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ABSTRACT

Amodal segmentation, which aims to predict complete object shapes including
occluded regions, remains challenging in open-world scenarios, where models
must generalize to novel objects and contexts. While the Segment Anything
Model (SAM) has demonstrated remarkable zero-shot generalization capabilities,
it is fundamentally limited to visible region segmentation. This paper presents
Amodal SAM, a framework that extends SAM’s capabilities to amodal segmenta-
tion while preserving its powerful generalization ability. The improvements lie in
three aspects: (1) a lightweight Spatial Completion Adapter that enables occluded
region reconstruction, (2) a Target-Aware Occlusion Synthesis (TAOS) pipeline
that addresses the scarcity of amodal annotations by generating diverse synthetic
training data, and (3) novel learning objectives that enforce regional consistency
and topological regularization. Extensive experiments demonstrate that Amodal
SAM achieves state-of-the-art performance on standard benchmarks while ex-
hibiting strong generalization to novel scenarios. Furthermore, our framework
seamlessly extends to video sequences, as the first attempt to tackle the open-
world video amodal segmentation. We hope that our research can advance the
field toward practical amodal segmentation systems that can operate effectively in
unconstrained real-world environments. Code will be made publicly available.

1 INTRODUCTION
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Figure 1: This figure shows the comparisons be-
tween our Amodal SAM and previous state-of-
the-art models in the closed and open domains.
In both settings, using mIoUo as the evaluation
metric, our method outperforms the state-of-the-
art model on all compared datasets.

The human visual system possesses the abil-
ity to interpolate unseen information, partic-
ularly through amodal perception, our capac-
ity to mentally complete partially occluded ob-
jects. This innate ability has inspired a com-
puter vision task called amodal segmentation,
which aims to predict complete object shapes,
including their hidden portions.

Nonetheless, amodal segmentation remains
challenging, as the existing methods primarily
focus on amodal segmentation within the same
domain witnessed during training. However,
in open-world scenarios, models must gener-
alize to novel object categories and contexts
that have not been seen during model training,
which poses challenges to current amodal seg-
mentation models, as shown in Figure 1.

To enhance open-world visual perception capa-
bilities, the Segment Anything Model (SAM)
was introduced, demonstrating remarkable gen-
eralization to new samples. However, SAM
is inherently constrained to segment visible re-
gions, thereby lacking the capacity to address
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open-world challenges in amodal segmentation. This raises the question: Is it viable to effectively
adapt the SAM model for amodal segmentation while preserving its generalization prowess?

Therefore, in this work, we present Amodal SAM, a framework that extends SAM’s capabilities to
amodal segmentation while preserving its powerful zero-shot ability. Our key insight is that success-
ful adaptation requires a holistic approach addressing three complementary aspects: model archi-
tecture, training data, and optimization objectives. Specifically, for model adaptation, we introduce
a lightweight Spatial Completion Adapter (SCA) that enables the model to reconstruct occluded re-
gions while maintaining SAM’s core segmentation abilities. To overcome the scarcity of large-scale
amodal annotations required by open-world training, we propose Target-Aware Occlusion Synthesis
(TAOS), an efficient pipeline that synthesizes diverse occlusion patterns from existing segmentation
datasets without manual labeling. Finally, we introduce the learning objectives regarding regional
consistency and holistic topological regularization to facilitate training.

The effectiveness of the proposed Amodal SAM is demonstrated through extensive experiments
across extensive datasets on both challenging image and video benchmarks. Amodal SAM not only
achieves state-of-the-art performance on standard amodal segmentation tasks but also shows strong
generalization to novel object categories and scenes. Furthermore, we show that our framework
can be seamlessly extended to video amodal segmentation by adapting SAM-2, highlighting its
flexibility and broad applicability. To the best of our knowledge, it is the first attempt to address
video amodal segmentation in the open-world settings.

To summarize, our contributions are as follows:

• We observe that existing amodal segmentation models lack open-world generalization capabili-
ties, significantly limiting their real-world applications.

• With the improvements across three dimensions - model, data, and optimization - we success-
fully adapt SAM, a generic foundation model, to amodal segmentation, allowing the model to
generalize to novel and diverse open-world scenarios.

• The obtained framework, i.e., Amodal SAM, achieves superior performance in both closed and
open-world scenarios, and can be easily extended to video applications, marking the first suc-
cessful implementation of open-world video amodal segmentation.

2 PRELIMINARIES

2.1 AMODAL OBJECT SEGMENTATION

Task description. Amodal object segmentation (Zhu et al.; Li & Malik; Nguyen & Todorovic; Tran
et al., a;b; Qi et al.; Zhan et al., a) aims to predict the complete pixel-level mask of a target object
that is partially obscured. Formally, according to (Qi et al.; Tran et al., b;a), a rough bounding box
B that covers the region-of-interest (ROI) in a specific image I will be provided, to identify both the
visible and occluded regions of the target object through the prediction mask M . With the amodal
segmentation model F , this procedure can be formulated as:

M = F(B, I). (1)

Certain approaches (Qi et al.; Li & Malik; Follmann et al.; Zhang et al., 2019) may use conventional
segmentation algorithms, such as (Ronneberger et al.; Long et al.; He et al.), to explicitly derive the
visible region mask from the region-of-interest (ROI) box B corresponding to the target object as an
input component. In this case, the formulation becomes:

M = F(s(B), I), (2)

where s() denotes the conventional segmentation algorithm that transforms the visible part within
the ROI box B into a mask. For both Eqs. equation 1 and equation 2, the ground truth mask of the
target object is provided to supervise the predicted mask M during training.

Issues in the open-world scenarios. In the existing literature, amodal segmentation is typically
carried out within a predetermined set of target object classes (Zhu et al.; Qi et al.; Follmann et al.).
This constrained setting limits the model’s ability to handle novel object categories in real-world
scenarios. Furthermore, we have noticed that despite having the same categories, current amodal
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segmentation models struggle to address the domain shift across various tasks effectively. For in-
stance, a model trained on indoor scenes might struggle with outdoor environments.

Hence, creating a resilient amodal segmentation framework capable of generalizing to unforeseen
scenarios is crucial for practical real-world applications. In this work, we tackle this challenge by
leveraging SAM’s (Kirillov et al.) strong generalization capability.

2.2 SEGMENT ANYTHING MODEL (SAM)

SAM (Segment Anything Model) (Kirillov et al.), developed by Meta AI, is a foundation model
for image segmentation with three key components: 1) an image encoder that extracts dense visual
features; 2) a prompt encoder that processes various forms of user inputs; and 3) a mask decoder that
synthesizes these signals to generate precise segmentation masks. The remarkable generalization
capability of SAM has inspired numerous downstream adaptations (Chen et al., 2023; Li et al., 2023;
Ma & Wang, 2023; Ke et al.). Drawing inspiration from the adapter paradigm originally proposed
in natural language processing(Houlsby et al.; Hu et al.), recent works such as SAM-Adapter(Chen
et al., 2023) and ViT-Adapter(Chen et al.) have demonstrated the effectiveness of lightweight adapter
modules in transferring knowledge from ViT-based architectures to specific domains.

While we follow the principle of adapter-based tuning to extend SAM’s capabilities to amodal seg-
mentation, we observe that the naive adapter-based adaptation schemes yield suboptimal perfor-
mance for this challenging task as shown in later experiments.

3 AMODAL SAM

3.1 OVERVIEW

As amodal segmentation in the open world requires robust zero-shot generalization to handle novel
object classes and data distributions, in this work, we propose Amodal SAM - a framework that
decently extends SAM’s capabilities from visible region segmentation to amodal segmentation while
preserving SAM’s strong zero-shot capabilities. The proposed paradigm focuses on the training
phase about the following three synergistic aspects:

• Model adaptation enables efficient adaptation with minimal structural modification through the
lightweight gated adapter.

• Data adaptation facilitates the supervised tuning via synthesizing object occlusions without the
need for exhaustive human annotation.

• Optimization adaptation involves transitioning from a generic vision foundation model to a spe-
cialized amodal segmentation model by incorporating specific learning objectives.

In the following, Sections 3.3, 3.2, and 3.4 will detail our adaptation strategies for model architec-
ture, training data, and optimization processes, respectively. Subsequently, Sec. 3.5 demonstrates
how our designs can be easily extended to video amodal segmentation with SAM-2(Ravi et al.,
2025), highlighting the generalization capabilities.

3.2 MODEL ADAPTATION

In this study, we investigate adapters for model adaptation to enhance the capacity to perceive the
occluded region.

Encoder-focused adaptation. Instead of inserting the adapters into both the encoder and decoder
of SAM, we adopt an encoder-focused adaptation strategy.

Specifically, the SAM encoder handles feature extraction, while the decoder primarily converts fea-
tures into masks. Consequently, the encoder may encounter a more substantial domain disparity
when faced with different tasks. If decoder tuning were implemented, it might jeopardize SAM’s
inherent mask generation abilities, as later demonstrated in Section 4.4. Therefore, an encoder-
focused adaptation can bridge the domain gap across diverse tasks while preserving the model’s
core functionality with the frozen decoder. The overall modeling process of Amodal SAM can be

3
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Figure 2: The overall structure of the proposed Amodal Spatial Attention Module (SAM) includes
three key aspects for the adaptation from SAM to Amodal SAM: data, model, and optimization.
The process of data adaptation involves an automated pipeline for converting generic segmentation
annotations into those necessary for amodal segmentation. Model adaptation is realized through
the Spatial Completion Adapter (SCA) in a manner focused on the encoder-tuning. Optimization
adaptation is performed using a composite learning objective.

expressed as:
M = Fdec(Fprompt(B),F ′

a-enc(I)), (3)

where M is the predicted mask for both visible and occluded regions of the target object, which is
specified by an ROI box B on the input image I . Fdec and Fprompt denote SAM’s mask decoder and
prompt encoder respectively, while F ′

a-enc represents the adapted SAM encoder tailored for amodal
segmentation.

Prior-guided feature extraction. For the amodal segmentation task, an ROI box B is needed in
the input to indicate the target. We found it is beneficial to additionally incorporate a binary prior
mask Mspec into the feature encoder, as the spatial prior to guide the target-related feature generation.
During inference, Mspec can be obtained from B by setting the value to 1 for the regions inside B and
to 0 for the remaining regions of the binary mask Mspec. To this end, Eq. equation 3 is accordingly
updated as:

M = Fdec(Fprompt(B),F ′
a-enc(I,Mspec)). (4)

B
lock

A
dapter

Spatial 
Completion 

Adapter

Convolution 
Adapter

Figure 3: The figure demonstrates the effects of
the Spatial Completion Adapter (SCA). It is evi-
dent that SCA effectively complements the input
by restoring features in the occluded regions.

It is important to note that the mask Mspec
might not be accessible during model train-
ing, given the absence of a dataset containing
both occluded and full segmentation ground-
truth masks of the target object. Our approach
to tackle this challenge will be presented in Sec-
tion 3.3.

Spatial Completion Adapter (SCA). In
Eq. equation 4, incorporating the spatial prior
via Mspec into the encoder underscores the need
to devise a dedicated encoder capable of ac-
commodating this guided enhancement. Hence,
we propose the Spatial Completion Adapter
(SCA) and integrate it into the baseline SAM
encoder. SCA is designed to reconstruct ob-
scured regions of target objects within the fea-
ture space, leveraging the spatial cues offered
by Mspec, thereby facilitating the completion of
occluded areas.
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Unlike conventional adapters (Li et al.; Yuan et al.; Ranftl et al.) that rely on basic convolutions
or linear transformations for cross-domain feature adaptation, the proposed SCA draws inspiration
from Gated Convolution (Yu et al.). By incorporating spatial soft gating in the feature space, SCA
enables dynamic feature selection that allows SCA to effectively utilize spatial cues from Mspec and
reconstruct occluded regions. In other words, for the completion of occluded areas, SCA will pay
more attention to the regions highlighted by Mspec, as shown in Figure 3, effectively recovering the
information in the occluded region.

Specifically, as illustrated in Fig. 2, SCA acquires element-wise gating weights G from the feature
map E ∈ RW×H×C and spatial guidance Mspec to derive spatially-informed features O. This
operation can be expressed as:

G = σ(Fgate(E,Mspec)),

O = G⊙ ϕ(Ffeat(E,Mspec)).
(5)

Here, G ∈ RW×H×C and O ∈ RW×H×C represent the learned gating weights and filtered features,
respectively. Fgate and Ffeat are transformation functions implemented using vanilla convolutional
layers. σ and ϕ denote the Sigmoid and LeakyReLU (Şenyiğit et al., 2014) activation functions,
respectively. More structural details regarding SCA are available in the supplementary material.

3.3 DATA ADAPTATION

Amodal segmentation poses a fundamental challenge that sets it apart from traditional object seg-
mentation by necessitating precise delineation of obscured object regions.

However, as the data scale is essential to achieve an open-world model, existing amodal segmenta-
tion datasets (Zhu et al.; Follmann et al.; Qi et al.) are limited in scale and scope, typically covering
only specific domains with restricted object categories, making them inadequate for open-world
applications. Moreover, manually curating a large-scale dataset with sufficient amodal masks for
occluded objects would be prohibitively time-consuming and expensive.

To address these challenges, we introduce a Target-Aware Occlusion Synthesis (TAOS) pipeline to
accomplish the data adaptation. The TAOS pipeline can efficiently convert standard segmentation
annotations available in the large-scale SA-1B dataset (Kirillov et al.) into the required formats for
amodal training, eliminating the necessity for manual labeling. Further details are outlined below.

Target-Aware Occlusion Synthesis (TAOS). Since the current extensive segmentation dataset only
labels the visible regions, within TAOS, we choose to artificially create and model occlusions that
could potentially occur among distinct objects.

To generate an image featuring an occluded object, we first randomly select an image from the
original dataset, i.e., SA-1B, containing an object within a predefined size range, designating this
object as the target. Subsequently, we randomly crop an object (or a portion thereof) from another
randomly selected image, ensuring that it is of a suitable size relative to the target object, to serve
as the occluder. Then, we overlay the occluder onto the target object at a random position and with
a random overlapping area within a specified range. Furthermore, we employ VLM to evaluate the
generated occlusion and eliminate invalid data.

Finally, we apply pixel blurring to the boundaries of the occluded regions to ensure the naturally
synthesized occlusion. Specifically, we adopt Gaussian Blur, which smooths each boundary pixel
by normalizing the pixel value according to a predefined Gaussian kernel. Formally, a boundary
pixel located at (x, y) in an image I is smoothed as follows:

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
,

I ′(i, j) =

k
2∑

x=− k
2

k
2∑

y=− k
2

G(x, y) · I(i+ x, j + y).

(6)

Here, G denotes the Gaussian kernel with size k. The overall pipeline is illustrated in Figure 4.
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Figure 4: The illustration of the proposed Target-Aware Occlusion Synthesis (TAOS) pipeline. Ini-
tially, by randomly selecting masks and superimposing them on the target object, we create an
amodal mask, a visible mask, and an occlusion mask. Furthermore, applying Gaussian blur to the
edges helps in effectively smoothing the transition between the two objects. Details can be found in
Section 3.3.

3.4 OPTIMIZATION ADAPTATION

The model architecture and training data adaptations necessitate refining SAM’s optimization pro-
cess to better suit amodal segmentation requirements. In addition to the vanilla segmentation loss
Lseg, we introduce two additional learning objectives for amodal segmentation: (1) regional consis-
tency Lreg between the visible and occluded regions of the target object, and (2) holistic topological
regularization Lhol based on adversarial learning. To this end, the overall learning objective L is
formulated as:

L = Lseg + Lreg + Lhol. (7)

Segmentation Supervision. To begin with, we first adopt Dice loss and BCE loss to optimize the
segmentation prediction:

Lseg = LDice + αLBCE, (8)
Where α is a balancing factor that is set to 10, following (Cheng et al.; Ma & Wang, 2023; Chen
et al., 2023).

Regional consistency. Then, based on the rationale that visible and occluded regions of the same
object are expected to exhibit similar characteristics like appearance and texture patterns, we in-
corporate intra-object regional consistency during training. This is achieved by minimizing the
difference between the representations of visible and occluded regions:

Evis =

∑
E⊙Mvis∑
Mvis

, Eocc =

∑
E⊙Mocc∑
Mocc

,

Lreg = 1− cos(Evis,Eocc).

(9)

Here, E ∈ RW×H×C denotes the feature map extracted by the adapted encoder F ′
a-enc(I,Mspec).

With the visible mask Mvis = 1 − Mocc and the occlusion mask Mocc, we can obtain Evis ∈ RC

and Eocc ∈ RC , indicating the representations of the visible and occluded regions, respectively. The
function cos() calculates the cosine similarity between the inputs. Therefore, by minimizing the
regional consistency loss Lreg, the visible and occluded regions are encouraged to have more similar
representations.

Holistic topological regularization. Furthermore, we introduce a topological regularization that
preserves the high-order structural relationships between the predicted mask and ground truth, en-
abling the explicit learning of shape priors through adversarial training. Specifically, we implement a
discriminator D that evaluates the topological and morphological consistency between the predicted
mask and ground truth. The optimization objective for the discriminator D is formulated as:

Lhol = min
A-SAM

max
D

(EMg∼PGT(M)[logD(Mg, I)]

+ EMp∼PA-SAM(M)[log(1−D(Mp, I))]),
(10)

where PGT and PA-SAM are the distributions of ground truth masks and predicted masks by the
proposed Amodal SAM, respectively. More details, such as the discriminator’s structure, are in the
appendix A.1.2.
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3.5 VIDEO AMODAL SEGMENTATION

The recently introduced SAM-2 model demonstrates enhanced capabilities in segmenting diverse
elements within video data, representing a substantial advancement over its predecessor. This de-
velopment enables the seamless application of our proposed adaptation strategies—encompassing
model architecture, data processing, and optimization techniques—to video segmentation tasks us-
ing the SAM-2 framework. This successful extension not only validates the generalization capability
of our proposed designs but also significantly advances the field of open-world amodal video seg-
mentation.

The structural consistency between SAM2 and SAM enables straightforward extension of the pro-
posed approach to video amodal segmentation. Akin to the approach used in the original SAM
model, we can leverage adapter tuning to refine the encoder of SAM-2 while maintaining the other
components fixed. In contrast to SAM’s Vision Transformer (ViT)-based encoder, SAM-2 integrates
Hiera (Ryali et al.) that is specifically tailored for video tasks. Hiera comprises four feature encoding
stages that enable the learning of multi-scale features. To adapt each scale of features individually,
we incorporate the proposed Spatial Completion Adapter (SCA) into each encoding stage.

Unlike image amodal segmentation, video amodal segmentation faces unique challenges due to
temporal variations in object occlusion patterns and positional changes across frames, making it in-
feasible to process video frames in Mspec using the same frame-by-frame approach as with images.
To address this issue, we leverage the spatiotemporal correlations of object positions between adja-
cent frames in videos. By using the prediction results from the previous frame as the input adapter
for Mspec in the current frame, we establish a progressive temporal approach. Specifically, we utilize
the prediction output of each frame to create a coarse region of interest (ROI) for the Mspec input of
subsequent frames. Further implementation details of the proposed video amodal segmentation can
be found in the appendix A.1.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data sources of TAOS pipeline. The SA-1B dataset comprises 11 million varied, high-resolution,
privacy-protecting images and 1.1 billion top-notch segmentation masks obtained through SAM’s
data engine. This dataset offers well-labeled, category-independent, high-quality, multi-granularity
object masks. Utilizing these labeled masks enables the acquisition of necessary amodal annotations
without human intervention via the proposed TAOS pipeline, as elaborated in Section 3.3.

Amodal segmentation benchmarks. To assess the effectiveness of our approach, we evaluate
Amodal SAM on six amodal segmentation datasets including both image and video amodal seg-
mentation benchmarks: KINS(Qi et al.), COCOA(Zhu et al.), COCOA-clsFollmann et al., MP3D-
Amodal(Zhan et al., a), FISHBOWL(Tangemann et al., 2023), and MOViD-A(Gao et al.).

• KINS, an extensive traffic amodal dataset based on KITTI(Şenyiğit et al., 2014), comprises
14,991 images across 7 categories, with 7,474 images for training and the rest for testing.

• COCOA, a subset of the COCO dataset(Lin et al.), consists of 2,476 training images and 1,223
testing images.

• COCOA-cls is a dataset of objects selected from COCOA, containing 80 categories.

• MP3D-Amodal is constructed from MatterPort3D(Chang et al., 2017), where amodal masks
are generated by projecting the 3D object structures onto the image.

• FISHBOWL is a video benchmark, captured from a publicly available WebGL demo of an
aquarium.

• MOViD-A is a video-based synthesized dataset created from MOVi dataset.

Evaluation protocols. For evaluation, we employ the mean Intersection over Union (mIoU) as the
primary metric, following (Gao et al.; Zhan et al., a). We compute both the ground-truth amodal
mask (mIoUf ) and the occluded region (mIoUo). The occluded mIoU evaluates the overall quality
of the occluded section of the target object.

7
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GT Occluded Mask VRSP C2F-Seg Ours

Figure 5: This figure presents the qualitative results of VRSP, C2F-Seg, and our method on KINS
and COCOA datasets. “GT” represents the ground truth, and the “Occluded mask” indicates the
occluded region of the target object.

Implementation details. We implement our method with PyTorch. In our experiments, we augment
the bounding box with a mask as the model input, expanding the bounding box by a factor of 0.2
in all directions, resulting in an input area 1.44 times larger than the original. The iteration counts
are set to 40k, 20k, 7k, 75k and 75k for KINS, COCOA, COCOA-cls, FISHBOWL and MOViD-A
datasets, respectively. We utilize the AdamW optimizer with a learning rate that decreases from 1e-4
to 5e-5 throughout training.

Table 1: Performance comparison on three representative amodal datasets.

METHOD
KINS COCOA COCOA-cls

mIoUf mIoUo mIoUf mIoUo mIoUf mIoUo

PCNet(Zhan et al., b) 78.02 38.14 76.91 20.34
VRSP(Xiao et al.) 80.70 47.33 78.98 22.92 79.93 26.72
AISformer(Tran et al., b) 81.53 48.54 72.69 13.75
C2F-Seg(Gao et al.) 82.22 53.60 80.28 27.71 81.71 36.70
PLUG(Liu et al., 2024) 88.10 61.42 83.23 32.88 - -

Amodal SAM 88.79 63.12 84.27 59.94 87.65 54.34

4.2 EVALUATION OF AMODAL IMAGE SEGMENTATION

Closed-domain amodal segmentation. To have a comparison in the closed-domain scenario, i.e.,
the training and testing samples are from the same dataset, we evaluate the proposed methods with
four representative works on the KINS, COCOA, and COCOA-cls datasets. This comparison is
presented in Table 1.

Open-world amodal segmentation.

To further assess the generalization capacity across different data domains, we compared our method
with three representative works, including SDAmodal(Zhan et al., a), the pioneering work address-

8
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Figure 6: This figure illustrates the viability of transitioning our method to SAM-2. More examples
and details are in the appendix A.3.2.

ing the open-world amodal segmentation task. For a fair comparison, we used the COCOA dataset
as the training set and tested on the MP3D-Amodal dataset and the KINS dataset. The proposed
method achieved better performance, especially in predicting occluded areas, as shown in Table 2.

Table 2: Performance comparison across data domains.

Method MP3D-Amodal KINS
mIoUf mIoUo mIoUf mIoUo

VRSP 58.5 21.2 59.6 10.3
C2F-Seg 61.7 27.4 62.3 12.7
SDAmodal 76.4 38.5 76.0 17.9

Amodal SAM 78.2 62.1 77.1 50.2

Table 3: Performance comparison on video amodal
segmentation datasets.

Method FISHBOWL MOViD-A
mIoUf mIoUo mIoUf mIoUo

PCNET 87.04 65.02 64.35 27.31
AISformer - - 67.72 33.65
SaVos 88.63 71.55 60.01 22.64
C2F-Seg 91.68 81.21 71.67 36.13

Amodal SAM 92.74 83.36 73.06 39.21

Table 4: Ablation study of the proposed designs.

Method COCOA COCOA-cls
mIoUf mIoUo mIoUf mIoUo

EA + SCA 73.78 33.39 82.70 33.61
EA 55.04 30.63 57.41 31.47

SCA 51.75 24.85 58.18 27.64

Qualitative evaluation. The visual com-
parison is demonstrated in Figure 5, from
which we can observe that the proposed
model shows superior amodal segmenta-
tion ability compared to the recent state-
of-the-art methods.

4.3 EVALUATION
OF AMODAL VIDEO SEGMENTATION

For comparison in the video amodal seg-
mentation, we conducted additional ex-
periments using our model for the video
amodal segmentation task. Table 3
presents a comparison between our ap-
proach and several competing methods on
the FISHBOWL and MOViD-A datasets.
Our Amodal SAM outperforms all cur-
rent state-of-the-art techniques, includ-
ing image-level and video-level baselines,
across both datasets.

4.4 ABLATION STUDY

This section shows the ablation study con-
ducted to assess the impact of our designs.
In all experiments, the model is trained on our customized amodal dataset obtained from SA-1B. In
Table 4, “EA” denotes the Encoder-focused adaptation, and “SCA” denotes the spatial completion
adapter. The 2nd row without “SCA” is implemented with the conventional adapter. The 3rd row
without “EA” refers to the results obtained by inserting the adapters in the decoder. The comparison
between the 1st and 3rd rows demonstrates that encoder-focused adaptation achieves better perfor-
mance. By comparing the results of “EA+SCA” and “EA”, we can observe that SCA yields much
better results than the standard adapter. Further ablation study can be found in Appendix A.2.

5 CONCLUDING REMARKS

In this work, we presented Amodal SAM, a framework that successfully extends SAM’s capabilities
to open-world amodal segmentation through three synergistic aspects: model, data, and optimiza-
tion. Our approach achieves state-of-the-art performance across multiple benchmarks while main-
taining zero-shot capabilities, and can be readily extended to video applications. We believe this
work can provide a solid foundation for future research in open-world visual scene understanding.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Maciej Halber, Matthias Nießner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from RGB-D data
in indoor environments. In 2017 International Conference on 3D Vision, 3DV 2017, Qingdao,
China, October 10-12, 2017, pp. 667–676. IEEE Computer Society, 2017.

Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Yan Wang, Zejian Li, Lingyun Sun, Papa
Mao, and Ying Zang. SAM fails to segment anything? - sam-adapter: Adapting SAM in under-
performed scenes: Camouflage, shadow, and more. CoRR, abs/2304.09148, 2023. doi: 10.48550/
ARXIV.2304.09148. URL https://doi.org/10.48550/arXiv.2304.09148.

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
transformer adapter for dense predictions. In ICLR 2023.

Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you
need for semantic segmentation. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), NeurIPS 2021.

Patrick Follmann, Rebecca König, Philipp Härtinger, Michael Klostermann, and Tobias Böttger.
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A APPENDIX

OVERVIEW

This is the supplementary file for our submission titled Amodal SAM: Open-World Amodal Segmen-
tation. This material supplements the main paper with the following content:

• (A.1) Implementation Details

– (A.1.1) Instruction of metrics

– (A.1.2) Structure of the discriminator

– (A.1.3) Structure of the SCA

– (A.1.4) Adaptation to SAM-2

• (A.2) Additional Experiments

– (A.2.1) Ablation study on the number of adapters

– (A.2.2) Ablation study on the optimization adaptation

– (A.2.3) Effectiveness of use points as prompt

– (A.2.4) Effectiveness of pixel blurring to TAOS pipeline

• (A.3) Additional Visual Illustrations

– (A.3.1) Image

– (A.3.2) Video

A.1 DETAILS OF OUR METHODS

A.1.1 INSTRUCTION OF METRICS

In Section 4.1 of the main paper, we introduce the evaluation metrics: mIoUfull and mIoUocc,
following (Gao et al.; Zhan et al., a). mIoUfull calculates the average Intersection over Union (IoU)
between the predicted amodal masks (representing the entire object) and the ground-truth amodal
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Visible Mask

Amodal Mask

Occlusion Mask

Occlusion Mask

Figure 7: The occlusion mask delineates the occluded region within the amodal mask. mIoUf as-
sesses the predictive accuracy of the amodal mask, whereas mIoUo evaluates the predictive accuracy
of the occlusion mask. During evaluation, even if the model’s predicted mask solely includes visible
regions, mIoUf might surpass 50, whereas mIoUo could remain at 0.

masks. In contrast, mIoUocc measures the average IoU between the predicted occlusion masks
(representing the occluded regions) and the ground-truth occlusion masks. It can be expressed as:

Iocc = (Mpred −Mvisible) & (Mgt −Mvisible)

Uocc = (Mpred −Mvisible) | (Mgt −Mvisible)

mIoUocc =
1

n

n∑
i=1

Iocc/Uocc

(11)

Where Mpred denotes the predicted mask, Mgt represents the ground truth mask, and Mvisible is
the mask of the visible region. Figure 7 demonstrates the difference between amodal masks and
occlusion masks. The mIoUocc metric specifically assesses the model’s performance in predicting
occluded regions, which is inherently more challenging than predicting visible regions in amodal
segmentation. Therefore, mIoUocc is a crucial metric for evaluating model performance in this
scenario.

A.1.2 STRUCTURE OF THE DISCRIMINATOR

To effectively extend the capabilities of SAM from visible region segmentation to amodal segmen-
tation while preserving its powerful zero-shot functionality, we propose Optimization Adaptation,
as detailed in Section 3.4 of the main paper. This approach includes holistic topology regulariza-
tion, which is based on adversarial learning and necessitates the employment of a discriminator for
implementation.

Our Target-Aware Occlusion Synthesis (TAOS) technique enables the generation of occluded im-
ages while retaining the original unoccluded image. In the training of the open-domain model, the
discriminators receive the original image and its corresponding mask as input. Specifically, the im-
ages and masks are concatenated, and their features are extracted using a multilayer network. These
features undergo progressive downsampling, and the alignment between the predicted masks and the
ground truth in terms of topology and morphology is assessed. To ensure robust consistency mea-
surements, a sigmoid activation function is applied to confine the output values within a probability
range of 0 to 1. During closed-domain training, where unobstructed images are not available, only
the mask is utilized as input to the discriminator. In both training phases, the output from Amodal
SAM serves as negative samples, while the ground truth acts as positive samples. This approach
aims to align the distribution of the model-predicted mask with the ground truth, facilitating the
learning of shape priors for achieving topological regularization as illustrated in Figure 8.
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Figure 8: The discriminator uses the predictions from Amodal SAM as negative samples and the
ground truth as positive samples. This alignment helps the model-predicted mask distribution closely
match the ground truth, facilitating the learning of shape priors for achieving topological regulariza-
tion.
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Figure 9: The Spatial Completion Adapter combines the image features and Mspec by concatenating
them as input, and then iterates the feature selection and completion process three times.

A.1.3 STRUCTURE OF THE SCA

In the main paper, we introduce the Spatial Completion Adapter (SCA), which utilizes Gated Con-
volution. This approach incorporates dynamic feature selection to effectively leverage spatial infor-
mation from Mspec, enabling the reconstruction of occluded regions through spatial soft gating in the
feature space. Specifically, we concatenate the image features output by the preceding ViT Block
with masks that have been downsampled to the same spatial resolution. Two distinct convolutional
operations are then employed to extract features and perform soft gating, respectively. A sigmoid
activation function is applied for soft gating to constrain the value range to [0,1], effectively approx-
imating a switching mechanism to enhance feature selection. Concurrently, a LeakyReLU activation
function is applied to the extracted features. The outputs of these two processes are subsequently
multiplied to generate the final result as illustrated in Figure. This feature-completion operation
is executed three times within a Spatial Completion Adapter (SCA). SCAs are integrated into the
shallow, middle, and deep layers of the image encoder. In the additional experiment detailed in
Section A.2.1, we will demonstrate the efficacy of incorporating three SCAs.

A.1.4 ADAPTATION TO SAM-2

SAM-2 (Segment Anything Model 2) developed by Meta AI, is an image and video segmentation
model. This model represents a significant advancement over its predecessor, SAM, as it excels in
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segmenting diverse objects in both images and videos. SAM-2 empowers users to define a target
object in any video frame or image using a point, box, or mask prompt. Subsequently, the model
predicts the spatio-temporal segmentation mask for the target object across the entire video. Users
can iteratively provide prompts on multiple frames for interactive refinement. Similar to SAM,
SAM-2 comprises three core components:

• an image encoder, which extracts features from the image or each frame of the video.
• a prompt encoder, which processes user-provided prompts, such as points, boxes, or masks, to

generate embeddings for target localization.
• a masking decoder, which integrates image features, prompt embeddings to produce a segmen-

tation mask for the image or current frame.

In addition to these components, SAM-2 introduces specialized memory modules for video process-
ing:

• a memory encoder, which fuses predicted masks with image encoder features to generate mem-
ory embeddings across frames.

• a memory attention layer, which employs cross-attention to link the current frame features with
memory information, facilitating the integration of spatio-temporal context.

To adapt our method for SAM-2 and achieve amodal video segmentation, we follow the adaptation
strategy applied to Amodal SAM. Specifically, we continue to use the Encoder-focused adapta-
tion approach to incorporate our Spatial Completion Adapter(SCA) into the image encoder. Unlike
SAM, SAM-2’s image encoder employs a Hiera-based structure, which generates image features
at four different spatial scales during the encoding process. The early-layer features, with larger
spatial sizes, are used in the mask decoder to produce high-quality masks as described in, while
the late-layer features, with smaller spatial sizes, are used to generate the final image embedding.
Consequently, all four spatial-scale features contribute to the final mask generation.

To ensure that the spatial information across all four scales is fully enhanced, we integrate an SCA
among the encoder blocks corresponding to each spatial scale. This allows us to spatially complete
the image features at all four spatial scales, optimizing the segmentation process comprehensively
as illustrated in Figure 10. Following SAM-2’s original training methodology, we utilized both
image and video datasets during the training process. Additionally, we incorporated the optimization
strategies from Amodal SAM, including segmentation supervision, region consistency and holistic
topological regularization, to enhance the training process.
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Figure 10: The image encoder of SAM-2 consists of four stages with distinct spatial scales. We
incorporate an SCA at the outset of each stage to ensure that every feature output from the image
encoder undergoes spatial completion.

A.2 ADDITIONAL EXPERIMENTS

This section shows the additional experiments. In the first two experiments, our models were trained
on the dataset’s training set and evaluated on its corresponding testing set or validation set.

A.2.1 ABLATION STUDY ON THE NUMBER OF ADAPTERS

As detailed in Section A.1.3, we integrated three SCAs into the image encoder. To assess the impact
of varying the number of SCAs on the performance of Amodal SAM, we conducted experiments us-
ing different numbers of SCAs on the KINS and COCOA-cls datasets, with the results summarized
in Table 5. The results demonstrate that our method of integrating SCAs achieves effective perfor-
mance while minimally increasing the model’s parameters, thereby maintaining efficient inference
speed.

Table 5: Ablation study on the number of adapters

Method KINS COCOA-cls
mIoUf mIoUo mIoUfu mIoUo

one adapter 80.05 53.92 79.94 29.58
two adapter 81.26 56.34 80.74 32.97
full model 83.43 59.27 81.42 35.79

A.2.2 ABLATION STUDY ON THE OPTIMIZATION ADAPTATION

In our optimization adaptation, we formulate a composite learning objective L, encompassing not
only the conventional Lseg but also regional consistency (Lreg) and holistic topological regulariza-
tion (Lhol). The effectiveness of these newly introduced learning objectives, i.e., Lreg and Lhol, can
be validated through the results presented in Table 6.
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Table 6: Performance under different training objectives.

Method KINS TAOS Dataset
Lhol Lreg mIoUf mIoUo mIoUf mIoUo

✓ ✓ 88.79 63.12 90.85 54.64
× ✓ 87.73 62.75 89.04 54.39
✓ × 88.07 61.94 89.97 53.52
× × 87.02 60.73 88.45 53.41

A.2.3 EFFECTIVENESS OF USE POINTS AS PROMPT

SAM features a versatile prompt encoder capable of handling various types of input prompts, such
as points, boxes, and text. In the previous experiments, we used boxes as the prompt input. To
evaluate whether Amodal SAM can also perform amodal segmentation with points as prompts, we
designed this experiment. For comparison with the prior use of boxes, we randomly sampled two
points within the visible region of the target object as the prompt input during both training and
inference.

The experiments were conducted on the KINS and COCOA dataset, and the results are presented in
Table 7. Experimental results show that amodal sam still achieves good performance using points as
the prompt input. For the COCOA dataset, where object occlusion scenarios are more diverse and
complex, using boxes as prompts may introduce ambiguity. In contrast, using points as prompts can
mitigate this issue and even yield better performance.

Table 7: Performance comparison of different prompts.

Prompt KINS COCOA
mIoUf mIoUo mIoUf mIoUo

Box 83.43 59.27 82.54 51.66
Points 82.74 58.52 82.76 53.28

A.2.4 EFFECTIVENESS OF PIXEL BLURRING TO TAOS PIPELINE

As detailed in Section 3.3 of the main paper, at the final stage of the TAOS-pipeline, pixel blurring
is applied to the synthesized occlusion. Gaussian blur is applied after synthesizing occlusions to
smooth the boundaries between the target and the occluded objects. This aims to prevent the model
from overly focusing on jagged edges during training and instead encourage it to focus on the shapes
of the objects. To validate the effectiveness of blurring on the model’s generalization capability, we
conducted an ablation experiment. In this experiment, we constructed two identical datasets except
for the presence or absence of blurring. The model was trained separately on these two datasets and
then tested on the COCOA-cls dataset with the results summarized in Table 8.

Table 8: Ablation study on the pixel blurring.

Pixel Blurring KINS COCOA-cls
mIoUf mIoUo mIoUf mIoUo

✓ 73.79 43.72 82.13 33.56
72.85 42.37 81.26 31.77
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A.3 ADDITIONAL VISUAL ILLUSTRATIONS

A.3.1 IMAGE

Origin Image Occluded Image Amodal Mask Occluder Mask

Figure 11: Examples of the datasets we constructed. For each example showing the original image,
the image after the occlusion was added, the amodal mask, and the mask of the occluder respectively
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Input Image GT Mask Predict Mask

Figure 12: More qualitative results of Amodal SAM. ”GT” represents the ground truth and the
”Predict Mask” is the result of amodal sam prediction.
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A.3.2 VIDEO

Origin 
Image

Occluded 
Image

Predict 
Mask

Origin 
Image

Occluded 
Image

Predict 
Mask

Figure 13: Example of Migrating Adaptation to SAM-2
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