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Abstract

Neural theorem proving models often struggle
with hard problems, in part due to the lack
of training examples. We introduce a novel
approach to automated conjecturing that increases
the amount of training examples by generating
conjectures specifically tailored to a target set of
difficult problems. Our method is an evolutionary
algorithm in which a conjecturer iteratively
proposes new conjectures, guided by feedback on
how much they help a prover make progress on
the target set. Conjectures that most effectively
enhance the prover’s performance become seeds
for the next iteration. We demonstrate that this
approach significantly enhances the prover’s
performance on hard problems, with preliminary
results showing an increase in proof success
rate from 8% to 29% on a target set of complex
number problems after only five iterations.

1. Introduction

The past few years have seen rapid progress in neural the-
orem proving models, illustrated by the increasing success
of the state-of-the-art systems on the miniF2F benchmark
(Zheng et al., 2022), which went from 36.6% to 88.9% (Polu
et al., 2023; Ren et al., 2025), as well as by AlphaProof’s
performance at the 2024 IMO (AlphaProof and AlphaGeom-
etry teams, 2024). These advances rely on reinforcement
learning over large corpora of formal problems, often con-
structed via autoformalization (Wang et al., 2018; Szegedy,
2020; Wu et al., 2022), which converts informal problems
into formal ones. For instance, AlphaProof (AlphaProof
and AlphaGeometry teams, 2024) was trained on 100M
autoformalized problems. While autoformalization enables
the expansion of formal mathematical data, it remains inher-
ently constrained by the availability and scope of existing
human-written mathematics. In advanced mathematics,
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Figure 1. One iteration of our evolutionary algorithm: (1) The
Conjecturer generates one set of conjectures per seed theorem.
(2) Each set is used to train a separate instance of the base Prover
with reinforcement learning. (3) Each Prover instance is evaluated
on a fixed target set of theorems; scores are assigned based on
performance gains. (4) A maximum coverage algorithm selects the
highest-scoring conjectures across all sets. (5) These conjectures
become the new seeds, and the base Prover is updated with them.

human-written data is still sparse relative to the complexity
and breadth of the field, which poses an important limitation
for improving theorem proving capabilities beyond
olympiad-style and undergraduate level problems. Auto-
mated conjecturing offers a promising path to overcome
these limitations by generating, independently of human-
written data, new formal statements for training provers.

Unlike prior work resulting in the generation of difficult
(Poesia et al., 2024; Dong & Ma, 2025) or human-like
conjectures (Wang & Deng, 2020), our method takes an
outcome-driven approach by conditioning conjecture selec-
tion on a target set of theorems. Our goal is to produce
conjectures that increase in complexity and also align more
closely with the target theorems, ultimately improving the
neural prover’s performance on this specific target set. Fig-
ure 1 illustrates our approach. Our method enables the
prover model to solve problems it could not initially prove,
using synthetic conjectures tailored to the specific target
distribution. The initial results demonstrate an improvement
in the prover’s success rate from 8% to 29% in just five
iterations.
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2. Method

Similar to prior work by Poesia et al. (2024); Dong & Ma
(2025), our method is based on an evolutionary algorithm.
At each iteration, conjectures are selected based on the
Prover’s performance on a target set.

2.1. Evolutionary Algorithm

The training procedure interleaves conjecture generation,
reinforcement learning of the Prover model, and evaluation.
The goal is to progressively generate useful conjectures that
help the Prover solve a fixed set of hard problems. This
process is illustrated in Figure 1.

The evolutionary algorithm begins with four components:
a base Prover model, a Conjecturer model, an initial set of
seed problems that the Prover can already solve, and a target
set of hard problems that the Prover currently cannot solve.

Each iteration of the training loop goes as follows:

1. Conjecture generation: The Conjecturer generates
one set of conjectures for each seed problem.

2. Reinforcement learning on conjectures: A separate
Prover instance is trained on each set of generated
conjectures, using the GRPO algorithm (Zhihong Shao,
2024).

3. Evaluation on the target set: Each of the resulting
Prover instances is evaluated on the target set by gener-
ating k proof attempts per problem, and recording the
problem-wise performance of each instance (pass@Fk
and number of proofs found out of & attempts).

4. Conjecture selection: The conjectures associated with
the highest-performing Prover instances are selected,
prioritising those that improve performance on previ-
ously unsolved problems over raw performance. That
is, weaker sets of conjectures that allowed the Prover to
solve new target problems are preferred over stronger
ones that only reinforce already-solved cases. The
selection is constrained such that the total number of
conjectures that led to successful updates in step 3 does
not exceed the number of seeds for the next iteration.
These selected conjectures become the new seeds.

5. Base Prover update: The selected conjectures are
used to further train the base Prover with GRPO. These
conjectures also become the seeds for the next iteration.
This updated model becomes the new base Prover, and
the loop restarts from step 1.

Full details on the training of the Prover and Conjecturer,
as well as the selection of seeds and the target set, are pro-
vided in Appendix A. Examples of selected conjectures are
provided in Appendix D.

3. Experiments

We conducted experiments to assess the effectiveness of our
method. Implementation details for the base Prover, the
Conjecturer, and the seed and target problems are provided
in Appendix B.

Table 1 reports the results after running five iterations of the
evolutionary loop.

Iteration | Pass@16 on target set | Total proofs
0 (baseline) 8.2% 5
1 18.4% 19
2 20.5% 22
3 20.5% 41
4 20.5% 36
5 28.6% 46

Table 1. Performance of the Prover on the target set across evo-
lutionary iterations. Iteration O corresponds to the base Prover
obtained after supervised fine-tuning. The table reports: (1) the
number of target problems (out of 49) for which at least one proof
was found out of 16 attempts, (2) the corresponding percentage,
and (3) the total number of successful proof attempts across all 49
problems, each attempted 16 times. Due to evaluation randomness,
we observed that the base Prover was able to solve 4 distinct prob-
lems (8.2%) with 5 total successful attempts, which accounts for
the non-zero baseline shown in the table.

4. Conclusion and Future Work

We introduced a novel approach to automated conjecturing
designed to improve the performance of a Prover model on
a specific target set of problems. Our method generates con-
jectures conditioned on seeds, uses reinforcement learning
and evaluation of the Prover to score them, and selects those
that most effectively enhance performance on the target set.
Preliminary results show that this approach significantly im-
proves the Prover’s performance on a target set of complex
number problems after only five iterations.

Several directions for future work are promising. The
method could be scaled further by increasing the number
of conjectures, the number of seeds, or using larger mod-
els. Selection of seeds and target problems could be made
automatic by embedding problems with the Conjecturer or
Prover model and applying clustering techniques, selecting
the target set as a narrow distribution to enable learning
along a coherent path rather than multiple unrelated trajec-
tories, and selecting the seeds as representatives of diverse
clusters to ensure broad coverage of the distribution of easy
problems. We also plan to test the generality of our method
by applying it to diverse target sets. We envision that our
method could be combined with the test-time reinforcement
learning approach from AlphaProof and AlphaGeometry
teams (2024) by enhancing a single difficult theorem into a
larger target set, which could then be used by our method.
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A. Method Details
A.1. Supervised Training of the Prover Model

The base Prover is initialised by training a large language model with supervised learning on a large dataset of formal proofs.
Each training example consists of a formal statement paired with its corresponding formal proof. Following Wang et al.
(2025); Ren et al. (2025), the model is trained to generate the full proof from the statement, rather than predicting the next
tactic step-by-step.

A.2. Supervised Training of the Conjecturer Model

A central contribution of our method is a novel supervised training strategy for the Conjecturer model, by simplifying
and generalising the approach introduced by Dong & Ma (2025). The Conjecturer is trained to generate new conjectures
conditioned only on a formal statement and its proof, without requiring additional prompts or auxiliary lemmas.

The objective is to produce conjectures whose proofs are close, in topic and difficulty, to the proof of the input. This ensures
that the evolutionary process proceeds through smooth transitions: if the Prover can solve the input, it should also be able
to solve the generated conjecture. For this to hold, similarity must be defined from the Prover’s perspective. The Prover
model’s internal embeddings of proofs are used to identify similar problems in its training data, and a dataset of such pairs is
constructed for training the Conjecturer. This allows the Conjecturer to learn how to generate conjectures that lie close to
the input, both in terms of difficulty and topic, from the Prover’s perspective.

To construct the training dataset, formal proofs are embedded using the last hidden states of the Prover model. For each
(statement, proof) pair, a set of neighbours above a given cosine similarity threshold is retrieved. The number of neighbours
is capped to ensure diversity, resulting in training pairs of the form (statement1+proofl, statement2), where the proof of
statement?2 is similar to proofl.

A.3. Selection of Seeds and Target Set

An important aspect of our method is the choice of the target set and the initial seed problems. For the optimisation signal to
be strong, the target set must be large enough to provide a stable learning signal, and narrow enough in distribution so that
the system can progressively improve along a coherent path. In contrast, a wide target distribution would require learning
multiple unrelated trajectories, making training less efficient. The seed problems, which must already be solvable by the
Prover, should cover a broad range of topics to serve as good representatives of the easy problem distributions.

The selection of seed and target problems depends on the Prover’s success rate across different problems. The target set
must contain difficult problems from a narrow distribution to enable the system to improve along a coherent path, rather
than learning multiple unrelated trajectories, while still being large enough to provide a stable optimisation signal. It is
constructed from problems that are consistently unsolved by the Prover. On the other hand, the seed set consists of problems
that the Prover can already solve reliably and that cover a broad range of topics, to serve as good representatives of the easy
problem distribution.

To make this process more principled and scalable, future work could use clustering techniques over problem embeddings
derived from the Prover or Conjecturer. The seed set could consist of representatives from diverse clusters, and the target
set of a tight cluster around a specific area of interest. This strategy could also be used to tackle a single hard problem by
generating multiple variations to form a synthetic target set, complementing techniques such as test-time reinforcement
learning, explored by AlphaProof and AlphaGeometry teams (2024).

B. Implementation Details
B.1. Supervised Training of the Prover

We initialise the base Prover by fine-tuning Qwen2.5-Math-1.5B (Yang et al., 2024) on a dataset of 130,000 formalized
proofs of competition-style problems, provided by Numina. Each example consists of a formal statement paired with a
formal proof. We train the model for one epoch, using a batch size of 8, a learning rate of 5e-5, and a cosine learning rate
scheduler.
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B.2. Supervised Training of the Conjecturer

To build the training dataset, we embed the 130,000 proofs from the Prover’s training dataset using the last hidden states of
the Prover model. We then use the Faiss library (Johnson et al., 2019) to efficiently retrieve similar embeddings: for each
(statement, proof) pair, we select all other pairs with at least 0.97 cosine similarity. This threshold ensures that all the pairs
are meaningfully similar, while also guaranteeing broad coverage: 93% of the original samples had at least one neighbour
above 0.97 cosine similarity, meaning that most samples appear in the resulting dataset at least once. We cap the number of
retrieved neighbours to five per sample, resulting in a total of 120,000 (statement1+proof1, statement2) pairs, where the
proof of statement?2 is similar to proofl.

To train the Conjecturer, we fine-tune Qwen2.5-Math-1.5B (Yang et al., 2024) on this dataset for one epoch, with a batch
size of 8, a learning rate of Se-5 and a cosine learning rate scheduler.

B.3. Selection of Seeds and Target Set

To select the initial seeds and the target set, we first evaluate the base Prover on a held-out test set of 2,000 problems,
generating 16 proof attempts per problem. In our experiments, we use the Kimina Lean Server (Dos Santos et al., 2025).
Among these 2,000 problems, 54% are completely unsolved by the Prover, while 46% are solved at least once. Only 15% of
the problems are solved reliably at least 8 times out of 16 attempts.

As explained in Section A.3, the target set must contain difficult problems from a narrow distribution to enable the system to
improve along a coherent path, rather than learning multiple unrelated trajectories, while still being large enough to provide
a stable optimisation signal. After manual inspection of the 2,000 problems, we identified unsolved problems about complex
numbers as satisfying both criteria: they form a sufficiently narrow domain, and there are enough of them to ensure a smooth
signal. The target set is therefore constructed by selecting all complex number problems for which the Prover failed all 16
attempts, resulting in a total of 49 problems.

Since the seed problems must already be solvable by the Prover and cover a broad range of topics to serve as good
representatives of the easy problem distribution, we randomly select 13 problems that the Prover solves reliably, at least
8 times out of 16. To check whether the system preferentially selects conjectures from domain-relevant seeds, we also
include three complex number problems meeting the same criterion. This gives us an initial pool of 16 seeds to bootstrap the
evolutionary loop.

Examples of selected seed and target problems are provided in Appendices C.1 and C.2.

C. Examples of Seed and Target Problems
C.1. Examples of Seed Problems

Example 1
Lean (formal statement and proof):

theorem algebra_488298 (f : R - R) (hf : £ = fun x => 3 7~ x + x - 3)
(£ 0) » (£ 1) <0 := by
rw [hf]
norm_num

Corresponding natural language statement:

Let f : R — R defined by f(z) =3 +z — 3.

Show that:
f(0)f(1) <0
Example 2
Lean (formal statement and proof):
theorem algebra_339741 (x : R) (h : Real.sin x = -2 / 3)
Real.cos (2 » x) =1 / 9 := by
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rw [Real.cos_two_mul]
rw [4 sub_eq zero]
nlinarith [Real.sin_sqg_add_cos_sqgq x, sg_nonneg (Real.cos x)]

Corresponding natural language statement:
Let z € R such that sin(z) = —2.
Show that:

1
cos(2x) = 3

Example 3
Lean (formal statement and proof):

theorem algebra_149850 (x vy : N) (hg : x > 0) (h1 : y > 0)
(hg : x + 10 = vy) (hg : v + 10 = 2 x x) :
x = 20 := by
omega

Corresponding natural language statement:
Letz,y € N,withz > 0andy > 0.

Suppose that  + 10 = y and y + 10 = 2z.

Show that:
x =20
Example 4
Lean (formal statement and proof):
theorem algebra_426547 {z1 z2 : C} (hz1 : z1 =1 + 2 » .I) (hzg : 22 =1 — .I)
(z1 * z2).re = 3 := by
rw [hzi, hza]
ring_nf

norm_num

Corresponding natural language statement:
Let 21,20 € Cdefinedby 21 =14 2iand zo =1 — 1.
Show that R(z122) = 3

C.2. Examples of Target Problems

Example 1
Lean (formal statement):

theorem algebra_388276 (a : R) (z : C) (hz : z =1+ a * .I) (h : Complex.abs z < 2)
—Real.sgrt 3 < a AN a < Real.sqgrt 3 := by

Corresponding natural language statement: Let a € R and z € C defined by z = 1 + ai.
Suppose that |z| < 2.
Show that:

—V3<a<V3

6
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Example 2
Lean (formal statement):

theorem algebra_341547 {z : C} (hz : z = (Complex.I "~ 2016) / (3 + 2 » Complex.I))
z.re > 0 A z.im < 0 :=

412016
3+24°

Corresponding natural language statement: Let z € C defined by z =

Show that the real part of z is positive and the imaginary part is negative.

Example 3
Lean (formal statement):

theorem algebra_424944 (a : R) (ha : a # 0)
(3 b : R, (a + Complex.I) / (1 - Complex.I) = b x Complex.I) <> a =1 :=

Corresponding natural language statement: Let a € R, a # 0.

Show that:

<366R,61L—H:bi) — a=1

—1

D. Examples of Selected Conjectures

Example 1: Selected Conjecture from Iteration 1
Lean (formal statement):

theorem algebra_478093 {a b : R} (ha : a + Complex.I * (-b) =1 / (1 - Complex.I))
a~ 2+b~2=1/2:=

Corresponding natural language statement:

Leta,b € R such thata — ib = %_l
Show that:

1

2 2
b° = -
a” + 5

Example 2: Selected Conjecture from Iteration 3
Lean (formal statement):

theorem algebra_429360 {x y : R} (hx : x # 0) (hy : y # 0)
Complex.I"2 x x — Real.sqgrt 2 x Complex.I + vy =0 — x

Corresponding natural language statement:
Letx,y € Rwith x # 0 and y # 0.
Show that if i%z — /2 + y = 0, then:

< |8

Example 3: Selected Conjecture from Iteration 5
Lean (formal statement):

theorem algebra_491667 {z : C} (hz : z = Complex.I / (-2 + Complex.I))
Complex.abs z = Real.sqrt 5 / 5 :=
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Corresponding natural language statement:

_ 7
Let z € C such that z = -

Show that:



