO-C [19]. However,53

the corruptions in these dataset are synthetic, generated using image processing techniques. Also,54

they are mainly used as the test set to test the robustness rather than the training set. In our dataset,55

the labeled dataset are well-curated, but the unlabeled set mat contains various real-world corruption,56

thus poses a new challenge for semi-supervised learning method.57

2.3 Rail Defects Dataset58

In the rail engineering domain, there are dataset focusing on the classification and detection of railway59

defects [23]. As for rail engineering, images are mostly in the form of atlas for manual reference.60

There are classification and detection [23] datasets of railway scene, as well as ultrasonic inspection61

datasets [11]. But still lacking of real-world datasets for rail surface defects. Faghih-Roohi etal. [4]62

collects and labels 100 x 50 resolution images in 6 defects classes. RSDDs datasets [6] contains 19563

gray-scale images in 2 kinds of railway with segmentation mask. Feng etal. [5] collects thousands64

of images and annotate corrugation, fatigue and spalling in band region. Datasets above are all65

collected by high-speed linear scan cameras with low resolution and coarse-grained annotation. As a66

consequence, they all fail to drive the training of real-world robust deep learning algorithms.67

200mm

30°

Figure 1: Typical image capture and annotations.
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3 The Rail-5k dataset68

3.1 Rail Image Acquisition69

The rail surface defects are mostly caused by the metal fatigue under the constant load from the70

wheel in high-speed section in a railway system. Rail images in the Rail-5k dataset were captured71

by specialized cameras mounted on inspection cars riding along the railway, making the lens 20072

mm vertically away from the rail surface and focusing vertically downward. We exclude images with73

shadows or overexposure on the rail surface for railway experts to label. We collected annotations74

for 1100 RGB images with 3648× 2736 pixels in resolution, covering scenarios as tunnel, elevated75

bridge, straight and curve line, inner and outer rail, before and afer grinding or milling. fig. 1 shows76

the map of a typical rail section that we collect images. Each dot represents an image.77

We also collected 3k images from uncurated images of rail surfaces. These images contains unknown78

corruption and unseen objects in the labeled set. fig. 3 shows some typical images in the unlabeled79

set.80

In summary, our dataset contains two part of data, the first part is the labeled subset with a 1k labeled81

images, the second part is the unlabeled subset with 3k images. Thus our dataset can support both82

supervised and semi-supervised learning settings.83

Figure 2: Map of typical sample points.

Figure 3: First line is corruption images, second line is prediction results. It can be observed that
there are many false positives.

3.2 Fine-grained class definition and instance-level annotation84

The annotations in our dataset were labeled by ten railway experts, each labeled images were at85

least checked by three experts. Based on the expert knowledge and railway standards, we use a86

fine-grained class definition and instance-level annotation paradigm for the railway defects detection.87

The labeling principle are listed in table 3.88
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Table 3: Annotation paradigm.

Size Boundary Typical class Annotation paradigm

Large clear Rail surface, Fastener, Screw external rectangular box(same as common detection)
obsure lump Corrugation wave valley of corrugation

Small clear Spalling,Indentation stripped dent
Diffuse sharp Crack union regions of small and dense boxes envelops cracking diffuse regions

Note that the crack area are sharp and thin objects with no clear edge boundary, we annotate with a89

segmentation mask.90

3.3 Dataset Splitting91

We randomly split 20% of the 1,100 labeled images in to the test set, the remaining images are used92

as the training set in the supervised setting. For the semi-supervised setting, we use the same test set93

to evaluate the performance for comparison.94

4 Annotation Statistics95

In this section, we present the statistics of our dataset. The statistics are presented in three aspects,96

namely the image and bounding box distribution among class, the bounding box sizes and aspect97

ratios, and the center point of annotated bounding boxes.98

4.1 Class distribution99

fig. 4 shows the number of images and annotations containing each classes. The Burning and welded100

joint are ignored in our experiments and benchmark because of their rare appearance. The imbalance101

ratio with respect to the number of bounding box between the most majority class and the most102

minority is 40.98, the imbalance ratio with respect to the number of images is 6.07.103

4.2 Sizes and aspect ratios of bounding boxes104

(box size ratio graph) Bounding box annotations in our dataset vary dramatically in sizes and aspect105

ratios. There exist both tall and narrow objects as well as short and wide objects such as rail surface106

and contact band, normal square objects(fastener and screw). Besides, as shown in Figure 5, there are107

tremendous numbers of densely distributed small objects like spalling.108
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Figure 4: PR curve

Co
nt

ac
t B

an
d

Ra
il S

ur
fac

e
Sp

all
ing

Da
rk

 C
on

ta
ct 

Ba
nd

Fa
ste

ne
r

Co
rru

ga
tio

n
Sp

ike
 Sc

re
w

Cr
ac

k
Se

t S
cre

w
Ind

en
ta

tio
n

Gr
ind

ing
Bu

rn
ing

We
lde

d J
oin

t

0

200

400

600

800

1000

Nu
m

be
r o

f i
m

ag
es

Figure 5: Concrete and Constructions
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4.3 Object positions109

Figure 7 shows the distribution of objects’ center positions in our dataset. Because of the special110

shooting paradigm, rail surfaces usually lie horizontally or vertically in images. As a consequence,111

defects usually spread at the cross-zone in images.112
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Figure 6: Width-height ratio of all annotations.
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Figure 7: Center positions of all annotations.

5 Pilot Study on the Rail-5k Dataset113

In this section, we conducted comprehensive experiments in several aspects to investigate the114

challenges and potential of the Rail-5k dataset. We trained an object detection model and a semantic115

segmentation model on Rail-5k as our baselines and showed the challenging attributes of our dataset.116

Additionally, We proposed a semi-supervised benchmark for object detection.117

Figure 8: Typical prediction results on testset.

5.1 Benchmark for Detection118

There are many popular detectors [20, 21, 15] on general object detection datasets. Recently,119

many new methods have been proposed and achieved the state-of-the-art results in the MS-COCO120

benchmark [16]. For example, YOLOv5 [13] is a light-weight model with mosaic augmentation121

and Generalized Intersection over Union(GIOU) loss. In our experiments, we finetined Yolov5-s122

as baseline on our dataset with MS-COCO pretraining. Detailed training settings are according to123

data/hyp.finetune.yaml2124

It can be noticed that the detector’s performance on crack is extremely low. This is because crack125

is more a texture than an object without clear definition of separated instances. Thus, we chose to126

tackle with this problem from another approach, which will be further discussed in Section 5.2.127

2We implemented our experiments with Release v4.0 from https://github.com/ultralytics/yolov5/blob/develop/data/hyp.finetune.yaml
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Figure 10: Ablation experiments.

Table 4: Metrics of baseline model for detection.

Class Precision Recall AP@0.5 mAP@0.5:0.95 AP

Rail Surface 77.5 99.1 98.9 90.6 98.6
Contact Band 60.2 97.7 94.5 71.9 96.3
Spalling 33.2 74 60 24.8 58.9
Corrugation 60.3 91.2 89.3 48.2 87.6
Grinding 21.4 38.8 24 7.4 24.1
Dark Contact Band 64.4 81.4 76.7 36.7 83.4
Fastener 47.5 91.3 83.8 62.9 86.1
Spike Screw 37.8 92.5 86.8 48.6 91.8
Set Screw 58.6 88.2 87.3 52.2 88.5
Indentation 0 0 0.7 0.1 16.2
Crack - - - - -

5.2 Benchmark for Crack128

For cracking region, it is more of a texture and pattern than an object. Thus, we use segmentation to129

identify this class because the detection cannot recognize it well. We use Deeplabv3 [1] architecture130

with ResNet50 [9] backbone as segmentation model. The model is trained for 9000 iterations with131

a batch size of 16. We use SGD with momentum as the optimizer. Momentum and weight decay132

are set to 0.01, 1e-4 respectively. For the evaluation of our benchmark we choose the most common133

benchmark on segmentation, which is Intersection over Union(IoU). The model achieves 98.9%134

IoU on background and 67.8% IoU on crack, which is much better than the detection performance.135

DeepLabv3 can learn the main and obvious crack, but will ignore the tiny one.136

Table 5: Metrics of baseline model for semi-supervised detection.

Class sthr = 0.6 sthr = 0.7 sthr = 0.8 sthr = 0.9

Rail Surface 98.1 98.0 98.1 97.7
Contact Band 78.4 77.9 77.1 77.0

Spalling 60.1 58.9 57.9 58.2
Corrugation 89.6 89.2 89.5 88.6

Grinding 23.0 23.6 23.5 22.1
Dark Contact Band 92.7 92.9 93.1 92.4

Fastener 86.5 86.1 85.8 83.2
Spike Screw 93.2 94.6 91.3 87.4
Set Screw 88 88.5 87.2 85.4

Indentation 15.9 16.4 13.4 15.3
Crack - - - -

mAP@0.5 63.29 63.27 62.43 61.55
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Figure 11: Images in first line are segmentation prediction results, and in second line are labels.

5.3 Benchmark for Semi-supervised Learning137

With additonal 3k unlabeled images, we proposed a semi-supervised object detection benchmark. We138

presents results in table 5.139

These results are generated with simple pseudo label technique. We inferenced on the unlabeled140

images with YoloV5-s trained following strategy described in Section 5.1. Then we apply a confidence141

score thresholdsthr on all predictions and use remaining predictions as pseudo labels. Finally, we142

finetuned this model jointly on labeled images and unlabeled images with pseudo labels for 1 epoch143

and a base learning rate of 4e-4. Other training settings are the as ones in Section 5.1.144

As shown table 5, detectors usually perform worse after being finetuned under semi-supervision. This145

could be caused by corruption and noise in unlabeled images.146

6 Conclusion147

We introduce Rail-5k, a real-world dataset for rail surface defects detection. We capture rail images148

across China and provide fine-grained instance-level annotations. This dataset poses new challenges149

both in rail maintenance and computer vision. As a baseline, we provide a pilot study on Rail-5k150

using off-the-shelf detection models. In later versions, Rail-5k will include more images and patterns,151

as well as more defects categories and image modalities, such as 3D-scan or eddy current data. This152

would make Rail-5k an even more standardized and inclusive real-world dataset. We hope this dataset153

will encourage more work on improving visual recognition methods for rail maintenance, particularly154

on object detection and semantic segmentation for real-world, fine-grained, small, and dense defects.155
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