
Exact Upper and Lower Bounds for the Output Distribution
of Neural Networks with Random Inputs

Andrey Kofnov 1 Daniel Kapla 1 Ezio Bartocci 2 Efstathia Bura 1

Abstract
We derive exact upper and lower bounds for the
cumulative distribution function (cdf) of the out-
put of a neural network (NN) over its entire sup-
port subject to noisy (stochastic) inputs. The up-
per and lower bounds converge to the true cdf
over its domain as the resolution increases. Our
method applies to any feedforward NN using con-
tinuous monotonic piecewise twice continuously
differentiable activation functions (e.g., ReLU,
tanh and softmax) and convolutional NNs, which
were beyond the scope of competing approaches.
The novelty and instrumental tool of our approach
is to bound general NNs with ReLU NNs. The
ReLU NN-based bounds are then used to derive
the upper and lower bounds of the cdf of the NN
output. Experiments demonstrate that our method
delivers guaranteed bounds of the predictive out-
put distribution over its support, thus providing
exact error guarantees, in contrast to competing
approaches.

1. Introduction
Increased computational power, availability of large
datasets, and the rapid development of new NN architec-
tures contribute to the ongoing success of NN based learning
in image recognition, natural language processing, speech
recognition, robotics, strategic games, etc. A limitation of
NN machine learning (ML) approaches is that they lack a
built-in mechanism to assess the uncertainty or trustwor-
thiness of their predictions, especially on unseen or out-of-
distribution data. A NN is a model of the form:

Y = f(X,Θ), (1)

1Faculty of Mathematics and Geoinformation, TU Wien,
Vienna, Austria 2Faculty of Informatics, TU Wien, Vi-
enna, Austria. Correspondence to: Andrey Kofnov <an-
drey.kofnov@tuwien.ac.at>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

where Y is the output and X the input (typically multivari-
ate), and f is a known function modeling the relationship be-
tween X and Y parametrized by Θ. Model (1) incorporates
uncertainty neither in Y nor in X and NN fitting is a numer-
ical algorithm for minimizing a loss function. Lack of un-
certainty quantification, such as assessment mechanisms for
prediction accuracy beyond the training data, prevents neu-
ral networks, despite their potential, from being deployed in
safety-critical applications ranging from medical diagnostic
systems (e.g., (Hafiz & Bhat, 2020)) to cyber-physical sys-
tems such as autonomous vehicles, robots or drones (e.g.,
(Yurtsever et al., 2020)). Also, the deterministic nature of
NNs renders them highly vulnerable to not only adversarial
noise but also to even small perturbations in inputs ((Bibi
et al., 2018; Fawzi et al., 2018; Goodfellow et al., 2014;
2015; Hosseini et al., 2017)).

Uncertainty in modeling is typically classified as epistemic
or systematic, which derives from lack of knowledge of
the model, and aleatoric or statistical, which reflects the
inherent randomness in the underlying process being mod-
eled (see, e.g., (Hüllermeier & Waegeman, 2021)). The
universal approximation theorem (UAT) (Cybenko, 1989;
Hornik et al., 1989) states that a NN with one hidden layer
can approximate any continuous function for inputs within
a specific range by increasing the number of neurons. In
the context of NNs, epistemic uncertainty is of secondary
importance to aleatoric uncertainty. Herein, we focus on
studying the effect of random inputs on the output distribu-
tion of NNs and derive uniform upper and lower bounds for
the cdf of the outputs of a NN subject to noisy (stochastic)
input data.

We evaluate our proposed framework on four benchmark
datasets (Iris (Fisher, 1936), Wine (Aeberhard & Forina,
1992), Diabetes (Efron et al., 2004), and Banana (Jaichan-
daran, 2017)), and demonstrate the efficacy of our approach
to bound the cdf of the NN output subject to Gaussian and
Gaussian mixture inputs. We demonstrate that our bounds
cover the true underlying cdf over its entire support. In
contrast, the similar but approximate approach of Krapf
et al. (2024), as well as high-sample Monte-Carlo simula-
tions, produce estimates outside the bounds over areas of
the output range where the bounds are tight.

1

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

2. Statement of the Problem
A NN is a mathematical model that produces outputs from
inputs. The input is typically a vector of predictor variables,
X ∈ Rn0 , and the output Y , is univariate or multivariate,
continuous or categorical.

A feedforward NN with L layers from Rn0 → RnL is a
composition of L functions,

fL(x | Θ) = f (L) ◦ f (L−1) ◦ ... ◦ f (1)(x), (2)

where the l-th layer is given by

f (l)(x | W(l),b(l)) = σ(l)(W(l)x+ b(l)),

with weights W(l) ∈ Rnl×nl−1 , bias terms b(l) ∈ Rnl , and
a non-constant, continuous activation function σ(l) : R → R
that is applied component-wise. The NN parameters are
collected in Θ = (vec(W1), b1, . . ., vec(WL), bL) ∈
R

∑L
l=1(nl−1·nl+nl). 1 The first layer that receives the input

x is called the input layer, and the last layer is the output
layer. All other layers are called hidden. For categorical
outputs, the class label is assigned by a final application of
a decision function, such as argmax.

Despite not being typically acknowledged, the training data
in NNs are drawn from larger populations, and hence they
contain only limited information about the corresponding
population. We incorporate the uncertainty associated with
the observed data assuming that they are random draws from
an unknown distribution of bounded support. That is, the
data are comprised of m draws from the joint distribution
of (X, Y), and the network is trained on observed (xi, yi),
xi = (xi1, xi2, . . . , xin0

), and yi, i = 1, . . . ,m.2 A NN
with L layers and nl neurons at each layer, l = 1, . . . , L,
is trained on the observed (xi, yi), i = 1, . . . ,m, to pro-
duce m outputs ỹi, and the vector of the NN parameters,
Θ = (vec(W1),b1, . . . , vec(WL),bL), is obtained. Θ
uniquely identifies the trained NN. Given Θ, we aim to
quantify the robustness of the corresponding NN, to pertur-
bations in the input variables. For this, we let

X ∼ FX, (3)

where X ∈ Rn0 stands for the randomly perturbed input
variables with cdf FX and probability density function (pdf)
ϕ(x) that is piecewise continuous and bounded on a compact
support. We study the propagation of uncertainty (effect of
the random perturbation) in the NN by deriving upper and
lower bounds of the cdf FỸ(y) = P(Ỹ ≤ y) of the random
output, Ỹ = fL(X | Θ).3

1The operation vec : Rnl−1×nl → Rnl−1·nl stacks the
columns of a matrix one after another.

2We use the convention of denoting random quantities with
capital letters and their realizations (observed) by lowercase letters.

3The notation fL(X | Θ) signifies that Θ, equivalently the
NN, is fixed and only X varies.

Our contributions:

1. We develop a method to compute the exact cdf of the
output of ReLU NNs with random input pdf, which is
a piecewise polynomial over a compact hyperrectan-
gle. This result, which can be viewed as a stochastic
analog to the Stone-Weierstrass theorem,4 significantly
contributes to the characterization of the distribution
of the output of NNs with piecewise-linear activation
functions under any input continuous pdf.

2. We derive guaranteed upper and lower bounds of the
NN output distribution resulting from random input
perturbations on a fixed support. This provides exact
upper and lower bounds for the output cdf provided
the input values fall within the specified support. No
prior knowledge about the true output cdf is required
to guarantee the validity of our bounds.

3. We show the convergence of our bounds to the true cdf;
that is, our bounds can be refined to arbitrary accuracy.

4. We provide a constructive proof that any feedforward
NN with continuous monotonic piecewise twice con-
tinuously differentiable5 activation functions can be
approximated from above and from below by a fully
connected ReLU network, achieving any desired level
of accuracy. Moreover, we enable the incorporation
of multivariate operations such as max, product and
softmax, as well as some non-monotonic functions
such as |x| and xn, n ∈ N.

5. We prove a new universal distribution approximation
theorem (UDAT), which states that we can estimate
the cdf of the output of any continuous function of
a random variable (or vector) that has a continuous
distribution supported on a compact hyperrectangle,
achieving any desired level of accuracy.

3. Our Approximation Approach

We aim to estimate the cdf FỸ(y) of the output Ỹ = fL(X |
Θ) of the NN in (2) under (3); i.e., subject to random per-
turbations of the input X. We do so by computing upper
and lower bounds of FỸ; that is, we compute F Ỹ, F Ỹ such
that

F Ỹ(y) ≤ FỸ(y) ≤ F Ỹ(y), ∀y (4)

We refer to the NN in (2) as prediction NN when needed
for clarity. We estimate the functions F Ỹ, F Ỹ on a “super-
set” of the output domain of the prediction NN (2) via an

4A significant corollary to the Stone-Weierstrass theorem is that
any continuous function defined on a compact set can be uniformly
approximated as closely as desired by a polynomial.

5A wide class of the most common continuous activation func-
tions, including ReLU, tanh and logistic function.

2

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

0.25 0.20 0.15 0.10 0.05 0.00
Outcome of the first element of the NN

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Va

lu
e

Exact cdf
Empirical cdf

Figure 1: Exact cdf of the ReLU NN outcome for class Setosa in
the Iris data, assuming Beta-distributed inputs.

integration procedure. The cdf of Ỹ is given by

FỸ(y) = P(Ỹ ≤ y) =

ˆ
{Ỹ≤y}

ϕ(x)dx, (5)

where ϕ(x) is the pdf of X. To bound FỸ, we bound ϕ by its
upper ϕ and lower ϕ estimates on the bounded support of ϕ
as described in Section 3.3. If ϕ is a piecewise polynomial,
then (5) can be computed exactly for a ReLU prediction
network, as we show in Section 3.1. Once ϕ and ϕ are
estimated, then

F Ỹ(y) =

ˆ
{Ỹ≤y}

ϕ(x)dx ≤ FỸ(y) ≤ (6)
ˆ
{Ỹ≤y}

ϕ(x)dx = F Ỹ(y)

Remark 3.1. F Ỹ(y) and F Ỹ(y) are not always true cdfs
since we allow the lower estimator not to achieve 1, while
the upper bound is allowed to take the smallest value greater
than 0.

3.1. Exact cdf evaluation for a fully connected NN with
ReLU activation function

Definition 3.2 (Almost disjoint sets). We say that sets A
and B are almost disjoint with respect to measure α, if
α(A ∩ B) = 0.

Definition 3.3 (Closed halfspace). A n0-dimensional closed
halfspace is a set H = {x ∈ Rn0 |vTx ≤ c} for c ∈ R and
some v ∈ Rn0 called the normal of the halfspace.

It is known that a convex polytope can be represented as an
intersection of halfspaces, called H-representation (Ziegler,
1995).

Definition 3.4 (H-polytope). A n0-dimensional H-

polytope P =
h⋂

j=1

Hi is the intersection of finitely many

closed halfspaces.

Definition 3.5 (Simplex). A n0-dimensional simplex is a
n0-dimensional polytope with n0 + 1 vertices.

Definition 3.6 (Piecewise polynomial). A function p : K →
RnL is a piecewise polynomial, if there exists a finite set

of n0-simplices such that K =
q⋃

i=1

ki and the function p

constrained to the interior koi of ki is a polynomial; that is,
p
∣∣
ko
i

: koi → RnL is a polynomial for all i = 1, . . . , q.

Remark 3.7. We do not require piecewise polynomials to
be continuous everywhere on the hyperrectangle. Specifi-
cally, we allow discontinuities at the borders of simplices.
However, the existence of left and right limits of the func-
tion at every point on the bounded support is guaranteed by
properties of polynomials.

(Raghu et al., 2017) showed that ReLU deep networks di-
vide the input domain into activation patterns (see (Sud-
jianto et al., 2020)) that are disjoint convex polytopes {Pj}
over which the output function is locally represented as
the affine transformation fL(x) = NN j(x) = cj +Vjx
for x ∈ {Pj}, the number of which grows at the order
O((max{nl}l=1,...,L)

n0L). (Sudjianto et al., 2020) outline
an algorithm for extracting the full set of polytopes and
determining local affine transformations, including the co-
efficients cj ,Vj for all {Pj}, by propagating through the
layers. For our computations, we utilize a recent GPU-
accelerated algorithm from (Berzins, 2023).

We aim to derive a superset of the range of the network
output. For this, we exploit the technique of Interval Bound
Propagation (IBP), based on ideas from (Gowal et al., 2019;
Wang et al., 2022; Gehr et al., 2018). Propagating the n0-
dimensional box through the network leads to the superset
of the range of the network output. We compute the cdf of
the network’s output at each point of a grid of the superset
of the output range.

Theorem 3.8 (Exact cdf of ReLU NN w.r.t. piecewise
polynomial pdf). Let Ỹ : Rn0 → RnL be a feedforward
ReLU NN, which splits the input space into a set of almost
disjoint polytopes {Pj}qYj=1 with local affine transformations

Ỹ(x) = NN j(x) for x ∈ Pj . Let ϕ(x) denote the pdf of
the random vector X that is a piecewise polynomial with
local polynomials, ϕ(x) = ϕi(x) for all x ∈ koi over an
almost disjoint set of simplices {ki}

qϕ
i=1, and a compact

hyperrectangle support K ⊂ Rn0 . Then, the cdf of Ỹ at
point y ∈ RnL is

FỸ(y) = P
[
Ỹ ≤ y

]
=

qϕ∑
i=1

qY∑
j=1

I
[
ϕi(x);Pr

j,i

]
=

qϕ∑
i=1

qY∑
j=1

Si,j∑
s=1

I [ϕi(x); Ti,j,s] ,

where I [ϕi(x); Ti,j,s] is the integral of the polynomial
ϕi(x) over the simplex Ti,j,s such that the reduced poly-

3

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

tope

Pr
j,i = Pj ∩ ki ∩ {x : NN j(x) ≤ y} =

Si,j⋃
s=1

Ti,j,s (7)

is defined by the intersection of polytopes Pj and ki, and
the intersection of halfspaces

{x : NN j(x) ≤ y} =

nL⋂
t=1

{
x : NN j

t (x) ≤ yt

}
.

Theorem 3.8 is shown in Appendix A.1. The proof relies
on the algorithm for evaluating the integral of a polynomial
over a simplex, as described in (Lasserre, 2021). The right-
hand side of (7) results from the Delaunay triangulation
(Delaunay, 1934), dividing the reduced polytope Pr

j,i into
Si,j almost disjoint simplices {Ti,j,s}.
Remark 3.9. Theorem 3.8 is a tool for approximating the
output cdf of any feedforward NN with piecewise linear
activation functions on a compact domain, given random
inputs of arbitrary continuous distribution at any desired
degree of accuracy.4

Example 3.10. We compute the output cdf of a 3-layer,
12-neuron fully connected ReLU NN with the last (be-
fore softmax) linear 3-neuron layer trained on the Iris
dataset (Fisher, 1936). The Iris dataset consists of 150
samples of iris flowers from three different species: Setosa,
Versicolor, and Virginica. Each sample includes four fea-
tures: Sepal Length, Sepal Width, Petal length, and Petal
width. We focus on two features, Sepal Length and Sepal
Width (scaled to [0, 1]), to classify flowers into three classes.
Specifically, we recover the distribution of the first compo-
nent (class Setosa) before applying the softmax function,
assuming Beta-distributed inputs with parameters (2, 2) and
(3, 2). The exact cdf is plotted in purple in Figure 1, with
additional details provided in Appendix D. The agreement
with the empirical cdf is almost perfect.

3.2. Algorithm for Upper and Lower Approximation of
the Neural Network using ReLU activation
functions.

We start by showing a general result in Theorem 3.11.

Theorem 3.11. Let Ỹ be a feedforward NN with L lay-
ers of arbitrary width with continuous activation functions.
There exist sequences of fully connected ReLU NNs {Y n},
{Y n}, which are monotonically decreasing and increasing,
respectively, such that for any ϵ > 0 and any compact hy-
perrectangle K ⊂ Rn0 , there exists N ∈ N such that for all
n ≥ N

0 ≤ Ỹ (x)− Y n(x) < ϵ, 0 ≤ Y n(x)− Ỹ (x) < ϵ

for all x ∈ K.

The proof is presented in Appendix A.2.

Theorem 3.11 cannot be directly applied in practice. We
develop an approach to approximate the activation functions
of a NN provided they are non-decreasing piecewise twice
continuously differentiable.

Definition 3.12. Let Ω = [a, a] ⊂ R be a closed interval
and g : Ω → R is well-defined, continuous on Ω. We will
say that g is piecewise twice continuously differentiable
on Ω, that is g ∈ C2

p.w.(Ω), if there exists a finite partition
of Ω into closed subintervals

⋃n
i=1 [ai, ai+1] = Ω where

a = a1 < a2 < . . . < an+1 = a and n ∈ N, such that
g
∣∣
[ai,ai+1]

is twice continuously differentiable.

Our method provides a constructive proof for the restricted
case of Theorem 3.11 for non-decreasing activation func-
tions in C2

p.w.(Ωi) at each node i of a NN, where Ωi is the
input domain of node i, and applies to any fully connected or
convolutional (CNN) feedforward NN with such activation
functions analyzed on a hyperrectangle. The key features of
our approach are:

• Local adaptability: The algorithm adapts to the cur-
vature of the activation function, providing an adaptive
approximation scheme depending on whether the func-
tion is locally convex or concave.

• Streamlining: By approximating the network with
piecewise linear functions, the complexity of analyzing
the network output is significantly reduced.

How it works:

Input/Output range evaluation: Using IBP (Gowal et al.,
2019), we compute supersets of the input and output ranges
of the activation function for every neuron and every layer.

Segment Splitting: First, input intervals are divided into
macro-areas based on inflection points (different curvature
areas) and points of discontinuity in the first or second
derivative (e.g., 0 for ReLU). Next, these macro-areas are
subdivided into intervals based on user-specified points or
their predefined number within each range. The algorithm
utilizes knowledge about the behavior of the activation func-
tion and differentiates between concave and convex regions
of the activation function, which impacts how the approx-
imations are constructed and how to choose the points of
segment splitting. A user defines the number of splitting
segments and the algorithm ensures the resulting disjoint
sub-intervals are properly ordered and on each sub-interval
the function is either concave or convex. If the function is
linear in a given area, it remains unchanged, with the upper
and lower approximations equal to the function itself.

4

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Upper and Lower Approximations: The method con-
structs tighter upper and lower bounds through the specific
choice of points and subsequent linear interpolation. It cal-
culates new points within each interval (one per interval)
and uses them to refine the approximation, ensuring the lin-
ear segments closely follow the curvature of the activation
function.

Our method differentiates between upper and lower ap-
proximations over concave and convex segments. For up-
per (lower) approximations on convex (concave) segments
[ak, ak+1], we employ local linear interpolation by intro-
ducing an intermediate point ak′ between the segment end-
points. That is, we let

ak′ = alin int
k′ , ak′ ∈ [ak, ak+1]

f̃(x) = f̃ lin int(x) for x ∈ [ak, ak+1]

Conversely, for upper (lower) approximations on concave
(convex) segments [ak, ak+1], we construct a piecewise tan-
gent approximation by inserting a linking point ak′ between
the function tangent at the segment boundaries. That is,

ak′ = apie tan
k′ , ak′ ∈ [ak, ak+1]

f̃(x) = f̃pie tan(x) for x ∈ [ak, ak+1]

The method guarantees that the piecewise linear approxi-
mation of the activation function for each neuron (a) is a
non-decreasing function, and (b) the output domain remains
the same.

To see this, consider a layer neuron. For upper (lower) ap-
proximation on a convex (concave) segment, we choose
a midpoint ak′ = (ak + ak+1)/2 for each subinterval
[ak, ak+1] and compute a linear interpolation, as follows:

κ1 =
f(ak′)− f(ak)

ak′ − ak
, κ2 =

f(ak+1)− f(ak′)

ak+1 − ak′
,

f̃(τ) = f(ak) + (τ − ak)κ1, τ ∈ [ak, ak′]

f̃(τ) = f(ak′) + (τ − ak′)κ2, τ ∈ [ak′ , ak+1]

For upper (lower) approximation on a concave (convex)
segment, we compute derivatives and look for tangent lines
at border points of the sub-interval [ak, ak+1]. We choose
a point ak′ : ak ≤ ak′ ≤ ak+1 to be the intersection of the
tangent lines. The original function is approximated by the
following two tangent line segments:

ak′ =
f(ak)− f(ak+1)− (f ′

+(ak)ak − f ′
−(ak+1)ak+1)

f ′
−(ak+1)− f ′

+(ak)

f̃(τ) = f(ak) + f ′
+(ak)(τ − ak), τ ∈ [ak, ak′]

f̃(τ) = f(ak+1) + f ′
−(ak+1)(τ − ak+1), τ ∈ [ak′ , ak+1] ,

where f ′
−(·), f ′

+(·) are left and right derivatives, respec-
tively.

For monotonically increasing functions, this procedure guar-
antees that the constructed approximators are exact upper
and lower approximations. Moreover, decreasing the step
size (increasing the number of segments) reduces the error
at each point, meaning that the sequences of approxima-
tors for the activation functions at each node are monotonic:
fn+1(x) ≤ fn(x), fn+1

(x) ≥ f
n
(x), for all x in the IBP

domain. This procedure of piecewise linear approximation
of each activation function at each neuron is equivalent to
forming a one-layer ReLU approximation network for the
given neuron.

By the UAT, for any continuous activation function σl,i

at each neuron and any positive ϵl,i we can always find a
ReLU network-approximator NNl,i, such that |NNl,i(x)−
σl,i(x)| < ϵl,i for all x in the input domain, defined by the
IBP. To find such an approximating network we need to
choose the corresponding number of splitting segments of
the IBP input region. Uniform convergence is preserved by
Dini’s theorem, which states that a monotonic sequence of
continuous functions that converges pointwise on a compact
domain to a continuous function also converges uniformly.
Moreover, the approximator always stays within the range of
the limit function, ensuring that the domain in the next layer
remains unchanged and preserves its uniform convergence.

Algorithm 1 Piecewise Linear U / L Approximation

1: INPUT: Interval bounds [aη, aη] and activation func-
tion f for neuron η

2: OUTPUT: Sets {[ak, ak+1]}, {f |k(x)}, {f |k(x)}
3: PROCEDURE:
4: Split [aη, aη] into segments {[ak, ak+1]} such that the

f |k : [ak, ak+1] → R with f |k(x) = f(x) is either
linear or twice continuously differentiable with constant
sign of f |′′k

5: for each segment [ak, ak+1] do
6: if f |k is linear then
7: f |k(x) = f |k(x) = f |k(x)
8: else if f |′′k ≥ 0 then
9: f |k(x) = f̃ lin int|k(x)

10: f |k(x) = f̃pie tan|k(x)
11: else if f |′′k ≤ 0 then
12: f |k(x) = f̃pie tan|k(x)
13: f |k(x) = f̃ lin int|k(x)
14: end if
15: end for

Transformation into ReLU-Equivalent Form: The ap-
proximating piecewise linear upper-lower functions are con-
verted into a form that mimics the ReLU function’s behavior;
i.e., f̃(x) = W (2)ReLU(W (1)x+b(1))+b(2). This involves
creating new weighting coefficients and intercepts that repli-
cate the ReLU’s activation pattern across the approximation

5

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

0.00.20.40.60.81.0
Feature 1 (Sepal Length)

0.0 0.2 0.4 0.6 0.8
1.0

 Feature 2 (Sepal Width)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5NN output (Setosa)

0.00.20.40.60.81.0
Feature 1 (Sepal Length)

0.0 0.2 0.4 0.6 0.8
1.0

 Feature 2 (Sepal Width)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5NN output (Setosa)

Figure 2: Tanh NN output for the Setosa class (blue) in the Iris
dataset, and its ReLU NN upper (red) and lower (green) approx-
imations with 5 (upper panel) and 10 (lower panel) segments of
bounding per convex section.

intervals.

Specifically, we receive a set of intervals {[xi−1, xi]}ni=1

with the corresponding set of parameters of affine transfor-
mations {(vi, ci)}ni=1:

f̃(τ) = ci + viτ, τ ∈ [xi−1, xi] ,

and set v0 = 0. Then, the corresponding ReLU-equivalent
definition of approximation f̃ on [x0, xn] is

f̃(τ) = x0v1 + c1 +

n∑
i=1

ξiReLU(|vi − vi−1|(τ − xi−1)),

ξi = sign(vi − vi−1).

Full Neural Network Approximation: The entire NN
is approximated by applying the above techniques to each
neuron, layer by layer, and then merging all intermediate
weights and biases. For each neuron, both upper and lower
approximations are generated, capturing the range of pos-
sible outputs under different inputs. To ensure the correct

propagation of approximators, to create an upper approxi-
mation, we connect the upper approximation of the external
layer with the upper approximation of the internal subnet-
work if the internal subnetwork has a positive coefficient, or
with the lower approximation if it has a negative coefficient.
The reverse applies to the lower approximation. Detailed ex-
planation is provided in Lemma B.11 and B.12 in Appendix
B.1. This leads to a composition of uniformly convergent
sequences, guaranteeing the overall uniform convergence
of the final estimator to the original neural network, as we
show in Theorem 3.14. The final output is a set of piecewise
linear approximations that bound the output of the original
neural network, which can then be used for further analysis
or verification.

Example 3.13. Using the same setup as in Example 3.10,
we train a fully connected neural network with 3 layers of
12 neurons each with tanh activation followed by 1 layer of
3 output neurons with linear activation on the Iris dataset,
focusing on the re-scaled features Sepal Length and Sepal
Width. We construct upper and lower approximations of
the network’s output by ReLU neural networks with linear
output layer. Two approximations are performed: with
5 and 10 bounding segments per convex section at each
node (upper and lower panels of Figure 2, respectively).
Notably, with 10 segments, the original network and its
approximations are nearly indistinguishable.

This procedure applies to various non-monotonic functions,
such as monomials xn, n ∈ N. These functions can be
attained by a sequence of transformations that ensure mono-
tonicity at all intermediate steps. These transformations can
be represented as a subnetwork. Furthermore, multivari-
ate functions like softmax and the product operation also
have equivalent subnetworks with continuous monotonic
transformations, as shown in Appendix C.

The main result of this section is Theorem 3.14 that shows
that the upper and lower ReLU bounds converge uniformly
and monotonically to the target NN.

Theorem 3.14 (Uniform Monotonic Convergence of the
ReLU Bounds). The sequences of estimating functions that
are ReLU NNs generated by the method in Section 3.2, es-
tablish upper and lower bounds for the target NN. These se-
quences are monotonically decreasing for the upper bounds
and monotonically increasing for the lower bounds, and
converge uniformly to the target network.

The proof is given in Appendix B.2. It involves multiple
steps, each outlined in different lemmas in Appendix B.1.

Remark 3.15. Theorem 3.11 follows from the UAT (Hornik
et al., 1989). Theorem 3.14 is a special case of Theorem
3.11 but our proof is constructive and explicitly outlines the
sequences that establish the bounds.

6

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

3.3. Application to an arbitrary function on a compact
domain

We present the universal distribution approximation theo-
rem, which may serve as a starting point for further research
in the field of stochastic behavior of functions and the NNs
that describe them.

Theorem 3.16 (Universal distribution approximation theo-
rem). Let X be a random vector with continuous pdf ϕ(x)
supported over a compact hyperrectangle K ⊂ Rn0 . Let
Y = W(x) ∈ R be a continuous function of X with domain
K, and let F (y) denote its cdf. Then, there exist sequences
of cdf bounds {Fn}, {Fn}, n = 1, 2, . . ., which can be
constructed by bounding the distributions of sequences of
ReLU NNs and such that

Fn(y) ≤ F (y) ≤ Fn(y)

for all y ∈ {W(x) : x ∈ K} and

Fn(y) → F (y), Fn(y) → F (y)

for all y where F (y) is continuous. Moreover, if W(X) is
almost surely nowhere locally constant, that is

ˆ

{W(x)=y}

ϕ(x)dx = 0 (8)

for all y ∈ {W(x) : x ∈ K}, then both bounds Fn, Fn

converge uniformly to the true cdf F .

The proof is presented in Appendix A.3. It leverages the
UAT (Hornik et al., 1989) to approximate the function W(x)
and input pdf ϕ(x) with ReLU NNs to arbitrary accuracy.
The cdf bounds are then computed over polytope intersec-
tions. Increasing the NN complexity results in more sim-
plices and thus leads to finer local affine approximations of
the pdf.

To bound the cdf of a given NN with respect to a specified
input pdf, we construct upper and lower bounding ReLU
NNs to approximate the target NN. Next, we subdivide
the resulting polytopes of the bounding ReLU NNs into
simplices as much as needed to achieve the desired accuracy
and locally bound the input pdf with constant values (the
simplest polynomial form) on these simplices, transforming
the problem into the one described in Section 3.1.

4. Experiments
We consider four datasets, Banana, Diabetes (Efron et al.,
2004), Iris (Fisher, 1936), and Wine (Aeberhard & Forina,
1992)6.

6Iris, Wine and Diabetes are provided in the Python package
scikit-learn and Banana in Kaggle.

In all experiments, we compare our guaranteed bounds for
the output cdf with cdf estimates obtained via a Monte
Carlo (MC) simulation (100 million samples), and with the
“Piecewise Linear Transformation” (PLT) method of Krapf
et al. (2024) following their default subdivision setup. For
each simplex an edgewise subdivision is performed with the
number of subdivisions depending on the input dimension
n0. For input dimension n0 from 1 to 3, the number of
subdivisions was set to 250, 100 and 30, respectively. In
contrast, our implementation uses a bound (arbitrarily set
to 50 000) on the total number of vertices based on the
iteratively refined triangulation.

Since the true cdf is contained within the limits computed
by our method, the experiments assess the tightness of our
bounds compared to both MC and PLT by tallying the num-
ber of “out of bounds” instances. Essentially, achieving very
tight bounds makes it challenging to stay within those limits,
whereas even imprecise estimates can fall within broader
bounds.

Our experimental setup is based on small pre-trained (fixed)
neural networks. For the Banana data, we trained a ReLU
network with 2 hidden layers of 16 neurons each. For the
Diabetes dataset, we trained a ReLU network with 3 hidden
layers with 32, 16, and 8 neurons, respectively. The uni-
variate output has no activation. Training was performed
on 70% of the data, which were randomly selected. The re-
maining 30% comprise the test set. We added normal noise
to the 1 or 2 randomly selected features (see n0 in Table 1)
of every observation with variance the sample variance of
the selected feature(s) in the test set (different features in dif-
ferent observations). This is a simplified simulation setting
of that of (Krapf et al., 2024).

For both Iris and Wine, we replicated the exact experimen-
tal setup from (Krapf et al., 2024) using the same test sets,
Gaussian mixtures as randomness as well as the same pre-
trained networks7. The 1 to 3 dimensional Gaussian mix-
tures were computed by first deleting 25% or 50% of the
test data. Subsequently, 50 new observations are imputed
using MICE (van Buuren & Groothuis-Oudshoorn, 2011).
The new imputed observations where used as the dataset
for a Gaussian kernel density estimate providing the Gaus-
sian mixture for each of the original deleted observations.
The only difference in the experimental setup is the MC
estimate, which we recomputed with a higher sample count
(108 as opposed to 8 · 104 till 1.024 · 107 with a median of
6.4 · 105 deduced by an incremental doubled sample size
convergence criteria). Here, the “ground truth” are the exact
cdf bounds our method computes as opposed to the MC
estimate in the (Krapf et al., 2024) experiments, which was

7GitHub page https://github.com/URWI2/
Piecewise-Linear-Transformation, accessed Jan
25, 2025

7

https://scikit-learn.org/stable/
https://www.kaggle.com/code/saranchandar/standard-classification-with-banana-dataset
https://github.com/URWI2/Piecewise-Linear-Transformation
https://github.com/URWI2/Piecewise-Linear-Transformation

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

an approximation to the true cdf.

We summarize our results in Table 1. When the input dimen-
sion is 1, our bounds are very tight and we thus observe a
high ratio of “out of bounds” samples for both MC and PLT
compared to the number of grid points the cdf was evaluated
at. This has two components: (a) In regions where the cdf is
very flat, we obtain very tight bounds leading to small errors
in a bucketed estimation approach easily falling outside of
these tight bounds; (b) due to either pure random effect in
the case of MC or numerical estimation inaccuracies in case
of PLT, MC and PLT estimates are outside the bounds. Al-
though the PLT estimator directly targets the pdf and would
be expected to achieve greater precision than ours (as we
target bounding the cdf instead), we note that in these exam-
ples, especially as regards PLT, a “coarse grid” can cause
inaccuracies in areas where the pdf fluctuates significantly.
Nevertheless, this behavior diminishes as the input dimen-
sion increases. Due to our hard bound on the maximum
number of vertices in this simulation (namely 50 000), our
estimated cdf bounds are wider in higher dimensions as a
consequence of the curse of dimensionality.

5. Related Work
The literature on NN verification is not directly related to
ours as it has been devoted to standard non-stochastic input
NNs, where the focus is on establishing guarantees of local
robustness. This line of work develops testing algorithms
for whether the output of a NN stays the same within a
specified neighborhood of the deterministic input (see, e.g.,
Gowal et al. (2019); Xu et al. (2020); Zhang et al. (2018;
2020); Shi et al. (2025); Bunel et al. (2020); Ferrari et al.
(2022); Katz et al. (2017; 2019); Wu et al. (2024)).

To handle noisy data or aleatoric uncertainty (random in-
put) in NNs, two main approaches have been proposed:
sampling-based and probability density function (pdf)
approximation-based. Sampling-based methods use Monte
Carlo simulations to propagate random samples through the
NN (see, e.g., Abdelaziz et al. (2015); Ji et al. (2020)), but
the required replications to achieve similar accuracy to theo-
retical approaches such as ours, as can be seen in Table 1,
can be massive. Pdf approximation-based methods assume
specific distributions for inputs or hidden layers, such as
Gaussian (Abdelaziz et al., 2015) or Gaussian Mixture Mod-
els (Zhang & Shin, 2021), but these methods often suffer
from significant approximation errors and fail to accurately
quantify predictive uncertainty. Comprehensive summaries
and reviews of these approaches can be found in sources
like Sicking et al. (2022) and Gawlikowski et al. (2023).

In the context of verifying neural network properties within
a probabilistic framework, (Weng et al., 2019) proposed
PROVEN, a general probabilistic framework that ensures

robustness certificates for neural networks under Gaussian
and Sub-Gaussian input perturbations with bounded support
with a given probability. It employs CROWN (Zhang et al.,
2018; 2020) to compute deterministic affine bounds and
subsequently leverages straightforward probabilistic tech-
niques based on Hoeffding’s inequality (Hoeffding, 1963).
PROVEN provides a probabilistically sound solution to en-
suring the output of a NN is the same for small input per-
turbations with a given probability, its effectiveness hinges
on the activation functions used. It cannot refine bounds
or handle various input distributions, which may limit its
ability to capture all adversarial attacks or perturbations in
practical scenarios.

The most relevant published work to ours we could find
in the literature is Krapf et al. (2024). They propagate in-
put densities through NNs with piecewise linear activations
like ReLU, without needing sampling or specific assump-
tions beyond bounded support. Their method calculates
the propagated pdf in the output space using the piecewise
linearity of the ReLU activation. (Krapf et al., 2024) esti-
mate the output pdf and show experimentally that it is very
close to the Monte Carlo based pdf. Despite its originality,
the approach has drawbacks, as they compare histograms
rather than the actual pdfs in their experiments. Theorem
5 (App. C) in (Krapf et al., 2024) suggests approximating
the distribution with fine bin grids and input subdivisions,
but this is difficult to implement in practice. Without knowl-
edge of the actual distribution, it is challenging to define
a sufficiently “fine” grid. In contrast, we compute exact
bounds of the true output cdf over its entire support (at any
point, no grid required) that depicts the maximum error over
its support, and show convergence to the true cdf. Krapf
et al. (2024) use a piecewise constant approximation for
input pdfs, which they motivate by their Lemma 3 (App.
C) to deduce that exact propagation of piecewise polynomi-
als through a neural network is infeasible. We show that,
in effect, it is possible and provide a method for exact in-
tegration over polytopes. Additionally, their approach is
limited to networks with piecewise linear activations, ex-
cluding locally nonlinear functions. In contrast, our method
adapts to NNs with continuous, monotonic piecewise twice
continuously differentiable activations.

6. Conclusion
We develop a novel method to analyze the probabilistic
behavior of the output of a neural network subject to noisy
(stochastic) inputs. We formulate an algorithm to compute
bounds (upper and lower) for the cdf of a neural network’s
output and prove that the bounds are guaranteed and that
they converge uniformly to the true cdf.

Our approach enhances deterministic local robustness ver-
ification using non-random function approximation. By

8

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Table 1: Comparison of our approach U/L-Dist (guaranteed upper and lower bounds) with pointwise estimators from Monte-Carlo
simulations and PLT (Krapf et al., 2024). Under column headed by n0 are the numbers of input variables, # Tests is test set size grouped by
n0, under U/L-dist are the mean distance (standard deviation) between our upper and lower bounds, under OOBMC and OOBPLT are the
minimum, median and maximum number of points outside our bounds relative to Grid Size many cdf evaluation points for Monte-Carlo
simulations and PLT, respectively. Runtime gives the mean computation time for PLT and our approach in seconds (MC took about 20 sec
in all cases).

Dataset n0 # Tests U/L-Dist # Out of Bounds Grid Runtime [sec]
MC PLT Size PLT OUR

Mean (Std) (Min/Median/Max) (Min/Median/Max) Mean Mean

banana 1 1591 0.0001 (0.0000) 0 / 103 / 896 77 / 565 / 999 1000 1.4 1.0
diabetes 1 133 0.0001 (0.0000) 2 / 265 / 815 107 / 678 / 993 1000 1.2 1.0
diabetes 2 133 0.0015 (0.0009) 0 / 1 / 92 0 / 207 / 992 1000 504 4.0
iris25 1 25 0.0000 (0.0000) 44 / 282 / 868 1510 / 2245 / 2594 8000 0.23 5.9
iris25 2 10 0.0059 (0.0040) 0 / 9 / 127 0 / 0 / 74 8000 38 20
iris25 3 —
iris50 1 20 0.0000 (0.0000) 115 / 321 / 828 1794 / 2311 / 2976 8000 0.41 5.9
iris50 2 23 0.0064 (0.0064) 0 / 37 / 413 0 / 9 / 119 8000 43 20
iris50 3 8 0.2019 (0.0414) 0 / 18 / 128 0 / 31 / 178 8000 270 100
wine225 1 32 0.0000 (0.0000) 23 / 329 / 853 1864 / 2294 / 3026 8000 0.36 5.8
wine225 2 8 0.0043 (0.0016) 11 / 34 / 341 0 / 4 / 22 8000 44 19
wine225 3 2 0.1777 (0.0068) 300 / 449 / 598 60 / 63 / 66 8000 340 99
wine250 1 27 0.0000 (0.0000) 169 / 491 / 2129 1892 / 2191 / 2955 8000 0.41 5.9
wine250 2 21 0.0053 (0.0028) 0 / 70 / 615 0 / 4 / 46 8000 42 20
wine250 3 13 0.1859 (0.0560) 13 / 110 / 489 1 / 39 / 93 8000 300 99

bounding intermediate neurons with piecewise affine trans-
formations and known ranges of activation functions evalu-
ated with IBP (Gowal et al., 2019), we achieve more precise
functional bounds. These bounds converge to the true func-
tions of input variables as local linear units increase.

Our method targets neural networks with continuous mono-
tonic piecewise twice continuously differentiable activation
functions using tools like Marabou (Wu et al., 2024), orig-
inally designed for piecewise linear functions. While the
current approach analyzes the behavior of NNs on a compact
hyperrectangle, we can easily extend our theory to unions
of bounded polytopes. In future research, we plan to bound
the cdf of a neural network where the input admits arbitrary
distributions with bounded piecewise continuous pdf sup-
ported on arbitrary compact sets. Moreover, we intend to
improve the algorithmic performance so that our method
applies to larger networks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
We would like to thank three reviewers for their helpful
feedback and suggestions, which improved our work.

The research in this paper has been partially funded by
the Vienna Science and Technology Fund (WWTF) grant
[10.47379/ICT19018] (ProbInG), the TU Wien Doctoral
College (SecInt), the FWF research project P 30690-N35,
and WWTF project ICT22-023 (TAIGER).

9

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

References
Abdelaziz, A. H., Watanabe, S., Hershey, J. R., Vincent, E.,

and Kolossa, D. Uncertainty propagation through deep
neural networks. In Interspeech 2015, pp. 3561–3565,
2015.

Aeberhard, S. and Forina, M. Wine. UCI Machine Learning
Repository, 1992.

Berzins, A. Polyhedral complex extraction from ReLU net-
works using edge subdivision. In Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.
(eds.), Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 2234–2244. PMLR, 23–29
Jul 2023.

Bibi, A., Alfadly, M., and Ghanem, B. Analytic expressions
for probabilistic moments of pl-dnn with gaussian input.
In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9099–9107, 2018.

Bunel, R., Lu, J., Turkaslan, I., Torr, P. H., Kohli, P., and
Kumar, M. P. Branch and bound for piecewise linear
neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, 1989.

Delaunay, B. Sur la sphère vide. Bulletin de l’Académie des
Sciences de l’URSS. Classe des sciences mathématiques
et na, 1934(6):793–800, 1934.

Driscoll, T. A. and Braun, R. J. Fundamentals of numerical
computation. Society for Industrial and Applied Mathe-
matics, Philadelphia, 2018.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of Statistics, pp. 407–451,
2004.

Fawzi, A., Fawzi, H., and Fawzi, O. Adversarial vulner-
ability for any classifier. In Proceedings of the 32nd
International Conference on Neural Information Process-
ing Systems, NIPS’18, pp. 1186–1195, Red Hook, NY,
USA, 2018. Curran Associates Inc.

Ferrari, C., Mueller, M. N., Jovanović, N., and Vechev,
M. Complete verification via multi-neuron relaxation
guided branch-and-bound. In International Conference
on Learning Representations, 2022.

Fisher, R. A. The use of multiple measurements in taxo-
nomic problems. Annals of Human Genetics, 7:179–188,
1936.

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M.,
Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R.,
Shahzad, M., Yang, W., Bamler, R., and Zhu, X. X. A
survey of uncertainty in deep neural networks. Artificial
Intelligence Review, 56:1513–1589, 2023.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy
(SP), pp. 3–18, 2018.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Proceedings of the
28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp. 2672–2680,
Cambridge, MA, USA, 2014. MIT Press.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In Bengio, Y. and
LeCun, Y. (eds.), 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Gowal, S., Dvijotham, K. D., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli, P.
Scalable verified training for provably robust image clas-
sification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

Hafiz, A. M. and Bhat, G. M. A survey of deep learning
techniques for medical diagnosis. In Tuba, M., Akashe,
S., and Joshi, A. (eds.), Information and Communication
Technology for Sustainable Development, pp. 161–170,
Singapore, 2020. Springer Singapore.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Hosseini, H., Xiao, B., and Poovendran, R. Google’s cloud
vision api is not robust to noise. In 2017 16th IEEE
International Conference on Machine Learning and Ap-
plications (ICMLA), pp. 101–105, 2017.

Hüllermeier, E. and Waegeman, W. Aleatoric and epistemic
uncertainty in machine learning: an introduction to con-
cepts and methods. Machine Learning, 110(3):457–506,
2021.

Jaichandaran, S. Standard classification with banana dataset,
2017.

10

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Ji, W., Ren, Z., and Law, C. K. Uncertainty Propagation in
Deep Neural Network Using Active Subspace, 2020.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient SMT solver for verifying
deep neural networks. In Majumdar, R. and Kunčak, V.
(eds.), Computer Aided Verification, pp. 97–117, Cham,
2017. Springer International Publishing.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C.,
Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A., Dill,
D. L., Kochenderfer, M. J., and Barrett, C. The Marabou
framework for verification and analysis of deep neural
networks. In Dillig, I. and Tasiran, S. (eds.), Computer
Aided Verification, pp. 443–452, Cham, 2019. Springer
International Publishing.

Krapf, T., Hagn, M., Miethaner, P., Schiller, A., Luttner,
L., and Heinrich, B. Piecewise linear transformation –
propagating aleatoric uncertainty in neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38(18), pp. 20456–20464, Mar 2024.

Lasserre, J. B. Simple formula for integration of polyno-
mials on a simplex. BIT Numerical Mathematics, 61(2):
523–533, 2021.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural
networks. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 2847–2854. PMLR, 06–11 Aug 2017.

Rao, R. R. Relations between weak and uniform conver-
gence of measures with applications. The Annals of Math-
ematical Statistics, 33(2):659 – 680, 1962.

Rudin, W. Principles of mathematical analysis. McGraw-
Hill New York, 3rd edition, 1976.

Shi, Z., Jin, Q., Kolter, Z., Jana, S., Hsieh, C.-J., and Zhang,
H. Neural network verification with Branch-and-Bound
for general nonlinearities. In Gurfinkel, A. and Heule,
M. (eds.), Tools and Algorithms for the Construction and
Analysis of Systems, pp. 315–335, Cham, 2025. Springer
Nature Switzerland.

Sicking, J., Akila, M., Schneider, J. D., Hüger, F., Schlicht,
P., Wirtz, T., and Wrobel, S. Tailored uncertainty estima-
tion for deep learning systems. CoRR, abs/2204.13963,
2022.

Sudjianto, A., Knauth, W., Singh, R., Yang, Z., and Zhang,
A. Unwrapping the black box of deep relu networks:
Interpretability, diagnostics, and simplification. ArXiv,
abs/2011.04041, 2020.

van Buuren, S. and Groothuis-Oudshoorn, K. mice: Multi-
variate imputation by chained equations in R. Journal of
Statistical Software, 45(3):1–67, 2011.

Wang, Z., Albarghouthi, A., Prakriya, G., and Jha, S. Inter-
val universal approximation for neural networks. In Proc.
ACM Program. Lang., volume 6, New York, NY, USA,
Jan 2022. Association for Computing Machinery.

Weng, L., Chen, P.-Y., Nguyen, L., Squillante, M., Boopa-
thy, A., Oseledets, I., and Daniel, L. PROVEN: Verifying
robustness of neural networks with a probabilistic ap-
proach. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 6727–6736. PMLR, 09–15 Jun
2019.

Wu, H., Isac, O., Zeljic, A., Tagomori, T., Daggitt, M. L.,
Kokke, W., Refaeli, I., Amir, G., Julian, K., Bassan,
S., Huang, P., Lahav, O., Wu, M., Zhang, M., Komen-
dantskaya, E., Katz, G., and Barrett, C. W. Marabou
2.0: A versatile formal analyzer of neural networks. In
Gurfinkel, A. and Ganesh, V. (eds.), Computer Aided
Verification - 36th International Conference, CAV 2024,
Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part II, volume 14682 of Lecture Notes in Computer Sci-
ence, pp. 249–264. Springer, 2024.

Xu, K., Shi, Z., Zhang, H., Huang, M., Chang, K.,
Kailkhura, B., Lin, X., and Hsieh, C. Automatic perturba-
tion analysis on general computational graphs. Lawrence
Livermore National Lab. (LLNL), Livermore, CA (United
States), 02 2020.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. A
survey of autonomous driving: Common practices and
emerging technologies. IEEE Access, 8:58443–58469,
2020.

Zhang, B. and Shin, Y. C. An adaptive gaussian mixture
method for nonlinear uncertainty propagation in neural
networks. Neurocomputing, 458:170–183, 2021.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 4944–4953, Red Hook,
NY, USA, 2018. Curran Associates Inc.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R.,
Li, B., Boning, D., and Hsieh, C.-J. Towards stable and
efficient training of verifiably robust neural networks. In
International Conference on Learning Representations,
2020.

11

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Ziegler, G. M. Lectures on polytopes. Springer-Verlag, New
York, 1995.

12

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

A. Proof of Theorems
A.1. Theorem 3.8

Suppose the activation function in the prediction NN (2) is ReLU and n0 and nL are the number of input and output neurons,
respectively. The integral of a function over a given domain can be expressed as the sum of integrals over a partition of
the domain (disjoint subdomains whose union constitutes the original domain). To compute the cdf of Ỹ = fL(x) at y,
FỸ(y) = Pr[fL(x) ≤ y], we compute the sum of P[NN j(x) ≤ y | x ∈ Pj], each of which is the integral of the pdf of the
input over the given polytopes subject to NN j(x) ≤ y. These sets of polytopes {Pj} and the corresponding local affine
transformations {NN j(x)} always exist, as shown in (Raghu et al., 2017).

Pj is a convex polytope and can be represented as the intersection of halfspaces (see (Ziegler, 1995)). The set {x :
NN j(x) = cj +Vjx ≤ y} is defined as the intersection of halfspaces

nL⋂
t=1

{
x : NN j

t (x) = cjt +

n0∑
z=1

xzv
j
t,z ≤ yt

}
,

which when intersected with Pj and ki defines the reduced complex polytope Pr
j,i. The desired local probability,

P[NN j(x) ≤ y | x ∈ Pj], is the integral I
[
ϕi(x);Pr

j,i

]
of the pdf ϕi(x) over the reduced polytope Pr

j,i.

Using the Delaunay triangulation (Delaunay, 1934) one can decompose any convex polytope Pr
j,i into a disjoint set of

simplices Ti,j,s. This triangulation allows us to compute the integral over the polytope as a sum of integrals over each
simplex. Assuming that the pdf of the input is a piecewise polynomial allows us to use the algorithm from (Lasserre, 2021)
to compute exact integrals over all simplices. The sum of all these localized integrals (probabilities) is the exact cdf value at
point y.

A.2. Theorem 3.11

Since Ỹ is a feedforward NN with continuous activation functions on a compact support K ⊂ Rn0 , for any ϵ > 0, let {ϵn},
ϵ > ϵn > 0 be a decreasing sequence. By the UAT (Hornik et al., 1989), there exists a sequence of ReLU networks {Yϵn},
such that

sup
K

∥Ỹ (x)− Yϵn(x)∥Rn0 < ϵn.

Setting Y ′
n(x) = Yϵn(x)− ϵn and Y

′
n(x) = Yϵn(x) + ϵn, we have

Y ′
n(x) ≤ Ỹ (x) ≤ Y

′
n(x).

Now, we let Y n(x) = max1≤i≤n Y
′
n(x), which is still not greater than Ỹ (x), and Y n(x) = min1≤i≤n Y

′
n(x), which is

still not smaller than Ỹ (x). One can see that {Y n} and {Y n} are monotonically decreasing and increasing, respectively. It
should be noted that the min and max operators can be represented as ReLU networks (see Fig. 4), and the composition of
ReLU networks is itself a ReLU network.

A.3. Theorem 3.16

According to the UAT (Hornik et al., 1989), for any ϵ > 0 there exist one-layer networks Ỹ , ϕ̃ with ReLU activation function,
such that

sup
x∈K

∥ W(x)− Ỹ (x) ∥< ϵ, sup
x∈K

∥ ϕ(x)− ϕ̃(x) ∥< ϵ.

Define Y n(x) = Ỹ (x)− ϵ, which is also a NN. Similarly, for Y n, ϕ
n

, ϕn. Then,

W(x)− 2ϵ ≤ Y n(x) = Ỹ (x)− ϵ ≤ W(x) ≤ Ỹ (x) + ϵ = Y n(x) < W(x) + ϵ

ϕ(x)− 2ϵ < ϕ
n
(x) = ϕ̃(x)− ϵ ≤ ϕ(x) ≤ ϕ̃(x) + ϵ = ϕn(x) < ϕ(x) + 2ϵ,

Letting ϵ → 0 results in Y n, Y n → W and ϕ
n
, ϕn → ϕ, uniformly on a compact domain while guaranteeing that they be

lower/upper bounds.

13

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Let

Fn(y) = min

1, ˆ

{x:x∈K∩Y n(x)≤y}

ϕn(x)dx

 , Fn(y) = max

0, ˆ

{x:x∈K∩Y n(x)≤y}

ϕ
n
(x)dx


The limit cdf is

F (y) =

ˆ

{x:x∈K∩W(x)≤y}

ϕ(x)dx

Since ϕ
n
(x) ≤ ϕ(x) ≤ ϕn(x) and Y n(x) ≤ W(x) ≤ Y n(x) for any x ∈ K, {x : x ∈ K ∩ Y n(x) ≤ y} ⊇ {x : x ∈

K ∩W(x) ≤ y} and {x : x ∈ K ∩ Y n(x) ≤ y} ⊆ {x : x ∈ K ∩W(x) ≤ y}. Since 0 ≤ F (y) ≤ 1 for all y,

Fn(y) ≤ F (y) ≤ Fn(y)

for all y ∈ {W(x) : x ∈ K}.

Now let us fix an arbitrary y = W(x) for x ∈ K, such that y is a continuity point of F .

Fn(y)− F (y) ≤
ˆ

{x:x∈K∩Y n(x)≤y}

ϕn(x)dx−
ˆ

{x:x∈K∩W(x)≤y}

ϕ(x)dx

=

ˆ

{x:x∈K∩Y n(x)≤y}

(ϕn(x)− ϕ(x))dx

︸ ︷︷ ︸
A

+

ˆ

{x:x∈K∩Y n(x)≤y}

ϕ(x)dx−
ˆ

{x:x∈K∩W(x)≤y}

ϕ(x)dx

︸ ︷︷ ︸
B

F (y)− Fn(y) ≤
ˆ

{x:x∈K∩W(x)≤y}

ϕ(x)dx−
ˆ

{x:x∈K∩Y n(x)≤y}

ϕ
n
(x)dx

=

ˆ

{x:x∈K∩Y n(x)≤y}

(ϕ(x)− ϕ
n
(x))dx

︸ ︷︷ ︸
C

+

ˆ

{x:x∈K∩W(x)≤y}

ϕ(x)dx−
ˆ

{x:x∈K∩Y n(x)≤y}

ϕ(x)dx

︸ ︷︷ ︸
D

The left integrals in both equations (A and C) converge to zero due to the uniform convergence to zero of the integrands over
the whole set K. The second differences (B and D) converge to zero, since the superset {x : x ∈ K∩Y n(x) ≤ y} and subset
{x : x ∈ K ∩ Y n(x) ≤ y} of the limits of integrals, respectively, converge to the true limit set {x : x ∈ K ∩W(x) ≤ y}
due to continuity. We have proven pointwise convergence for every point of continuity of the limiting cdf.

Requiring 8 means that the limiting distribution has no point mass; i.e., it is continuous. The support of Y is compact because
it is the continuous image of the compact set K. We can then apply Polya’s theorem (Rao, 1962) that the convergence of
both bounds is uniform as sequences of monotonically increasing functions converging pointwise to a continuous function
on a compact set.

B. Convergence of the ReLU bounds
B.1. Preliminary results

Lemma B.1. Let ak, ak+1 ∈ R with ak+1 > ak and assume f : [ak, ak+1] → R is twice continuously differentiable,
monotone increasing and strictly convex (concave) on [ak, ak+1]. Then the values of the linear interpolation and piecewise
tangent approximation at boundary points coincide with the original function. That is, f̃ lin int(ak) = f̃pie tan(ak) = f(ak)

and f̃ lin int(ak+1) = f̃pie tan(ak+1) = f(ak+1).

14

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Proof.

f̃ lin int(ak) = f(ak) + (ak − ak)κ1 = f(ak),

f̃ lin int(ak+1) = f(alin int
k′) + (ak+1 − alin int

k′)κ2

= f(alin int
k′) + (ak+1 − alin int

k′)
f(ak+1)− f(alin int

k′)

ak+1 − alin int
k′

= f(ak+1),

f̃pie tan(ak) = f(ak) + f ′
+(ak)(ak − ak) = f(ak),

f̃pie tan(ak+1) = f(ak+1) + f ′
−(ak+1)(ak+1 − ak+1) = f(ak+1).

Lemma B.2. Let [ak, ak+1] ∈ R be a closed interval with ak+1 > ak, and let f : [ak, ak+1] → R be twice continuously
differentiable, monotonically increasing, and strictly convex (or concave) on [ak, ak+1]. Then, the intermediate points
lie strictly within the interval [ak, ak+1], ak < alin int

k′ < ak+1 and ak < apie tan
k′ < ak+1, and the functions of linear

interpolation and piecewise tangent approximation are continuous on [ak, ak+1].

Proof. For linear interpolation, the statement follows immediately from the definition. Specifically, for the midpoint
interpolation, we have

alin int
k′ =

ak + ak+1

2
,

ak <
ak + ak+1

2
< ak+1.

For piecewise tangent approximation, we define apie tan
k′ as

apie tan
k′ =

f(ak)− f(ak+1)−
(
f ′
+(ak)ak − f ′

−(ak+1)ak+1

)
f ′
−(ak+1)− f ′

+(ak)
.

Consider first the case where f is convex on [ak, ak+1]. By the convexity of f , we have the inequality

(ak − ak+1)f
′
−(ak+1) < f(ak)− f(ak+1) < (ak − ak+1)f

′
+(ak).

Adding the terms f ′
−(ak+1)ak+1 − f ′

+(ak)ak to each part of the inequality, we get

akf
′
−(ak+1)− akf

′
+(ak) < f(ak)− f(ak+1)− f ′

+(ak)ak + f ′
−(ak+1)ak+1

< ak+1f
′
−(ak+1)− ak+1f

′
+(ak).

Since the denominator of apie tan
k′ , i.e., f ′

−(ak+1)− f ′
+(ak), is strictly positive by convexity, dividing the entire inequality

by this denominator yields
ak < apie tan

k′ < ak+1.

In the case where f is concave on [ak, ak+1], we have a similar inequality:

(ak+1 − ak)f
′
−(ak+1) < f(ak+1)− f(ak) < (ak+1 − ak)f

′
+(ak).

Adding the terms f ′
+(ak)ak − f ′

−(ak+1)ak+1 to each part of the inequality, we get

akf
′
+(ak)− akf

′
−(ak+1) < f(ak+1)− f(ak) + f ′

+(ak)ak − f ′
−(ak+1)ak+1

< ak+1f
′
+(ak)− ak+1f

′
−(ak+1).

15

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Since the denominator f ′
−(ak+1)−f ′

+(ak) of apie tan
k′ is strictly negative for concave functions, dividing the entire inequality

by this negative denominator yields
ak < apie tan

k′ < ak+1.

Next, we show that the interpolation functions are continuous at the intermediate point. For linear interpolation, we check
the continuity by verifying that the two parts meet at alin int

k′ . We have

f(alin int
k′) = f(alin int

k′) + (alin int
k′ − alin int

k′)κ2
right
= f̃ lin int(alin int

k′),

left
= f(ak) + (alin int

k′ − ak)κ1 = f(ak) + (alin int
k′ − ak)

f(alin int
k′)− f(ak)

alin int
k′ − ak

= f(alin int
k′).

Thus, the two parts of the linear interpolation meet at alin int
k′ , and f̃ lin int is continuous at alin int

k′ .

For piecewise tangent approximation, we check that the left and right parts meet at apie tan
k′ . From the left, we have

f̃pie tan(τ) = f(ak) + f ′
+(ak)(τ − ak), τ ∈ [ak, a

pie tan
k′].

Substituting τ = ak′ , we get
f̃pie tan(a−k′) = f(ak) + f ′

+(ak)(a
−
k′ − ak).

From the right, we have

f̃pie tan(τ) = f(ak+1) + f ′
−(ak+1)(τ − ak+1), τ ∈ [apie tan

k′ , ak+1].

Substituting τ = ak′ , we get
f̃pie tan(a+k′) = f(ak+1) + f ′

−(ak+1)(a
+
k′ − ak+1).

Setting these equal, we have

f(ak) + f ′
+(ak)(ak′ − ak) = f(ak+1) + f ′

−(ak+1)(ak′ − ak+1).

Solving for ak′ , we obtain

ak′ =
f(ak)− f(ak+1)− (akf

′
+(ak)− ak+1f

′
−(ak+1))

f ′
−(ak+1)− f ′

+(ak)
= apie tan

k′ .

This confirms the continuity of f̃pie tan(τ) at apie tan
k′ .

Lemma B.3. Let ak+1 > ak and [ak, ak+1] ⊂ R, and let f : [ak, ak+1] → R be a twice continuously differentiable,
monotonically increasing, and strictly convex (or strictly concave) function on [ak, ak+1]. Then, the estimating functions
defined by linear interpolation f̃ lin int and piecewise tangent approximation f̃pie tan are non-decreasing on [ak, ak+1].

Proof. We prove that both local estimators are non-decreasing functions.

Case 1: Linear Interpolation. The slopes of the linear interpolation segments are given by

κ1 =
f(alin int

k′)− f(ak)

alin int
k′ − ak

> 0, κ2 =
f(ak+1)− f(alin int

k′)

ak+1 − alin int
k′

> 0.

Since the original function f is non-decreasing and ak < alin int
k′ < ak+1, as established by Lemma B.2, both slopes are

non-negative, ensuring that the interpolated function is non-decreasing.

Case 2: Piecewise Tangent Approximation. The derivatives of both the left and right segments of the piecewise tangent
approximation are non-negative due to the increasing nature of the approximated function. Furthermore, by Lemma B.2, we
have ak < apie tan

k′ < ak+1, and the approximation remains continuous everywhere. Since both segments are non-decreasing
linear functions, their combination also results in a non-decreasing estimator over [ak, ak+1].

Thus, both estimation methods preserve the monotonicity of f .

16

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Lemma B.4. Let [a, a] ⊂ R be a closed interval, and let f : [a, a] → R be a continuous function satisfying f ∈ C2
p.w.([a, a]).

Assume that there exist points a = a1 < a2 < · · · < an+1 = a for some n ∈ N such that f is twice continuously
differentiable, monotonically increasing, and either strictly convex, strictly concave, or linear on each subinterval [ak, ak+1]
for 1 ≤ k ≤ n. Then, the approximation method described in Section 3.2 constructs a continuous, non-decreasing estimating
function f̃(x) over the entire interval [a, a].

Proof. The claim follows from the following observations:

a) Each subinterval [ak, ak+1] is suitable for approximating f using either linear interpolation, piecewise tangent approxi-
mation, or local linear approximation.

b) All the methods mentioned in (a) ensure that the estimator matches the original function at the boundary points of each
subinterval, by Lemma B.1.

c) The approximations described in (a) are continuous within their respective subintervals (see Lemma B.2).

d) The methods in (a) produce non-decreasing functions within each subinterval (see Lemma B.3).

By sequentially linking the estimators across all segments {[ak, ak+1]}, we obtain a continuous, non-decreasing, piecewise
linear function f̃(x) over [a, a].

Lemma B.5 (Image of the local estimator). Let f : [a, a] → R be continuous, f ∈ C2
p.w.([a, a]) with a = a1 < a2 < . . . <

an+1 = a for n ∈ N, such that f
∣∣
[ak,ak+1]

is twice continuously differentiable, monotonic increasing and either strictly

convex (concave), or linear on [ak, ak+1] for 1 ≤ k ≤ n. Then the image of the estimating function f̃(x) defined by the
approximation method in Section 3.2 coincides with the image of the target function f , that is f([a, a]) = f̃([a, a]).

Proof. Since function f is continuous on a compact [a, a], and monotonic, then it maps [a, a] into the closed interval
(compact) [f(a), f(a)] ∈ R. But the estimator f̃ is also continuous monotonic function [a, a], and by Lemmas B.1,
B.2, f(a) = f̃(a) and f(a) = f̃(a). That is why, the ranges of values of f and f̃ on [a, a] coincide and equal to
[f(a), f(a)] ∈ R.

Theorem B.6 (Convergence of piecewise linear interpolation (Driscoll & Braun, 2018), Ch.5). Suppose that f(x) has a
continuous second derivative in [ak, ak+1], that is f ∈ C2([ak, ak+1]). Let pnint

(x) be the piecewise linear interpolant of
(aki

, f(aki
)) for i = 0, . . . , nint, where

aki = ak + ih, h =
ak+1 − ak

nint
.

Then, the error bound satisfies

∥f − pnint
∥∞ = max

x∈[ak,ak+1]
|f(x)− pnint

(x)| ≤ Mh2,

where
M = max

[ak,ak+1]
f ′′(x)

Theorem B.7 (Convergence of piecewise tangent approximation). Suppose that f ∈ C2([ak, ak+1]) and is strictly convex
(or concave) in [ak, ak+1]. Let f̃pie tan

ntan
(x) be the piecewise tangent approximator over subsegments

[
aki

, aki+1

]
for

i = 0, . . . , ntan, where

aki
= ak + ih, h =

ak+1 − ak
ntan

.

Then, the error bound satisfies

∥f − f̃pie tan
ntan

∥∞ = max
x∈[ak,ak+1]

|f(x)− f̃pie tan
ntan

(x)| ≤ Mh2,

where
M = max

[ak,ak+1]
f ′′(x)

17

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Proof. Each element of the piecewise tangent approximation is the Taylor series expansion of the first order around the
boundary point of the subsegment. We consider the double Taylor series approximation on the refinement

[
aki , aki+1

]
of

the segment [ak, ak+1] for i = 0, . . . , nint, where

aki
= ak + ih, h =

ak+1 − ak
ntan

.

Since for the twice continuously differentiable in
[
aki , aki+1

]
the Lagrange Remainder of the Taylor series expansion (Rudin,

1976), which represents an error term, can be bounded with

max[
aki

,apie tan

k′
i

]
[
f(x)− f̃pie tan(x)

]
≤ Mi1

(apie tan
k′
i

− aki
)2

2
≤ Mi1

(aki+1
− aki

)2

2
,

max[
apie tan

k′
i

,aki+1

]
[
f(x)− f̃pie tan(x)

]
≤ Mi2

(aki+1
− apie tan

k′
i

)2

2
≤ Mi2

(aki+1 − aki)
2

2

where
Mi1 = max[

aki
,apie tan

k′
i+1

] f ′′(x) ≤ max
[ak,ak+1]

f ′′(x) = M

Mi2 = max[
apie tan

k′
i

,aki+1

] f ′′(x) ≤ max
[ak,ak+1]

f ′′(x) = M

The maximum M exists and is attainable due to the continuity of the second derivative on a compact [ak, ak+1]. That is, the
maximum error on the whole segment of approximation can be bounded as

M

[
ak+1 − ak

ntan

]2
= Mh2 −−−−−−→

ntan→∞
0

The following lemma demonstrates that the approximation procedure presented in Section 3.2 generates sequences of
estimators that: i) serve as valid bounds for the target function, and ii) converge monotonically to the target function. This
implies that each new estimator can only improve upon the previous one.

Lemma B.8. Suppose that f ∈ C2([ak, ak+1]) is monotonic increasing and strictly convex (or concave) on [ak, ak+1]. Let
f̃ lin int
n (x) be the piecewise linear interpolant and f̃pie tan

n (x) be the piecewise tangent approximator over subsegments[
aki

, aki+1

]
for i = 0, . . . , 2n, where

aki
= ak + ih, h =

ak+1 − ak
2n

,

with n ∈ N. Then the estimating functions defined by the linear interpolation f̃ lin int
n and piecewise tangent approximation

f̃pie tan
n define upper (lower) and lower (upper), respectively, bounds on the target function f . Moreover, {f̃ lin int

n (x)}n
and {f̃pie tan

n (x)}n are non-increasing (non-decreasing) and non-decreasing (non-increasing) sequences, respectively.

Proof. By the definition of the convex (concave) function,

f(αx1 + (1− α)x2) ≤ (≥)αf(x1) + (1− α)f(x2)

for any α ∈ [0, 1] and x1, x2 from the region of convexity, and plot of the linear interpolant between any x1, x2 lies above
(below) the plot of the function. That is, linear interpolation is always an upper (lower) approximation of the convex
(concave) function.

18

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

On the other hand, any tangent line lies below (above) the plot of the convex (concave) function. Indeed, since on a convex
segment the derivative of the function increases, that is f ′

+(aki) ≤ f ′(x) ≤ f ′
−(aki+1) for all x ∈

[
aki , aki+1

]
, then

f(x) = f(aki
) +

xˆ

aki

f ′(t)dt ≥ f(aki
) +

xˆ

aki

f ′
+(aki

)dt

= f(aki) + f ′
+(aki)(x− aki), x ∈

[
aki , ak′

i

]

f(x) = f(aki+1)−
xˆ

aki+1

f ′(t)dt ≥ f(aki+1)−
xˆ

aki+1

f ′
−(aki+1)dt

= f(aki+1
) + f ′

−(aki+1
)(x− aki+1

), x ∈
[
a1′ , aki+1

]

Similarly, we can show that the piecewise tangent upper bounds the true concave function. Without loss of generality, we
consider the case of a convex segment. We fix n. The current element of the sequences of piecewise linear interpolants
f̃ lin int
n (x) includes the local linear item based on the interval [t1, t2]. The case of a concave segment is analogous. We

define the current local linear approximation of the element of sequence of upper approximation as

f̃ lin int
{t}n

(x) = f(t1) + (x− t1)
f(t2)− f(t1)

t2 − t1

Let α be such that 0 ≤ α ≤ 1 and define a new point t as a convex combination t = αt1 + (1− α)t2. Let us show that
f̃ lin int
{t}n+1

(x)(x) ≤ f̃ lin int
{t}n

(x) for x ∈ [t1, t2], where

f̃ lin int
{t}n+1

(x) =


f(t1) + (x− t1)

f(t)−f(t1)
t−t1

, x ∈ [t1, t]

f(t) + (x− t) f(t2)−f(t)
t2−t , x ∈ [t, t2]

Taking into account the convex segment,

f(t1) + (x− t1)
f(t)− f(t1)

t− t1
= f(t1) + (x− t1)

f(αt1 + (1− α)t2)− f(t1)

αt1 + (1− α)t2 − t1

≤ f(t1) + (x− t1)
αf(t1) + (1− α)f(t2)− f(t1)

(1− α)(t2 − t1)

= f(t1) + (x− t1)
f(t2)− f(t1)

t2 − t1

f(t) + (x− t)
f(t2)− f(t)

t2 − t
= f(αt1 + (1− α)t2)

+ (x− αt1 + (1− α)t2)
f(t2)− f(αt1 + (1− α)t2)

t2 − αt1 + (1− α)t2

≤ αf(t1) + (1− α)f(t2)

+ (x− t1)
αf(t1) + (1− α)f(t2)− f(t2)

αt1 + (1− α)t2 − t2

+ (t1 − αt1 + (1− α)t2)
αf(t1) + (1− α)f(t2)− f(t2)

αt1 + (1− α)t2 − t2

= f(t1) + (x− t1)
f(t2)− f(t1)

t2 − t1

19

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Since the refinement on each subsegment leads to the reduced next element of the sequence, the sequence is decreasing on
the whole convex segment.

We next consider the piecewise tangent approximation on [t1, t2],

f̃pie tan
{t}n

(x) =

{
f(t1) + f ′

+(t1)(x− t1), x ∈ [t1, t1′] ,

f(a2) + f ′
−(t2)(x− t2), x ∈ [t1′ , t2] ,

where t1′ is the point of intersection of the tangents. If we choose some parameter α, where 0 ≤ α ≤ 1, and define the
corresponding intermediate point as t∗ = αt1 + (1− α)t2, then the refined approximation is given by:

f̃pie tan
{t}n+1

(x) =


f(t1) + f ′

+(t1)(x− t1), x ∈ [t1, t1∗] ,

f(t∗) + f ′(t∗)(x− t∗), x ∈ [t1∗, t2∗] ,

f(t2) + f ′
−(t2)(x− t2), x ∈ [t2∗, t2] ,

where t1∗ is the intersection point of the left and middle lines, and t2∗ is the intersection point of the middle and right lines.
We aim to show that f̃pie tan

{t}n+1
(x)(x) ≥ f̃pie tan

{t}n
(x) for x ∈ [t1, t2].

Thus, the plot of the linear function corresponding to the middle curve lies above that of the left curve for x > t1∗ and
above that of the right curve for x < t2∗ due to the monotonicity of the estimator, by Lemma B.3. Consequently, the refined
estimator f

2
coincides with the previous estimator f

1
on the left and right segments, i.e., for x ∈ [t1, t1∗] and x ∈ [t2∗, t2],

while it takes higher values for x ∈ [t1∗, t2∗]. To confirm this, it remains to show that t1∗ ≤ t1′ ≤ t2∗.

First, we note that t1 ≤ t1′ ≤ t2, by Lemma B.2. This automatically leads to t1 ≤ t1∗ ≤ t∗ ≤ t2∗ ≤ t2.

Consider the function

fleft(x) =
xf ′

−(x)− f(x)− C

f ′
−(x)−K

,

defined on (t1, t2), where C = t1f
′
+(t1)− f(t1) and K = f ′

+(t1). Its derivative is given by

f ′
left(x) =

f ′′(x)(f(x) + C −Kx)

(f ′(x)−K)2
.

The numerator simplifies to

f ′′(x)(f(x) + C −Kx) = f ′′(x)︸ ︷︷ ︸
>0

[
f(x)− (f(t1) + f ′

+(t1)(x− t1))
]︸ ︷︷ ︸

>0

,

which is positive due to the convexity of f . This implies that shifting the right boundary t2 to the left, reaching position t∗,
also shifts the intersection point t1′ to the left, reaching t1∗. A similar argument holds for the right boundary.

The same reasoning applies to the concave segment.

Lemma B.9. Let fn : Af → Ag be continuous functions, uniformly convergent to a continuous function f : Af → Ag on
a compact interval Af ⊂ R, and let gn : Ag → A be continuous functions, uniformly convergent to a continuous function
g : Ag → A on a compact interval Ag ⊂ R. Then the sequence of composition functions gn(fn(x)) converges uniformly to
g(f(x)) on Af with n → ∞.

Proof. An outer limit function, g, is uniformly continuous by the Heine–Cantor theorem (Rudin, 1976), since it is continuous
and defined on the compact set Ag . That is, for any ϵ1 > 0, there exists ϵ2 > 0 such that

|g(y1)− g(y2)| <
ϵ1
2
, whenever y1, y2 ∈ Ag and |y1 − y2| < ϵ2.

Since the sequence {fn(x)} converges uniformly to f(x) on Af , and {gn(y)}converges uniformly to g(y) on Ag, we can
conclude that for any ϵ1 > 0 and ϵ2 > 0, there exists N ∈ N such that for all n ≥ N , we simultaneously have

|gn(y)− g(y)| < ϵ1
2
, for all y ∈ Ag,

|fn(x)− f(x)| < ϵ2, for all x ∈ Af .

20

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Since the range of possible values of fn(x) coincides with the range of values of f(x), which equals fi(Af) = Ag, the
domain of g, we obtain

|gn(fn(x))− g(f(x))| = |gn(fn(x))− g(fn(x)) + g(fn(x))− g(f(x))|
≤ |gn(fn(x))− g(fn(x))|︸ ︷︷ ︸

uniform convergence of the outer

+ |g(fn(x))− g(f(x))|︸ ︷︷ ︸
uniform continuity of the outer

<
ϵ1
2

+
ϵ1
2

= ϵ1

Thus, the uniform convergence of the composition follows.

Lemma B.10. Let f i
n : Ai → R be continuous functions that converge uniformly to continuous functions f i : Ai → R

on compacts Ai ⊂ R, and let αi ∈ R be constants for i = 1, . . . , nl. Then a linear combination of sequences, fα,n =∑nl

i αif
i
n, defined on the direct product A = A1 × . . .×Anl

⊂ Rnl , converges uniformly to fα =
∑nl

i αif
i : A → R,

where α = (α1, . . . , αnl
); that is,

sup
x∈A

|fα,n(x)− fα(x)| −−−−→
n→∞

0.

The images of fα,n(A) and fα(A) are compact.

Proof. Since fα,n(A) and fα(A) are linear combinations of continuous functions, defined on compact sets, they are
continuous functions. Also, since a direct product of compact sets is compact, by the continuous mapping theorem (Rudin,
1976), the images of fα,n(A) and fα(A) are also compact.

If every sequence of functions {f i
n(x

i)} converges uniformly to the corresponding limit function f i(xi), then for any ϵ > 0,
there exists an integer N ∈ N such that for all n ≥ N , we have

sup
xi∈Ai

∣∣f i
n(x

i)− f i(xi)
∣∣ < ϵ

maxi{αi}nl

for all i = 1, . . . , nl. Consequently, the supremum of the differences in the linear combination can be bounded as

sup
x∈A

∣∣fα,n(x)− fα(x)
∣∣ = sup

x∈A

∣∣∣∣ nl∑
i=1

αi(f
i
n(x

i)− f i(xi))

∣∣∣∣
≤

nl∑
i=1

∣∣αi

∣∣ sup
xi∈Ai

∣∣f i
n(x

i)− f i(xi)
∣∣ < ϵ

This establishes the uniform convergence of the linear combination of functions.

Lemma B.11. Let f
i
, f i, f i : Ai → R be continuous functions on compact intervals Ai ⊂ R, satisfying

f i(xi) ≤ f i(xi) ≤ f
i
(xi)

for all xi ∈ Ai and for every i = 1, . . . , nl.

Suppose that the index sets I and J are disjoint and their union forms the full sequence:

I ∪ J = {1, . . . , nl}.

Then, for any coefficients αi, βj ≥ 0 for i ∈ I , j ∈ J , the following inequality holds:∑
i∈I

αif
i(xi)−

∑
j∈J

βjf
j
(xj) ≤

∑
i∈I

αifi(x
i)−

∑
j∈J

βjfj(x
j) ≤

∑
i∈I

αif
i
(xi)−

∑
j∈J

βjf
j(xj),

for all xi ∈ Ai and xj ∈ Aj .

21

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Proof. For any non-negative coefficients αi, βj and given that f
i
(xi) ≤ fi(x

i) ≤ f i(x
i), we derive the following

inequalities:

αif
i(xi) ≤ αif

i(xi) ≤ αif
i
(xi),

−βjf
j
(xj) ≤ −βjf

j(xj) ≤ −βjf
j(xj).

Summing these inequalities over all indices completes the proof.

Lemma B.12. Let f, f , f : A → B be continuous functions on a compact interval A ⊂ R, satisfying

f(x) ≤ f(x) ≤ f(x) for all x ∈ A.

Furthermore, let g, g, g : B → R be continuous and monotonically increasing functions on a compact interval B ⊂ R,
satisfying

g(y) ≤ g(y) ≤ g(y) for all y ∈ B.

Then, for all x ∈ A, the following inequality holds:

g(f(x)) ≤ g(f(x)) ≤ g(f(x)).

Proof. By assumption, for any y ∈ B,
g(y) ≤ g(y) ≤ g(y).

Since g(y), g(y), and g(y) are monotonically increasing, it follows that for any y1, y2 ∈ B such that y1 ≤ y ≤ y2,

g(y1) ≤ g(y) ≤ g(y) ≤ g(y) ≤ g(y2).

Setting y = f(x), y1 = f(x), and y2 = f(x), and using that f(x) ≤ f(x) ≤ f(x) for all x ∈ A, we obtain the desired
result:

g(f(x)) ≤ g(f(x)) ≤ g(f(x)).

B.2. Proof of Theorem 3.14

We establish the uniform monotonic convergence of the bounds by considering several key properties.

First, we analyze the approximation of neuron domains. Using the concept of over-approximating the input domain of each
neuron (as in IBP (Gowal et al., 2019)), we define Ωi as a superset of the true input domain Ωi for each neuron i. It is well
known that if a sequence of approximations converges uniformly on Ωi, it must also converge uniformly on any subset of
Ωi, including Ωi. Therefore, we perform all neuron-wise approximations over the supersets of their original domains.

By Lemma B.2, both the upper and lower bounds for each neuron in every layer are continuous functions over a bounded
domain. Additionally, by Lemma B.5, the images of these bounds coincide with the image of the activation function. Since
the activation function and its estimators are continuous, and the domain is compact, the output range remains compact
throughout the approximation process. This compactness follows from the continuity of the mapping (Rudin, 1976).

Furthermore, the error between the linear interpolation (or piecewise tangent approximation) and the original activation
function converges to zero as the approximation grid is refined, as established in Theorems B.6 and B.7. Consequently, the
sequence of bounds on the activation function converges uniformly to the target activation function for all neurons in the
network.

By Lemma B.5, the image of each activation function is preserved by both the upper and lower bounds, ensuring that the
domain of uniform convergence for the bounds of the outer functions is also preserved. Moreover, by Lemma B.10, the
linear combination of these estimators converges uniformly to the corresponding linear combination of the true activation
functions, thereby preserving the image of the original linear combination. As a result, Lemma B.9 guarantees the uniform
convergence of the composed bounds on the outer functions and the linear combinations of the inner functions.

Next, we establish monotonicity. By Lemma B.8, the sequences of upper and lower bounds on the activation functions are
monotonic: the upper bounds {fn(x)} are monotonically decreasing, while the lower bounds {f

n
(x)} are monotonically

22

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

increasing. Additionally, by construction, these sequences are bounded by the target function itself, ensuring they remain
within the correct range. By Lemma B.11, the linear combination of neurons’ estimators forms the overall upper and lower
bounds for input arguments in subsequent layers.

Moreover, the compositions of the upper and lower bounds for the inner and outer functions provide valid upper and lower
bounds for the composition of the target inner and outer activation functions. Since the outer activation function (and
consequently its bounds, by Lemma B.3) is non-decreasing, Lemma B.12 ensures these bounds are valid. Finally, these
bounds converge monotonically by Lemmas B.8 and B.12.

Combining all the results above, we conclude that the sequences of upper and lower ReLU bounds for the network converge
uniformly and monotonically to the target network. The monotonicity of the sequences, the uniform convergence of
individual approximations, and the preservation of continuity and compactness through compositions collectively ensure the
uniform convergence of the entire network. This completes the proof.

C. Subnetwork equivalent for specific functions for upper/lower approximation
C.1. Square

The quadratic function x2 is not monotone on an arbitrary interval. But x2 is monotonic on R≥0. We can modify the form
of the function by representing it as a subnetwork to be a valid set of sequential monotonic operations. Since x2 = |x|2,
x ∈ R, and the output range of |x| is exactly R≥0, we represent |x| as a combination of monotonic ReLU functions,
|x| = ReLU(x) + ReLU(−x). The resulting subnetwork is drawn in Figure 3a.

𝒙

𝑹𝒆𝑳𝑼(𝒀)

𝟏

-𝟏
𝒀𝟐

𝑹𝒆𝑳𝑼(𝒀)

𝟏

𝟏

= 𝒙𝟐

(a) Subnetwork equivalent to operation of taking a square.

= 𝒙𝟏 ⋅ 𝒙𝟐

𝒙𝟏

𝒙𝟐

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝟏

-𝟏

𝟏

-𝟏

𝟏

-𝟏

𝟏

-𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

𝒀𝟐

𝒀𝟐

𝒀𝟐

𝒀

-𝟎. 𝟓

𝟎. 𝟓

-𝟎. 𝟓

(b) Subnetwork equivalent to the product operation.

Figure 3: Subnetworks for square and multiplication operations.

C.2. Product of two values

To find a product of two values x1 and x2 one can use the formula x1 · x2 = 0.5 · ((x1 + x2)
2 − x2

1 − x2
2). This leads us to

the feedforward network structure in Figure 3b.

C.3. Maximum of two values

The maximum operation can be expressed via a subnetwork with ReLU activation functions only, as follows. Observing that
max{x1, x2} = 0.5 · (x1 + x2 + |x1 − x2|) results in the corresponding network structure in Figure 4.

C.4. Softmax

The function softmax transforms a vector of real numbers to a probability distribution. That is, if x = (x1, . . . , xn) ∈ Rn,
then there is a multivariate function SfMax : Rn −→ Rn, so that

SfMaxi = softmax(xi) =
exi

n∑
j=i

exj

23

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

= 𝐦𝐚𝐱{𝒙𝟏, 𝒙𝟐}

𝒙𝟏

𝒙𝟐

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

-𝟏

𝟏

𝟏

𝟏

𝒀

𝟎. 𝟓

𝟎. 𝟓

-𝟎. 𝟓

-𝟎. 𝟓

𝟎. 𝟓

-𝟎. 𝟓

-𝟎. 𝟓
𝟎. 𝟓

Figure 4: Subnetwork equivalent to a maximum of two values.

Then, log(SfMaxi) = xi − log
n∑

j=i

exj , which is a composition of monotonic functions. This leads to the feedforward

network structure in Figure 5.

𝒙𝟐

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝟏)

𝒙𝟏 𝒆𝒀
𝟏

𝒙𝒏

𝒆𝒀

𝒆𝒀

𝒀

𝒀

𝒀

𝒍𝒐𝒈(𝒀)

𝟏

𝟏

𝟏

𝟏

𝟏

𝒀

𝒀

𝒀

𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

𝒀

𝒀

𝒀

𝟏

𝟏

𝟏

-𝟏

-𝟏

-𝟏

𝒆𝒀

𝒆𝒀

𝒆𝒀

𝟏

𝟏

𝟏

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝟐)

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝒏)

Figure 5: Subnetwork equivalent to one softmax node.

D. Description of Iris Experiments
We trained a fully connected [3× 12] ReLU NN with a final [1× 3] linear layer, as well as a fully connected [3× 12] tanh
NN with the same final [1× 3] linear layer, on the Iris dataset. The networks classify objects into three classes: Setosa,
Versicolor, and Virginica, using two input features: Sepal Length and Sepal Width. The allocation of the data for these two
variables in the three classes is shown in Figure 6a. The input data were rescaled to be within the interval [0, 1].

Experiment 1: ReLU-Based Network with Random Inputs. The ReLU network was pre-trained. We next introduced
randomness to the input variables by modeling them as Beta-distributed with parameters (2, 2) and (3, 2), respectively. The
pdfs of these input distributions are shown in Figure 6b. The first is symmetric about 0.5 and the second is left-skewed.

In our first experiment, Example 3.10, we computed the exact cdf of the first output neuron (out of three) in the ReLU
network before applying the softmax function. Due to the presence of a final linear layer, the output may contain negative
values. To validate our computation, we compared it against a conditional ground truth obtained via extensive Monte Carlo
simulations, where the empirical cdf was estimated using 105 samples. As shown in Figure 1, both cdf plots coincide. The
cdf values were computed at 100 grid points across the estimated support of the output, determined via the IBP procedure.

For further comparison, Figure 6c presents an approximation of the output pdf based on the previously computed cdf values.
This is compared to a histogram constructed from Monte Carlo samples. Additionally, we include a Gaussian kernel density
estimation (KDE) plot obtained from the sampled data using a smoothing parameter of h = 0.005. The results indicate that

24

Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

our pdf approximation better represents the underlying distribution compared to KDE and tracks the histogram more closely.

Experiment 2: Bounding a Tanh-Based Network with ReLU Approximations. In our second experiment, we used a
pre-trained NN with a similar structure but replaced the ReLU activation functions in the first three layers with tanh. To
approximate this network, we constructed two bounding fully connected NNs—one upper and one lower—using only ReLU
activations.

We conducted computations in two regimes: one using 5 segments and another using 10 segments, into which both convex
and concave regions of the tanh activation function at each neuron in the first three layers were divided. Over each segment,
we performed piecewise linear approximations according to the procedure described in Section 3.2 and combined these
approximations into three-layer ReLU networks with an additional final linear layer for both upper and lower bounds. The
results of these approximations are shown in Figure 2. In the 10-segment regime, both the upper and lower approximations
closely align with the original NN’s output.

0.0 0.2 0.4 0.6 0.8 1.0
Feature 1 (Sepal Length)

0.0

0.2

0.4

0.6

0.8

1.0

F
ea

tu
re

 2
 (

S
ep

al
 W

id
th

)

Class 1: setosa
Class 2: versicolor
Class 3: virginica

(a) Plot of Sepal Width vs Sepal Length with class indication.

0.0 0.2 0.4 0.6 0.8 1.0
Beta support

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

PD
F

Va
lu

e
Beta(2, 2): 1(x1) = 6 x1 (1 x1)
Beta(3, 2): 2(x2) = 12 x2

2 (1 x2)

(b) Plots of the Beta(2, 2) and Beta(3, 2) pdfs, resp.

0.25 0.20 0.15 0.10 0.05 0.00
Outcome of the first element of the NN

0

1

2

3

4

5

6

7

8

PD
F

Va
lu

e

KDE Gaussian
Sampled histogram
Estimated pdf

(c) Estimated output pdf compared with KDE with smoothing
parameter h = 0.005 and histogram of MC simulations.

Figure 6: Iris Dataset

25

	Introduction
	Statement of the Problem
	Our Approximation Approach
	Exact cdf evaluation for a fully connected NN with ReLU activation function
	Algorithm for Upper and Lower Approximation of the Neural Network using ReLU activation functions.
	Application to an arbitrary function on a compact domain

	Experiments
	Related Work
	Conclusion
	Proof of Theorems
	Theorem 3.8
	Theorem 3.11
	Theorem 3.16

	Convergence of the ReLU bounds
	Preliminary results
	Proof of Theorem 3.14

	Subnetwork equivalent for specific functions for upper/lower approximation
	Square
	Product of two values
	Maximum of two values
	Softmax

	Description of Iris Experiments

