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Abstract

Probabilistic models often use neural networks to control their predictive uncer-1

tainty. However, when making out-of-distribution (OOD) predictions, the often-2

uncontrollable extrapolation properties of neural networks yield poor uncertainty3

predictions. Such models then don’t know what they don’t know, which directly lim-4

its their robustness w.r.t unexpected inputs. To counter this, we propose to explicitly5

train the uncertainty predictor where we are not given data to make it reliable. As6

one cannot train without data, we provide mechanisms for generating pseudo-inputs7

in informative low-density regions of the input space, and show how to leverage8

these in a practical Bayesian framework that casts a prior distribution over the9

model uncertainty. With a holistic evaluation, we demonstrate that this yields10

robust and interpretable predictions of uncertainty while retaining state-of-the-art11

performance on diverse tasks such as regression and generative modeling.12

1 Introduction13

Neural networks generally extrapolate arbitrarily [Xu et al., 2020], and high quality predictions are14

limited to regions of the input space where the networks have been trained. This is to be expected and15

is only problematic if the associated predictions are not accompanied with a well-calibrated measure16

of uncertainty. If a neural network is used for estimating such a measure of uncertainty, we, however,17

quickly run into trouble, as the reported uncertainty then exhibits arbitrary behaviour in regions with18

no training data. Alarmingly, these are exactly the regions where evaluating the uncertainty is most19

important to the safe deployment of machine learning models in real world applications [Amodei20

et al., 2016]. One potential solution is to avoid using directly the output of neural networks for21

predicting uncertainty, and let it emerge from another mechanism, e.g. an ensemble [Hansen and22

Salamon, 1990, Lakshminarayanan et al., 2017] or some notion of Monte Carlo [MacKay, 1992, Gal23

and Ghahramani, 2016]. Here we explore the alternative view that the networks should simply be24

trained where there is no data.25

Figure 1: Pseudo-inputs are gener-
ated out of distribution, and there we
train towards a prior (grey density).

But can we train without data? The Bayesian formalism often26

does so implicitly: most conjugate priors can be seen as ad-27

ditional training data [Bishop, 2006], e.g. in Gaussian models,28

a mean prior N (µ0,�2
0) can be realised by additional training29

data of µ0 with �2
0 setting the amount of observations. Placing30

a prior over the output of a neural network can, thus, be inter-31

preted as additional training data. Unfortunately, this view is32

not practical as it implies additional data for all possible inputs33

to a neural network, resulting in infinite data. Our approach34

is simple: we locate regions of low data density in input space35

and implicitly place observations here in output space by min-36
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imizing an appropriate KL divergence towards a prior (see Fig. 1). The result is a remarkably simple37

algorithm that drastically improves uncertainty estimates in both regression and generative modeling.38

1.1 Background and related work39

The predictive performance of machine learning models has drastically increased in the past decade,40

but the quality of the accompanying uncertainties have not followed. Uncertainties are reported as be-41

ing miscalibrated [Guo et al., 2017] and overconfident [Lakshminarayanan et al., 2017, Hendrycks and42

Gimpel, 2016]. Some models even see higher likelihoods of out-of-distribution than in-distribution43

data [Nalisnick et al., 2019, Nguyen et al., 2015, Louizos and Welling, 2017].44

Neural networks commonly output distributions which gives a notion of predictive uncertainty. Clas-45

sifiers trained with soft-max is an ever-present example of such. These predictions are generally ob-46

served to be overconfident [Lakshminarayanan et al., 2017, Hendrycks and Gimpel, 2016] and to carry47

little meaning outside the support of the training data [Skafte et al., 2019, Lee et al., 2017]. The latter48

is an artifact of the hard-to-control extrapolation that comes with neural networks [Xu et al., 2021].49

In general, since extrapolation is difficult to control, uncertainties predicted by neural networks will50

exhibit seemingly arbitrary behavior outside the support of the data, yielding untrustworthy results.51

Mean-variance networks for regression [Nix and Weigend, 1994] model the conditional target52

density as a normal p(y|x) = N
�
y|µ(x),�(x)2

�
with mean and variance predicted by neural53

networks. The reported predictive uncertainty is generally accurate in regions near training data,54

but otherwise unreliable [Hauberg, 2019]. To counter this, Arvanitidis et al. [2017] and Skafte et al.55

[2019] proposed variance network architectures to enforce a specified extrapolation value, but these56

heuristics tend to be difficult to tune, and lack principle. Mean-variance networks have seen a recent57

uptake within generative modeling, where they are applied as an encoder distribution in variational58

autoencders (VAEs) [Kingma and Welling, 2013, Rezende et al., 2014].59

Which uncertainty? A commonly called-upon dichotomy [Der Kiureghian and Ditlevsen, 2009]60

is that the uncertainty of a model’s prediction can be decomposed into the uncertainty of the model61

(epistemic) and of the data (aleatoric). The epistemic uncertainty can be lowered by increasing62

the amount of data, simplifying the model or otherwise reducing the complexity of the learning63

problem. The aleatoric uncertainty, on the other hand, is a property of the world, and cannot be64

changed; no prediction should ever be more certain than the uncertainty displayed by the associated65

data. Depending on the task at hand, we may be interested in different types of uncertainty: In active66

learning [Settles, 2012] and Bayesian optimization [Močkus, 1975] we request data for which we67

have high epistemic, but low aleatoric uncertainty to ensure maximal information gain; while for68

classification and regression we often just want to minimize the overall predictive uncertainty.69

Bayesian methods are often used to quantify uncertainty due to their explicit formulation of70

uncertainty. Gaussian processes (GPs) [Rasmussen and Williams, 2005] provide an elegant71

framework that provide state-of-the-art uncertainty estimates, but, alas, the corresponding mean72

predictions are often not up to the standards of neural networks. GPs are tightly linked to Bayesian73

neural networks (BNNs) [MacKay, 1992] that place a prior over the network weights and seek the74

corresponding posterior. Despite advances in variational approximations [Graves, 2011, Kingma75

and Welling, 2013, Blundell et al., 2015], expectation propagation [Hernández-Lobato and Adams,76

2015, Hasenclever et al., 2017], or Monte Carlo methods [Welling and Teh, 2011, Springenberg et al.,77

2016], training BNNs remains difficult. Furthermore, the predictive uncertainty seems dependent78

on the degree of approximation and is thus controlled by the available compute power.79

Ensemble methods have long been used to produce aggregated predictions with uncertainty estimates80

[Hansen and Salamon, 1990, Breiman, 1996]. Deep ensembles [Lakshminarayanan et al., 2017],81

a collection of differently initialized networks trained on the same data, are generally reported as82

state-of-the-art for uncertainty quantification in deep models [Thagaard et al., 2020, Ovadia et al.,83

2019]. As the models in the ensemble are trained on overlapping data, they are correlated, which84

influence the ensemble uncertainty in ways that remains unclear [Breiman, 2001]. Monte-Carlo85

dropout [Gal and Ghahramani, 2016] casts dropout training [Srivastava et al., 2014] as an ensemble86

model. It is computationally cheap, but experiments [Ovadia et al., 2019, Skafte et al., 2019] show87

that the increased correlation of ensemble elements amplifies the method’s overconfidence.88

Robustness to distribution shift is paramount to a well-behaved uncertainty predictor [Ovadia89

et al., 2019] and must be evaluated accordingly. For out-of-distribution detection, Liang et al.90
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[2017] proposes a pre-processing perturbation step inspired by adversarial attacks [Goodfellow et al.,91

2014a] that helps the model distinguish in-distribution and out-of-distribution inputs. Hendrycks92

et al. [2018] used a Generative Adversarial Network (GAN) [Goodfellow et al., 2014b] to generate93

out-of-distribution pseudo-inputs whose inclusion in the training under an additional regularizing94

term in the loss function, called outlier exposure, enhances the predictor’s ability to discriminate95

out-of-distribution inputs [Lee et al., 2017, Dai et al., 2017].96

1.2 Robust uncertainty estimates97

Our work is strongly inspired by the critical assessment of the issues that undermine variance estima-98

tion ran by Skafte et al. [2019] and by the proposal of Stirn and Knowles [2020] which we detail here.99

Notation. Let the observed variable x 2 X follow the data generating distribution pdata(x), only100

known through the training dataset of N i.i.d samples Dtrain = {xn}Nn=1. In the case of supervised101

learning, the observed variables x = (x, y), with x 2 Rd being the input and y 2 Rd0
the target102

for the model, follow the joint decomposition pdata(x, y) = pdata(y|x)pdata(x). The proposed103

probabilistic model p✓(x), whose weights are indicated by ✓, aims to accurately emulate pdata(x).104

Practical problems in variance estimation. Gaussian likelihoods in the form of p✓(x) =105

N
�
x|µ✓(x),�✓(x)2

�
are widely adopted to model continuous covariates. Real world data cannot be106

expected to be homoscedastic, i.e constant throughout input space, and thus the predictive uncertainty,107

�✓(x), most often uses neural networks to map continuously the observed x onto the parameter space.108

Beyond the well-known unreliable extrapolation properties of neural networks, this parametrisation109

of predictive uncertainty is hamstringed by serious defects. Firstly, the predictive variance scales the110

learning rates of the mean and variance updates by 1/2�✓(x)2, resulting in a bias for data regions with111

low uncertainty [Nix and Weigend, 1994]. Secondly, the maximisation of the modeled likelihood is112

particularly sensitive to scarce data, as local gradient updates for the variance point towards the then113

undefined maximum likelihood estimate (MLE) [Skafte et al., 2019]. Lastly, and more worryingly, such114

model’s likelihood is ill-defined [Mattei and Frellsen, 2018a], as it can arbitrarily and without bound115

increase when the variance estimates collapse towards a detrimental 0. Overall, the naive maximisa-116

tion of model likelihood seems insufficient to generate robust and well-behaved uncertainty estimates.117

Student-t likelihood. The Bayesian formalism, by imposing to learn a parametrised distribution118

over the predictive uncertainty, offers an attractive view to approaching the problem of uncertainty119

estimation. Skafte et al. [2019] notably adopts a Gamma distributed precision, 1/�2 = � ⇠ �(↵,�),120

as the conjugate of an unknown precision for a Gaussian likelihood, to yield a non-standard Student-t121

distributed marginal likelihood1. It is known to offer a more robust likelihood, especially in the scarce122

data regime [Gelman et al., 2013],123

p✓(x) =
Z

N (x|µ,�)�(�|↵,�)d� = T
⇣

x|⌫ = 2↵, µ̂ = µ, �̂ =
p
�/↵

⌘
. (1)

Interestingly, its variance Var[x] = �/(↵� 1) = (�/↵) · (↵/(↵� 1)) can be explicitly decomposed124

to an aleatoric term �/↵ and an epistemic term1 ↵/(↵ � 1) [Jørgensen, 2020, p16], and offers a125

direct verification of whether a model knows what it knows.126

Variational variance. Stirn and Knowles [2020] assumes a latent model precision �. This is127

generated by a prior p(�) and its posterior is approximated variationally by the family of Gamma128

distributions, conditioned on the inputs to reflect heteroscedasticity. Through amortized variational129

inference (AVI) [Kingma and Welling, 2013] neural networks f� map to the posterior parameters from130

data, q(z|f�(x)). As such, variational variance preserves the modelling capacity and robustness of131

the non-standard Student-t marginal likelihood, without modifying its parameter architecture, while132

the definition of a prior over the latent precision induces a more robust training objective. Assuming133

the likelihood precision is the unique latent code, the evidence lower bound (ELBO),134

L(q; x) = Eq(�) [log p(x|�)]�DKL (q(�|x) || p(�))

=
1

2

✓
 (↵)� log � � log(2⇡)� ↵

�
(x � µ)2

◆
�DKL (q(�|x) || p(�)) ,

(2)

takes the form of a regularised log-likelihood, exposing the benefits of the prior regularisation. It135

penalises predicted variances that would unrealistically get arbitrarily close to either the detrimental136

1See Section I. of the supplementary materials.
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limits of 0 or 1, reducing the concerns regarding the ill-definition of the objective. Additionally,137

the scaling effect of the learning rates of the likelihood parameters is reduced. Naturally, the effect138

of the regularisation will be highly dependent on the prior selected. Here, because we are mostly139

interested in enforcing a constant desired uncertainty extrapolation, we adopt an homoscedastic140

Gamma distributed prior, p(�) = �(�|a, b), that matches the level of uncertainty observed in data,141

and leave it for future practitioners to adopt the most adequate prior for the task at hand.142

2 Out-of-distribution pseudo-inputs training143

2.1 Dissipative loss144

In the variational variance formalism, due to AVI, the predictive uncertainty is controlled by ↵ and �,145

the independent neural networks parametrising the posterior distribution, Var[x] = �(x)/(↵(x)� 1).146

The unreliable extrapolation properties of neural networks therefore directly challenge the robustness147

of the method’s uncertainty estimates outside of its training support, limiting the applicability of the148

method. We consider that this flawed extrapolation is not inevitable.149

Inspired by outlier exposure [Hendrycks et al., 2018], we propose to include deliberately generated150

out-of-distribution pseudo-inputs, {x̂k}Kk=1 where x̂k ⇠ pout(x), in the training of our variational151

objective to constrain the extrapolation of the posterior parametrisation. The optimal variational152

objective q⇤ is chosen such that it minimises our proposed dissipative loss over the consolidated153

dataset D = Dtrain [Dout, where Dout = {x̂k}Kk=1,154

Loss(q;D) = �
h
Lin(q;Dtrain) + Lout(q;Dout)

i
. (3)

The in-distribution component of the loss function Lin(q;D) naturally arises as the standard ELBO155

over the training set. The out-of-distribution component Lout(q;D) operates on a fundamentally156

different source of data. As the only information available regarding the pseudo-inputs is that they157

are out-of-distribution, we assert for them a constant, non-informative likelihood p(x̂|�) = c, that158

has thus no influence on optimisation. This is similar to the strategy of censoring [Lee and Wang,159

2003] where different likelihoods are used for observations with different properties. As a result, the160

dissipative loss becomes,161

Loss(q;D) = �
h X

x2Dtrain

Eq(�|x) [p✓(x|�)]�DKL(q(�|x) || p(�))�
X

x̂2Dout

DKL(q(�|x̂) || p(�))
i
. (4)

It share the same motivating intuition as the confidence loss of Lee et al. [2017] and completes the162

variational variance formalism with a principled mechanism to learn robust variance estimates with163

the desired extrapolation properties. It indeed explicitly forces the predictor to match our high-entropy164

prior expectations on out-of-distribution samples while learning the low-entropy covariate dependent165

distribution, hence the name of dissipative. The reliance of the model’s predictive uncertainty166

on its mean predictions implies that it is primordial here to safeguard its generative performance.167

We guarantee it with the implementation of a split training procedure [Skafte et al., 2019]; the168

out-of-distribution regularisation is only applied after the model’s mean has been trained.169

2.2 Pseudo-input generators (PIGs)170

Minimising the posterior KL divergence out-of-distribution requires an efficient sampling procedure171

of pseudo-inputs. As exposed in Fig. 2, their generation should leverage a-priori knowledge about172

pdata(x) to resolve the undefined nature of pout(x). In this simple regression case, we show the173

predictive uncertainty of variational variance models trained on artificial heteroscedastic data. We174

use a prior uncertainty level that matches the maximum of the data uncertainty. As anticipated,175

without pseudo-inputs, the model extrapolates uncertainty to a constant, arbitrary level, and only the176

introduction of pseudo-inputs near the training data results in the desired uncertainty extrapolation.177

Reassuringly, this suggests that we do not need to regularise our model’s extrapolation in the entire178

out-of-distribution space. Instead, we can focus on the simpler task of generating pseudo-inputs179

in low-density regions of the input space that neighbours training data, as they can enforce correct180

extrapolation in the rest of the out-of-distribution space. Lee et al. [2017] gives supporting arguments.181

Recent contributions have relied on GANs for generating a useful representation of pout(x) [Lee182

et al., 2017, Dai et al., 2017]. Although conceptually intuitive, GANs incur a heavy computational183
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Figure 2: Effect of different pseudo-input distributions on the predictive uncertainty of variational
variance models. Training data (black points) is generated uniformly on [-5, 5], with a variance that
scales as exp

�
�0.5(||x||/s)2

�
. The near pseudo-inputs (green diamonds) are generated uniformly in

[�10,�5] [ [5, 10], while the far-away (blue diamonds) are on [�200,�190] [ [190, 200]. Dashes
amount for the empty space that separates far away pseudo-inputs.

burden and most likely induce serious practical challenges as a result of the instability of their training184

[Shrivastava et al., 2017]. Furthermore, as one need to understand what is in-distribution to model185

what it is not, we instead propose to directly leverage the information at hand about the data.186

Algorithm 1: Pseudo-Input Generator (PIG)
8k 2 [1,K], x̂k ⇠ pdata(x). iterations = 0. ✏ = 1;
while (iterations < max_iterations) & (✏ > tolerance) do

compute 8k 2 [1,K],rxp(x)(x̂k);
✏ = maxk2[1,K](�rxp(x)(x̂k));
8k 2 [1,K], x̂k = x̂k � �rxp(x)(x̂k);
iterations = iterations + 1;

end

Algorithm 1 gives a simple proce-187

dure for generating pseudo-inputs us-188

ing the data density. Pseudo-inputs189

are originally sampled from pdata(x),190

and their positions iteratively updated191

with gradient descent, with step size �,192

by following the directions that min-193

imise their likelihood under pdata(x),194

similarly to reversed adversarial steps195

[Goodfellow et al., 2014a].196

The procedure can run prior to training, in parallel for all x̂k with automatic differentiation, and197

thus results in limited additional complexity for the optimisation2. It relies on the availability of198

a differentiable density estimate of the data, which is, depending on the use case, either directly199

available (see Sec. 3.2), or can be approximated through a variety of methods such as Bayesian200

Gaussian mixture models [Bishop, 2006], or various normalising flows [Rezende and Mohamed,201

2015] based methods such as masked autoregressive flows [Papamakarios et al., 2017] (see Sec. 3.1).202

A caveat here is that depending on the PIG’s parameters, and on the quality of the density estimate203

available, pseudo-inputs might be generated in undesired regions of the input space, e.g uninformative204

density minima. In practice, we adopted conservative density estimates and parameters and did not205

observe any significant degradation of the predictive uncertainty due to the addition of pseudo-inputs.206

3 Experiments207

Holistic evaluation of uncertainty estimates. The ground truth for uncertainty estimates is usually208

unknown, making their evaluation non-trivial. Similarly as in Stirn and Knowles [2020], we propose209

to assess them using a collection of metrics. Calibration, which evaluates probabilistic predictions210

w.r.t the long-run frequencies that actually occur [Dawid, 1982] can be measured by proper scoring211

rules [Lakshminarayanan et al., 2017] such as the model log-likelihood log p✓(x|�). Additionally,212

the root mean squared error (RMSE) between the predictive and empirical variance, Var[x] �213

(Eq(z|x) [p✓(x|�)] � x)2, offers a quantification of the model’s awareness of its own uncertainty. It214

nevertheless requires an understanding of the model’s mean predictive performance, as commonly215

measured by the RMSE of the mean residuals, Eq(�|x) [p✓(x|�)]� x. We further propose to evaluate216

the cooperation of mean and uncertainty estimates for the generation of credible samples, which217

constitutes a consistency check for the learned precision distribution [Gelman et al., 2013], by218

measuring the RMSE of sample residuals x⇤ � x, with x⇤ ⇠ p✓(x). Finally, The ELBO, despite the219

absence of theoretical grounding for it [Blei et al., 2017], is commonly reported as an approximation220

of the marginal likelihood, and thus of the overall model’s predictive performance.221

2Running times are reported in Sec. IV. of the supplementary materials.
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Figure 4: Toy regression results. On the left, the mean predictions are surrounded by ± 2 standard
deviations, with the training data of the bottom row presenting a shift. On the right are displayed the
predictive uncertainty fit and the prior KL divergence.

A complete assessment of a model’s uncertainty estimates further requires their evaluation under222

distributional shift [Ovadia et al., 2019], which we either introduce voluntarily through deliberate223

splitting of the training and test sets, as in Sec. 3.1, or by using test data from a different dataset224

altogether, as in Sec. 3.2.225

3.1 Regression226

In a regression setting where the proposed model must capture the conditioning between targets and227

inputs y|x, the precision � of a Gaussian likelihood is the only assumed latent code.228

Figure 3: PGM for regression

Faithfully to variational variance [Stirn and Knowles, 2020] we229

adopt a Gamma heteroscedastic variational posterior q�(�|x) =230

� (�|↵�(x),��(x)) parametrised by the independent ↵� and ��231

networks, with weights �, uniquely conditioned on the inputs (see232

Fig. 3). This approximate posterior, independent of the targets, gives233

up on the dependency of the true posterior on both covariates to234

guarantee heteroscedasticity3.235

For strictly more than 2 degrees of freedom, or equivalently,236

↵�(x) > 1, the marginal predictive probability p✓,�(y|x) =237

T
⇣
y|2↵�(x), µ✓(x),

p
��(x)/↵�(x)

⌘
, has its first two moments238

defined, E[y|x] = µ✓(x) and Var[y|x] = ��(x)/(↵�(x) � 1), pro-239

viding explicit mean and uncertainty estimates with a single forward240

pass in the single layered, fully connected, ↵�, �� and µ✓ networks used here. To ensure definition of241

both the posterior distribution and of the marginal distribution’s variance, the parameter maps use a242

soft-plus activation on their last layer to ensure positivity, and the ↵� network is further shifted by 1.243

The unique dependence of the posterior on the inputs implies that the generation of pseudo-inputs244

should only rely on the input density. In a general regression setting, it is unknown, and we estimate245

it here prior to training with a Bayesian Gaussian mixture model [Bishop, 2006]. We refer to it246

henceforth as dissipative variational variance (d-VV). The specific implementation details are listed247

in Section II. of the supplementary materials.248

3.1.1 Toy regression249

The desiderata for our method are clear: capture of the data heteroscedasticity, extrapolation to a250

higher uncertainty level, no underestimation of the predictive uncertainty, and posterior extrapolation251

to the prior out-of-distribution. Skafte et al. [2019] first showed on the toy regression task, y =252

x sin(x)+0.3 ✏1+0.3x ✏2, where ✏1, ✏2 ⇠ N (0, 1), that amongst a collection of methods, only their253

proposed variance network architecture could realise our first three expectations. Fig. 4 demonstrates254

that our more principled approach also fulfills all of our requirements, without the need for arbitrarily255

enforcing the desired extrapolation in our architecture. The importance of out-of-distribution training256

is also revealed as the standard variational variance approach fails to produce uncertainty estimates257

that extrapolate correctly and are robust to distributional shift (bottom row of Fig. 4).258

3See Section II. of the supplementary materials for the expression of the true posterior.
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Table 1: UCI benchmarks. Each square shows the performance of a given model (rows) on a given
dataset (columns). The intensity of the colouring represents the certitude that the associated model
performed best on the given dataset. Grey rows mean impossible evaluation for a metric.

Table 2: Evaluation of the generative modeling. For each dataset, we report mean ± std over 5 trials.

FashionMNIST SVHN CIFAR

log p(x)
VAE 2215.54± 68.81 4304.90± 58.45 2930.64± 14.82
d-V3AE 2349.71± 11.80 4133.41± 64.28 2668.85± 13.23

RMSE(x, x̃) VAE 0.171± 0.003 0.097± 7e-4 0.154± 5e-4
d-V3AE 0.158± 0.003 0.087± 0.002 0.129± 7e-4

Figure 5: Aleatoric (yellow) and
epistemic (dark) uncertainties.

Decomposition of the model and data uncertainty. Fig. 5259

presents the decomposition of the predictive uncertainty. The260

aleatoric component captures the heteroscedastic increase of261

uncertainty in the training data while the epistemic uncertainty,262

constant in distribution, extrapolates to higher values. The263

proposed method therefore demonstrates, to the best of our264

knowledge, a principled decomposition of uncertainty factors.265

3.1.2 UCI Benchmarks266

Real world regression datasets from the UCI repository4 are used to evaluate our model against267

curated baselines, analogically to the setup from Hernández-Lobato and Adams [2015] and Skafte268

et al. [2019]5. As revealed by the summarising Tab. 16, our method retains the mean predictive power269

of the variational variance method. The log-likelihood and RMSE of variance and sample residuals270

further show the improved calibration resulting from the imposition of a prior on the variance, as271

the VV methods generally outperform the MLE Student-t (VV (no prior)) that shares the same272

architecture. The table thus proves that holistically, the dissipative loss strengthens the variational273

variance model’s performance, which itself generally surpasses the chosen baselines.274

The robustness of the methods to distributional shift is further evaluated as in Foong et al. [2019]. For275

each input feature, a hole is created in the training data by assigning the middle third of observations276

to the test set, when sorted w.r.t that feature. Interestingly, we see that our method’s calibration277

slightly improves under the shift, highlighting the robustness benefits of the OOD prior regularisation.278

We note that both MC Dropout and the combined method of Skafte et al. [2019] generally perform279

well, confirming their interest for regression tasks requiring uncertainty quantification, but the280

former’s calibration is not robust to data shifts, as is also reported in Ovadia et al. [2019], and the281

latter is in practice difficult to tune and lacks principle.282

4https://archive.ics.uci.edu/ml/index.php
5See Sec. II. for details about the chosen baselines, datasets and implementations specifics.
6The full numbers are included in Sec. II. of the supplements.
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3.2 Generative models283

We extend the evaluation of our proposal to the case of generative models through the lens of VAEs284

[Kingma and Welling, 2013, Rezende et al., 2014]. Variational auto-encoders infer a low dimensional285

latent encoding of the data z 2 RD, on which is conditioned the generative process p✓(x|z). Its286

predictive uncertainty, which evaluates the confidence of the model in its ability to adequately287

reconstruct inputs is known to be untrustworthy.288

Figure 6: PGM for V3AE

In the case of continuous or seemingly continuous in-289

puts, the adoption of a Gaussian decoder p✓(x|z) =290

N
�
x|µ✓(z),�✓(z)2

�
results in an ill-defined model likelihood291

[Mattei and Frellsen, 2018a] that encourages decoder variance292

collapse, making the training of the model notoriously harder293

[Skafte et al., 2019]. Most implementations therefore choose294

to fix the variance to a set level e.g �✓(z) = 0.1, or elude the295

challenge by adopting a Bernoulli likelihood.296

Motivated by our previous results, we now aim to demonstrate297

that VAEs, whose decoder is fitted with our method, are298

able to provide robust uncertainty estimates. Assuming a299

latent generative precision, the latent variables of the model300

are decomposed into z = {z,�}, with z the latent input301

representations. The marginalisation of the Gamma distributed302

latent variance results in a Student-T decoder, as detailed in303

Eq. 1. The overall architecture of the variational variance variational auto encoder (V3AE) [Stirn304

and Knowles, 2020] is shown in Fig. 6, and yields, with the addition of our out-of-distribution305

pseudo-inputs training, the dissipative loss function7,306

Loss(q�, ✓;Dtrain) = �
h X

x2Dtrain

L(q�, ✓; x)� Eqout(z) [DKL (q�(�|z) || p(�))]
i
. (5)

Because only the decoder is regularised, the pseudo-inputs lie in the space of latent representations,307

Dout = {ẑk}Kk=1 2 RD. The distribution of training inputs is therefore readily accessible as the308

aggregate variational posterior q�(z|Dtrain) = q�(z|x1) · · · q�(z|xN ). Here again, we rely on a split309

training procedure to leverage this perk; the encoder parameter maps µ✓ and �✓, as well as the310

decoder mean µ� are first trained until convergence, allowing the generation of the out-of-distribution311

pseudo-inputs and subsequently, the training of the decoder variance.312

Figure 7: Generated
samples

Image data. We evaluate the performance of our proposed dissipative313

V3AE (d-V3AE) against a fully Gaussian VAE on image data, coming from314

FashionMNIST, SVHN and CIFAR10. For both models, all parameter315

maps share the same underlying architecture, with the addition of either316

a softplus and/or a shifting last layer to ensure definition of both the317

variational and the generative distribution’s moments8.318

Tab. 2 compares model performance on two metrics, the log-likelihood319

and the RMSE between the original inputs x and reconstructed samples x̃,320

where x̃ ⇠ p✓(x|�, z) , (�, z) ⇠ q�(�, z|x). Unlike most previous imple-321

mentations, we focus on actual samples, and not the mean, of the generative322

distributions. This comparison emphasize the cooperation between the323

decoder’s mean and variance, allowing evaluation of the models’ uncer-324

tainty estimates. Our method both qualitatively (Fig. 7), and quantitatively325

improves on a Gaussian VAE’s sampling ability. The prior smoothens the326

uncertainty estimates, resulting in more realistic and less crisp samples.327

The log-likelihoods, evaluated at test time using truncation, i.e. ptrunc(x) =328

p✓(x)/(Fx(1) � Fx(0)), to account for the finite support of data, reveal329

that our model can achieve a better fit, if the prior is selected correctly. In330

SVHN and CIFAR10, the presence of color channels complicates the selection process and challenges331

our choice of a single homoscedastic prior for all pixels and channels. We note that the dissipative loss332

also applies to classic VAEs with Bernoulli-only decoders; see Sec. III. of the supplements for details.333

7The derivation of the dissipative loss function is provided in Sec. III. of the supplementary materials.
8Implementation details are provided in Sec. III. of the supplementary materials.
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Figure 8: Decoder’s aggregated variance
(left) and generated samples (right) from
the latent space. Coloured points corre-
spond to latent representations of test data,
with per-class colours.

Figure 9: Effect of encoder refitting on the latent repre-
sentations (left) and corresponding samples (right). OOD
inputs (first rows, x) initially result in in-distribution sam-
ples (second rows, x̃). The refitted encoder displaces the
encodings (coloured trajectories), modifying the gener-
ated samples (third rows, x̃refit).

Figure 10: Empirical densities of likelihoods for FashionMNIST (ID) and MNIST (OOD). The clear
separation of distributions offered by our method is reflected in the high AUROC shown on the right.

Applications of robust generative uncertainty. In Figs. 8 & 9, the colouring of the 2D latent space334

represent the aggregated decoder variance Pd
i=1(�✓(z)

2)i. It is clear that our method displays more335

regular uncertainty estimates, and provides the extrapolation guarantees we strove for. Beyond in-336

creased robustness and better generative power, this unlocks meaningful out-of-distribution detection,337

beating previous state-of-the-art [Havtorn et al., 2021]. For Figs. 9 & 10, as argued in Mattei and338

Frellsen [2018b], we refit at test time the encoder of models trained on FashionMNIST on MNIST.339

The regularity and structure of the decoder variance rewards the encoder for learning to place represen-340

tations of OOD data outside of the region of in-distribution latent encodings, resulting in a model that341

is aware of its own inability to reconstruct plausible data, as displayed by the row x̃refit of d-V3AE.342

4 Conclusion343

We have introduced a novel loss, the dissipative loss, that leverages artificial out-of-distribution344

pseudo-inputs for learning robust uncertainty estimates. We demonstrate through a Bayesian approach345

that casts a prior distribution over the model’s variance a principled mechanism for controlling the346

extrapolation properties of neural networks governing the predictive uncertainty. Our experimental347

results reflect the benefits of our principled and scalable approach, displaying better calibrated and348

more robust uncertainty estimates, while matching the predictive power of known baselines. Finally,349

and most interestingly, our approach can instill into probabilistic models a notion of their own350

ignorance, increasing their ability to know what they don’t know.351

Limitations. The largest limitation of our approach is that it depends on an estimate of the density of352

the input data. In our experience, even coarse-grained densities are sufficient to significantly improve353

upon current approaches. However, as one rarely have guaranteed good estimates of the input density,354

our method cannot be approached as a black-box. One exception seems to be the application to VAEs,355

where the aggregated posterior, in our experience, always provide a suitable density estimate.356

Negative societal impact. Improving the ability of predictive models to assess their own confidence357

is solely a positive contribution as it can help alleviate potential consequences of incorrect predictions.358

We are therefore not aware of any potential negative impacts of our work.359
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