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Abstract
Existing code large language models (LLMs)001
often rely on large-scale instruction data dis-002
tilled from proprietary LLMs for fine-tuning,003
which typically incurs high costs. In this paper,004
we explore the potential of small-scale open-005
source LLMs (e.g., 7B) as synthesizers for high-006
quality code instruction data construction. We007
first observe that the data synthesis capability of008
small-scale LLMs can be enhanced by training009
on a few superior data synthesis samples from010
proprietary LLMs. Building on this, we pro-011
pose a novel iterative self-distillation approach012
to bootstrap small-scale LLMs, transforming013
them into powerful synthesizers that reduce014
reliance on proprietary LLMs and minimize015
costs. Concretely, in each iteration, to obtain016
diverse and high-quality self-distilled data, we017
design multi-checkpoint sampling and multi-018
aspect scoring strategies for initial data selec-019
tion. Furthermore, to identify the most influ-020
ential samples, we introduce a gradient-based021
influence estimation method for final data fil-022
tering. Based on the code instruction datasets023
from the small-scale synthesizers, we develop024
SCoder, a family of code generation models025
fine-tuned from DeepSeek-Coder. SCoder mod-026
els achieve state-of-the-art code generation ca-027
pabilities, demonstrating the effectiveness of028
our method.029

1 Introduction030

Code generation has long been a central challenge031

in computer science and has attracted wide atten-032

tion from the research community. Recent ad-033

vancements in code large language models (LLMs)034

(Chen et al., 2021; Li et al., 2022, 2023; Chowd-035

hery et al., 2023; Rozière et al., 2023; Lozhkov036

et al., 2024) have led to significant breakthroughs.037

These models can generate code that closely aligns038

with user intent and are increasingly being widely039

adopted.040

Typically, instruction tuning on base models041

(e.g., DeepSeek-Coder-Base) is a crucial step in042

Figure 1: Left: The performance of code generation
models on HumanEval using data provided by different
synthesizers (Qwen2.5-Coder-7B or -14B). Right: The
performance of our SCoder and the baseline. SCoder
uses 60K instruction data generated by a small-scale syn-
thesizer, and the baseline uses 75K instruction data gen-
erated by proprietary LLMs. All code generation mod-
els are fine-tuned from DeepSeek-Coder-6.7B-Base.

developing high-performance code LLMs. There- 043

fore, extensive research on code LLMs focuses 044

on constructing high-quality instruction data. A 045

common approach involves distilling knowledge 046

from proprietary LLMs. For instance, Code Al- 047

paca (Chaudhary, 2023) and WizardCoder (Luo 048

et al., 2024) are fine-tuned with instruction data 049

distilled from GPT-3.5, using Self-Instruct (Wang 050

et al., 2023) and Evol-Instruct (Xu et al., 2024), 051

respectively. Additionally, MagicoderS (Wei et al., 052

2024) is fine-tuned on data distilled from both GPT- 053

3.5 and GPT-4, using OSS-Instruct to generate cod- 054

ing problems and solutions based on the given code 055

snippets. While these methods have proven effec- 056

tive, they all suffer from the cost-intensive issue 057

caused by the distillation of large-scale instruction 058

data from the proprietary LLMs like GPT-3.5 and 059

GPT-4. 060

In this paper, we explore the potential of rela- 061

tively small-scale (7B, 8B, and 14B) open-source 062

LLMs as synthesizers for code instruction data con- 063

struction. Previous works have shown that small 064

LLMs can assist in pre-training data synthesis for 065

non-code domains (Yang et al., 2024). However, 066
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instruction data typically takes a different form067

from pre-training data and requires higher qual-068

ity standards (Wang et al., 2025). To validate the069

feasibility of small LLMs in synthesizing code in-070

struction data, we conduct a preliminary experi-071

ment. First, we use small-scale LLMs as original072

synthesizers and further train them on a limited set073

of proprietary LLM-distilled samples as enhanced074

synthesizers. Then, we fine-tune code generation075

models using data provided by them. The results076

on the left of Figure 1 show that the instruction data077

provided by the enhanced synthesizer outperforms078

that of the original, highlighting that a few superior079

samples can unleash the data synthesis potential of080

small models. However, distilling more proprietary081

samples to further improve the synthesis capability082

of small synthesizers would again trigger the cost-083

intensive issue. Therefore, a crucial question arises:084

Can we continuously improve the data synthesis085

capability of small-scale synthesizers without re-086

lying on proprietary LLMs’ samples?087

To address this, we propose a progressive self-088

distillation method that iteratively bootstraps the089

code instruction data synthesis capability of small-090

scale LLMs. Specifically, starting with an en-091

hanced synthesizer, we employ a two-step approach092

in each iteration to obtain high-quality self-distilled093

data synthesis samples for further training. First,094

we design multi-checkpoint sampling and multi-095

aspect scoring strategies to obtain diverse and re-096

liable self-distilled samples. Then, we introduce097

a gradient-based influence estimation method to098

further select the influential ones by comparing099

the gradients induced by self-distilled samples with100

those induced by superior samples from proprietary101

LLMs. We validate our method on small-scale102

LLMs like Qwen2.5-Coder-7B/14B-Ins (Hui et al.,103

2024), improving their data synthesis capabilities104

as shown in the left of Figure 1, and transforming105

them into powerful data synthesizers.106

Based on the code instruction datasets pro-107

vided by our small-scale synthesizers, we develop108

SCoder, a family of code generation models fine-109

tuned from DeepSeek-Coder-6.7B-Base (Guo et al.,110

2024). Experimental results on HumanEval (+)111

(Chen et al., 2021; Liu et al., 2023), MBPP (+)112

(Austin et al., 2021), LiveCodeBench (Jain et al.,113

2024), and BigCodeBench (Zhuo et al., 2024) show114

that SCoder outperforms or matches state-of-the-115

art code LLMs that use the instruction data from116

proprietary LLMs. Overall, our contributions can117

be summarized as follows:118

• We propose a novel iterative self-distillation 119

approach that transforms small-scale LLMs 120

into effective synthesizers of code instruction 121

data. Using the instruction data generated by 122

these synthesizers, we train a family of code 123

generation models (SCoder), which achieve 124

performance comparable to that of models 125

relying on proprietary LLM-distilled data. 126

• To obtain diverse and high-quality self- 127

distilled data, we design multi-checkpoint 128

sampling and multi-aspect scoring strategies 129

for initial data selection. To further identify 130

the most influential samples, we introduce a 131

gradient-based influence estimation method 132

for final data filtering. 133

• We fine-tune the code generation models 134

(SCoder) based on the datasets generated by 135

our small-scale synthesizers. Experimental 136

results on multiple benchmarks show the ef- 137

fectiveness of our method. 138

2 Related Work 139

2.1 Code Large Language Models 140

Code generation based on LLMs has made signif- 141

icant strides in recent years. Prominent closed- 142

source models such as Codex (Chen et al., 2021), 143

GPT-4 (OpenAI, 2023), PaLM (Chowdhery et al., 144

2023), and Gemini (Anil et al., 2023) have shown 145

impressive performance across various code gen- 146

eration benchmarks. Meanwhile, open-source 147

models like CodeGen (Nijkamp et al., 2023), 148

CodeGeeX (Zheng et al., 2023), StarCoder (Li 149

et al., 2023), CodeLlama (Rozière et al., 2023), 150

DeepSeek-Coder (Guo et al., 2024), and Code- 151

Qwen (Hui et al., 2024) have also made substantial 152

contributions. These models not only enhance code 153

generation capabilities but also promote more effi- 154

cient and automated software development. 155

Typically, such models are developed through 156

continual pre-training (Rozière et al., 2023), fol- 157

lowed by supervised fine-tuning (SFT) (Yu et al., 158

2023). While pre-training utilizes large-scale, unan- 159

notated code corpora, SFT relies on high-quality la- 160

beled instruction data, whose construction remains 161

a key challenge (Ding et al., 2024). 162

2.2 Code Instruction Data Synthesis 163

Creating diverse and complex code instruction 164

data is challenging and requires domain exper- 165

tise. While human-written datasets used in Oc- 166
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toPack (Muennighoff et al., 2024) and PIE (Shy-167

pula et al., 2024) are effective, they are labor-168

intensive and hard to scale. To address this, many169

recent works leverage powerful proprietary LLMs170

for automatic instruction generation. For exam-171

ple, Code Alpaca (Chaudhary, 2023) adopts Self-172

Instruct (Wang et al., 2023), WizardCoder (Luo173

et al., 2024) uses Evol-Instruct (Xu et al., 2024),174

and Magicoder (Wei et al., 2024) utilizes OSS-175

Instruct to create realistic, diverse programming176

tasks from open-source code. Similarly, Wave-177

Coder (Yu et al., 2023) introduces a generator-178

discriminator framework, while OpenCodeInter-179

preter (Zheng et al., 2024) leverages user-LLM-180

compiler interactions to synthesize multi-turn in-181

struction data. Despite their effectiveness, these182

approaches often depend on costly proprietary mod-183

els (Wu et al., 2024). In this work, we explore using184

small-scale open-source LLMs to generate high-185

quality code instruction data more cost-effectively,186

reducing reliance on expensive proprietary models187

while maintaining strong performance.188

3 Methodology189

3.1 Overview190

In this work, we aim to train a set of small-scale191

code instruction data synthesis models, named syn-192

thesizers, capable of generating high-quality code193

instruction data, i.e., the code problem-solution194

pair (q, s) given an open-source code snippet c195

and an instruction synthesis prompt p. To achieve196

this, we first construct a clean and noise-free code197

snippet pool C = {ci}, following the data pre-198

processing pipeline of StarCoder2 (Lozhkov et al.,199

2024). Next, we distill a limited number of in-200

struction data synthesis samples, denoted as Dp =201

{(p, cpi , q
p
i , s

p
i )}, from proprietary LLMs to obtain202

enhanced synthesizers. Finally, we propose an iter-203

ative bootstrap approach to continuously train the204

synthesizers using self-distilled data, denoted as205

Ds = {(p, csi , qsi , ssi )}. The prompt p and more206

details of the code snippet pool C are provided in207

Appendix D and A, respectively.208

3.2 Preliminary Study209

We conduct a preliminary study to validate whether210

small LLMs can acquire a certain level of data211

synthesis capability by distilling a limited number212

of proprietary LLM samples. To obtain propri-213

etary samples with sufficient knowledge coverage,214

we adopt a classification-based diversified code215

Synthesizer HumanEval MBPP

Llama3.1-8B-Ins 60.4 64.7
+Enhanced 64.2 69.3

Qwen2.5-Coder-7B-Ins 61.6 70.8
+Enhanced 65.6 72.1

Qwen2.5-Coder-14B-Ins 65.3 73.7
+Enhanced 67.5 75.8

Table 1: The performance of the code generation model
fine-tuned on 40K code instruction data provided by
different synthesizers.

snippet sampling technique. Specifically, we em- 216

ploy 10 pre-defined task categories and calculate 217

the similarity between each code snippet and the 218

task category descriptions with the help of a state- 219

of-the-art embedding model INSTRUCTOR (Su 220

et al., 2023). Based on the embedding similar- 221

ity, each code snippet is assigned to its most rele- 222

vant task category. We then randomly sample 1K 223

code snippets from each category to ensure suffi- 224

cient knowledge diversity. Finally, these selected 225

code snippets are used to prompt proprietary LLMs 226

generating code instruction data synthesis samples 227

Dp = {(p, cpi , q
p
i , s

p
i )}, where (p, cpi ) denotes input 228

and (qpi , s
p
i ) denotes output. 229

We use Llama3.1-8B-Ins and Qwen2.5-Coder- 230

7B/14B-Ins as the original synthesizers and train 231

them on Dp to obtain enhanced synthesizers. Based 232

on code instruction data provided by these synthe- 233

sizers, we fine-tune DeepSeek-Coder-6.7B-Base as 234

the code generation model. The results are shown 235

in Table 1, the enhanced synthesizers exhibit a sig- 236

nificant improvement in data synthesis capability, 237

even with only 10K proprietary LLM samples. This 238

demonstrates the strong potential of small models 239

for code instruction data synthesis. 240

3.3 Bootstrapping with Iterative 241

Self-Distillation 242

To further boost small LLMs for synthesizing 243

higher-quality code instruction data without dis- 244

tilling additional proprietary LLM samples, in this 245

section, we propose an effective bootstrap method 246

based on iterative self-distillation. Specifically, 247

we start with the mentioned enhanced synthesiz- 248

ers, considering this as the 0-th iteration of the 249

bootstrap. Then, in each iteration, we first col- 250

lect diverse and reliable self-distilled data synthesis 251

samples by multi-checkpoint sampling and multi- 252

aspect scoring strategies. These samples are gen- 253

erated by the synthesizers from the previous it- 254
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Figure 2: Overview of our iterative self-distillation bootstrap method. In each iteration, we sample outputs
from multiple checkpoints and evaluate them with a multi-aspect scorer for diversity and reliability. We then use a
gradient-based influence estimation method to select the most influential samples, which is done by evaluating the
gradient similarity between the self-distilled and proprietary LLM-distilled code instruction data.

eration. Next, to further identify the most influ-255

ential samples, we introduce a gradient-based in-256

fluence estimation method, which quantifies each257

sample’s influence by computing its gradient simi-258

larity with proprietary LLM samples. Finally, these259

high-quality samples are used to train the synthe-260

sizer itself, enhancing its ability to generate code261

instruction data. The overview of our method is262

illustrated in Figure 2, and a detailed theoretical263

analysis of the iterative self-distillation is provided264

in Appendix E.265

Multi-Checkpoint Sampling with Multi-Aspect266

Scoring. As our approach iteratively trains on267

self-distilled data synthesis samples, ensuring their268

quality and diversity is essential. Therefore, we269

first develop a multi-checkpoint sampling strategy.270

Specifically, given the synthesis prompt p and a271

code snippet c, we obtain M ×N diverse problem-272

solution pairs {(qij , sij)} by sampling N times273

from M checkpoints of synthesizers, where i ∈274

[1,M ] and j ∈ [1, N ]. Compared to the strategy275

Best-of-N (Stiennon et al., 2022), which selects276

candidates from a single checkpoint, our approach277

expands the search space and improves both the278

reliability and diversity of the selected data.279

Next, to rank and select the best candidate pair280

corresponding to the code snippet, we introduce a281

multi-aspect scoring model, namely scorer. Given282

a candidate pair (qij , sij), the scorer evaluates it283

across Z aspects, producing a feature vector xij =284

{xzij} , where xzij ∈ [0, 9] represents the integer285

score in the z-th aspect, such as problem-solution 286

consistency 1. Furthermore, considering that dif- 287

ferent aspects are independent and integer-based 288

scores provide only a hard signal that lacks gran- 289

ularity for distinguishing data quality, we propose 290

a weighted scoring aggregation method, which as- 291

signs each aspect a weight wz and computes the 292

final aggregated real-valued score Scoreij as: 293

Scoreij =
Z∑

z=1

wzxzij . (1) 294

To determine the optimal weight vector w = {wz}, 295

we conduct K experiments based on the instruction 296

data generated by synthesizers. For each experi- 297

ment, we compute the average multi-aspect scores 298

x̄k of the instruction data and use the data to fine- 299

tune DeepSeek-Coder-6.7B-Base. The fine-tuned 300

model is then evaluated on an out-of-distribution 301

(OOD) test set to obtain the corresponding perfor- 302

mance score yk. Given the data {(x̄k, yk)}, we 303

estimate w by solving the following ridge regres- 304

sion problem: 305

w = argmin
w

K∑
k=1

(yk −w · x̄k)
2 + λ∥w∥2, (2) 306

where λ is a regularization term to prevent overfit- 307

ting, and the learned weights indicate the relative 308

importance of each scoring aspect in determining 309

the effectiveness of instruction data. 310
1The prompt for the multi-aspect scorer are provided in

Appendix D.
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Gradient-based Influence Estimation While311

multi-checkpoint sampling with multi-aspect scor-312

ing ensures diversity and reliability, the influence313

of each selected self-distilled sample on the fine-314

tuning of the base model can vary. Inspired by pre-315

vious works (Pruthi et al., 2020; Xia et al., 2024),316

we introduce a gradient-based influence estimation317

method to further identify the most valuable sam-318

ples by estimating the fine-tuning influence of the319

code instruction data they contain.320

Concretely, based on the influence formulation321

(Pruthi et al., 2020), the influence of a self-distilled322

code instruction data d = (q, s) on the prediction323

of a test instance t in a base model parameterized324

by θ can be estimated by computing the similarity325

between their gradients:326

Inf(d, t) ∝ Sim(∇l(d, θ),∇l(t, θ)). (3)327

However, code generation tasks are inherently328

broad and diverse, and some of them may lack329

well-established benchmarks. To address this, we330

instead estimate the influence of d by computing331

its gradient similarity to the code instruction data332

{dp = (qp, sp)} from proprietary LLM samples333

Dp. The idea is that proprietary LLMs (e.g., GPT-334

4o) have undergone extensive optimization through335

various strategies, making their distilled instruction336

data highly effective in improving model perfor-337

mance across diverse tasks.338

Specifically, inspired by previous work (Xia339

et al., 2024), we first train an LLM-based reference340

model on the proprietary instruction data {dp =341

(qp, sp)} using LoRA (Hu et al., 2022), which al-342

lows for low-rank adaptation, significantly reduc-343

ing trainable parameters and ensuring the efficiency344

for the following gradient computations. We then345

compute the gradient of each self-distilled instruc-346

tion data d with respect to the LoRA parameters347

θlora, denoted as ∇lref (d, θlora). To further im-348

prove efficiency, following prior work (Park et al.,349

2023), we apply a projection matrix initialized with350

a Rademacher distribution to reduce gradient di-351

mensionality, resulting in ∇̂lref (d, θlora). Accord-352

ing to the Johnson-Lindenstrauss Lemmas (John-353

son et al., 1984), this transformation can preserve354

gradient distances while ensuring the usefulness of355

lower-dimensional features. Similarly, we compute356

the projected gradients for each proprietary instruc-357

tion data dp, denoted as ∇̂lref (d
p, θlora). Finally,358

we approximate the influence of d by calculating its359

cosine similarity to the average gradient of {dp}: 360

V (d) = Cosine

(
∇̂lref (d, θlora),

1

Np

Np∑
i=1

∇̂lref (d
p
i , θlora)

)
,

(4) 361

where Np is the size of {dp}. Eventually, the data 362

samples with the highest influence will be selected 363

and used for training. 364

4 Experiments 365

4.1 Benchmarks 366

We evaluate model performance using the pass@1 367

metric on several standard benchmarks: Hu- 368

manEval (Chen et al., 2021), MBPP (Austin et al., 369

2021) (along with their EvalPlus (Liu et al., 2023) 370

versions), LiveCodeBench (V4) (Jain et al., 2024), 371

and BigCodeBench (Zhuo et al., 2024). Evaluation 372

strictly follows each benchmark’s official settings 373

and prompts. 374

4.2 Baselines 375

We compare SCoder with several powerful base- 376

lines, including two proprietary models: GPT-4- 377

Turbo-20240409 (OpenAI, 2024a) and GPT-o1- 378

Preview-20240912 (OpenAI, 2024b), as well as 379

seven open-source models built on DeepSeek- 380

Coder-6.7B-Base (Guo et al., 2024): DeepSeek- 381

Coder-6.7B-Instruct, WaveCoder-Ultra-6.7B (Yu 382

et al., 2023), MagicoderS-DS-6.7B (Wei et al., 383

2024), OpenCodeInterpreter-DS-6.7B (Zheng et al., 384

2024), AlchemistCoder-DS-6.7B (Song et al., 385

2024), InverseCoder-DS-6.7B (Wu et al., 2024), 386

and WizardCoder-GPT-4-6.7B (Luo et al., 2024). 387

4.3 Implementation Details 388

We provide a simplified version of the implemen- 389

tation details here; a more detailed version can be 390

found in Appendix C. 391

Small-Scale Data Synthesizer. We train 392

Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and 393

Qwen2.5-Coder-14B-Ins as data synthesizers. 394

Each model is first trained on 10K GPT-4o data Dp, 395

then bootstrapped with 20K and 40K self-distilled 396

2https://evalplus.github.io/leaderboard.html
3https://livecodebench.github.io/leaderboard.

html
4https://huggingface.co/spaces/bigcode/

bigcodebench-leaderboard
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Synthesizer Data Size HumanEval MBPP LiveCodeBench BigCodeBench

DeepSeek-Coder-6.7B-Base

None 0 47.6† 72.0† 16.2† 41.8†

Fine-Tuning DeepSeek-Coder-6.7B-Base on 40K Synthesized Data

Llama3.1-8B-Instruct 0 60.4 64.7 16.5 42.1
+Enhanced 10K 64.2 69.3 17.3 42.8
+1 Iter 20K 65.5 71.1 17.4 43.1
+2 iter 40K 67.4 73.4 17.8 43.5

Qwen2.5-Coder-7B-Instruct 0 61.6 70.8 17.0 42.7
+Enhanced 10K 65.6 72.1 18.2 43.8
+1 Iter 20K 66.3 72.9 18.4 44.1
+2 iter 40K 68.9 74.7 18.9 44.7

Qwen2.5-Coder-14B-Instruct 0 65.3 73.7 18.7 43.2
+Enhanced 10K 67.5 75.8 19.4 44.5
+1 Iter 20K 68.4 76.3 19.3 45.1
+2 iter 40K 70.1 76.5 19.7 45.9

Table 2: Performance of code generation models (target models) built on instruction data generated by small
synthesizers on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). Data size refers
to the amount of data used to train the synthesizer. † denotes results from the benchmark leaderboards234.

Models HumanEval MBPP LiveCodeBench BCB (Comp) BCB (Inst)

Base Plus Base Plus Full Easy Full Hard Full Hard

Proprietary Models

GPT-4-Turbo-20240409 90.2† 86.6† 85.7‡ 73.3‡ 42.0† 82.4† 58.2† 35.1† 48.2† 32.1†

GPT-o1-Preview-20240912 96.3† 89.0† 95.5† 80.2† 58.5† 94.1† / 34.5† / 23.0†

DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Base 47.6† 39.6† 72.0† 58.7† 16.2† 38.7† 41.8† 13.5† / /

Fine-Tuned Models based on DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Instruct 74.4† 71.3† 74.9† 65.6† 19.8† 45.8† 43.8† 15.5† 35.5† 10.1†

WaveCoder-Ultra-6.7B 75.0† 69.5† 74.9† 63.5† 19.7 46.8 43.7† 16.9† 33.9† 12.8†

MagicoderS-DS-6.7B 76.8† 71.3† 79.4† 69.0† 20.4 47.9 47.6† 12.8† 36.2† 13.5†

OpenCodeInterpreter-DS-6.7B 77.4† 71.3† 76.5† 66.4† 18.9 46.6 44.6† 16.9† 37.1† 13.5†

AlchemistCoder-DS-6.7B 79.9‡ 75.6‡ 77.0‡ 60.2‡ 17.4 44.7 42.5 14.2 33.5 13.2
InverseCoder-DS-6.7B 79.9‡ 76.8‡ 78.6‡ 69.0‡ 20.3 46.6 45.7 14.9 35.4 9.5
WizardCoder-GPT-4-6.7B 77.4 73.8 75.4 64.8 21.0 49.6 45.1 15.5 37.3 10.8

SCoder-L-DS-6.7B 78.2 73.8 77.6 65.4 21.1 51.7 46.2 15.1 37.9 13.4
SCoder-Q7-DS-6.7B 78.7 74.3 79.1 66.5 21.4 52.2 47.4 15.5 38.6 14.5
SCoder-Q14-DS-6.7B 80.5 75.0 81.0 69.3 22.2 52.6 49.2 16.2 40.6 16.9

Table 3: Performance comparison of different models on multiple code generation benchmarks. Three SCoder
models are fine-tuned using data generated by our small synthesizers, where L, Q7, and Q14 denote three different
synthesizers after two iterations of bootstrap. BCB, Comp, and Inst denote BigCodeBench, Complete, and Instruct.
‡ denotes results from the InverseCoder work (Wu et al., 2024). The best results are in bold and the second-best
results are underlined.

data Ds. Training uses a learning rate of 1× 10−5,397

global batch size 128, and inference temperature398

0.2.399

SCoder. For fair comparison, we train DeepSeek-400

Coder-6.7B-Base on 110K evol-codealpaca-v1 for401

2 epochs, then fine-tune it on 60K synthesized data402

(from small synthesizers) for 3 epochs to obtain403

SCoder. The 110K data is commonly used in base-404

lines (Table 5). More target model results are in 405

Appendix H. 406

4.4 Main Results 407

As shown in Table 2, our proposed method sig- 408

nificantly enhances the instruction data synthesis 409

capabilities of small models with only two itera- 410

tions of bootstrap, regardless of their model family 411
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Models HumanEval MBPP LiveCodeBench BigCodeBench

SCoder-Q7-DS-6.7B 78.7 79.1 21.4 47.4
w/o multi-checkpoint sampling 74.9 73.8 18.7 44.3
w/o multi-aspect scoring 72.3 76.7 19.9 45.5
w/o gradient-based influence estimation 75.1 74.4 18.2 43.2

SCoder-Q14-DS-6.7B 80.5 81.0 22.2 49.2
w/o multi-checkpoint sampling 75.6 74.4 20.4 46.3
w/o multi-aspect scoring 74.9 75.8 20.8 45.1
w/o gradient-based influence estimation 76.1 74.9 20.0 44.8

Table 4: Ablation study on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). The
best results are in bold and the second-best results are underlined.

Model Common Data Specific Data

WizardCoder-GPT-4

110K (GPT-4)

0K
WaveCoder-Ultra 20K (GPT-4)

MagicoderS 75K (GPT-3.5)
AlchemistCoder >80K (GPT-3.5)

InverseCoder 90K (self-generated)
SCoder (ours) 60K (small model-generated)

Table 5: Comparison of data used by different models.
The source of the data is indicated in parentheses.

or scale. For example, the fine-tuning performance412

of the 40K data synthesized by Llama3.1-8B-Ins413

on the base model achieves a 5.0% improvement414

on HumanEval and a 5.9% improvement on MBPP415

after two iterations of bootstrap. This demonstrates416

that our approach, leveraging well-designed sam-417

pling and filtering strategies, enables small models418

to acquire self-distilled data synthesis samples with419

broad diversity, strong reliability, and high influ-420

ence. As a result, they progressively evolve into421

effective data synthesizers while minimizing de-422

pendence on proprietary LLM distillation.423

Furthermore, Table 3 shows that SCoder, trained424

on data generated by bootstrapped small-scale425

data synthesizers, outperforms or matches other426

state-of-the-art open-source baselines across mul-427

tiple benchmarks. For example, SCoder-Q14-DS-428

6.7B surpasses the best open-source baselines by429

5.9% and 9.7% on average in the challenging Live-430

CodeBench and BigCodeBench, respectively. No-431

tably, the open-source baselines typically utilize a432

larger amount of proprietary LLM-distilled instruc-433

tion data as listed in Table 5, further validating the434

effectiveness of our method in constructing strong435

small-scale data synthesizers. A more detailed cost436

efficiency analysis of our method is provided in437

Appendix F.438

4.5 Ablation Study439

We conduct ablation studies based on SCoder-Q7-440

DS-6.7B and SCoder-Q14-DS-6.7B. The results441

presented in Table 4 demonstrate the importance of 442

our extensive sampling and refined filtering strate- 443

gies. 444

First, without multi-checkpoint sampling (i.e., 445

sampling an equal number of outputs solely from 446

the last checkpoint of the previous iteration), the 447

performance of both code generation models on 448

HumanEval and LiveCodeBench drops by at least 449

4.8% and 8.1%, respectively. This indicates that a 450

limited sampling space reduces the likelihood of 451

obtaining high-quality self-distilled data, thereby 452

hindering the effectiveness of the bootstrap pro- 453

cess. Furthermore, when either multi-aspect scor- 454

ing or gradient-based influence estimation is re- 455

moved from the data selection process, the perfor- 456

mance on MBPP and BigCodeBench drops by up 457

to 7.5% and 8.9%, respectively. This highlights 458

that both strategies are essential for ensuring the 459

reliability and influence of self-distilled data, and 460

removing either significantly impacts the overall 461

effectiveness. 462

4.6 Data Scaling 463

To further evaluate the data synthesis quality of 464

small data synthesizers, we investigate the data 465

scaling law using the bootstrapped Qwen2.5-Coder- 466

14B-Ins. As shown in Figure 3, increasing the 467

data size leads to significant improvements of the 468

code generation model fine-tuned on DeepSeek- 469

Coder-6.7B-Base, surpassing DeepSeek-Coder- 470

6.7B-Instruct on most benchmarks. This further 471

validates the effectiveness of our approach in con- 472

structing high-quality small-scale data synthesiz- 473

ers. 474

4.7 Further Discussion 475

In this section, we provide a more fine-grained 476

analysis of the effectiveness of our method. 477

First, we compare the impact of different selec- 478
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Figure 3: Impact of data scaling. The dashed lines
represent the performance of DeepSeek-Coder-6.7B-
Instruct across various benchmarks.
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Qwen2.5-Coder-7B-2iter
with composite score
with average score

with random selection
with lowest perplexity selection
with highest perplexity selection

60K  null
40K  40K

20K  20K
40K  20K

Figure 4: Comparison of different selection methods
and the number of self-distilled data used in different
bootstrap iterations. The y-axis denotes the performance
of the code generation models fine-tuned on 40K syn-
thesized data.

tion strategies during the bootstrap process. As479

shown on the left of Figure 4, for multi-aspect scor-480

ing, replacing the aggregated score with either the481

raw composite score from the scorer or the simple482

average of scores leads to a decline in the synthe-483

sizer’s data synthesis performance. Moreover, sub-484

stituting the gradient-based influence estimation485

with alternative selection methods, such as random486

selection or lowest/highest perplexity selection, re-487

sults in an even more substantial performance drop.488

These findings highlight the effectiveness of our489

selection strategy in identifying reliable and influ-490

ential self-distilled samples, thereby ensuring the491

success of the bootstrap process.492

Second, as the synthesizer’s capability improves493

with more bootstrap iterations, we progressively in-494

crease the number of self-distilled samples used in495

training across two iterations (20K → 40K). Here,496

we compare different settings, including removing497

multi-round iteration (60K → Null), progressively498

decreasing the sample size (40K → 20K), increas-499

ing the sample size in the first iteration (40K →500

40K), and decreasing the sample size in the second501

iteration (20K → 20K). As shown on the right of502

Figure 4, in all cases, performance declines, indicat-503

ing that a well-balanced and progressively increas-504

Consistency

Relevance

DifficultyCode Exist

Correctness

Standardization

Clarity

Code Comments Easy to Learn

Composite Score

evol-codealpaca-v1 our dataset

Figure 5: Quality comparison between the evol-
codealpaca-v1 dataset and our synthesized dataset.

ing data schedule plays a crucial role in maximizing 505

the effectiveness of the bootstrap process. 506

4.8 Data Quality Analysis 507

To further validate the quality of data generated by 508

the synthesizers, we sampled 100 code instruction 509

data from evol-codealpaca-v1 and the bootstrapped 510

Qwen2.5-Coder-14B-Ins, respectively, and used 511

GPT-4o-20240513 and GPT-4-turbo-20240409 to 512

score the data across 10 aspects based on the 513

prompt provided in Appendix D. The average re- 514

sults, shown in Figure 5, demonstrate that our syn- 515

thesized data achieves higher scores across all as- 516

pects, further confirming the effectiveness of our 517

method in building high-quality small-scale code 518

instruction synthesizers. 519

5 Conclusion 520

In this paper, we propose an iterative self- 521

distillation bootstrap method to fully unlock the 522

data synthesis potential of small-scale LLMs, trans- 523

forming them into powerful code instruction data 524

synthesizers while reducing reliance on propri- 525

etary LLMs and minimizing costs. We design 526

multi-checkpoint sampling and multi-aspect scor- 527

ing strategies to ensure the diversity and reliability 528

of self-distilled samples, followed by a gradient- 529

based influence estimation method to select influ- 530

ential ones for training. We validate our method 531

on Llama3.1-8B-Ins and Qwen2.5-Coder-7B/14B- 532

Ins, demonstrating their effectiveness as data syn- 533

thesizers. Based on the data generated by these 534

small-scale synthesizers, we introduce SCoder, a 535

family of code generation models that achieves 536

strong performance on HumanEval (+), MBPP (+), 537

LiveCodeBench, and BigCodeBench, showcasing 538

the potential of small models in code instruction 539

data synthesis. 540
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6 Limitations541

Despite the demonstrated effectiveness of our it-542

erative self-distillation bootstrap method in fully543

leveraging the code instruction data synthesis ca-544

pability of small-scale LLMs, certain limitations545

persist. For example, the current synthesis frame-546

work does not incorporate alternative data genera-547

tion paradigms, such as Self-Instruct (Wang et al.,548

2023) and Evol-Instruct (Xu et al., 2024), which549

have shown promise in previous work. Investigat-550

ing the integration of such approaches constitutes551

an important direction for future work.552

Furthermore, this study limits its empirical val-553

idation to the domain of code generation. While554

the underlying methodology may apply to other555

domains, several challenges arise. For exam-556

ple, although synthesizers can efficiently generate557

large-scale code instruction data by leveraging vast558

amounts of open-source code snippets, achieving559

efficient data synthesis for other tasks may require560

additional consideration and tailored design. There-561

fore, further exploration is needed to fully assess562

feasibility in other domains, and we plan to present563

related findings in future work.564
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A Code Snippet Gathering 798

To ensure the validity of our experimental results, 799

we first construct a clean and noise-free code snip- 800

pet pool that serves as the foundation for code 801

instruction data synthesis. Specifically, inspired 802

by the data preprocessing pipeline of StarCoder2 803

(Lozhkov et al., 2024), we follow the steps below 804

to construct the code snippet pool C from the Stack 805

V1, a collection of source code in over 300 pro- 806

gramming languages. 807

• Code Snippet Extraction: We first extract all 808

Python functions that include docstrings from 809

the Stack V1 dataset. To ensure a high level 810

of diversity while minimizing redundancy, we 811

perform near-deduplication using MinHash, 812

Locality-Sensitive Hashing (LSH), and Jac- 813

card similarity with a threshold of 0.5. 814

• Invalid Function Filtering: We remove any 815

functions that do not contain a return state- 816

ment or contain syntax errors. Additionally, 817

we supplement the remaining functions with 818

necessary dependency packages and remove 819

functions that import problematic packages 820

(e.g., os or sys), which could lead to issues in 821

execution. 822

• Quality Evaluation: We further evaluate the 823

remaining functions using the StarCoder2- 824

15B as a classifier to filter out examples with 825

bad documentation or low-quality code. 826

• Data Decontamination: Finally, we employ 827

an n-gram filtering technique to remove any 828

functions that contain solutions or prompts 829

from the benchmarks used in this work. 830

B Task Category 831

Following the Magicoder (Wei et al., 2024), we 832

use the following ten task categories for classify- 833

ing code snippets: "Algorithmic and Data Struc- 834

ture Problems", "Mathematical and Computational 835

Problems", "Database and SQL Problems", "Sys- 836

tem Design and Architecture Problems", "Security 837

and Cryptography Problems", "Performance Op- 838

timization Problems", "Web Problems", "Domain 839

Specific Problems", "User Interface and Applica- 840

tion Design Problems", and "Data Science and Ma- 841

chine Learning Problems". 842
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C Implementation Details843

Multi-Aspect Scorer. We sample 2.5K code in-844

struction data from Llama3.1-8B-Ins, Qwen2.5-845

Coder-7B-Ins, Qwen2.5-Coder-14B-Ins, and the846

evol-codealpaca-v1 dataset (Luo et al., 2024), re-847

spectively. Using the prompt in Appendix D, we848

distill scoring results from GPT-4o-20240806 from849

Z = 10 aspects and train Llama3.1-8B-Base for850

3 epochs with a learning rate of 1 × 10−5 and a851

global batch size of 64, obtaining the multi-aspect852

scorer. During inference, we set the temperature853

to 0. To derive the weight vector w, we conduct854

K = 20 experiments and evaluate the results on855

LiveCodeBench (202410-202501).856

Reference Model. We train Llama3.1-8B-Base857

as the reference model on 10K GPT-4o-20240806858

data (Dp) for 3 epochs with a learning rate of 2×859

10−5 and a global batch size of 32. For LoRA860

configurations, we set lora_r = 128, lora_alpha =861

512, and apply LoRA to the target modules: q_proj,862

k_proj, v_proj, and o_proj. We further investigate863

the impact of different reference models on data864

selection in Appendix G.865

Small-Scale Data synthesizer. We train866

Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and867

Qwen2.5-Coder-14B-Ins as data synthesizers.868

Each model is first trained on 10K GPT-4o-869

20240806 data (Dp) before undergoing two870

iterations of bootstrapping. In each iteration,871

we sample N = 3 data synthesis samples from872

M = 5 different checkpoints, respectively. The873

first iteration trains on 20K self-distilled samples,874

while the second iteration uses 40K. Each training875

runs for 3 epochs with a learning rate of 1× 10−5876

and a batch size of 128. During inference, we set877

the temperature to 0.2.878

SCoder. To maintain consistency with the base-879

lines, we use DeepSeek-Coder-6.7B-Base as the880

base model and distill 60K code instruction sam-881

ples from each of the three bootstrapped small-882

scale synthesizers. For a fair comparison, we883

also incorporate the evol-codealpaca-v1 dataset,884

an open-source Evol-Instruct implementation with885

approximately 110K data, widely used in baselines886

such as WizardCoder-GPT-4, WaveCoder-Ultra,887

MagicoderS, AlchemistCoder, and InverseCoder.888

The training data size comparison across different889

models is presented in Table 5.890

To obtain SCoder, we first fine-tune DeepSeek-891

Coder-6.7B-Base on the 110K evol-codealpaca-v1892

data for 2 epochs with an initial learning rate of 893

5 × 10−5 and a global batch size of 512. We 894

then further fine-tune it on the 60K small model- 895

generated data for 3 epochs with an initial learning 896

rate of 1×10−5 and a batch size of 64. Both phases 897

of training utilize a linear learning rate scheduler 898

with a 0.05 warmup ratio and the AdamW opti- 899

mizer. Training is conducted on 16 A100-80G 900

GPUs. 901

D Prompts 902

The data synthesis prompt is inspired by Wei et al. 903

(2024) and is shown in Figure 6. The multi-aspect 904

scoring prompt is inspired by Hui et al. (2024) and 905

is shown in Figure 7. 906

E Theoretical Analysis of Iterative 907

Self-Distillation 908

In this section, we provide a rigorous theoretical 909

analysis of the iterative self-distillation framework 910

from two perspectives: convergence behavior and 911

its interpretation in terms of Nash equilibrium and 912

the exploration-exploitation trade-off. 913

E.1 Problem Setup 914

Let (M, ∥·∥) be a complete metric space represent- 915

ing the space of model parameters. Let M0 ∈ M 916

be a fixed initial model. Define the data generation 917

process as a mapping G : M → P , where P de- 918

notes the space of data distributions. The training 919

operator is defined as T : M×P → M, mapping 920

a model and a dataset to an updated model. 921

At each self-distillation iteration i, the process 922

proceeds as follows: 923

Di = G(Mi), (5) 924

Mi+1 = T (M0, Di). (6) 925

where Di is the data generated by model Mi, and 926

each new model Mi+1 is trained from scratch using 927

the fixed initialization M0 and dataset Di. 928

E.2 Convergence Analysis 929

We analyze the convergence behavior of the model 930

sequence {Mi} by examining the composed oper- 931

ator Φ(M) = T (M0,G(M)), which encapsulates 932

the entire update process at each iteration of self- 933

distillation. This operator provides a clear descrip- 934

tion of how the model M evolves after one iteration 935

of self-distillation, starting from the fixed model 936

M0. 937
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Assumptions: We impose the following assump-938

tions:939

• (A1) Training Lipschitz Continuity: There ex-940

ists LT > 0 such that for all D,D′ ∈ P , the941

training process satisfies:942

∥T (M0, D)−T (M0, D
′)∥ ≤ LT ∥D−D′∥.

(7)943

• (A2) Data Generation Lipschitz Continuity:944

There exists LG > 0 such that for all945

M,M ′ ∈ M, the data generation process sat-946

isfies:947

∥G(M)− G(M ′)∥ ≤ LG∥M −M ′∥. (8)948

• (A3) Contraction Condition: The product of949

the Lipschitz constants satisfies:950

LTLG < 1. (9)951

Under assumptions (A1) and (A2), we can estab-952

lish the following lemma: The composed operator953

Φ(M) = T (M0,G(M)) is Lipschitz continuous954

with a constant of LTLG. Specifically, for any two955

models M and M ′, we have the following inequal-956

ity:957

∥Φ(M)− Φ(M ′)∥
=∥T (M0,G(M))− T (M0,G(M ′))∥
≤LT ∥G(M)− G(M ′)∥
≤LTLG∥M −M ′∥.

(10)958

Now, we impose the contraction condition (A3),959

which ensures that Φ is a contraction mapping.960

Since LTLG < 1, we can apply Banach’s Fixed-961

Point Theorem to guarantee the existence of a962

unique fixed point M∗ ∈ M such that M∗ =963

Φ(M∗). Given this, we can analyze the conver-964

gence of the model sequence {Mi}, where Mi+1 =965

Φ(Mi). For any i ≥ 0, the distance between Mi+1966

and M∗ is given by:967

∥Mi+1 −M∗∥ = ∥Φ(Mi)− Φ(M∗)∥
≤ LTLG∥Mi −M∗∥.

(11)968

By recursively applying this inequality, we obtain:969

∥Mi+1 −M∗∥ ≤ (LTLG)
i∥M0 −M∗∥. (12)970

Since LTLG < 1, the factor (LTLG)
i decays ex-971

ponentially, and thus the sequence {Mi} converges972

to M∗ at a linear rate.973

Therefore, under the assumptions of Lipschitz 974

continuity of both the training and data generation 975

processes, and the contraction condition, the model 976

sequence converges to a unique fixed point M∗, 977

with linear convergence determined by the product 978

of the Lipschitz constants LTLG. 979

E.3 Nash Equilibrium Interpretation 980

Beyond convergence, the fixed point M∗ of the self- 981

distillation process can also be interpreted through 982

a game-theoretic lens as a Nash equilibrium. 983

Consider each iteration of self-distillation as a 984

two-player interaction: 985

• Teacher: A model M ∈ M that generates 986

synthetic data via G(M). 987

• Student: A fixed model M0 that is re- 988

trained on the teacher’s generated data via 989

T (M0,G(M)). 990

The process evolves according to the update rule 991

in Equation 5 and 6 where the teacher at iteration i 992

is Mi, and the student is always initialized as M0. 993

The student updates its parameters based on the 994

synthetic data provided by the teacher, effectively 995

defining a best-response map from the teacher’s 996

strategy to a new model. 997

At convergence, the fixed point M∗ satisfies: 998

M∗ = T (M0,G(M∗)), (13) 999

which indicates that when the teacher generates 1000

data using M∗, retraining the student M0 on that 1001

data simply reproduces the same model M∗. Thus, 1002

neither the teacher nor the student can unilaterally 1003

change their behavior to improve the outcome, sat- 1004

isfying the condition for a Nash equilibrium. 1005

This perspective emphasizes that iterative self- 1006

distillation converges to a stable teacher–student 1007

pair, where the synthetic data and the resulting 1008

trained model are mutually consistent. 1009

E.4 Exploration–Exploitation Trade-off 1010

The iterative nature of self-distillation inherently 1011

embeds an exploration–exploitation mechanism. 1012

• Exploration: In each iteration i, the teacher 1013

model Mi generates a new dataset Di = 1014

G(Mi), which may differ significantly from 1015

previous iterations. This promotes exploration 1016

of new data distributions, especially in the 1017

early stages when Mi is far from convergence. 1018
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Data Synthesizer HE LCB-V4-Full

Llama3.1-8B 60.4 16.5
+2 iter 67.4 17.8
+3 iter 67.2 17.9

Qwen2.5-Coder-7B 61.6 17.0
+2 iter 68.9 18.9
+3 iter 69.1 18.8

Table 6: Finetuning performance of DeepSeek-Coder-
6.7B-Base on 40K data synthesized by different synthe-
sizers.

• Exploitation: At every iteration, the student1019

model is always retrained from the fixed ini-1020

tialization M0. This exploits prior knowledge1021

encoded in M0, focusing learning on the cur-1022

rent data Di.1023

As training progresses, the diversity of generated1024

data typically decreases, and the model converges1025

to a stable state M∗. In this sense, the process1026

naturally transitions from high-entropy exploration1027

to low-entropy exploitation. This dynamic provides1028

a theoretical rationale for the empirical success of1029

iterative self-distillation.1030

E.5 Discussion1031

Although the convergence and equilibrium are guar-1032

anteed under idealized assumptions (e.g., Lipschitz1033

continuity, contraction property), in practical sce-1034

narios with non-convex models and imperfect op-1035

timization, strict convergence is not guaranteed.1036

However, our empirical results suggest that the1037

self-distillation process stabilizes in practice and1038

leads to consistently improved model performance,1039

as shown in Table 2.1040

Furthermore, we extended the self-distillation1041

process to three iterations. In the third iteration,1042

we used 40K self-distilled samples for training. As1043

shown in Table 6, the performance of the synthe-1044

sizers becomes stable when the number of self-1045

distillation iterations reaches two or more, indi-1046

cating that additional iterations yield diminishing1047

returns while maintaining strong generation qual-1048

ity.1049

F Cost Efficiency of Our Method1050

In this section, we detail the cost advantages of1051

our proposed approach, which relies on training a1052

lightweight data synthesizer rather than directly dis-1053

tilling a proprietary large language model (LLM).1054

Our method significantly reduces reliance on ex- 1055

pensive LLM queries, improving both efficiency 1056

and accessibility. 1057

Specifically, we use only 10K proprietary LLM 1058

samples during the initial bootstrapping phase. 1059

This is a substantial reduction compared to prior 1060

works, which typically require 150K–200K propri- 1061

etary samples, as shown in Table 5. By contrast, 1062

once the bootstrapped synthesizer is trained, we 1063

can generate high-quality instruction data at scale 1064

without further calls to proprietary models. 1065

The main computational cost of our method lies 1066

in fully fine-tuning the data synthesizer. In com- 1067

parison, model inference (for sampling and multi- 1068

aspect scoring) and gradient similarity calculations 1069

are relatively lightweight. For instance, construct- 1070

ing the gradient library for each iteration takes ap- 1071

proximately 3 hours on a single NVIDIA A100 1072

80GB GPU. 1073

Taking Qwen2.5-Coder-7B-Instruct as an exam- 1074

ple, we fine-tuned on 110K self-distilled samples 1075

throughout the entire bootstrap process, which took 1076

around 6.5 hours on 8× A100 80GB GPUs. Based 1077

on Google Cloud’s official pricing5, the total cost is 1078

estimated to be only $263.58. In contrast, using pro- 1079

prietary model APIs such as the GPT-4o-20240806 1080

API for instruction synthesis incurs significantly 1081

higher costs; given average input/output lengths 1082

of 253 and 752 tokens respectively (as statistically 1083

measured from 10K distilled samples from the pro- 1084

prietary model), the same budget would only allow 1085

for generating approximately 30K samples. This 1086

highlights the efficiency of our approach: once 1087

trained, the synthesizer enables large-scale data 1088

generation at a fraction of the cost. 1089

G Influence of Different Reference 1090

Models 1091

In our main experiments, we primarily used 1092

Llama3.1-8B-Base as the reference model to com- 1093

pute gradient-based influence scores for guiding 1094

data selection. To assess whether the choice of ref- 1095

erence model significantly impacted the outcome, 1096

we conducted additional experiments using differ- 1097

ent reference models while keeping the data synthe- 1098

sizer (Qwen2.5-Coder-7B-Instruct) and the target 1099

model (DeepSeek-Coder-6.7B-Base) unchanged. 1100

We trained the data synthesizers for 2 iterations 1101

and used them to generate 40K code instruction 1102

data for training the target model. As shown in 1103

5https://cloud.google.com/products/calculator
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Reference Model HE LCB-V4-Full

Llama3.1-8B 68.9 18.9
Llama2-7B 68.4 18.5
Llama2-13B 69.2 18.8

Table 7: Performance of the target model (DeepSeek-
Coder-6.7B-Base) using different reference models for
influence estimation. The data synthesizer is fixed to
Qwen2.5-Coder-7B-Instruct.

Models HE LCB-V4
Base Plus Full Easy

Llama3.1-8B-Ins 65.9 57.9 18.0 46.7
SCoder-Q14-Llama-8B 70.1 64.6 19.1 48.3
Qwen2.5-Coder-7B-Ins 88.4† 84.1† 24.7 36.6
SCoder-Q14-Qwen-7B 85.8 80.0 29.4 65.2

Table 8: Training results of different target models. †
denotes results from the official technical report.

Table 7, the performance variations across different1104

reference models are relatively small. This indi-1105

cates that our method is stable and largely insensi-1106

tive to the specific scale or version of the reference1107

model, further validating its robustness and practi-1108

cality.1109

H Data validity on more target models1110

To further demonstrate the generalization capability1111

of the data synthesized by the small synthesizers,1112

we additionally selected Llama3.1-8B-Base and1113

Qwen2.5-Coder-7B-Base as target models. Fol-1114

lowing the settings described in Appendix C, we1115

set the bootstrapped Qwen2.5-Coder-14B-Ins as1116

the synthesizer and trained SCoder-Q14-Llama-8B1117

and SCoder-Q14-Qwen-7B respectively. As shown1118

in Table 8, SCoder achieves significant improve-1119

ments over the corresponding instruction models1120

across the majority of evaluation metrics. Consid-1121

ering that Qwen2.5-Coder-7B-Ins was trained on1122

millions of instruction data while we only used 60K1123

data generated by the small synthesizer, this still1124

demonstrates the effectiveness of our approach.1125
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Figure 6: Data Synthesis Prompt.
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Figure 7: Multi-Aspect Scoring Prompt.
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