Interpretability Illusions in the Generalization of Simplified Models

1% 2

Dan Friedman' = Andrew Lampinen

Abstract

A common method to study deep learning systems
is to use simplified model representations—for
example, using singular value decomposition to
visualize the model’s hidden states in a lower di-
mensional space. This approach assumes that the
results of these simplifications are faithful to the
original model. Here, we illustrate an important
caveat to this assumption: even if the simplified
representations can accurately approximate the
full model on the training set, they may fail to ac-
curately capture the model’s behavior out of distri-
bution. We illustrate this by training Transformer
models on controlled datasets with systematic gen-
eralization splits, including the Dyck balanced-
parenthesis languages and a code completion task.
We simplify these models using tools like dimen-
sionality reduction and clustering, and then explic-
itly test how these simplified proxies match the
behavior of the original model. We find consistent
generalization gaps: cases in which the simplified
proxies are more faithful to the original model on
the in-distribution evaluations and less faithful on
various tests of systematic generalization. This
includes cases where the original model general-
izes systematically but the simplified proxies fail,
and cases where the simplified proxies generalize
better. Together, our results raise questions about
the extent to which mechanistic interpretations
derived using tools like SVD can reliably predict
what a model will do in novel situations.

1. Introduction

How can we understand deep learning models? Often,
we begin by simplifying the model, or its representa-
tions, using tools like dimensionality reduction, clustering,

* Work done while the author was a Student Researcher at
Google Research. 'Department of Computer Science, Princeton
University 2Google DeepMind *Google Research. Correspondence
to: Dan Friedman <dfriedman@cs.princeton.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Lucas Dixon® Dangi Chen'? Asma Ghandeharioun

3

and discretization. We then interpret the results of these
simplifications—for example finding dimensions in the prin-
cipal components that encode a task-relevant feature (e.g.
Liu et al., 2022; Power et al., 2022; Zhong et al., 2023;
Chughtai et al., 2023; Lieberum et al., 2023). In other
words, we are essentially replacing the original model with
a simplified proxy that uses a more limited—and thus easier
to interpret—set of features. By analyzing these simplified
proxies, we hope to understand at an abstract level how the
system solves a task. Ideally, this understanding helps us
predict model behavior in unfamiliar situations, and thereby
anticipate failure cases or potentially unsafe behavior.

However, in order to arrive at understanding by simplifying
a model, we have to assume that the result of the simplifi-
cation is a relatively faithful proxy for the original model.
For example, we need to assume that the principal compo-
nents of the model representations, by capturing most of
the variance, are thereby capturing the important details of
the model’s representations for its computations. In this
work, we question whether this assumption is valid. First,
some model simplifications, like PCA, are not computed
solely from the model itself; they are calculated with respect
to the model’s representations for a particular collection
of inputs, and therefore depend on the input data distribu-
tion. Second, even if a simplification does not explicitly
depend on the training distribution, it might appear faithful
on in-distribution evaluations, but fail to capture the model’s
behavior over other distributions. Thus, it is important to
understand the extent to which simplified proxy models
characterize the behavior of the underlying model beyond
this restricted data distribution.

We therefore study how models, and their simplified prox-
ies, generalize out-of-distribution. We focus on small-scale
Transformer (Vaswani et al., 2017) language models trained
on controlled datasets with systematic generalization splits.'
We first consider models trained on the Dyck balanced-
parenthesis languages. These languages have been studied
in prior work on characterizing the computational expres-
sivity of Transformers (e.g., Hewitt et al., 2020; Ebrahimi
et al., 2020; Yao et al., 2021; Weiss et al., 2021; Murty
et al., 2023; Wen et al., 2023), and admit a variety of sys-

!That is, we focus on out-of-distribution settings where models
can be expected to generalize to some extent.

Interpretability Illusions in the Generalization of Simplified Models

tematic generalization splits, including generalization to
unseen structures, different sequence lengths, and deeper
hierarchical nesting depths. First, we simplify and ana-
lyze the model’s representations, e.g. by visualizing their
first few singular vectors. Next, for each simplification,
we explicitly construct the corresponding simplified proxy
models—for example, replacing the model’s key and query
representations with their projection onto the top-k singular
vectors—and evaluate how the original models, and their
simpler proxies, generalize to out-of-distribution test sets.

We find that the simplified proxy models are not as faithful
to the original models out of distribution. While the proxies
behave similarly to the original model on in-distribution
evaluations, they reveal unexpected generalization gaps on
out-of-distribution tests—the simplified model often under-
estimates the generalization performance of the original
model, contrary to intuitions from classic generalization the-
ory (Valiant, 1984; Bartlett & Mendelson, 2002), and recent
explanations of grokking (Merrill et al., 2023). However,
under certain data-independent simplifications the simpler
model actually outperforms the original model; once again,
this indicates a mismatch between the original model and
its simplification. We elucidate these results by identifying
some features of the model’s representations that the simpli-
fied proxies are capturing and missing, and how these relate
to human-written Transformer algorithms for this task (Yao
etal., 2021). We show that different simplifications produce
different kinds of divergences from the original model.

We finally test whether these findings extend to larger mod-
els trained on a more naturalistic setting: predicting the
next character in a dataset of computer code. We test how
models generalize to unseen programming languages and
find generalization gaps in this setting as well, with the sim-
plified models proving less faithful to the original model on
out-of-domain examples. We also find that the results vary
on different subsets of the code completion task, with larger
generalization gaps on some types of predictions than others.
These experiments offer some additional insight into how
these gaps are related to different properties of sequence
modeling tasks. Specifically, generalization gaps might be
more pronounced on more “algorithmic” tasks, where the
model must use a particular feature in a precise, context-
dependent way. The effect is diminished in settings where
various local features contribute to the model’s prediction.

Our results raise a key question for understanding deep
learning models: If we simplify a model in order to inter-
pret it, will we still accurately capture model computations
and behaviors out of distribution? We reflect on this issue;
the related challenges in fields like neuroscience; and the
relationship between complexity and generalization.

2. Setting

Transformer language models The Trans-
former (Vaswani et al., 2017) is a neural network
architecture for processing sequence data. The input
is a sequence of tokens wi,...,wy € V in a discrete
vocabulary V. At the input layer, the model maps the
tokens to a sequence of d-dimensional embeddings
X©® e RNXd which is the sum of a learned token
embedding and a positional embedding. Each subse-
quent layer ¢ consists of a multi-head attention layer
(MHA) followed by a multilayer perceptron layer (MLP):
X @ = x0-1) 4 MHA® (X (-D) + MLPW (X (-1 4
MHA® (X (=1D)) 2 Following Elhage et al. (2021),
multi-head attention (with H heads) can be written as

H
MHA(X) = > softmax(X WS(X W) ") XW{W,
h=1

where W/, Wi, W{; € R4 are referred to as the query,
key, and value projections respectively, and Wg € Rnxd
projects the output value back to the model dimension.
The MLP layer operates at each position independently;
we use a two-layer feedforward network: MLP(X) =
o(XW1)W,, where W, € Ré%dm W, ¢ R4m*d and o
is the ReLU function. The output of the model is a sequence
of token embeddings, X (/) € RN*4, We focus on autore-
gressive Transformer language models, which define a dis-
tribution over next words, given a prefix wy, ..., w;—1 € V:
plw; | wy, ..., wi_1) exp(&IiXi(fi), where 0,,, € R?
is a vector of output weights for word w;.

Dyck languages Dyck-£ is the family of balanced paren-
thesis languages with up to k bracket types. Following the
notation of Wen et al. (2023), the vocabulary of Dyck-k is
the words {1, ..., 2k}, where, for any ¢t € [k], the words
2t — 1 and 2t are the opening and closing brackets of type
t, respectively. Given a sentence wy, . . ., Wy, the nesting
depth at any position i is defined as the difference between
the number of opening brackets in wj.; and the number
of closing brackets in w;y.;. As in prior work (Yao et al.,
2021; Murty et al., 2023; Wen et al., 2023), we focus on
bounded-depth Dyck languages (Hewitt et al., 2020), de-
noted Dyck-(k, m), where m is the maximum nesting depth.
We focus on Dyck for two main reasons. On one hand, the
Dyck languages exhibit several fundamental properties of
both natural and programming languages—namely, recur-
sive, hierarchical structure, which gives rise to long-distance
dependencies. For this reason, Dyck languages have been
widely studied in prior work on the expressivity of Trans-
former language models (Hewitt et al., 2020; Yao et al.,
2021), and in interpretability (Wen et al., 2023). On the

2The standard Transformer also includes a layer-normalization
layer (Ba et al., 2016), which we omit here.

Interpretability Illusions in the Generalization of Simplified Models

Table 1: Illustration of Dyck generalization splits. For simplicity, examples are drawn from Dyck-(3, 2). Three sample
sentences for each set, their respective sentence structure, and nesting depth are shown below. O and C refer to open and

closed brackets in the sentence structure.

Subset Tllustrative Samples
Random samples from Dyck-(3,2) with three Sentence O4{} (1101 {3
Train different bracket types of () []{}. All sentences Structure 0CcoC 00COoCC 0CO0COCC
have the maximum nesting depth of two. Depth 1111 122221 11122221
Random samples with bracket structures that Sentence [10) [10] 0{010}
Seen . . e
Struct appeared in the Train set, but with different Structure 0CcoC 00COCC ocoococc
bracket types. Depth 1111 122221 11122221
Unseen Random samples with bracket structures that have Sentence O {4 {11y {H {O0{}0}
Strl y not appeared in the Train set, but have the same Structure 0cococ 00CCOo0oCC 00Ccococc
““! maximum nesting depth of two. Depth 111111 12211221 12222221
. . .) Sentence () {[{}1} [l O d{h
ggsf; "]::;Zr:glte}fam&:‘ax‘mum nesting depth strictly Structure OCOOOCCC ~ OOCOOCCC — OCOCOOOCCC
P8 : Depth 11123321 12223321 1111123321

other hand, these languages are simple enough to admit
simple, human-interpretable algorithms (see Section B.1).

For our main analysis, we train models on Dyck-(20, 10),
the language with 20 bracket types and a maximum depth of
10, following (Murty et al., 2023). To create generalization
splits, we follow Murty et al. (2023) and start by sampling a
training set with 200k training sentences—using the distri-
bution described by Hewitt et al. (2020)—and then generate
test sets with respect to this training set. Next, we recre-
ate the structural generalization split described by Murty
et al. (2023) by sampling sentences and discarding seen sen-
tences and sentences with unseen bracket structures (Seen
struct). The bracket structure of a sentence is defined as the
sequence of opening and closing brackets (e.g., the struc-
ture of ([]) [] is OOCCOC). The above sampling proce-
dure results in a shift in the distribution of sentence lengths,
with the Seen struct set containing much shorter sentences
than the training set.’> Therefore, we create two equal-sized
structural generalization splits, Unseen struct (len < 32)
and Unseen struct (len > 32), by sampling sentences, dis-
carding sentences with seen structures, and partitioning by
length. Finally, we create a Unseen depth generalization
set by sampling sentences from Dyck-(20,20) and only
keeping those sentences with a maximum nesting depth
of at least 10. All generalization sets have 20k sentences.
The different generalization splits are illustrated in Table 1
and more details are provided in Appendix A.1. Follow-
ing Murty et al. (2023), we evaluate models’ accuracy at
predicting closing brackets that are at least 10 positions
away from the corresponding opening bracket, and score
the prediction by the closing bracket to which the model
assigns the highest likelihood.

Code completion We also experiment with larger mod-
els trained on a more practical task: predicting the next

3The longest sentence in our Seen struct set has a length of 30.

1.0 /'
0.9
0.8
30.7—
c
S 0.6
8
< 0.5 Split
0.4 —— Seen struct
' Unseen struct (len <= 32)
0.3 —— Unseen struct (len > 32)
0.2 —— Unseen depth

T T T T T T
0 20000 40000 60000 80000 100000
step

Figure 1: Accuracy at predicting closing brackets over the
course of training, averaged over three random seeds.

character in a dataset of computer code. Code completion
has become a common use case for large language models,
with applications in developer tools, personal programming
assistants, and automated agents (e.g. Anil et al., 2023; Ope-
nAl, 2023). This task is a natural transition point from the
Dyck setting, requiring both “algorithmic” reasoning (in-
cluding bracket matching) and more naturalistic language
modeling (e.g. predicting names of new variables). We
train character-level language models on the CodeSearchNet
dataset (Husain et al., 2019), which is made up of functions
in a variety of programming languages. As in the Dyck
languages, we define the bracket nesting depth as differ-
ence between the number of opening and closing brackets at
each position, treating three pairs of characters as brackets
(O, {}, [1). We train models on Java functions with a
maximum nesting depth of three and construct two kinds
of generalization split: Java functions with deeper nesting
depths (Java, unseen depth); and functions with a seen
depth but written in an unseen language (JavaScript, PHP,
Go). See Appendix B.6 for more details. We evaluate the

Interpretability Illusions in the Generalization of Simplified Models

depth
e 1
o 2
e 3
e 4
8 e 5
a e 6
7
e 8
9
10
11
12
13
14
15
16
m 17
O 18
o
19
20
bracket_kind
o

Figure 2: Second-layer attention embeddings for Dyck se-
quences, projected onto the first and third singular vectors
and colored by bracket depth. The maximum depth during
training is 10. At each position, the model can find the most
recent unmatched bracket by finding the most recent bracket
at the current nesting depth.

model’s accuracy at predicting the next character, reporting
the average over all characters in the evaluation set.

3. Approach

Scope of our analysis For Transformer LMs, mechanis-
tic interpretations can be divided into two stages: circuit
identification and explaining circuit components. The first
stage involves identifying the subgraph of model compo-
nents that are involved in some behavior. The second stage
involves characterizing the computations of each compo-
nent. Various automated circuit identification methods have
been developed (e.g. Vig et al., 2020; Meng et al., 2022;
Conmy et al., 2023), but relatively less work has focused on
the second stage of interpretation, which we focus on here.
In particular, we focus on characterizing the algorithmic
role of individual attention heads.

Interpretation by model simplification Our main focus
is on understanding individual attention heads, aiming to
explain which features are encoded in the key and query
representations and therefore determine the attention pattern.
We evaluate two data-dependent methods of simplifying
keys and queries, and a third data-agnostic method that
simplifies the resulting attention pattern:

Simplifying key and query embeddings. Our first two ap-
proaches aim to characterize the attention mechanism by
examining simpler representations of the key and query

embeddings. To do this, we collect the embeddings for a
sample of 1,000 training sequences. Dimensionality reduc-
tion: We calculate the singular value decomposition of the
concatenation of key and query embeddings. For evaluation,
we project all key and query embeddings onto the first k&
singular vectors before calculating the attention pattern.This
approach is common in prior work in mechanistic inter-
pretability (e.g. Lieberum et al., 2023). Clustering: We run
k-means on the embeddings, clustering keys and queries
separately. For evaluation, we replace each key and query
with the closest cluster center prior to calculating the atten-
tion pattern. This approach has precedent in a long line of
existing work on extracting discrete rules from RNNs (e.g.
Omlin & Giles, 1996; Jacobsson, 2005; Weiss et al., 2018;
Merrill & Tsilivis, 2022), and can allow us to characterize
attention using discrete case analysis.

Simplifying the attention pattern. In the case of Dyck, prior
work has observed that Transformers learn to use virtually
hard attention in the final layer (Ebrahimi et al., 2020),
assigning almost all attention to the most recent unmatched
opening bracket. While our trained model uses standard
softmax attention, this suggests a simplification where the
soft attention is replaced with one-hot attention to highest-
scoring key. This simplification has the advantage of being
data-agnostic; it is purely a change to the model.

4. Case Study: Dyck Language Modeling

In this section, we train two-layer Transformer language
models on Dyck languages. In Appendix B.2, we illus-
trate how we can attempt to reverse-engineer the algorithms
these model learn by inspecting simplified model represen-
tations, using visualization methods that are common in
prior work (e.g. Liu et al., 2022; Power et al., 2022; Zhong
et al., 2023; Chughtai et al., 2023; Lieberum et al., 2023).
In this section, we quantify how well these simplified proxy
models predict the behavior of the underlying model. First,
we plot approximation quality metrics for different model
simplifications and generalization splits, finding a consis-
tent generalization gap. Then we try to explain why this
generalization gap occurs by analyzing the approximation
errors. We include additional results in Appendix B.

Model and training details We train two-layer Trans-
former language models on the Dyck-(20, 10) training data
described in the previous section. The model uses learned
absolute positional embeddings. Each layer has one atten-
tion head, one MLP, and layer normalization, and the model
has a hidden dimension of 32. Details about the model and
training procedure are in Appendix A.2 and A.3. Fig. 1
plots the bracket-matching accuracy over the course of train-
ing, averaged over three runs. Consistent with Murty et al.
(2023), we find that the models reach perfect accuracy on

Interpretability Illusions in the Generalization of Simplified Models

JSD Same Prediction

1.0

Value

Value

JSD Same Prediction

—— Seen struct
Unseen struct (len <= 32)

0.0

7 %"""ﬂ Unseen struct (len > 32)
----- Unseen depth
B L s e L e e R A ELRN L s e L s L RN T T T T
4 8 16 32 64 128 256 5121024 4 8 16 32 64 128 256 5121024 2 4 6 8
Num. Clusters Num. Clusters Num. Components Num. Components
(a) Clustering (b) SVD

Figure 3: Approximation quality after applying two simplifications to the key and query embeddings, clustering (/eft) and
SVD (right). JSD is the average Jensen-Shannon Divergence between the attention patterns of the original and simplified
models, and Same Prediction measures whether the two models make the same prediction at the final layer. Plots show
the mean and 95% CI after applying the simplification to models trained with three random seeds. For both methods,
the approximation quality is better on the in-distribution evaluation set (Seen struct) and worse on examples with unseen

structures or nesting depths.

the in-domain held-out set early in training, and reach near-
perfect accuracy on the structural generalization set later.
On the depth generalization split, the models achieve ap-
proximately 75% accuracy. In Fig. 2 and Appendix B.3, we
provide some qualitative analysis of the resulting models by
examining low-dimensional representations of the attention
embeddings. We find that the learned solutions resemble a
human-written Transformer algorithm for Dyck (Yao et al.,
2021), with the first attention layer using a broad attention
pattern to calculate the bracket depth at each position, and
the second layer using the depth to attend to the most recent
unmatched bracket at each position. In the remainder of this
section, we focus on the second attention layer, measuring
the extent to which simplified representations approximate
the original model on different generalization splits.

Generalization gaps We evaluate approximation quality
using two metrics: the Jensen-Shannon Divergence (JSD),
a measure of how much the attention pattern diverges from
the attention pattern of the original model; and whether
or not the two models make the Same Prediction at the fi-
nal layer. Fig. 3 shows these metrics after simplifying the
second-layer key and query representations. The simplified
models correspond fairly well to the original model on the
in-distribution evaluation set (Seen struct), but there are con-
sistent performance gaps on the generalization splits. For
example, Fig. 3b shows that we can reduce the key and query
embeddings to as few as four dimensions and still achieve
nearly 100% prediction similarity on the Seen struct evalua-
tion set. However, whereas the original model generalizes
almost perfectly to Unseen structures, the simplified model
deviates considerably in these settings, suggesting that these
simplification methods underestimate generalization. Fig. 4
shows the effect of replacing the attention pattern with one-
hot attention. One-hot attention is a faithful approximation

on all generalization splits except for the depth generaliza-
tion split (Fig. 4a). In this setting, the one-hot attention
model slightly out-performs the original model (Fig. 4b), in
a sense over-estimating how well the model will generalize.

Comparing error patterns What do the simplified mod-
els miss? Figures 5a and 5b plot the errors made by the orig-
inal model and a rank-8 SVD approximation, broken down
by query depth and the maximum depth in the sequence.
While both models have a similar overall error pattern, the
rank-8 model somewhat underestimates generalization, per-
forming poorly on certain out-of-domain cases where the
original model successfully generalizes (i.e. depths 11 and
12). Figures 5c and 5d plot the errors made by the attention
mechanism, showing the depth of the keys receiving the
highest attention scores in cases where the final prediction
of the original model is incorrect. In this case, both models
have similar error patterns on shallower depths, attending to
depths either two higher or two lower then the target depth.
This error is in line with our visual analysis in the Appendix:
in Appendix Fig. 9c, we can see that the attention embed-
dings encode the parity of the depth, with tokens at odd- and
even-numbered depths having opposite signs in the third
component. However, the error patterns diverge on depths
greater than ten, suggesting that the lower-dimension model
can explain why the original model makes mistakes in some
in-domain cases, but not out-of-domain.

5. Case Study: Code Completion

Now we investigate whether our findings extend to larger
models trained on a more practical task: predicting the next
character in a dataset of computer code. This task is a natural
transition point from the Dyck setting, requiring both “algo-
rithmic” reasoning (including bracket matching) and more

Interpretability Illusions in the Generalization of Simplified Models

104 JSD

0.8
v 0.6+
E 0.6
]
> 0.4

0.24

0.0 T T T

Same Prediction

(a) Approximation metrics for one-hot attention.

Top-1 attention (original) = Right bracket
1.0

5,08
[S)
©0.6
Jo0.4
<
0.2
0.0

Top-1 attention (original) = Wrong bracket
1.0

.08
(9]
0.6
=}

S 0.4
b

0.2

0.0
1234567 8 910111213141516171819

Query depth

I Original I One-hot attention

(b) Accuracy on the depth generalization split.

Figure 4: Approximation quality and accuracy after replacing the second-layer attention pattern with a one-hot attention
pattern that assigns all attention to the highest scoring key, averaged over three models trained with different random seeds.
One-hot attention is a faithful approximation on all generalization splits except for the depth generalization split (Fig. 4a).
This difference illustrates that a simplification which is faithful in some out-of-distribution evaluations may fail in others. In
depth generalization, the one-hot attention model slightly out-performs the original model (Fig. 4b)—particularly at higher
depths and in cases where the original model attends to the correct location—thereby over-estimating how well the original

model will generalize.

naturalistic language modeling. We train character-level
language models on the CodeSearchNet dataset (Husain
et al., 2019), training on Java functions with a maximum
bracket nesting depth of three, and evaluating generaliza-
tion to functions with deeper nesting depths (Java, unseen
depth) and functions with seen depths but written in an
unseen languages (Javascript, PHP, Go). We train Trans-
former LMs with four layers, four attention heads per-layer,
and an attention embedding size of 64, and train models
with three random initializations. Unlike Dyck, this task
does not admit a deterministic solution; however, we find
that there are enough regularities in the data to allow the
models to achieve high accuracy at predicting the next token
(Fig. 14). See Appendix B.6 for more training details.

Generalization gaps We measure the effect of simplify-
ing each attention head independently: for each head, we
reduce the dimension of the key and query embeddings us-
ing SVD and calculate the percentage of instances in which
the original and simplified model make the same prediction.
Figure 6a plots the average prediction similarity, filtering to
cases where the original model is correct. The prediction
similarity is consistently higher on Java examples and lower
on unseen programming languages, suggesting that this task

also gives rise to a generalization gap.* On the other hand,
there is no discernible generalization gap on the Java depth
generalization split; this could be because in human-written
code, unlike in Dyck, bracket types are correlated with other
contextual features, and so local model simplifications may
have less of an effect on prediction similarity.

Comparing subtasks Which aspects of the code comple-
tion task give rise to bigger or smaller generalization gaps?
In Figure 6b, we break down the results by the type of
character the model is predicting: whether it is a Whites-
pace character; part of a reserved word in Java (Keyword);
part of a new identifier (New word); part of an identifier
that appeared earlier in the function (Repeated word); a
Close bracket; or any Other character, including opening
brackets, semicolons, and operators. We plot the results for
each attention head in a single model after projecting the
key and query embeddings to the first 16 SVD components
and include results for other models and dimensions in Ap-
pendix B.6. The results vary depending on the prediction

“To verify the statistical significance of this result, we con-
ducted a paired sample t-test, which indicated that the difference
between ID and OOD approximation scores is statistically signifi-
cant with p < 0.005. See Appendix B.6 for more details.

Interpretability Illusions in the Generalization of Simplified Models

Accuracy (original) Accuracy (PCA, k=8)

765432

10 11 12 13 14 15 16 17 18 19
ry depth

(a) Prediction errors (original). (b) Prediction errors (SVD).

Depth of attended key
(original model, wrong prediction, max key depth = 20)

Depth of attended key
(PCA model, k=8, wrong prediction, max key depth = 20)

Key depth

2019181716151413121110 9 8 7 6 5 4 3 2 1 0

123456 7 801011121314151617 1819
Query depth

(d) Attention errors (SVD).

Query depth

(c) Attention errors (original).

Figure 5: Errors of the original model and a rank-8 SVD simplification on the depth generalization test set. Figures 5a and 5b
plot the prediction accuracy, broken down by the depth of the query and the maximum depth among the keys. Figures 5c
and 5d plot the depth of the token with the highest attention score, broken down by the true target depth, considering only
incorrect predictions. The models have similar error patterns on shallower depths, attending to depths two higher or two
lower than the target depth, but the simplified model diverges on depths greater than ten.

type, including both the overall approximation scores and
the relative difference between approximation quality on dif-
ferent subsets. In particular, the generalization gap is larger
on subtasks that can be seen as more “algorithmic”, includ-
ing predicting closing brackets and copying identifiers from
earlier in the sequence. The gap is smaller when predicting
whitespace characters and keywords, perhaps because these
predictions rely more on local context.

Comparing attention heads In Figure 6b, we can ob-
serve that some prediction types are characterized by outlier
attention heads: simplifying these attention heads leads
to much lower approximation quality, and larger gaps in
approximation quality between in-distribution and out-of-
distribution samples. This phenomenon is most pronounced
in the Repeated word category, where simplifying a sin-
gle attention head reduces the prediction similarity score
to 75% on in-domain samples and as low as 61% on sam-
ples from unseen languages. In the appendix (B.6), we find
evidence that this head implements the “induction head” pat-
tern, which has been found to play a role in the emergence of
in-context learning in Transformer language models (Elhage
et al., 2021; Olsson et al., 2022). This finding suggests that
the low-dimensional approximation underestimates the ex-
tent to which the induction head mechanism will generalize
to unseen distributions.

6. Discussion

In this section, we summarize our main experimental find-
ings, discuss possible explanations for this phenomenon,
and reflect on the broader implications.

Main findings Our experiments illustrated generalization
gaps, cases where simplified proxy models are faithful to

the original model on in-domain evaluations but fail to cap-
ture the model’s behavior on tests of systematic general-
ization. On the Dyck languages (§4), simplifying attention
embeddings (using clustering or PCA) resulted in models
that generalized worse than the original model. Our anal-
ysis suggested that simplified embeddings capture coarse-
grained features—for example, whether a bracket appears at
an odd- or even-numbered nesting depth While this might be
sufficient to explain model behavior in simpler in-domain
settings, it fails to capture the finer-grained structure the
model relies on to generalize. We observed similar general-
ization gaps on a code completion task (§2), with larger gaps
on some subtasks than others. In particular, the largest gaps
occur when the model must complete a word that appeared
earlier in the sequence. We found evidence connecting this
gap to an “induction head” mechanism; simplifying this at-
tention head leads to a larger generalization gap on repeated
words, indicating that the model relies on higher dimen-
sional embeddings to implement this copying mechanism
in out-of-distribution settings.

Why might such phenomena occur? One possible ex-
planation for our results is that the gaps arise due to the
data we use for simplifying the representations (to identify
clusters or PCA components), and the gaps might disappear
if we fit the approximations using OOD data as well. Our
results suggest that such an approach might reduce general-
ization gaps in some cases. For example, from visualizing
the Dyck embeddings in Figure 2, we might expecting the
clustering simplification to be more faithful if the data used
for clustering included examples with unseen depths.

On the other hand, even if the data used for simplification
includes all relevant features, some features might be repre-
sented less strongly than others (in the sense of accounting
for less variance between embeddings), despite being impor-

Interpretability Illusions in the Generalization of Simplified Models

1.00 1.00
0.98 0.95 l! '°|| I0!!' I .ll
. R ° 2 [31
i 0.90 b o 8 @
-5 0.96 é ° g s e
© 0.04- L 085 ° °
k-] - =1 .
o Split 0 0.80 Split .
@ 0.92 a
o — Java @ o754 I Java o f
E 0.90 Java, unseen depth % [Java, unseen depth '
- JavaScript V0707 mmmm JavaScript
—————— PHP 065- I PHP '
0.86 -== Go 4
060 N Go ° 8
T T T T T T T T T T T T
4 8 16 32 64 Whitespace Keyword New Repeated Close Other
Num. Components Word Word Bracket

(a) Approximation quality.

(b) Approximation quality by prediction type with 16 components.

Figure 6: Prediction similarity on CodeSearchNet after reducing the dimension of the key and query embeddings using
SVD, filtered to the subset of tokens that the original model predicts correctly. We apply dimensionality reduction to each
attention head independently and aggregate the results over attention heads and over models trained with three random seeds.
Each model has four layers, four attention heads per-layer, and a head dimension of 64. The prediction similarity between
the original and simplified models is consistently higher on in-distribution examples (Java) relative to examples in unseen
languages (Fig. 6a). Fig. 6b breaks down the results by prediction type, using 16 SVD components. Each point on the plot
shows the prediction similarity after simplifying one attention head, and we plot all attention heads from all three random
seeds. The gap between in-distribution and out-of-distribution approximation scores is greater on some types of predictions
than others (e.g., Repeated word), perhaps because these predictions depend more on precise, context-dependent attention.

tant for generalization. For example, Lampinen et al. (2024)
show that the strength with which a feature is represented
can depend on a number of extraneous factors, including
how common it is in the training data and how difficult it
is to compute. In our case, simplified proxy models might
capture only the most strongly-represented features. These
might be sufficient to approximate the model on easier in-
domain cases, but not on OOD settings that involve features
that are rare or otherwise more weakly-represented.

Compression & simplification Hooker et al. (2019) ob-
served that compressing vision models (via pruning) selec-
tively reduces performance on a subset of examples; intrigu-
ingly, these examples also tend to be more challenging to
classify, even for humans. Our results showing that sim-
plified transformer models do worse on (more challenging)
generalization splits may be an analogous phenomenon, but
at the dataset rather than exemplar level (and for sequence
data rather than images). From this perspective, our results
may have implications for the common practice of com-
pressing language models for more efficient serving, e.g. by
quantization (e.g. Bhandare et al., 2019; Yao et al., 2023).

Related challenges in neuroscience Neuroscience also
relies on stimuli to drive neural responses, and thus similarly
risks interpretations that may not generalize to new data dis-
tributions. For example, historical research on retinal coding
used simple bars or grids as visual stimuli. However, test-
ing naturalistic stimuli produced many new findings (Kara-
manlis et al., 2022)—e.g., some retinal neurons respond

only to an object moving differently than its background
(Olveczky et al., 2003), so their function could never be
determined from simple stimuli. Thus, interpretations of
retinal computation drawn from simpler stimuli did not fully
capture its computations over all possible test distributions.
Neuroscience and model interpretability face common chal-
lenges from interactions between different levels of analysis
(Churchland & Sejnowski, 1988): we wish to understand a
system at an abstract algorithmic level, but its actual behav-
ior may depend on low-level details of its implementation.

The relationship between complexity and generaliza-
tion Classical generalization theory suggests that simpler
models generalize better (Valiant, 1984; Bartlett & Mendel-
son, 2002), unless datasets are massive; however, in practice
overparameterized deep learning models generalize well
(Nakkiran et al., 2021; Dar et al., 2021). Recent theory has
explained this via implicit regularization effectively simpli-
fying the models (Neyshabur, 2017; Arora et al., 2019), e.g.
making them more compressible (Zhou et al., 2018). Our
results reflect this complex relationship between model sim-
plicity and generalization. We find that data-dependent ap-
proaches to simplifying the models’ representations impair
generalization. However, a data-independent simplification
(hard attention) allows the simplified model to generalize
better to high depths. This result reflects the match be-
tween the Transformer algorithm for Dyck and the inductive
bias of hard attention, and therefore echoes some of the
classical understanding about model complexity and the
bias-variance tradeoff.

Interpretability Illusions in the Generalization of Simplified Models

7. Related Work

Circuit analysis Research on reverse-engineering neural
networks comes in different flavors, each focusing on vary-
ing levels of granularity. A growing body of literature aims
to identify Transformer circuits (Olsson et al., 2022). Cir-
cuits refer to components and corresponding information
flow patterns that implement specific functions, such as
indirect object identification (Wang et al., 2023), variable
binding (Davies et al., 2023), arithmetic operations (e.g.,
Stolfo et al., 2023; Hanna et al., 2023), or factual recall (e.g.,
Meng et al., 2022; Geva et al., 2023). More recently, there
have been attempts to scale up this process by automat-
ing circuit discovery (Conmy et al., 2023; Davies et al.,
2023) and establishing hypothesis testing pipelines (Chan
et al., 2022; Goldowsky-Dill et al., 2023). In addition to the
progress made in circuit discovery, prior research has high-
lighted some challenges. For example, contrary to earlier
findings (Nanda et al., 2022), small models trained on proto-
typical tasks, such as modular addition, exhibit a variety of
qualitatively different algorithms (Zhong et al., 2023; Pearce
et al., 2023). Even in setups with strong evidence in favor of
particular circuits, such as factual associations, modules that
exhibit the highest causal effect in storing knowledge may
not necessarily be the most effective choice for editing the
same knowledge (Hase et al., 2023). Our results highlight
an additional challenge: circuits identified with one dataset
may behave differently out of distribution.

Analyzing attention heads Because attention is a key
component of the Transformer architecture (Vaswani et al.,
2017), it has been a prime focus for analysis. Various inter-
esting patterns have been reported, such as attention heads
that particularly attend to separators, syntax, position, or
rare words (e.g., Clark et al., 2019; Vig, 2019; Guan et al.,
2020). The extent to which attention can explain the model’s
predictions is a subject of debate. Some argue against us-
ing attention as an explanation for the model’s behavior, as
attention weights can be manipulated in a way that does
not affect the model’s predictions but can yield significantly
different interpretations (e.g., Pruthi et al., 2020; Jain &
Wallace, 2019). Others have proposed tests for scenarios
where attention can serve as a valid explanation (Wiegreffe
& Pinter, 2019). It is interesting to consider our results on
one-hot attention simplification and depth generalization
through the lens of this debate. Top-1 attention accuracy is
highly predictive of model success in most cases; however,
on deeper structures top-1 attention and accuracy dissociate.
Thus, while top attention could be an explanation in most
cases, it fails in others. However, our further analyses sug-
gest that this is due to increased attention to other elements,
even if the top-1 is correct—thus, attention patterns may
still explain these errors, as long as we do not oversimplify
attention before interpreting it.

Neuron-level interpretability A more granular approach
to interpretability involves examining models at the neu-
ron level to identify the concepts encoded by individual
neurons. By finding examples that maximally activate spe-
cific “neurons”—a hidden dimension in a particular mod-
ule like an MLP or in the Transformer’s residual stream—
one can deduce their functionality. These examples can
be sourced from a dataset or generated automatically (Be-
linkov & Glass, 2019). It has been observed that a single
neuron sometimes represents high-level concepts consis-
tently and even responds to interventions accordingly. For
example, (Bau et al., 2020) demonstrated that by activat-
ing or deactivating the neuron encoding the “tree” concept
in an image generation model, one can respectively add
or remove a tree from an image. Neurons can also work
as n-gram detectors or encode position information (Voita
et al., 2023). However, it is essential to note that such
example-dependent methods could potentially lead to illu-
sory conclusions (Bolukbasi et al., 2021).

Robustness of interpretability methods Our findings
join a broader line of work in machine learning on the ro-
bustness of interpretability methods. For example, prior
work in computer vision has found that explanation meth-
ods for computer vision can be both sensitive to perceptu-
ally indistinguishable perturbations of the data (Ghorbani
et al., 2019), and insensitive to semantically meaningful
changes (Adebayo et al., 2018), highlighting the importance
of rigorous evaluation for interpretability methods.

8. Conclusion

In this work, we simplified Transformer language models
using tools like dimensionality reduction, in order to in-
vestigate their computations. We then compared how the
original models and their simplified proxies generalized out-
of-distribution. We found consistent generalization gaps:
cases in which the simplified proxy model is more faithful to
original model on in-distribution evaluations and less faith-
ful on various systematic distribution shifts. Overall, these
results highlight the limitations of interpretability methods
that depend upon simplifying a model, and the importance
of evaluating model interpretations out of distribution.

Limitations This study focused on small-scale models
trained on a limited range of tasks. Future work should
study how these findings apply to larger-scale models
trained on other families of tasks, such as large (natural) lan-
guage models. Likewise, we only explored simplifying one
component of a model at a time—such as a single attention
head. However, model interpretations often involve larger
circuits, and simplifying an entire circuit simultaneously
might yield more dramatic distribution shifts; future work
should explore this possibility.

Interpretability Illusions in the Generalization of Simplified Models

Impact Statement

Methods for interpreting neural networks are important if we
hope to deploy these systems safely and reliably. This work
draws attention to a setting in which common approaches to
interpretability can lead to misleading conclusions. These
findings can caution against the pitfalls of these approaches
and motivate the development of more faithful interpretabil-
ity methods in the future.

Acknowledgments

We thank Adam Pearce, Adithya Bhaskar, and Mitchell
Gordon for helpful discussions and feedback on writing and
presentation of results.

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, 1., Hardt,
M., and Kim, B. Sanity checks for saliency maps.

Advances in Neural Information Processing Systems
(NeurlPS), 31, 2018.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. PalLM 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit regular-
ization in deep matrix factorization. Advances in Neural
Information Processing Systems, 32, 2019.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bartlett, P. L. and Mendelson, S. Rademacher and Gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463—482, 2002.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B.,
and Torralba, A. Understanding the role of individual
units in a deep neural network. Proceedings of the Na-
tional Academy of Sciences, 2020. ISSN 0027-8424. doi:
10.1073/pnas.1907375117.

Belinkov, Y. and Glass, J. Analysis methods in neural
language processing: A survey. Transactions of the As-
sociation of Computational Linguistics (TACL), 7:49-72,
2019.

Bhandare, A., Sripathi, V., Karkada, D., Menon, V., Choi, S.,
Datta, K., and Saletore, V. Efficient 8-bit quantization of
transformer neural machine language translation model.
arXiv preprint arXiv:1906.00532, 2019.

Bolukbasi, T., Pearce, A., Yuan, A., Coenen, A., Reif, E.,
Viégas, F., and Wattenberg, M. An interpretability illusion
for BERT. arXiv preprint arXiv:2104.07143, 2021.

10

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: Composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/ jax.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Green-
blatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris,
B., and Thomas, N. Causal scrubbing: A method for
rigorously testing interpretability hypotheses. Alignment
Forum, 2022.

Chughtai, B., Chan, L., and Nanda, N. A toy model of
universality: Reverse engineering how networks learn
group operations. In International Conference on Ma-
chine Learning (ICML), pp. 6243-6267. PMLR, 2023.

Churchland, P. S. and Sejnowski, T. J. Perspectives on
cognitive neuroscience. Science, 242(4879):741-745,
1988.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? An analysis of BERT’s atten-
tion. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 276-286, 2019.

Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability. Advances in
Neural Information Processing Systems (NeurIPS), 36:
16318-16352, 2023.

Dar, Y., Muthukumar, V., and Baraniuk, R. G. A farewell
to the bias-variance tradeoff? An overview of the theory
of overparameterized machine learning. arXiv preprint
arXiv:2109.02355, 2021.

Davies, X., Nadeau, M., Prakash, N., Shaham, T. R., and
Bau, D. Discovering variable binding circuitry with
desiderata. arXiv preprint arXiv:2307.03637, 2023.

Ebrahimi, J., Gelda, D., and Zhang, W. How can self-
attention networks recognize Dyck-n languages? In
Findings of Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 4301-4306, 2020.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T,
et al. A mathematical framework for Transformer circuits.
Transformer Circuits Thread, 2021.

Geva, M., Bastings, J., Filippova, K., and Globerson, A. Dis-
secting recall of factual associations in auto-regressive
language models. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2023.

http://github.com/google/jax

Interpretability Illusions in the Generalization of Simplified Models

Ghorbani, A., Abid, A., and Zou, J. Interpretation of neural
networks is fragile. In Conference on Artificial Intelli-
gence (AAAI), 2019.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora, A.
Localizing model behavior with path patching. arXiv
preprint arXiv:2304.05969, 2023.

Guan, Y., Leng, J., Li, C., Chen, Q., and Guo, M. How
far does BERT look at: Distance-based clustering and
analysis of BERT’s attention. In International Conference
on Computational Linguistics (COLING), pp. 3853-3860,
2020.

Hanna, M., Liu, O., and Variengien, A. How does GPT-2
compute greater-than?: Interpreting mathematical abil-
ities in a pre-trained language model. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A. Does
localization inform editing? Surprising differences in
causality-based localization vs. knowledge editing in lan-
guage models. In Advances in Neural Information Pro-
cessing Systems (NeurlIPS), 2023.

Hennigan, T., Cai, T., Norman, T., Martens, L., and
Babuschkin, I. Haiku: Sonnet for JAX, 2020. URL
http://github.com/deepmind/dm—haiku.

Hewitt, J., Hahn, M., Ganguli, S., Liang, P., and Manning,
C. D. RNNSs can generate bounded hierarchical languages
with optimal memory. In Empirical Methods in Natural
Language Processing (EMNLP), pp. 1978-2010, 2020.

Hooker, S., Courville, A., Clark, G., Dauphin, Y., and
Frome, A. What do compressed deep neural networks
forget? arXiv preprint arXiv:1911.05248, 2019.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. CodeSearchNet challenge: Evalu-
ating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Jacobsson, H. Rule extraction from recurrent neural net-
works: A taxonomy and review. Neural Computation, 17
(6):1223-1263, 2005.

Jain, S. and Wallace, B. C. Attention is not explanation.
In North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(NAACL-HLT), pp. 3543-3556, 2019.

Karamanlis, D., Schreyer, H. M., and Gollisch, T. Retinal
encoding of natural scenes. Annual Review of Vision
Science, 8:171-193, 2022.

Kazemnejad, A., Padhi, 1., Natesan, K., Das, P., and Reddy,
S. The impact of positional encoding on length generaliza-
tion in Transformers. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

11

Lake, B. and Baroni, M. Generalization without systematic-
ity: On the compositional skills of sequence-to-sequence
recurrent networks. In International Conference on Ma-
chine Learning (ICML), pp. 2873-2882. PMLR, 2018.

Lampinen, A. K., Chan, S. C., and Hermann, K. Learned fea-
ture representations are biased by complexity, learning or-
der, position, and more. arXiv preprint arXiv:2405.05847,
2024.

Lieberum, T., Rahtz, M., Kramadr, J., Irving, G., Shah, R.,
and Mikulik, V. Does circuit analysis interpretability
scale? Evidence from multiple choice capabilities in
Chinchilla. arXiv preprint arXiv:2307.09458, 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. In Interna-

tional Conference on Learning Representations (ICLR),
2023.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark,
M., and Williams, M. Towards understanding grokking:
An effective theory of representation learning. Advances

in Neural Information Processing Systems (NeurIPS), 35:
34651-34663, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations (ICLR), 2019.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in GPT. Advances in

Neural Information Processing Systems (NeurIPS), 35:
17359-17372, 2022.

Merrill, W. and Tsilivis, N. Extracting finite automata
from RNNs using state merging. arXiv preprint
arXiv:2201.12451, 2022.

Merrill, W., Tsilivis, N., and Shukla, A. A tale of two
circuits: Grokking as competition of sparse and dense
subnetworks. arXiv preprint arXiv:2303.11873, 2023.

Murty, S., Sharma, P, Andreas, J., and Manning, C.
Grokking of hierarchical structure in vanilla transformers.

In Association for Computational Linguistics (ACL), pp.
439448, 2023.

Nakkiran, P, Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Journal of Statistical Mechan-
ics: Theory and Experiment, 2021(12):124003, 2021.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. In International Conference on Learning
Representations (ICLR), 2022.

http://github.com/deepmind/dm-haiku

Interpretability Illusions in the Generalization of Simplified Models

Newman, B., Hewitt, J., Liang, P., and Manning, C. D. The
EOS decision and length extrapolation. In BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks
for NLP, pp. 276-291, 2020.

Neyshabur, B. Implicit regularization in deep learning.
arXiv preprint arXiv:1709.01953, 2017.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Olveczky, B. P, Baccus, S. A., and Meister, M. Segregation
of object and background motion in the retina. Nature,
423(6938):401-408, 2003.

Omlin, C. W. and Giles, C. L. Extraction of rules from
discrete-time recurrent neural networks. Neural Networks,
9(1):41-52, 1996.

OpenAl. GPT-4 technical report, 2023.

Patel, A., Bhattamishra, S., Blunsom, P., and Goyal, N.
Revisiting the compositional generalization abilities of
neural sequence models. In Association for Computa-
tional Linguistics (ACL), pp. 424434, 2022.

Pearce, A., Ghandeharioun, A., Hussein, N., Thain, N.,
Wattenberg, M., and Dixon, L. Do machine learning
models memorize or generalize? People+Al Research,
2023.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfit-
ting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Press, O. and Wolf, L. Using the output embedding to
improve language models. In European Chapter of the
Association for Computational Linguistics (EACL), pp.
157-163, 2017.

Pruthi, D., Gupta, M., Dhingra, B., Neubig, G., and Lipton,
Z. C. Learning to deceive with attention-based expla-
nations. In Association for Computational Linguistics
(ACL), pp. 47824793, 2020.

Stolfo, A., Belinkov, Y., and Sachan, M. Understanding
arithmetic reasoning in language models using causal
mediation analysis. arXiv preprint arXiv:2305.15054,
2023.

Valiant, L. G. A theory of the learnable. Communications
of the ACM, 27(11):1134-1142, 1984.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems (NIPS), 30, 2017.

12

Vig, J. Visualizing attention in Transformer based language
models. arXiv preprint arXiv:1904.02679, 2019.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal
mediation analysis for interpreting neural NLP: The case
of gender bias. arXiv preprint arXiv:2004.12265, 2020.

Voita, E., Ferrando, J., and Nalmpantis, C. Neurons in
large language models: Dead, n-gram, positional. arXiv
preprint arXiv:2309.04827, 2023.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: A circuit for
indirect object identification in GPT-2 small. In Interna-
tional Conference on Learning Representations (ICLR),
2023.

Weiss, G., Goldberg, Y., and Yahav, E. Extracting automata
from recurrent neural networks using queries and coun-
terexamples. In International Conference on Machine
Learning (ICML), pp. 5247-5256. PMLR, 2018.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like Trans-
formers. In International Conference on Machine Learn-
ing (ICML), pp. 11080-11090. PMLR, 2021.

Wen, K., Li, Y., Liu, B., and Risteski, A. Transformers are
uninterpretable with myopic methods: A case study with
bounded Dyck grammars. Advances in Neural Informa-
tion Processing Systems (NeurlPS), 36, 2023.

Wiegreffe, S. and Pinter, Y. Attention is not not explanation.
In Empirical Methods in Natural Language Processing
and International Joint Conference on Natural Language
Processing (EMNLP-1IJCNLP), pp. 11-20, 2019.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. In Association for Computational Linguistics
and International Joint Conference on Natural Language
Processing (ACL-IJCNLP), pp. 3770-3785, 2021.

Yao, Z., Li, C., Wu, X., Youn, S., and He, Y. A comprehen-
sive study on post-training quantization for large language
models. arXiv preprint arXiv:2303.08302, 2023.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation
of neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz,
P. Non-vacuous generalization bounds at the imagenet
scale: A PAC-Bayesian compression approach. arXiv
preprint arXiv: 1804.05862, 2018.

Interpretability Illusions in the Generalization of Simplified Models

A. Implementation Details:
A.1. Dyck Dataset Details

As described in Section 2, we sample sentences from Dyck-
(10, 20), the language of balanced brackets with 20 bracket
types and a maximum nesting depth of 10. We use the sam-
pling distribution described and implemented by Hewitt et al.
(2020),° following existing work (Yao et al., 2021; Murty
et al., 2023). We insert a special beginning-of-sequence
token to the begin of each sequence, and append an end-of-
sequence token to the end, and these tokens are included
in all calculations of sentence length. Note that we dis-
card sentences with lengths greater than 512. The training
set contains 200k sentences and all the generalization sets
contain 20k sentences. In all cases, we sample sentences,
discarding sentences according to the rules described in Sec-
tion 2, until the dataset has the desired size. See Table 1 for
illustration of different generalization sets. Figure 7 plots
the distribution of sentence lengths. For reference, we also
include an IID split, which is created by sampling sentences
from the same distribution used to construct the training set
but rejecting any strings that appeared in the training set. It
turns out that almost all sequences in this subset have unseen
structures. (The number of bracket structures at length n is
given by the n*" Catalan number, so the chance of sampling
the same bracket structure twice is very low.) For all of the
experiments described in Section 4, results on this subset
are nearly identical to results on the Unseen structure (len
> 32) subset.

A.2. Model Details

For our Dyck experiments, we use a two-layer Transformer,
with each layer consisting of one attention head, one MLP,
and one layer normalization layer. The model has a hidden
dimension of 32, and the attention key and query embed-
dings have the same dimension. This dimension is chosen
based on a preliminary hyperparameter search over dimen-
sions in {2, 4, 8,16, 32, 64} because it was the smallest di-
mension to consistently achieve greater than 99% accuracy
on the IID evaluation split. Each MLP has one hidden layer
with a dimension of 128, followed by a ReL.U activation.
The input token embeddings are tied to the output token
embeddings (Press & Wolf, 2017), and we use absolute,
learned position embeddings. The model is implemented
in JAX (Bradbury et al., 2018) and adapted from the Haiku
Transformer (Hennigan et al., 2020).

Shttps://github.com/john-hewitt/
dyckkm-learning

13

A.3. Training Details

We train the models to minimize the cross entropy loss:

L= ‘%| Z %Zp(wi | wiii—1),

w1:n €D =2

where D is the training set, p(w; | w1.;—1) is defined accord-
ing to Section 2, and wy is always a special beginning-of-
sequence token. We train the model for 100,000 steps with a
batch size of 128 and use the final model for further analysis.
We use the AdamW optimizer (Loshchilov & Hutter, 2019)
with 51 = 0.9, 82 = 0.999, ¢ = le-7, and a weight decay
factor of le-4. We set the learning rate to follow a linear
warmup for the first 10,000 steps followed by a square root
decay, with a maximum learning rate of 5e-3. We do not
use dropout.

B. Additional Results
B.1. Transformer Algorithms for Dyck

Our investigations will be guided by a human-written algo-
rithm for modeling Dyck languages with Transformers (Yao
et al., 2021), which we review here. The construction uses
a two-layer autoregressive Transformer with positional en-
codings and one attention head per layer.

First attention layer: Calculate bracket depth. The first
attention layer calculates the bracket depth at each posi-
tion, defined as the number of opening brackets minus the
number of closing brackets. One way to accomplish this is
using an attention head that attends uniformly to all tokens
and uses one-dimensional value embeddings, with opening
brackets having a positive value and closing brackets having
a negative value. At position ¢, the attention output will be
depth(ws.;)/t.

First MLP: Embed depths. The output of the first atten-
tion layer is a scalar value encoding depth. The first-layer
MLP maps these values to orthogonal depth embeddings,
which can be used as keys and queries in the next attention
layer.

Second attention layer: Bracket matching. The second
attention layer uses depth embeddings to find the most recent
unmatched opening bracket. At position 7, the most recent
unmatched opening bracket is the bracket at position j,
where j < i is the highest value such that w; is an opening
bracket and depth(w;.;) = depth(wy.;).

B.2. Case Study: Analyzing a Dyck Language Model

In this section, we attempt to reverse-engineer the algorithm
learned by a two-layer Dyck LM by analyzing simplified
model representations, using visualization methods that are
common in prior work (e.g. Liu et al., 2022; Power et al.,

https://github.com/john-hewitt/dyckkm-learning
https://github.com/john-hewitt/dyckkm-learning

Interpretability Illusions in the Generalization of Simplified Models

0.10

0.08

0.06

Density

0.04

0.02

Split
Train
D
Seen struct
Unseen struct (len <= 32)
Unseen struct (len > 32)
Unseen depth

goooon

0.00

H&\@_

200
Length

300

400 500

(a) Length distributions (all lengths).

0.10

0.08

0.06

Density

0.04

0.02

Split
Train
D
Seen struct
Unseen struct (len <= 32)
Unseen struct (len > 32)
Unseen depth

goooon

0.00

Length

80 100

(b) Length distributions (lengths < 100).

Figure 7: Distribution of sentence lengths in different Dyck structural generalization splits. Figure 7a shows the full
distribution and Figure 7b shows the distribution filtered to sequences with length < 100. These densities are estimated
using the Seaborn library kernel density estimation method, with a bandwidth adjustment factor of three. (Note that all
sequences of balanced parentheses have even lengths, which is smoothed over in the plots.) For reference, we also include
an additional split created by sampling from the same distribution as the training data, but discarding sentences that appeared

in the training set (IID); see Section A.1 for further discussion.

2022; Zhong et al., 2023; Chughtai et al., 2023; Lieberum
et al., 2023).

First layer: Calculating bracket depth We start by ex-
amining the first attention layer. In Fig. 8, we plot an exam-
ple attention pattern (Fig. 8a), along with the value embed-
dings plotted on the first two singular vectors (Fig. 8c). As
in the human-written algorithm (§B.1), this attention head
also appears to (1) attend broadly to all positions, and (2)
associate opening and closing brackets with value embed-
dings with opposite sides. On the other hand, the attention
pattern also deviates from the human construction in some
respects. First, instead of using uniform attention, the model
assigns more attention to the first position, possibly mirror-
ing a construction from Liu et al. (2023). (In preliminary
experiments, we found that the model learned a similar
attention pattern even when we did not prepend a START
token to the input sequences—that is, the first layer attention
head attended uniformly to all positions but placed higher
attention on the first token in the sequence.) Second, the
value embeddings encode more information than is strictly
needed to compute depth. Specifically, Figure 8c shows

14

that the first components of the value embeddings encode
position. Coloring this plot by bracket type reveals that the
embeddings encode bracket type as well—each cluster of
value embeddings corresponds to either opening or closing
brackets for a single bracket type. In contrast, in the human-
written Transformer algorithm, the value embeddings only
encode whether the bracket is an opening or closing bracket
and are invariant to position and bracket type This might
suggest that the model is using some other algorithm, per-
haps in addition to our reference algorithm. Despite these
differences, these simplified representations of the model
suggest that this model is indeed implementing some form
of depth calculation.

Second layer: Bracket matching Now we move on to
the second attention head. Behaviorally, this attention head
appears to implement the bracket-matching function de-
scribed in §B.1, and which has been observed in prior
work (Ebrahimi et al., 2020); an example attention pattern
is shown in Fig. 8b. Our goal in this section is to explain
how this attention head implements this function in terms of
the underlying key and query representations. Fig. 9 shows

Interpretability Illusions in the Generalization of Simplified Models

(k
(k

START

(a) 1st layer attention pattern.

Layer 2

(b) 2nd layer attention pattern

position

15

e 30

T e 45

= ® 60

, token_kind

= 5 3 T <Ilr (\lj CI> o~ < @ (
PC 1 *)

(c) st layer value embeddings.

Figure 8: Left: An example attention pattern from the first-layer attention head. Each position attends broadly to the full
input sequence, but with more attention concentrated on the beginning of sequence token. Center: An example attention
pattern from the second-layer attention head. Each query assigns the most attention to the most recent unmatched opening
bracket. Right: The first two singular vectors of the value embeddings. Each point represents the sum of a token embedding
and a position embedding (for all token embeddings and positions up to 64).

PCA plots of the key and query embeddings from a sample
of 1,000 training sequences. Again, these representations
resemble the construction from Yao et al. (2021): the di-
rection of the embeddings encodes depth (Fig. 9a), and the
magnitude in each direction encodes the position, with later
positions having higher magnitudes (Fig. 9b). On the other
hand, the next two components (Fig. 9c) illustrate that the
model also encodes the parity of the depth, with tokens at
odd- and even-numbered depths having opposite signs in
the third component. This reflects the fact that matching
brackets are always separated by an even number of posi-
tions, so each query must attend to a position with the same
parity.

Overall, this investigation illustrates how simple represen-
tations of the model can suggest an understanding of the
algorithm implemented by the underlying model—in this
case, that the model implements some version of the depth
matching mechanism. (In Appendix B.3, we conduct a
similar analysis using clustering and come to similar con-
clusions; see Fig. 10.)

B.3. Interpretation by Clustering

In Figure 10, we plot the distribution of depths associated
with each cluster, after applying k-means separately to a
sample of key and query embeddings, with k set to 16.
Beneath each query cluster, we plot the depth distribution
of the nearest key cluster, where distance is defined as the
Euclidean distance between cluster centers. This figure
illustrates how clustering allows us to interpret the model by
means of a discrete case analysis: we can see that the queries
are largely clustered by depth, and the nearest key cluster

15

typically consists of keys with the same depth, suggesting
that the model implements a (possibly imperfect) version of
the depth-matching mechanism described in Section B.1.

B.4. Analysis: Structural Generalization

In Figure 11, we look at the approximation errors on the
structural generalization test set (looking at the subset of
examples with length < 32). The figure plots the difference
between the position with the highest attention score in the
original model and simplified model. In both figures, the
simplified version of the model generally attends to an ear-
lier position than the true depth, and that differs from the
target depth by an even number of positions. This suggests
that these approximations “oversimplify”” the model: they
capture the coarse grained structure—namely, that positions
always attend to positions with the same parity—but under-
stimate the fidelity with which the model encodes depth.

B.5. Depth Generalization

Figure 12 plots key and query embeddings for out-of-
distribution data points on the depth generalization split
(Section 4). The success of the Transformer depends on
the model’s mechanism for representing nesting depth. To
succeed on the depth generalization split, this mechanism
must also extrapolate to unseen depths. Figure 5 indicates
that the model does extrapolate to some extent, but the sim-
plified models fail to fully capture this behavior. Figure 12
offers some hints about why this might be the case. These
plots suggest that there is some systematic generalization
(deeper depths are embedded where we might expect). How-
ever, we can also visually observe that the deeper depths

Interpretability Illusions in the Generalization of Simplified Models

proj = key

depth
L]

proj = key

proj = key

depth

position
80

proj = query
'

©CoNo U s W

e 10
bracket_kind
e (

®)

PC2

04—

160
e 240
e 320
e 400
bracket_kind
o (
®)

o000
NV S WN e

L]
9

e 10

bracket_kind

e (

®)

H

1
|
1
H
1
H

T T T

-30 -20 -10 0

PC1

(a) Colored by depth.

(b) Colored by position.

(c) Singular vectors 3 & 4.

Figure 9: Key and query embeddings from the second-layer attention head, projected onto the first four singular vectors and

colored by either bracket depth or position.

are less separated, perhaps indicating that the model uses
additional directions for encoding deeper depths, but these
directions are dropped when we fit SVD on data containing
only lower depths. On the other hand, we did not have a
precise prediction about where the deeper depths would be
embedded, which is a limitation of our black box analysis:
without reverse-engineering the lower layers, we cannot
make strong predictions beyond the training data.

Are these findings consistent across training runs? In Fig-
ure 13, we train a Dyck model with a different random
initialization and plot the prediction errors on the depth
generalization, recreating Figure 5. The overall pattern is
similar in this training run, with the simplified model diverg-
ing more from the original model on predictions at deeper
query depths.

B.6. Additional Results: Computer Code

Dataset details We train character-level language models
on functions from the CodeSearchNet dataset (Husain et al.,
2019) with a maximum length of 512 characters. The vocab-
ulary is defined as the ASCII printable characters; all other
characters are replaced with a special Unknown token. The
training data consists of Java functions with a maximum
bracket nesting depth of three, where the bracket nesting
depth is defined as the difference between the number of
opening and closing brackets at each position and we treat
three pairs of characters as brackets ((), {}, [1). The train-
ing examples are drawn from the original training split. We
evaluate the models on: unseen Java functions with max-

16

imum depth of three (Java); unseen Java functions with
maximum depth strictly greater than three (Java, unseen
depth); and functions in unseen programming languages,
with a maximum depth of three (JavaScript, Go, PHP). We
draw the training examples from the original training split
and the evaluation examples from the validation split. Ta-
ble 2 reports the number of functions in each subset, and
the average length in characters.

To break down the results by prediction type, we categorize
each character as follows. First, we define a character as
Whitespace if is a whitespace character (according to the
Python isspace method) and a Close bracket if it is one
of), }, or 1. Next, we split each function by whitespace
and non-alphanumeric characters to obtain sequences of
contiguous alphanumeric characters (words). We categorize
a word as a Keyword if it is a Java reserved word,’ or the
word true, false, or null; a Repeated word if the word ap-
peared earlier in the sequence; and a New word otherwise.
Each character is assigned to the same category of the word
it is a part of. Characters that are not part of a word—i.e.,
non-alphanumeric characters—are categorized as Other.

Model and training details We trained decoder-only
Transformer language models with four layers and four
attention heads per layer. The embedding size was 256, the
attention embedding size was 64, and the MLP hidden layer
was 512. We used a dropout rate of 0.1 and a batch size of

®https://docs.oracle.com/javase/tutorial/
java/nutsandbolts/_keywords.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

Interpretability Illusions in the Generalization of Simplified Models

Query cluster

40004
3000 depth
o s 0
§2000—
o dl | | 4 =
0‘_" T |II T |I T |I |I t = T |II |II T L-
|

Closest key cluster
4000

3000
c
3 20004
(@]
10001 |
I|| 1 - | |

0 = |I ||' ! T T T T T T 1 T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O 00 4O U WN =

=
o

Figure 10: Interpreting the attention mechanism via clustering. The top row plots the depth distribution in each query
cluster, and the bottom row plots the depth distribution in the key cluster closest to that query cluster (so some key clusters
appear twice). As an interpretation of the model, this figure suggests that the key and query embeddings are reasonably
well clustered by depth, and queries generally attend to clusters of the same depth, but the mechanism seems somewhat
more effective for some depths (see clusters 1, 3, 8) then others, and in some cases the model might confuse a depth for
another depth +/- 2 (clusters 5 and 10). The figure does not capture the mechanism for attending to the most recent token at
a matching depth.

Table 2: The number of functions and the average length (in characters) of the training and evaluation subsets of Code-
SearchNet. See Appendix B.6 for more details.

Java (train) Java (eval) Java, unseen depth JavaScript Go PHP

Num. examples 202,395 7,589 2,817 2,317 9,402 9,338
Avg. length 257 240 356 257 179 271

32 and trained for 100,000 steps. We set the learning rate to aging over attention heads) on in-domain data (Java), and
follow a linear warmup for the first 10,000 steps followed on out-of-domain data (aggregating the OOD splits). The
by a square root decay, with a maximum learning rate of ~ null hypothesis for this test is that the expected difference
Se-3, and trained three models with different random initial- between in-domain and OOD approximation scores is zero.
izations. Other model and training details are the same as We ran this analysis separately for each simplification level
described in Appendix A.3. Figure 14 plots the accuracy of ~ (number of SVD components). At each simplification level,
the (original) models at predicting the next character at the this test finds that the expected difference between ID and
end of training, broken down by the prediction type. The OOD approximation scores is positive and the result is sta-
accuracy is relatively high, in part because many charac- tistically significant with p < 0.005.

ters are whitespace, part of common keywords, or part of

variable names that appeared earlier in the sequence, Additional approximation results We provide some ad-

ditional results from the experiments described in Section 5.
Significance test Figure 6a depicts the generalization gap Fjgure 15 plots the prediction similarity on CodeSearchNet
on the code completion task aggregated across attention proken down by whether the underlying model’s prediction
heads as well as model initialization. To verify that the gap g correct or incorrect. Prediction similarity is lower over-
is statistically significant, we conducted a paired sample all when the model is incorrect, although the gap between
t-test’ as follows. For every choice of model initialization, in-domain and out-of-domain approximation scores is gener-
we measured the average approximation quality score (aver- 4]1y smaller. Figure 16 breaks down the results by prediction
mdocs _scipy.org/doc/scipy/ type, showing the effect of simplifying each attention head,
reference/generated/scipy.stats.ttest_rel. aggregated across models trained with three random ini-
html tializations, each with four layers and four attention heads

17

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html

Interpretability Illusions in the Generalization of Simplified Models

0.14 4

0.12 1

0.10 1
n_components
1

Density

0.06 4

@ NV R WN

0.04 4

0.02 4

AR
-20 =10 0 10 20 30
Attention position (approx) - attention position (original)

(a) SVD

0.05 1

0.04 1
n_clusters
4
8
16
32
64
128
256
— 512
— 1024

0.03 A

Density

0.02 1

0.01 1

,J\\\
—-20 =10 0 10 20 30
Attention position (approx) - attention position (original)

0.00

(b) Clustering

Figure 11: These figures illustrate the kinds of errors in attention patterns that the approximations introduce on Unseen
structure (length < 32) evaluation split. They plot the distribution of distances between the position to which the original
model assigns the most attention, and the position attended to by the simplified model. Both plots have a periodic structure,
where the simplified model attends to a position that differs from the correct position by a multiple of two. This error
pattern can be understood by noting that the parity of the nesting depth (which is equivalent to the parity of the position) is a
prominent feature in the key and query embeddings (Figure 9c).

per layer. The findings observed in Figure 6b are generally
consistent across training results, with the the gap between
in-distribution and out-of-distribution approximation scores
varying depending on the prediction type, although using
lower dimensions leads to more consistent generalization
gaps across categories.

Which attention head is associated with the biggest gen-
eralization gap? In Figure 17, we plot the generalization
gap for each attention head in a code completion model,
comparing the difference in the Same Prediction approxima-
tion score between Java examples and non-Java examples,
using a rank-16 SVD approximation for the given key and
query embeddings. Simplifying the fourth head in the fourth
layer leads to a generalization gap for most prediction types,
with the biggest gap on predicting words that appeared ear-
lier in the sequence. In Figure 18, we plot two example
attention patterns from this head. From the attention pat-
tern, this attention head appears to implement part of an
“induction head” circuit (Elhage et al., 2021). The fact that
the low-rank approximation has worse prediction similarity
on examples from unseen programming languages suggests
that the higher dimensions of the attention embeddings play
a larger role in determining the behavior of this mechanism
in these out-of-domain settings. The attention head asso-
ciated with the largest gap on New word predictions is the
third head in the first layer. Two example attention patterns
are illustrated in Figure 19. This attention head generally

18

attends to the previous token, perhaps indicating that these
predictions depend more on local context.

B.7. Additional Dataset: SCAN

To assess whether our findings generalize to other settings,
we also train models on the SCAN dataset (Lake & Baroni,
2018). SCAN is a synthetic, sequence-to-sequence semantic
parsing dataset designed to test systematic generalization.
The input to the model is an instruction in semi-natural
language, such as “turn thrice”, and the target is to gener-
ate a sequence of executable commands (“TURN TURN
TURN”).

Data We consider two generalization settings. First, we
test models on the Add jump generalization split, in which
the test examples are compositions using a verb (jump) that
appears in the training set only as an isolated word. We
train this model on the training set introduced by Patel et al.
(2022),® which augments the original training data with
more verbs, as this was shown to enable Transformers to
generalize to the Add jump set. Second, we test models on
Length generalization. We use the length generalization
splits from Newman et al. (2020),°. The examples in the

$https://github.com/arkilpatel/
Compositional-Generalization—-Seqg2Seq

‘https://github.com/bnewm0609/
eos—decision

https://github.com/arkilpatel/Compositional-Generalization-Seq2Seq
https://github.com/arkilpatel/Compositional-Generalization-Seq2Seq
https://github.com/bnewm0609/eos-decision
https://github.com/bnewm0609/eos-decision

Interpretability Illusions in the Generalization of Simplified Models

proj = key

depth

I proj = quelry

45

bracket_kind
e
®)

T T T T
10 20 30 40

C1l

(d

1

1

1

1

1

1

1

1

1

1

1

T T T T
-30 -20 -10 O
P

(a) First and second singular vectors.

proj = key depth
e 1
o 2
10 4 ® 3
e 4
® 5
8 01 ® 6
& 7
e 8
—10 1 9
e 10
—20 1
12
13
14
) 15
proj = query 16
17
18
10 A 19
20
m 0 bracket_kind
4

e (
®)
_10

-30 =20 -10

(b) First and third singular vectors.

Figure 12: Key and query embeddings for sequences from the out-of-distribution depth generalization test set. Visually,
the representations for out-of-distribution depths support some form of depth generalization, but the deeper depths are not

separated as effectively, leading to prediction errors.

training set are no longer than 26 tokens long, and general-
ization splits have examples with lengths spanning from 26
tokens to 40 tokens.

Model and training As in our Dyck experiments, we use
a decoder-only Transformer. In the Add jump setting, we
modify the attention mask to allow the model to use bi-
directional attention for the input sequence, and we train the
model to generate the target tokens. In the Length gener-
alization setting, we use an autoregressive attention mask
at all positions, and no position embeddings, because this
has been shown to improve the abilities of Transformers to
generalize to unseen lengths (Kazemnejad et al., 2023). We
conduct a hyper-parameter search over number of layers (in
{2,3,4,6}) and number of attention heads (in {1,2,4}) and
select the model with the highest accuracy on the generaliza-
tion split, as our main goal is to evaluate simplified model
representations in settings where the underlying model ex-
hibits some degree of systematic generalization. The hidden
dimension is 32, and the dimension of the attention embed-
dings is 32 divided by the muber of attention heads. For

19

Add jump, this is a three layer model with two attention
heads, which achieves an OOD accuracy of around 99%.
For Length, this is a six layer model with four attention
heads, achieving an OOD accuracy of around 60%. We use
a batch size of 128, a maximum learning rate of 5e-4, and
a dropout rate of 0.1, and train for 100,000 steps. All other
model and training details are the same as in Appendix A.2
and A.3.

Results After training the models, we evaluate the effect
of dimension-reduction and clustering, applied to the key
and query embeddings. We apply this simplification inde-
pendently to each head in the model and report the average
results in Figure 20. On the Add jump generalization set,
there is no discernible generalization gap. This result is in
line with a finding of Patel et al. (2022), who found that,
in models that generalize well, the embedding for the jump
token is clustered with the embeddings for the other verbs,
which would suggest that simplifications calculated from
training data would also characterize the model behavior
on the Add jump data. On the Length generalization set,

Interpretability Illusions in the Generalization of Simplified Models

there is a small but consistent generalization gap for both
dimension reduction and clustering. These results suggest
that generalization gaps can also appear in other settings,
and underscore the value of evaluating simplifications on
a variety of distribution shifts. On the other hand, we do
not attempt to conduct a mechanistic interpretation of these
larger models; further investigations are needed to under-
stand the implications of these (small) generalization gaps
for model interpretation.

20

Interpretability Illusions in the Generalization of Simplified Models

Accuracy (original) Accuracy (PCA, k=8)
~- 1 ~- 1
o= 1 1 m- 1 1
<- 1 1 1 <- 1 1 1
w-1 1 1 1 w- 1 1 1 1
-1 1 1 1 1 - 1 1 1 1 095
~- 1 1 1 1 1 1 ~- 1 1 1 099 099 097
-1 1 1 1 1 1 1 - 1 1 1 1 1 099 1
-1 1 1 1 1 1 1 1 @- 1 1 099 099 099 099 099 1
£g-1 1 1 1 1 1 1 1 1 £9- 1 099 1 099 099 099 099 098 1
& g
s S
g-1 1 1 1 1 1 1 1 1 1 >09- 1 1 1 099 099 099 099 099 0.98 098
L E)
x x
f4-1 1 1 1 1 1 1 1 1 1 1 2n- 1 099 099 099 099 099 099 099 099 098 0.93
m-1 1 1 1 1 1 1 1 1 1 1 088 m- 1 099 099 099 098 098 098 098 098 097 093

- 1 099 098 098 098 0.98 0.98 0.98 0.98 0.97 0.92

0.64 0.61 0.63

10 11
Query depth Query depth

10 1

(a) Prediction errors (original). (b) Prediction errors (SVD).

Depth of attended key (original model, wrong prediction, max key depth = 20) Depth of attended key (PCA model, k=, wrong prediction, max key depth = 20)

B oo oo

LEEM o 00043 o

0076 000 uuunouua?

053 o 00015 0O

0.069 0.00:

o 0081 o 1

0065 007 00015/ 049 0 00018 00012 0032 0.079 0002

00066 0.06 0.00024 032 0 0.0009 0 0015 00052 00 0 0.0021
0095 02 0046 0.00042 021 0097 2 0 00016
0077 0031 0 022 o0 0,058 0.
0 038 027 0092 000016 0.095 0.0008| 022 00044 0
0 000024 037 0071 018 0 | 031

oacosrcors [s as ooniz [z | o oo

000062 0 019 00019 024 O | 036

33 . 0 0041 0 000089

Key depth
Key depth

0.0012 | 0! 029 00023 046 (00002 0032 0 000052 ¢

011 012 0.00021 0.013
o o 0.025 {0561 027 0.021 00031 0023 | 048 019 g 049 0.11 95005 0.01
o o015 000032 0 016 00003 018 0.00011 0.45 0.00042 02 00031
00054 003 023 02 00058 0.018 026 0073 017 0018 [056 0.00
0 000012 0 016 0.0001 03 091 027 0.0001 | 038
0 000015 0.014 036 0.025 0.000120.0012 0.0035 0.18 00097 021 0.0047
o 0 00009 0.0001 {0861 o 00068 0 013 00056 033 0.0049
0.00010.000110.00 51 0016 681e:05 012 00011 031

0.0011

o 10 9 10
Query depth Query depth

(c) Attention errors (original). (d) Attention errors (SVD).

Figure 13: We trained a model on the Dyck dataset with a different random initialization and recreate the plots from
Figure 5c. The figure plots the errors of the original model and a rank-8 SVD simplification on the depth generalization
test set. Figures 13a and 13b plot the prediction accuracy, broken down by the depth of the query and the maximum depth
among the keys. Figures 13c and 13d plot the depth of the token with the highest attention score, broken down by the true
target depth, considering only incorrect predictions. The results are similar to the results in Figure Sc, with the simplified
model diverging more on predictions with deeper query depths. For example, when the query depth is greater than 15, the
lower-dimension model is more likely to attend to keys with a depth four less than the target depth.

21

Interpretability Illusions in the Generalization of Simplified Models

3

o

g

= Split
£ H Java

? I Java, unseen depth
S I JavaScript
§ N PHP

5 s Go

o)

]

<<

Whitespace Keyword New word Repeated word Close bracket Other

Figure 14: Accuracy at predicting the next character in CodeSearchNet, broken down by prediction type and evaluated on
different generalization splits, averaged over three training runs. The models achieve relatively high accuracy, performing
especially well at predicting whitespace characters and characters appearing in keywords or words that appeared earlier in
the sequence. See Section B.6 for more details.

Condition = Original model is right Condition = Original model is wrong
1.00
0.95
S 0.90
B Split
E — Java
£ 0.85 1 —-==- Java, unseen depth
g -------- JavaScript
—-=- PHP
T 0.80
n —— Go
0.75
0.70
T ——TT T T 7T T —— T — T
2 4 8 16 32 64 2 4 8 16 32 64
n_components n_components

Figure 15: Predicting closing brackets in different versions of CodeSearchNet after reducing the dimension of the key and
query embeddings using SVD. We apply dimensionality reduction to each attention head independently and aggregate the
results over attention heads and over models trained with three random seeds. The results are partitioned according to
whether the original model makes the correct (top) or incorrect (bottom) prediction. The prediction similarity between the
original and simplified models is consistently higher on in-distribution examples (Java, seen depth) relative to examples with
deeper nesting depths or unseen languages. The gap is somewhat larger when we resample the bracket types and increase
the number of bracket types.

22

Interpretability Illusions in the Generalization of Simplified Models

4 components 8 components 16 components
1.04 B
'9"! tgm m L1)] o
c oo ° ® [Ji
S 0.8 °§ oo 4 ° ° Split
© o o8 o° os e °0(mm java
B .eoo ° [Java, unseen depth
o o8 'Bl‘. s)
a 0.6 ° - [] BN JavaScript
e o8 g = PHP
& ° B Go
0.4 ° m
T T T T T T T T
> & & e > S > & &
$o‘ bd— 0&2 c,Q’b(I o‘ $é éo(& O&2
& ~o‘ & {3;\ & L o
2 & Q& < & &
¢ < 2 O
R > K e

L

Figure 16: Prediction similarity on CodeSearchNet after reducing the dimension of the key and query embeddings using
SVD, filtered to the subset of tokens that the original model predicts correctly. We train models with three random
initializations. Each model has four layers, four attention heads per layer, and an attention embedding size of 64, and we
apply dimensionality reduction to each attention head independently. This figure depicts the results from all three models
using different numbers of SVD components, broken down by prediction type. Each point on the plot shows the prediction
similarity after simplifying one attention head. The findings in 6b are generally consistent across training results, with the
the gap between in-distribution and out-of-distribution approximation scores varying depending on the prediction type,
although using lower dimensions leads to more consistent generalization gaps across categories.

Whitespace Keyword New word Repeated word Close bracket Other 010 &

0.08

g2 i i i .
> 0.06
33 . . . o,
0.04 3

4]] 7] &

— — — —— ——— —— 0.02 o

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 £

Head Head Head Head Head Head 0.00 ©

Figure 17: The generalization gap for each attention head in a model for CodeSearchNet, defined as the difference between
the Same Prediction score measured on in-domain examples (Java) compared to samples in unseen languages, using a
rank-16 SVD approximation for the key and query embeddings. Simplifying the fourth head in the fourth layer leads to a
generalization gap for most prediction types, with the biggest gap on predicting words that appeared earlier in the sequence.
This head seems to form part of an “induction head” mechanism (see Fig. 18) Simplifying the third head in the first layer
leads to the largest gap on New word predictions; this head generally attends to token at the previous position (Fig. 19),
perhaps to gather local bigram statistics. .

23

Interpretability Illusions in the Generalization of Simplified Models

Layer 4 head 4 (Java) Layer 4 head 4 (Java)

w
%
5

START
p

A €T a0 W E WO TO~S0 @ D 4 fE W00 A—mDatd O A0< 1T

DV TA DASACADNVTO~TYS DOA-CON=DTO A—rrn

Q39="U W EFTU USEENOS-UY ZEOA-ULO-NUTIVCUD USORNO QAr=>E+ 0 WP EFTU USEEMSY-0- DR0Z-ULOL@mITCo- asv~ &

START

g
B

Figure 18: Two example attention patterns from the attention head associated with the largest generalization gap on Repeated
word predictions in a code completion task (see Fig. 17). Each row represents a query and each column represents a key,
and we show the first 50 characters of two Java examples. This attention head appears to implement the “induction head”
pattern, which increases the likelihood of generating a word that appeared earlier in the sequence.

Layer 1 head 3 (Java) Layer 1 head 3 (Java)

DA< _n

A0 AW E WD TO A0

g
]
o
w
(
[«
h
a
T
B
u
,
f
e
.
b
u
f
)
{

DV-9TA DASOCADN-OTO~TY-F 0A-CON-9T0 AP+t A_._TCT

Q30— U VEEETU UEOENOS-UE ZTEEA-ULSC-NUTIVCUD USO-0NO

g
B

Figure 19: Two example attention patterns from the attention head associated with the largest generalization gap on New
word predictions in a code completion task (see Fig. 17). Each row represents a query and each column represents a key,
and we show the first 50 characters of two Java examples. This attention head appears to generally attend to the previous
position, perhaps indicating that these predictions depend more on local context.

24

Interpretability Illusions in the Generalization of Simplified Models

Metric = JSD Metric = JSD

Metric = JSD Metric = JSD 10

split
—
00D (length)

3 split El
Split g — In-domain 2

split
D
00D (length) 04

g 3
T —m s — D
00D (add jump) 0.44 00D (adid jump) 0.4

2 4 [16 32
n_components

(a) Add jump, SVD.

e
4 8 16 32 64 128 256 512 1024
n_clusters

(b) Add jump, clustering.

2 3x10° 4 6x10° 8 16
n_components

(c) Length, SVD.

4 < ~ i D 02 \ 02

\

4 8 16 32 64 128 256 512 1024
n_clusters

(d) Length, clustering.

Figure 20: Attention approximation metrics for models trained on the SCAN dataset, evaluated on two systematic gen-
eralization splits: the Add jump evaluation set, and the Length generalization set, which contains examples with unseen
lengths. We apply these approximations to each attention head individually, and plot the results and 95% confidence interval
averaged over the heads. See Appendix B.7.

25

	Introduction
	Setting
	Approach
	Case Study: Dyck Language Modeling
	Case Study: Code Completion
	Discussion
	Related Work
	Conclusion
	Implementation Details:
	Dyck Dataset Details
	Model Details
	Training Details

	Additional Results
	Transformer Algorithms for Dyck
	Case Study: Analyzing a Dyck Language Model
	Interpretation by Clustering
	Analysis: Structural Generalization
	Depth Generalization
	Additional Results: Computer Code
	Additional Dataset: SCAN

